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Abstract

This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemody-
namics for idealized geometries of healthy cerebral arteries modeled by means of both nonlinear isotropic
and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially pro-
posed for cerebral arteries, to characterize the activation of collagen fibers at finite strains. In the current
work, this constitutive model is implemented for the first time in the context of an FSI formulation.

In this framework, we investigate the influence of the material model on the numerical results and, in
the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior
of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators,
vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an
anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation
and deactivation processes of the fibrous component of the tissue throughout the wall thickness during
the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the
intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the
methodology presented here will be particularly useful for studies of mechanobiological processes in the
healthy and diseased vascular wall.

Key words: material constitutive models; cerebral arterial tissue; hypereslatic isotropic laws; hyperelastic
anisotropic laws; fluid-structure interaction; numerical simulations

1 Introduction

The use of mathematical models and numerical simulations for the study of the blood flow in arteries and, in
general, of the cardiovascular system at large, both in physiological and pathological conditions, has received
an increasing attention in the Biomedical community during the last two decades [1]. Indeed, such study aims
at enhancing the current knowledge of the physiology of the cardiovascular system, as well as at providing
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reliable tools to the medical doctors in order to predict the natural course of pathologies and, possibly, the
occurrence of cardiovascular accidents [1–4].

In this work, we focus on idealized geometries of blood vessels that represent healthy (physiological)
conditions of the cerebral vasculature; indeed, we report that in the Biomedical community few works have
focused so far on the study of the cerebral blood circulation in physiological conditions, as in e.g. [5–8],
while the majority of the contributions, namely [8–17], dealt with developed cardiovascular diseases, as
cerebral aneurysms; blood flow dynamics is simulated either in rigid arteries, as in [5,6,8–14,18,19], or in
compliant arteries [7,15–17,20–23]. The numerical results have been analyzed in terms of the flow patterns
inside the blood vessels [5–7], or in developed aneurysms [11–14,19], or by studying the distribution of
mechanical stresses inside the aneurysm dome [15,16,22,23]. Furthermore, some contributions have focused on
the influence on the numerical results of the geometrical configuration [8,10,11,18,20,24] (e.g. addressing the
impact of the image reconstruction process on the creation of the vascular computational domains on the blood
flow patterns), or of the boundary conditions modeling the physiological blood flow at the inlet and outlet
surfaces of the computational domains [9,17]. However, few works, namely [16,21,25–27], have addressed
the influence of the vessel wall constitutive model on the numerical results and associated hemodynamical
indicators; more specifically, they highlight the relevance of the modeling choice for the arterial tissue in
Fluid-Structure Interaction (FSI) simulations, for which non-negligible effects on the vessel wall deformations
are reported when employing different constitutive laws. Nevertheless, we remark that, when FSI simulations
are carried out, the arterial tissue is often still described as an isotropic material by means of both linear and
nonlinear models; see e.g. [21–23,28,29].

In this work, we address the influence of the constitutive model for the arterial tissue on the FSI numerical
results by considering both nonlinear isotropic and anisotropic constitutive models, the latter representing
the state of the art of the cerebral arterial tissue modeling [27,30–38]. Since the arterial tissue is mainly
composed of elastin, collagen fibers, and smooth muscle cells and features a layered structure [39], we consider
constitutive models that describe the passive mechanical response of arteries which is related to the load
bearing properties of elastin and collagen fibers [30]. We focus on constitutive models that can capture
both the nonlinear behavior of arteries, especially at finite strains [30,40], and, for some of the laws under
consideration, their anisotropic mechanical response [39]. In our analysis, we consider isotropic constitutive
models since they are still largely used in the Computational Mechanics community due to their capability
of describing the nonlinear mechanical response of the tissue without requiring information on its fibrous
nature. Anisotropic models are however receiving increasing attention due to the advancements in microscopy
techniques which provide insights regarding the orientation, distribution and mechanical contribution of the
collagen fibers to the overall mechanical behavior of the tissue [41,42].

For anisotropic models that describe the arteries as a fiber reinforced material, the collagen fibers are
considered to be mechanically active, i.e. effectively mechanically responding to applied external loads, only
when stretched beyond a minimum threshold, also called the activation stretch. In literature, two approaches
have been proposed to describe such recruitment of the collagen fibers: the most common considers the
collagen fibers as active as soon as the strain is greater than zero, as in [30,37], and another one for which the
activation of the collagenous component occurs only at a minimum stretched length of the fibers [31,32,43].
We remark that the recruitment of the collagen fibers at finite strains has been hypothesized as the underlying
mechanism of the mechanical stiffening for increasing stresses in arteries ([30,40,41,44,45]). Furthermore, the
possibility of describing the level of activation of the collagen fibers according to the deformations of the
tissue during the cardiac cycle may provide important insights on the role of the collagen fibers in the
arterial tissue response to hemodynamic loads. In this regard, it should be recalled, that the extracellular
matrix of the arterial wall is continually maintained by the intramural vascular cells through a process of
synthesis and degradation of this matrix, referred to as turnover. Further, these same cells act as sensors to
the local mechanical and biochemical environment and modify their production/degradation of extracellular
matrix components such as collagen fibers, elastin fiber, proteoglycans and matrix metalloproteinases in
response to these cues ([46]). For example, fibroblasts in the vascular wall will change their gene expression
and rate of collagen synthesis in response to the state of the matrix, which they can probe using adhesion
contacts. Recently, in [47], it was demonstrated that the degree of anisotropy in a planar biaxial loading alters
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fibroblast orientation and proliferation, ([47]). Furthermore, the vulnerability of collagen fibers to enzymatic
degradation is known to be influenced by the level of mechanical strain to which they are exposed ([48]). Such
enzymatic degradation is common in the arterial wall for both normal collagen turnover as well as disease
related processes. There is therefore a need to more accurately model the local collagen fiber orientation and
loading state in studies in order to more accuately model the interplay between mechanics and biology in
both heathy and diseased vessels [49]. The current work provides an important step in this direction, by
developing and implementing a methodology for the computational simulation of collagen recruitment and
deformations during the cardiac cycle in physiological conditions of blood flow in idealized arteries.

The FSI numerical results obtained with the different constitutive laws are analyzed by comparing both
the blood flow and vessel wall dynamics. In particular, the arterial tissue models are compared in terms of
the vessel wall displacement and Von Mises stress, as done in e.g. [25,26], while the anisotropic models are
also analyzed in terms of the collagen fibers deformations over the cardiac cycle; for the latter models, we
highlight their potential within the context of FSI numerical simulations. We anticipate that our analysis
indicates that the blood flow dynamics in the cerebral arteries is not significantly affected by the choice of
the material model, provided that the latter is properly calibrated. Conversely, the material model chosen
for the mechanical characterization of the tissue significantly affects the displacement magnitude and the
mechanical stresses in the vessel wall during the cardiac cycle.

This paper is organized as follows. Section 2 introduces the coupled FSI problem that governs the blood
flow in compliant arteries and the constitutive models under consideration. In addition, it details the set of
boundary conditions used to simulate the physiological blood flow dynamics during the cardiac cycle. Section
3 deals with the numerical simulations carried out on two idealized geometries of blood vessels; it presents the
material parameters for the different constitutive models, the computational domains, and briefly addresses
the numerical discretization of the coupled FSI problem. Afterwards, the numerical results obtained in the
case of a cylindrical and a toroidal geometry are presented and critically discussed. Finally, we draw some
conclusions and discuss possible further developments of this work.

2 Vascular fluid-structure interaction modeling

This section introduces the system of partial differential equations modeling the blood flow in compliant
arteries together with the constitutive models for the arterial wall under consideration and includes the FSI
equations. The Navier-Stokes equations model the blood flow, while the conservation equation of linear
momentum governs the deformations of the arterial wall under the action of the hemodynamical forces [1].
The fluid equations are formulated in the Eulerian (spatial) coordinates, while the ones for the vessel wall
are formulated in the Lagrangian (material) coordinates; for this reason, the two subsystems are coupled by
means of an Arbitrary Lagrangian-Eulerian (ALE) formulation [1,50].

This section is organized as follows. Sec. 2.1 presents the coupled FSI problem. Afterwards, Sec. 2.2
details the isotropic and anisotropic constitutive models for the description of the mechanical behavior of the
healthy cerebral arterial tissue. Finally, Sec. 2.3 presents the set of boundary conditions considered for the
simulation of the FSI problem.

2.1 The coupled FSI problem

When considering FSI problems in hemodynamics, the domain under consideration is composed of a fluid part
(i.e. the vessel lumen) surrounded by a compliant solid part representing the arterial wall, both immersed
in a three-dimensional Euclidean space. In Fig. 1 the reference configurations, usually taken as the initial
ones, of the fluid (F) and solid (B) domains, as well as of the fluid-structure interface (Γ), are indicated by
the subscript 0, while the corresponding current configurations at a certain time t > 0 are indicated as F(t),
B(t), and Γ(t), respectively. The geometric problem represents the vessel lumen displacement field, defined
in the reference configuration F0 of the fluid domain and computed according to the one of the vessel wall [1].

As in [1], we indicate the displacement field in F0 as d̂F (X, t) : F0 × R
+ → R

3 and we recall that d̂F must

coincide with the displacement d̂|Γ0
(t) of the vessel wall in the reference configuration of the fluid-structure
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Figure 1: Fluid and solid domain in the reference and current configurations of the FSI domain

interface Γ0 at any time t > 0; the boundary conditions imposed on d̂F at the inlet and outlet surfaces of F0

must be compatible with the displacement on Γ0. As discussed in [1], the ALE map can be chosen arbitrarily
in the fluid domain; more precisely, it can be any differentiable diffeomorphism defined as the extension of

d̂|Γ0
in F0, i.e. d̂F := Ext

(
d̂|Γ0

)
. In this work, as in e.g. [28,29] for FSI studies of the physiological blood

circulation, the geometric problem is defined in terms of the harmonic extension of the interface displacement
as: 




−∆d̂F = 0 in F0,

d̂F = 0 on F0

∣∣
inlet

∪ F0

∣∣
outlet

,

d̂F = d̂|Γ0
on Γ0,

(1)

for all t > 0, where ∆ is the Laplacian operator defined in F0, while F0

∣∣
inlet

and F0

∣∣
outlet

indicate the generic
inlet and outlet surfaces in the reference configuration F0 of the fluid domain, respectively. The boundary
condition on the fluid-structure interface in Eq. (1) is called the geometric adherence condition. In addition,
we point out that the geometric problem describes the movement of the fluid domain at each time through
the restriction of the vessel wall displacement on the interface Γ0.

We assume the fluid to be Newtonian with constant viscosity and incompressible, as already done in e.g.
[15,21,22,27,51,52]. The ALE formulation of the Navier-Stokes equations reads:





∇ · u = 0 in F(t), ∀t > 0,

ρf
∂u

∂t

∣∣∣∣
At

+ ρf ((u−wF ) · ∇)u−∇ ·
(
µf

(
∇u+ (∇u)T

))
+∇p = 0 in F(t), ∀t > 0,

(2)

endowed with suitable initial and boundary conditions (see Sec. 2.3), where (u, p) represent the blood velocity
and pressure, respectively, and wF indicate the ALE velocity of the fluid domain, defined as the time
derivative of the vessel lumen displacement d̂F ; furthermore, ρf and µf measure the density and dynamic
viscosity of the blood, respectively. We remark that, in Eq. (2), ∇ and ∇· are the gradient and divergence
operators in the Eulerian coordinates defined in the current configuration F(t).

The Lagrangian formulation of the conservation equation of linear momentum describing the deformations
of the arterial wall reads:

ρs
∂d̂

∂t
− ∇̂ ·

(
P (d̂)

)
= 0 in B0, ∀t > 0, (3)

with associated initial and boundary conditions (see Sec. 2.3), where ρs indicates the arterial wall density,

d̂ represents the vessel wall displacement, and P (d̂) is the first Piola-Kirchhoff tensor as a function of the

arterial tissue displacement; ∇̂· is the divergence operator in the material coordinates defined in the reference
configuration B0 of the vessel wall. In this work, we model the arterial tissue as an hyperelastic material
([53]) whose mechanical behavior is fully characterized by means of the strain energy function per unit volume
in the reference configuration W, a scalar-valued function of the right Cauchy-Green tensor C, defined in
Sec. 2.2,, i.e. W = W (C). Consequently, the first Piola-Kirchhoff stress tensor in Eq. (3) depends on the

4



material displacement field d̂ through the deformation gradient F and right Cauchy-Green tensors and on
the strain energy function W according to the relation

P = 2F
∂W

∂C
. (4)

We address the choice of the material constitutive models in Sec. 2.2.
To conclude, we recall that the fluid, solid and geometric problems are coupled by means of the three con-

tinuity conditions on the fluid-structure interface Γ. These are the geometric adherence condition presented
in Eq. (1), the continuity of the velocities:

u = v̂ ◦ A−1
t on Γ(t), ∀t > 0, (5)

where v̂ is the velocity of the arterial tissue, and the balance of the stresses

(
JAt

σF (u, p)F−T
At

)
n̂F + P (d̂)n̂B = 0 on Γ0, (6)

for all t > 0, where σF (u, p) is the Cauchy stress tensor for a Newtonian fluid, F−T
At

and JAt
are the adjoint

([53]) and the determinant of the deformation gradient tensor defined from the ALE motion map, and n̂B and
n̂F are the outward directed unit normal vectors to the solid domain B0 and the fluid F0 domain, respectively.

2.2 Constitutive models for the arterial tissue

In order to introduce different strain energy functionsW, we assume that there exists a continuous and smooth
Lagrangian map φt which describes the movement of the arterial tissue from the reference configuration B0

into the current one B(t) for all times t > 0. Consequently, the deformations and strains of the solid domain

in the Lagrangian frame of reference are described by means of the deformation gradient tensor F := ∇̂φ+I

and the Cauchy-Green tensor C := F
T
F , respectively, with ∇̂ denoting the gradient operator with respect

to the Lagrangian coordinates X̂ in B0 and I the identity second order tensor in R
3. In the physiological

range of deformations, the arterial tissue behaves as a nearly-incompressible material [54]; here, we adopt
the approach based on the multiplicative volumetric-isochoric split of the deformation gradient F proposed
in [55] and already employed in literature for cerebral arteries, as e.g. in [15,23,56]. The local deformation
gradient F and the right Cauchy-Green tensor C are split into the so called volumetric and isochoric parts
by means of the relations:

F =
(
J1/3

I

)
F and C =

(
J2/3

I

)
C, (7)

where J := det (F ) and the tensors J1/3
I and J2/3

I are associated with isotropic volume-changing de-
formations, while the tensors F := J−1/3

F and C := J−2/3
C with volume-preserving deformations of the

material, for which det(F ) ≡ det(C) ≡ 1. Based on Eq. (7), the strain energy function W is reformulated in
its additive split form as:

W = W(C, J) = U(J) +W(C), (8)

where the volumetric term U(J) penalizes the volume-changing deformations and the isochoric part W(C)
characterizes the mechanical response of the material to external loads. From Eqs. (4) and (8), it follows that

the first Piola-Kirchhoff tensor P can be written as the sum of two terms, i.e. P = P̃ + P , where P̃ and P

are referred to as the volumetric and isochoric first Piola-Kirchhoff stress tensors, respectively, and they are
computed from the volumetric and isochoric strain energy functions, respectively, introduced in Eq. (8). We
remark that we employ polyconvex strain energy functions of the state of deformation to ensure the existence
of physically admissible solutions of Eq. (3) ([53,57]).
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2.2.1 Volumetric strain energy function

The volumetric term U = U(J) in Eq. (8) must be a strictly convex function of J featuring with a unique
global minimum at J = 1 ([53,58]). In this work, it is assumed:

U(J) =
κ

4

[
(J − 1)2 + log2J

]
, (9)

in order to penalize the cases J → ∞ and J → 0 corresponding to unphysical solutions [58]. The parameter κ,
which can be interpreted as a bulk modulus, assumes the role of a user-specified penalty parameter that should
be suitably tuned to weakly enforce the nearly incompressible response of the material in the physiological
range of deformations of the body.

2.2.2 Isochoric isotropic and anisotropic strain energy functions

The isochoric strain energy functions W
(
C
)
considered in this work are polyconvex functions for all the

states of deformations. In order to describe the nonlinear behavior of cerebral arteries, and particularly
the stiffening effect occurring at finite strains, we consider exponential type isotropic and anisotropic strain
energy functions.

We consider two isotropic strain energy functions:

WEXP1

(
C
)
=

α1

2γ1

(
eγ1(IC−3) − 1

)
(10)

firstly proposed in [33] and

WEXP2

(
C
)
=

α2

2γ2

(
eγ2(IC−3)2 − 1

)
, (11)

considered in [59]. In Eqs. (10) and (11), I
C

= Tr
(
C
)
and α1, α2, γ1, γ2 are material parameters; specifically,

α1 and α2 measure the mechanical low strain stiffness of the arterial tissue, while γ1 and γ2 are representative
of the level of nonlinearity of the mechanical response of the vessel wall.

The anisotropic mechanical properties of the arterial wall arise from aligned components within the wall
such as collagen fibers and smooth muscle cells. For this reason, anisotropic models for the arterial wall often
explicitly include a fibrous contribution in addition to an isotropic component [30,60]. In such structurally
motivated models, the mechanical response of the wall arises as the sum of contributions from the isotropic
medium and fibrous components. The isotropic component is used to model contributions from elastin
and other extracellular matrix components such as glycosaminoglycans (see, e.g. [61,62]). For simplicity, we
simply refer to this isotropic component as the elastin contribution. Here, the fibrous contribution is modeled
as the sum of the mechanical responses of a finite number of families of collagen fibers [31,32,53,60,63]. When
modeling the arterial tissue as a fiber-reinforced material, the local spatial orientation of each family of fibers

is assumed to be described by means of a material vectorial field â0(X̂) of unit length in B0 ([53,60]), as
in Fig. 2. In this work we assume that two families of fibers are immersed in the background material (see
Fig. 2), as e.g. in [31,37,64], and that each of them forms an angle β(i) with the circumferential direction of
the vessel wall, for i = 1, 2, that will change as the vessel wall is deformed. In this work, we consider the case
where the collagen fibers may be undulated and will not commence load bearing until they are recruited. This
condition is implemented via an activation criterion ([31,43]). In particular, it will be assumed that these
fibers will not be load bearing unless their stretch is larger than a certain threshold, called the activation

stretch. Given the i-th material vectorial field â
(i)
0 (X̂) in in B0, the deformed vectorial field â

(i)
t , representing

the collagen fibers in the current configuration B(t), is defined as â
(i)
t = F â

(i)
0 for all the families of fibers;

here, when the activation stretch is reached, the corresponding configuration of the collagen fibers field will

be indicated as a
(i)
A , for i = 1, 2. We remark that the i-th family of collagen fibers is considered mechanically

active when its stretch, defined by means the scalar quantity I
(i)

4 = C :
(
â
(i)
0 ⊗ â

(i)
0

)
is larger than ‖a

(i)
A ‖2
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Figure 2: Directions â0, i = 1, 2, of the families of collagen fibers in the reference configuration B0.

that indicates the activation stretch of the single family of fibers which was aligned along â
(i)
0 in B0 ([31,59]).

When the collagen fibers are mechanically active, the isochoric anisotropic strain energy function describing
the tissue reads:

W
(
C, â

(1)
0 , â

(2)
0 ; ‖a

(1)
A ‖2, ‖a

(2)
A ‖2

)
= Welastin

(
C
)
+

2∑

i=1

W
(i)

fiber

(
C, â

(i)
0 ; ‖a

(i)
A ‖2

)
, (12)

where Welastin

(
C
)
is the strain energy function describing the elastin which we set Welastin = WEXP1,

while W
(i)

fiber

(
C, â

(i)
0 ; ‖a

(i)
A ‖2

)
is the strain energy function modeling the mechanical behavior of the single

family of fibers for which the activation stretch of the single family of fibers is a characteristic parameter
which should be obtained from experimental studies of the histology of the arterial tissue [41]. We consider

W
(i)

fiber

(
C, â

(i)
0 ; ‖a

(i)
A ‖2

)
of the form:

W
(i)

fiber

(
C, â

(i)
0 ; ‖a

(i)
A ‖2

)
= W

(i)

fiber

(
I
(i)

4 ; ‖a
(i)
A ‖2

)
=

α(i)

2γ(i)

(
eγ

(i)(I
(i)
4 −‖a

(i)
A

‖2)2 − 1
)
, (13)

where α(i) and γ(i) represent the mechanical low strain stiffness and level of nonlinearity characterizing the
i-th family of collagen fibers, respectively. In this work, we consider two different types of models for all the

families of fibers. The first one corresponds to the case for which the activation stretch ‖a
(i)
A ‖2 is equal to one

(immediate recruitment) for all the families of fibers [37,59]; correspondingly, we set in Eq. (13) ‖a
(i)
A ‖2 = 1

and the associated strain energy function, which we denote as W
(i)

EXP2-ZS, is:

W
(i)

EXP2-ZS

(
C, â

(i)
0

)
= W

(i)

EXP2-ZS

(
I
(i)

4

)
=

α(i)

2γ(i)

(
eγ

(i)(I
(i)
4 −1)2 − 1

)
, (14)

where “ZS” stands for the activation of the fibers with respect to the unloaded reference configuration,
i.e. the configuration at zero strains. The second anisotropic model, proposed in [31,43], assumes that the

recruitment of the i-th family of collagen fibers occurs at finite strains whenever I
(i)

4 > ‖a(i)
FS‖

2, where

‖a(i)
FS‖ is the activation length associated to the i-th family in a deformed configuration of the body B

(i)
FS,

called the activation configuration.Therefore, in this case, we set ‖a
(i)
A ‖2 = ‖a(i)

FS‖
2 and the strain energy

function (W
(i)

EXP2-FS) for the single family of fibers reads:

W
(i)

EXP2-FS

(
C, â

(i)
0 ; ‖a(i)

FS‖
2
)
= W

(i)

EXP2-FS

(
I
(i)

4 ; ‖a(i)
FS‖

2
)
=

α(i)

2γ(i)

(
eγ

(i)(I
(i)
4 −‖a(i)

FS‖
2)2 − 1

)
, (15)

where “FS” stands for finite strains.
As described in [65–67], in the case of anisotropic laws, the collagen fibers recruitment is included in the

definition of the first Piola-Kirchhoff tensor when the activation condition I
(i)

4 > ‖a
(i)
A ‖2 on the single family

of fibers is satisfied. Here, we take into account the recruitment of the collagenous component of the tissue

by means of a smooth activation function of the stretch of the fibers H
(
I
(i)

4 − ‖a
(i)
A ‖2; ǫ

)
that multiplies the
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mechanical contribution of the each family of collagen fibers, indicated as P
(i)

fiber. Therefore, in the case of

anisotropic models, the isochoric component of P , i.e. P = 2F
∂W

∂C
, reads:

P = P elastin +

2∑

i=1

H
(
I
(i)

4 − ‖a
(i)
A ‖2; ǫ

)
P

(i)

fiber, (16)

where, P elastin and P
(i)

fiber are the mechanical contribution of the elastin and single family of fibers, respect-

ively, H
(
I
(i)

4 − ‖a
(i)
A ‖2; ǫ

)
=

(
1
πatan(ǫ(I

(i)

4 −‖a
(i)
A ‖2))+ 1

2

)
, and ǫ is a dimensionless user-specified parameter

which we choose as ǫ = 5.0 · 105 to sharply model the abrupt recruitment of the collagen fibers. We remark

that, for each family of fibers, the function H
(
I
(i)

4 − ‖a
(i)
A ‖2; ǫ

)
is introduced in Eq. (16) to approximate

the corresponding Heaviside function of I
(i)

4 , centered around ‖a
(i)
A ‖2. The recruitment of the collagen fibers

may also be modeled using other approaches, for instance by means of a probability density function of the
activation stretch as in [41].

2.3 Boundary and initial conditions for the coupled FSI problem

The equations defining the FSI problem must be endowed with a set of suitable boundary conditions defining
physiological inflow and outflow conditions for the fluid domain as well as representing the tethering tissues
around the vessel wall. At the inflow section of the fluid domain in Fig. 1, we apply Dirichlet boundary
conditions:

u = uinlet on ∂F(t)
∣∣
inlet

, ∀t > 0, (17)

where ∂F(t)
∣∣
inlet

is the inlet surface of the current configuration of F and uinlet is a time varying parabolic

(first order Womersley) profile centered with respect to ∂F(t)
∣∣
inlet

and directed along its inward normal
unit vector. We remark that, as it will be detailed in Sec. 3, the time evolution of uinlet is computed from
a representative physiological flux profile for an Internal Carotid Artery (ICA) [19,68]; particularly, as in
[19], the time evolution of the flux profile is described by means of a Fourier expansion of the experimental
measurements reported in [68] and then rescaled with respect to the cross section are of the inlet surface of
the domains under consideration.

On the outlet surface we apply resistance boundary conditions [5] of the form:

σFnF = RQ(u)nF + pV nF on ∂F(t)
∣∣
outlet

, ∀t > 0, (18)

where R is the resistance coefficient employed to attain physiological values of blood pressure in the deformed
fluid domain, as done in e.g. [5,15,20,22,25,69], Q(u) is the flow through the outlet surface ∂F(t)

∣∣
outlet

of
F(t), and pV is the reference pressure.

On the external surface of the solid domain, we consider an elastic Robin boundary condition in order to
mimic the presence of the tethering tissues around the vessel, as done in e.g. [70,71]. As discussed in [71],
the mathematical formulation of the Robin boundary condition is:

Pn̂B +Kd̂+ hn̂B = 0 on ∂ΓB0,ext, ∀t > 0, (19)

where ∂ΓB0,ext is the external surface of the solid domain in the reference configuration B0, K is the elastic

coefficient, representing the volumetric stiffness of the surrounding tissues, and h = h
(
X̂, t

)
is a scalar

function describing an applied external load. Here, the elastic coefficient in the Robin condition is determined
such that physiological radial deformations of the vessel wall are obtained [72], while we set h = 0. We remark
that elastic Robin boundary conditions have been employed in e.g. [70,71], while in [29,73,74] a viscoelastic
Robin boundary condition is applied. As pointed out in [70,71], physiological displacements of the arterial
wall can be obtained by considering elastic Robin boundary conditions. For this reason, due to the general
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lack of experimental data to estimate the parameters in the viscoelastic Robin conditions of [29,73,74] for
the cerebral vasculature, pure elastic Robin boundary condition have been preferred to viscoelastic Robin
conditions on the external surface. Finally, we recall that for the geometric problem, we set homogeneous
Dirichlet boundary conditions on both the inflow and outflow sections of F0, as for instance in [16].

Regarding the initial conditions for the FSI coupled problem, we set the blood flow velocity and pressure
as well as the fluid and solid displacements equal to zero. Consequently, the numerical results are affected
by an initial transient phase before the proper physiological conditions are matched. This aspect is detailed
in Sec. 3.

3 Numerical simulations

This section presents and discusses the FSI numerical simulations for idealized cerebral arteries. Firstly, it
summarizes the values of the material parameters employed for the blood and arterial wall constitutive models
introduced in Sec. 2. The material parameters that will be presented in Sec. 3.1 have been obtained from
data fitting of experimental measurements of the mechanical behavior of healthy anterior cerebral arteries of
which the computational domains reproduce the physiological dimensions. In Sec. 3.2 we illustrate the space
and time discretizations for our FSI simulations and, finally, Sec. 3.3 presents the numerical results obtained
using different constitutive models.

3.1 Material parameters for the blood flow and arterial tissue models

The material constants for blood density and viscosity are ρf = 1.000 g/cm3 and µf = 0.035 g/(cm · s) (see
e.g. [1,52]). Regarding the resistance boundary condition of Eq. (18) on the outflow section of the fluid
domain, we set the coefficient as follows: R = 1.032 · 106 (dyn· s) / cm5 and pV = 0 dyn/cm2.

Since we specifically focus on FSI numerical simulations on cerebral arteries, the values of the material
parameters have been taken from [56] where the numerical validation of the constitutive models is presented.

We remark that in Tab. 1, it is assumed that two families of collagen fibers are immersed in the isotropic
elastin network [56]. In addition, both families have the same mechanical properties, as already done in
e.g. [31,37]. In references [31,56,75] the angle β(i) formed by the local alignment vector of the i-th fibers
family in the unloaded reference configuration (see Fig. 2) and the circumferential direction of the vessel

and the circumferential deformation λ
A,(i)
r at which the collagen fibers activation occurs for the anisotropic

(EXP1, EXP2-FS) model are determined by means of the least-squares approximation of the experimental
measurements of [40]. Indeed, experimental observations of the spatial orientation of the collagen fibers and
of their activation stretch are not reported in [40]. The fitted stress-strain relations obtained for the different
constitutive models are represented in Fig. 3. In addition, for the numerical simulations of Sec. 3.3, we set
κ = 9.0 · 106 dyn/cm2 in Eq. (9) such that the incompressibility constraint J = 1 is nearly full filled with
a margin of 1% for all physiological deformations considered in this work. In order to achieve physiological
displacements of the vessel wall we set the elastic coefficient K in the external Robin boundary condition of
Eq. (19) as K = 107 dyn/cm3.

3.2 Space and time discretization of the coupled FSI problem

The coupled FSI problem presented in Sec. 2 has been discretized in space by means of the finite element
method [76]. More in detail, the Navier-Stokes equations have been discretized by means of the Inf-Sup
stable pair of finite element spaces of functions P1 Bubble-P1 for the velocity and pressure, respectively, and
linear finite elements (P1) discretize both the solid and geometric problems. The Navier-Stokes and structure
equations have been discretized in time by means of a second order Backward Differentiation Formula scheme.
The discrete coupled FSI system is solved by means of the so called Fully Implicit monolithic technique
described in [71] and the resulting nonlinear system is solved iteratively by the Newton method [77]. At
each iteration, the coupled FSI problem is linearized with respect to the fluid, solid, and geometric unknowns
and the resulting linear system is solved by means of the GMRES method [78] using an Additive-Schwarz
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Isotropic models

Model Parameters

EXP1 α1 = 7.6350 · 104 dyn/cm2, γ1 = 0.7410

EXP2 α2 = 6.8220 · 104 dyn/cm2, γ2 = 0.0609

Anisotropic models

(EXP1, EXP2-ZS)
αelastin = 1.7471 · 104 dyn/cm2, γelastin = 0.8620

α(1) = α(2) = 1.4979 · 105 dyn/cm2, γ(1) = γ(2) = 0.5736
β(1) = −β(2) = 56.52◦

(EXP1, EXP2-FS)
αelastin = 3.5270 · 104 dyn/cm2, γelastin = 0.3424

α(1) = α(2) = 1.3370 · 105 dyn/cm2, γ(1) = γ(2) = 0.2141

β(1) = −β(2) = 42.82◦, λ
A,(1)
r = λ

A,(2)
r = 1.5009

Table 1: Material parameters for the isotropic and anisotropic models of Sec. 2
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Experimental data [40]

Figure 3: Least-squares approximation of the experimental data of [40] for the constitutive models of Sec. 2
and the material parameters reported in Tab. 1. [Picture from [56] ]

preconditioner [79]. We report the total number of degrees of freedom of the FSI monolithic system case by
case in the next sections.

The numerical simulations have been carried out in computational domains whose characteristic dimen-
sions reproduce the physiological ones of the anterior cerebral artery. For this reason, we consider a cyl-
indrical geometry of blood vessel with internal undeformed radius R0 = 0.033 cm (see[43]) and wall thickness
h = 0.01 cm, as in [40] . Furthermore, we take into account a toroidal geometry of artery whose internal
radius and thickness are the same as before; see Fig. 4. In addition, Fig. 5 reports the time evolution of the
rescaled peak inlet velocity for the inlet boundary conditions of Eq. (17) [19].

3.3 Numerical results

3.3.1 Straight cylindrical geometry

The fluid and structure meshes under consideration are composed of 156,593 and 113,880 tetrahedral elements,
respectively, yielding a total number of degrees of freedom of the monolithic system equal to 747,410. In
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(a) Straight cylinder (b) Toroidal geometry

Figure 4: Idealized geometries of blood vessels. The internal radius R0 and wall thickness h represent the
characteristic dimensions of the anterior cerebral artery [40]
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Figure 5: Peak velocity of the inlet parabolic profile uinlet imposed on the inlet boundary of the fluid domain
F(t)

∣∣
inlet

order to analyze the numerical results, two complete heart beats have been numerically simulated for all the
cases under consideration.

Fig. 6 shows the time evolution of the mean blood pressure at the cross section z = L/2 = 0.33 cm along
the centerline, measured for all the constitutive material models employed. We remark the experimental
measurements of blood pressure p in cerebral arteries reported in [80,81] indicate the strong pulsatile qual-
itative behavior of p during the cardiac cycle, as obtained in this work. In addition, we report that the
values of p obtained during the heart beat are quantitatively consistent with the ones presented in [17,27]
for physiological numerical simulations of cerebral circulation. Furthermore, the time evolution of the mean
blood pressure at z = 0.33 cm is very similar for all the numerical simulations performed with the differ-
ent constitutive models, which suggests that in this configuration, the modeling choice for the arterial wall
does not strongly affect the hemodynamics inside the vessel lumen and vice-versa. Fig. 7 presents the blood
pressure and velocity in the deformed fluid domain at the time t = 0.60 s, i.e. at the diastolic phase. Since
similar results were obtained with all the constitutive laws, only the spatial distribution of the fluid pressure
p in the case of the EXP1 model for the vessel wall is shown. In Fig. 7-(a) we highlight the small spatial
gradient of the pressure field p along the axis of the cylindrical geometry due to the resistance condition
considered at the outlet surface of the fluid domain. At the same time, in Fig. 7-(b), we report that the fluid
velocity profile is mostly parabolic at all the cross sections considered.

Fig. 8 shows deformed the vessel wall at the time t = 0.10 s. As for the fluid velocity and pressure, similar
results were obtained for all the models; therefore, the deformations of the solid domain are presented only
in the case of the isotropic EXP2 law. We remark that during the heart beat, the vessel wall deforms mainly
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Figure 6: Blood pressure p vs time at the cross section z = 0.33 cm for the different constitutive models

(a) Blood pressure [dyn/cm2] (b) Velocity magnitude [cm/s]

Figure 7: Blood pressure and velocity magnitude at the time t = 0.60 s; in (b) each cross section is deformed
according to the vectorial field u

in the radial direction rather than along the axial direction of the domain. In addition, the characteristic
propagation of the pressure wave from the inlet towards the outlet of the fluid domain, which is often obtained
within the context of FSI numerical simulations on idealized geometries of vessels (see e.g. [1,82,83]), is not
observed in this case due to the combined effects of the resistance and Robin boundary conditions on the outlet
and external surfaces of the fluid and solid domains, respectively. We remark that the radial deformations
reported in Fig. 8 are maintained during the whole cardiac cycle, as also presented in Fig. 9 corresponding
to the systolic peak of the inlet profile. Fig. 10 presents the radial displacement at one point of the internal
surface of the vessel wall during the cardiac cycle. In Fig. 10, for each constitutive model, the maximum
and minimum values of the radial displacement indicate a change in the vessel radius of approximately 27%
with respect to the undeformed internal radius R0 during the heart beat. This value is consistent with
the experimental measurements reported in [84] for the cerebral vasculature. In addition, Fig. 10 shows
that the choice of the constitutive model for the arterial tissue substantially affects the resulting vessel wall
displacement. More specifically, among the isotropic models, the smallest displacements are obtained with the
EXP1 law, whereas the highest displacements with the EXP2 law; more precisely, the displacement predicted
by the EXP2 model is around 6% higher than the one obtained with the EXP1 model during the heart
beat. We recall that the material parameters were obtained in [56] from fitting experimental data on cerebral
arteries. The deformation of the vessel wall depends on the transmural pressure (∆P ) which si the difference
between the pressure acting on the wall by the blood and the external pressure load on the wall. The latter
is determined by the Robin boundary condition. In these simulations, the variation in transmural pressure
varies between 3 mmHg and 15 mmHg. As discussed in Sec. 3.1, for this range of transmural pressures and
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(a) External view (b) Internal View

Figure 8: Displacement magnitude [cm] on the deformed vessel wall. (a) External view; (b) internal view.
Time t = 0.100 s. Constitutive model EXP2. The gray overlay represents the undeformed domain

(a) EXP1 (b) EXP2 (c) (EXP1, EXP2-ZS) (d) (EXP1, EXP2-FS)

Figure 9: Displacement d̂ [cm] of the vessel wall at the cross section z = 0.33 cm for the different constitutive
models at the systolic peak at time t = 0.212 s

for the material parameters of Tab. 1, the isotropic EXP1 and EXP2 models represent the most and the least
rigid material, respectively (see Fig. 3); similarly, for the differences in the numerical results among the two
anisotropic models, see Fig. 3.

When anisotropic constitutive laws for the vessel wall are employed, it is interesting to investigate the de-
formations of the collagen fibers during the heart beat to estimate their contribution to the overall mechanical
response of the vessel wall. In order to qualitatively highlight the role of the collagen fibers orientation during
the heart beat, the (EXP1, EXP2-FS) model is considered; however, a similar result has been observed also
for the (EXP1, EXP2-ZS) model. Fig. 11 shows the two families of fibers passing through the points lying
on the intersection between the vertical plane z = 0.33 cm and the axis y = 0. As reported in Tab. 1, the
characteristic angle β(i) in the reference configuration B0, for i = 1, 2, between the local alignment of each
family and the circumferential direction is |β1| = |β2| = 41.82◦. In Fig. 11, the collagen fibers are presented
in their undeformed state, i.e. for zero displacement of the vessel wall. On the other hand, Fig. 12 shows the
deformations of the collagen fibers during the heart beat. The variation of their local direction is highlighted
in Figs. (12) and (13); the angle between the local alignment of the single family of collagen fibers and the
circumferential direction decreases as the radial displacement increases. In particular, the angle between the
deformed vector representing the deformed local alignment of the single family of fibers and the circumfer-

ential direction at the beginning of the heart beat is indicated by β
(i)
HB and it is |β

(1)
HB | = |β

(2)
HB | = 35.70◦.

As expected, the maximum variation in the local alignment of the collagen fibers in the heart beat with

respect to β
(1)
HB is observed corresponding to the systolic peak of the inlet velocity profile, for which the
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Figure 10: Displacement [cm] at one point of the fluid-structure interface at the cross section z = 0.33 cm
during the heart beat for the different constitutive models

(a) Collagen fibers in the vessel wall (b) Zoom in a central portion

Figure 11: Representation of the collagen fibers in the reference configuration B0 of the arterial wall. Con-
stitutive model: (EXP1, EXP2-FS), see Tab. 1

measured angle is |β
(1)
systole| = |β

(2)
systole| = 33.70◦. Therefore, in the case of the (EXP1, EXP2-FS) model, for

physiological diastolic and systolic blood pressures, the change in the local orientation of the collagen fibers

is about 7% with respect to β
(1)
HB . As already mentioned, qualitatively similar results have been obtained

in the case of the (EXP1, EXP2-ZS) model for which |β1| = |β2| = 56.52◦, |β
(1)
HB | = |β

(2)
HB | = 51.36◦, and

|β
(1)
systole| = |β

(2)
systole| = 47.17◦; therefore the maximum variation is about 8% with respect to |β

(1)
HB |. On

the other hand, the variation between β(1), which is provided in B0 by means of the data fitting, and β
(1)
HB

(and, similarly, β(2) and β
(2)
HB) is affected by the diastolic pressure attained in the numerical simulations. As

presented in Fig. 13, the largest stretch of the collagen fibers occurs at the internal surface of the vessel wall
in correspondance with the largest displacement. It is worth pointing out that the local orientations of the
two families of fibers remain symmetric with respect to the circumferential direction of the cylinder since, as
presented in Figs. (8)-(9), the vessel wall deforms along the radial direction.

Finally, we are interested in understanding the progressive activation and deactivation of the collagen
fibers through the thickness of the vessel wall when the anisotropic (EXP1, EXP2-FS) model is employed.
We show the time evolution of the mechanical activation of the collagen fibers through the thickness of the
arterial wall in Fig. 14-(a) for four points along the radial direction of the domain at z = 0.33 cm. Figs.
(14)-(b)-(c) present the displacement and the mechanical activation of the collagen fibers for each of the
four points. As the arterial tissue displacement decreases moving along the radial direction from the internal
toward the external surface of the domain, analogously the total amount of time for which the collagen fibers
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(a) Deformed (purple) collagen fibers (b) Deformation of the collagen fibers
at the beginning and end of the heart beat at different times of the heart beat

Figure 12: Representation of the deformed collagen fibers at different times during the heart beat. Con-
stitutive model: (EXP1, EXP2-FS). The brown colored lines represent the collagen fibers in the undeformed
configuration B0 of the vessel wall; |β(1)| = |β(2)| = 0.7473 rad

(a) t = 0.100 s (b) t = 0.212 s

Figure 13: Local alignment of the collagen fibers at the cross section z = 0.33 cm. Constitutive model:
(EXP1, EXP2-FS). The brown arrows represent the local alignment of collagen fibers in the undeformed
configuration B0 of the vessel wall; |β(1)| = |β(2)| = 42.82◦

are active during the heart beat decreases. We remark that the qualitative piecewise constant behavior in
time of the activation functions in Fig. 14-(c) is due to the high value of the activation parameter ǫ = 5.0 ·105

in Eq. (16) which leads to a highly steep activation function. Fig. 14-(d) reports the activation time intervals
for each of the four points presented in Fig. 14-(a) in comparison with the physiological inlet velocity profile.
It can be observed that at the innermost point P1, the collagen fibers are mechanically active for almost the
entire duration of the heart beat, while at P4, the outermost point under consideration, the collagen fibers
activation occurs only during the systolic peak. On the other hand, at the points P2 and P3, which are
internal to the arterial wall, the collagen fibers actively contribute to the mechanical response of the tissue
during both the systolic and the diastolic phases of the heart beat even if not in a continuous manner. This
numerical result indicates the relevance of modeling the recruitment of the collagen fibers at finite strains
in order to highlight the protective role of the fibers in the outermost layers of the arterial tissue. On the
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Figure 14: Displacement and activation parameters and times through the thickness of the vessel wall for the
anisotropic model (EXP1, EXP2-FS)

other hand, with the (EXP1, EXP2-ZS) model, we recall that the collagen fibers are always mechanically
active during the heart beat; therefore, their progressive activation cannot be captured when considering
such constitutive law.

Figs. (15)-(16) show the spatial distribution of the Von Mises stress (σVM ) [53] obtained with the different
constitutive models at different times of the heart beat in a central portion of the solid domain. We observe
that the two isotropic models and the (EXP1, EXP2-ZS) law predict similar values of σVM during the
systolic phase, as represented in Fig. 15, while smaller values of σVM stress result from in the case of the
(EXP1, EXP2-FS) model, especially at the outer surface of the arterial wall. In particular, we highlight
that in Fig. 15, although the values of Von Mises stress reached on the internal surface of the vessel wall are
similar, the spatial distribution of σVM is strongly affected by the choice of the constitutive model. Similarly,
the constitutive model for the vessel wall affects the values of σVM measured along the thickness of the
arterial tissue during the diastolic phase of the cardiac cycle, as represented in Fig. 16. In addition, while the
anisotropic model with collagen recruitment at finite strains still yields the lowest values of Von Mises stress
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(a) EXP1 (b) EXP2 (c) (EXP1, EXP2-ZS) (d) (EXP1, EXP2-FS)

Figure 15: Von Mises stress [dyn/cm2] for the different constitutive models at the time t = 0.212 s. Internal
view (top); external view (bottom)

(a) EXP1 (c) EXP2 (b) (EXP1, EXP2-ZS) (d) (EXP1, EXP2-FS)

Figure 16: Von Mises stress [dyn/cm2] for the different constitutive models at the time t = 0.600 s. Internal
view (top); external view (bottom).

also during the diastolic phase, significant differences in σVM obtained with the two isotropic laws and the
anisotropic (EXP1, EXP2-ZS) model, as observed in Fig. 16. We remark that the results reported in Figs.
(15)-(16) are consistent with the stress-strain relations reported in Fig. 3 for which the EXP1 model and
the (EXP1, EXP2-FS) represent the most and the least rigid materials, respectively, among the ones under
consideration.
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(a) Case A (b) Case B (c) Case C
(β(1) = −β(2) = 56.52◦) (β(1) = −β(2) = 180◦ − 56.52◦) (β(1) = −β(2) = 90◦ + 56.52◦)

Figure 17: Vectorial representation of the two families of fibers in the (EXP1, EXP2-ZS) model on one cross
section of the solid domain for the sensitivity study on the vessel wall displacement with respect to the
collagen fibers orientation.

(a) Blood pressure Blood velocity

Figure 18: Blood pressure p [dyn/cm2] and velocity [cm/s] in the undeformed fluid domain at the time
t = 0.212 s. Constitutive model for the arterial wall: EXP2

3.3.2 Toroidal geometry

We carry out numerical simulations of the FSI problem for a toroidal geometry of the blood vessel represented
in Fig. 4-(b). The same material parameters for the arterial wall models presented in Tab. 1 are employed.
In order to reproduce the same physiological blood flow, pressures, and arterial wall displacement during
the heart beat, the same set of boundary conditions described in Sec. 2.3 is considered. The fluid and solid
meshes are composed of 176,641 and 106,212 linear tetrahedral elements, respectively; the finite elements
spaces for the fluid, solid and geometric problems are the same as in Sec. 3.3.1 for which the total number of
DOFs of the FSI monolithic system is 822,695. In order to reduce the number of cases under consideration,
due to the similarities that this case presents with respect to the one described in Sec. 3.3.1, the FSI coupled
system has been simulated only in the cases of the isotropic EXP2 and the anisotropic (EXP1, EXP2-ZS)
laws1. In the case of the (EXP1, EXP2-ZS), it is assumed that the characteristic direction of the two families
of collagen fibers forms with the main radial direction of the torus the angle is |β(1)| = |β(2)| = 56.52◦ as in
Sec. 3.3.1, see Fig. 17-(a).

Fig. 18 shows the blood pressure and velocity at the systolic peak of the cardiac cycle at the time
t = 0.212 s. We remark that, similarly to what has been reported for the straight cylinder, the minimum
diastolic pressure is 75 mmHg, while the maximum systolic pressure is 130 mmHg. As represented in Fig. 18,

1We remark that the numerical solution of the FSI problem with the (EXP1, EXP2-FS) model is numerically challenging
since it requires a suitable tuning and setting of the numerical parameters and discretization in order to be efficient.
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(a) t = 0.212 s (b) t = 0.60 s

Figure 19: Magnitude of the vessel wall displacement d̂ [cm] in the deformed fluid domain. Constitutive
model for the arterial wall: EXP2. In the first row, the gray overlay represents the undeformed domain

during the heart beat, the maximum blood pressure occurs inside the fluid domain.
As reported in Sec. 3.3.1, due to the external Robin boundary conditions, the vessel wall displacement

measured during the heart beat occurs mainly along the radial direction in the local toroidal set of coordinates;
see Fig. 19. As it can be noticed, the displacement magnitude is consistent with the one reported in Fig. 9-
(f) for the case of the straight cylinder. In particular, for the isotropic EXP2 model, the displacement of
the blood vessel is symmetric with respect to a cut along the main circumferential direction of the torus
(see Fig. 20); the same type of symmetry was observed in [82] where an isotropic linear elastic constitutive
model was employed. On the other hand, the use of the anisotropic model (EXP1, EXP2-ZS) leads to an
asymmetric vessel wall displacements during the heart beat. This phenomenon is highlighted in Fig. 21 at
two different times of the heart beat. As it can be noticed, although the displacement measured in the case of
the (EXP1, EXP2-ZS) law is lower than the one obtained with the EXP2 model, the vessel wall displacement
is strongly affected by the presence of the collagenous component in the arterial tissue. In particular, as
reported in Figs. 21 and 22, the asymmetry in the arterial wall displacement is oriented according to the
fibers direction (clockwise or counterclockwise). Indeed, in Fig. 17-(a) the orientation of collagen fibers
indicates a counterclockwise parametrization of the main radial cut of the geometry and, as reported in
Fig. 21 (right), the maximum vessel wall displacement is reached on the lateral side of the domain coherently
with such parametrization. For the sake of completeness, in order to confirm that such mechanical behavior
of the vessel wall is due to the employment of an anisotropic model, a sensitivity study has been carried out
with respect to the direction of the collagen fibers. Specifically, two cases have been considered, represented
in Fig. 17-(b) and (c). As it can be observed, the parametrization of the section in the main radial direction
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Figure 20: Component along the y axis of the arterial wall displacement d̂ [cm] at the systolic peak, t = 0.212
s. Constitutive model: EXP2

has been inverted with respect to Case A in Fig. 17 and rotated of ∓90◦ degrees. For all three cases, the
two families of fibers are characterized by the same angle, reported in Tab. 1, with respect to the local and
main circumferential directions. The vessel wall displacement for the cases presented in Fig. 17 are reported
in Fig. 22. For Cases A and B in Fig. 22, the maximum vessel wall displacement is reported on one side
of the solid domain. On the other hand, in Case C in Fig. 22 (namely for a symmetric orientation of the

collagen fibers with respect to the y axis), the symmetry of the solid displacement d̂ with respect to the y
axis is obtained. It is worth pointing out that, the strong dependency of the blood vessel displacement on the
spatial orientation of the collagen fibers may in turn affect the spatial distribution of the mechanical stresses
inside the vessel wall during the heart beat.

4 Conclusions

The numerical results presented in this work highlighted different aspects of the numerical simulation of the
coupled FSI system. On one hand, it was found that the choice of the constitutive model for the arterial wall
does not strongly affect the fluid dynamics inside the vessel lumen for the idealized cerebral arteries under
consideration and for the relatively small values of the typical Reynolds number. On the other hand, non-
negligible differences have been reported regarding the displacement fields yielded by the different constitutive
models. More precisely, in the case of the straight cylinder, although the similar qualitative behavior of all
the numerical solutions, it has been observed that in the physiological range of blood pressures and velocities,
the isotropic first order exponential model yields the smallest vessel wall displacement, while the isotropic
second order exponential law yields the highest values. This can be explained by considering the effective
transmural pressure that occurs during the heart beat between the internal and external surfaces of the vessel
lumen; in view of this, the results obtained on the straight cylinder are coherent with what was predicted
by the data fitting [56]. Consequently, significant differences, especially through the thickness of the vessel
wall, were reported for the Von Mises stress. On the contrary, the simulations of the toroidal geometry show
that the effects of the constitutive model for the vessel wall on the numerical solutions are evident both
from a qualitative and quantitative point of view. More specifically, in the case of the anisotropic model
composed by the first order exponential law for the elastin and the second order exponential model with
activation of the fibers with respect to the reference configuration, the spatial orientation of the collagen
fibers has a significant influence on the displacement of the arterial tissue and, therefore, in the evaluation of
the mechanical stresses that are commonly related to the possible onset and development of cardiovascular
diseases, as e.g. aneurysms. Therefore, we highlight the need of a proper validation with respect to FSI
experiments in in vitro idealized models of vessels of different aspects related to the mathematical modeling
of the cardiovascular system, such as of the modeling assumptions, constitutive laws , the set of boundary
conditions, and the consequent FSI numerical results, in order to the value of numerical simulations for the
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t = 0.212 s

t = 0.60 s
(a) EXP2 (b) (EXP1, EXP2-ZS)

Figure 21: Magnitude of the vessel wall displacement d̂ [cm] on three different radial sections of the vessel
wall for the EXP2 and (EXP1, EXP2-ZS) models at different times along the heart beat

study of the cardiovascular system.
For the numerical simulation on the cylindrical geometry with the anisotropic model with collagen recruit-

ment at finite strains, we showed the progressive activation and deactivation of the collagen fibers throughout
the vessel wall during the cardiac cycle. We highlighted that the collagen fibers situated on the internal sur-
face of the vessel wall are mechanically active for the largest part of the heart beat, while the ones located on
the external parts of the tissue reach the active state only during the peak of the systolic phase. Despite, to
the best of our knowledge, an anisotropic model that captures the collagen fibers activation at finite strains
has never been used in literature for FSI numerical simulations, we deem it to be a valuable option to study
the role of the collagen fibers in the vessel wall dynamics. In this respect, the use of multi-layer models,
i.e. models that consider the different mechanical properties of the tunica intima, media, and adventitia, for
the arterial tissue would represent a further step in the numerical study of the activation and deactivation
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Case A

Case B

Case C

Figure 22: Vessel wall displacement in the case of the (EXP1, EXP2-ZS) model with different orientation of
the collagen fibers. Different views. Time t = 0.100 s

of the collagen fibers. However, this stresses the need for experimental measurements of the properties of
the media and adventitia layers of the vessel wall including a correct description of the spatial orientation,
tortuosity and density of the collagen fibers in cerebral arteries. This is an area of ongoing work in our
group, which we believe will represent an important step toward the use of anisotropic constitutive models
with collagen recruitment at finite strain for FSI numerical simulations of vascular disease such as cerebral
aneurysms. We believe such studies, which will more accurately model the spatial and temporal variation in
loads on collagen fibers, will be essential for modeling the complex role of vascular cells such as fibroblasts
in the mechanobiological processes of the vascular wall.
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modynamics,” Ph.D. dissertation, École Polytechinque Fédérale de Lausanne, Switzerland, 2001.

[51] Cebral J.R., Mut F., Weir F., Putman C.M., “Association of hemodynamics characteristics and cerebral
aneurysms rupture,” American Journal of Neuroradiology, vol. 32, pp. 264–270, 2011.

[52] Robertson A.M., Sequeira A., Kameneva M.V., “Hemorheology,” in Hemodynamical Flows, ser. Ober-
wolfach Seminars, Galdi G.P., Rannacher R., Robertson A.M., Turek S., Ed. Basel: Springer-Verlag,
2008, vol. 37, pp. 63–120.

[53] Holzapfel G.A., Nonlinear Solid Mechanics: a Continuum Approach for Engineering. England: John
Wiley & Sons Ltd, 2000.

[54] Carew T.E., Vaishnav R.N., Patel D.J., “Compressibility of the arterial wall,” Circulation Research,
vol. 23, pp. 61–68, 1968.

[55] Flory P.J., “Thermodynamical relations for high elastic materials,” Transactions of the Faraday Society,
vol. 78, pp. 5222–5235, 1961.
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