## MPPM 1103:

## Design and Implementation of Mathematics Curriculum

## Comparison between Malaysia, Singapore and United Kingdom Mathematics Curriculum

Lecturer's Name: Dr Norulhuda Binti Ismail

Group Member: Ee Leng Hong
Chong Yew Fu
Mok Boon Teck

MPP161047
MPP161031
MPP161032

## Malaysia <br> Mathematics <br> Curriculum

## Malaysia Education System

## Outcome-based education (OBE)

is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience, each student should have achieved the goal.

## FALSAFAH PENDIDIKAN NEGARA

"Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu secara menyeluruh dan bersepadu untuk mewujudkan insan yang seimbang dan harmonis dari segi intelek,

- rohani,emosi, dan jasmani berdasarkan kepada kepercayaan dan kepatuhan kepada Tuhan. Usaha ini adalah bagi melahirkan rakyat Malaysia yang berilmu, bertanggungjawab dan berkeupayaan mencapai kesejahteraan diri
serta memberi sumbangan terhadap keharmonian dan kemakmuran masyarakat dan negara."

Every student will have ...


Communication, Man and his environment, Self-development of the individual

Curriculum Specification which consists 'Learning Objective', 'Learning Outcome', and 'Suggested Learning Activities'

## Linear

Elements of analytical and creative thinking skills

3R's (Reading, wRiting and aRithmetic)

Communication, Spiritual, Attitude and Values, Humanitarian, Physical and Aesthetical
Development, Science and Technology, Personal Appearance

Curriculum Standard documents which consists 'Content Standards', 'Learning Standards', 'Performance Standards' and 'Notes'

Modular
The elements of creativity and innovation, entrepreneurial, information technology and communication

4R's (Reading, wRiting, aRithmetic and Reasoning)

## Mathematic Curriculum Frameworks

- Numbers and Operations
- Measurement and Geometry

- Relationship and Algebra
- Statistics and Probability
- Discrete Number


## ATTITUDE AND VALUE

- Perception, interest, appreciation, confidently resilient and perseverance.
- Personality, interaction, procedure, intrinsic.
- Thinking skills
- Soft skills
- Information Communication Technology skills

The curriculum document is the main locus for the class implementation, text book writings, and even the items to be asked in the students' assessment


## Topics in Primary School

$\left.\begin{array}{lllll}\begin{array}{lll}\text { Numbers and } \\ \text { Operations }\end{array} & \begin{array}{l}\text { Measurements } \\ \text { and Geometry }\end{array} & \begin{array}{l}\text { Relationship } \\ \text { and Algebra }\end{array} & \begin{array}{c}\text { Statistics and } \\ \text { Probability }\end{array} & \begin{array}{c}\text { Discrete } \\ \text { Mathematics }\end{array} \\ \begin{array}{llll}\text { - Whole }\end{array} & \text { - Time } & \text { Coordinate } & \text { - Data } \\ \text { managements }\end{array}\right)$

## Standard Document

Content Standards

Learning Standards

Performance Standards

## Standard Document

...general statement about cognitive and affective domain
that can be achieved by the pupils.
...specific statement of what pupils should know and able to do
conceptually and practically.
...general criterion that illustrate the level of performance that the students need to demonstrate as indicator of success called Descriptor.

## Example: KSSR edition 2011 NOMBOR DAN OPERASI

## STANDARD KANDUNGAN

Murid dibimbing untuk ...

## STANDARD PEMBELAJARAN

Murid berupaya untuk ...
(i) Mengenal pasti mata wang Malaysia dalam bentuk syiling dan wang kertas.
(ii) Mewakilkan nilai wang:
(a) Sen hingga RM1.
(b) Ringgit hingga RM10.
(iii) Mewakilkan nilai wang dengan menggunakan abakus 4:1.
(iv) Menukar wang:
(a) Syiling hingga 1 ringgit.
(b) Ringgit hingga RM10.
(i) Tambah dan tolak:
(a) Sen hingga RM1
(b) Ringgit hingga RM10.
(ii) Tambah dan tolak melibatkan wang dengan menggunakan abakus 4:1.

## Example: KSSR edition 2017 (now in piloting phase)

## bIDAMG PEMBELIAARAM:

## NOMBOR DAN OPERASI

## TAJUK: <br> 4.0 WANG

## Objektif:

Membolehkan murid:

- Menghubung kaitkan penggunaan wang dalam kehidupan harian.
- Berfikir, menaakul dan membuat penerokaan di dalam kehidupan harian bagi memberi manfaat demi masa depan.
- Berkomunikasi, membuat perkaitan dan menyelesaikan masalah yang melibatkan kewangan.
- Mengaplikasi pendidikan kewangan di dalam kehidupan harian.
- Memupuk semangat keusahawan.


## Example: KSSR edition 2017 (now in piloting phase)

## NOMBOR DAN OPERASI

### 4.0 WANG

| STANDARD KANDUNGAN | STANDARD PEMBELAJARAN | CATATAN |
| :---: | :---: | :---: |
| 4.1 Wang kertas dan duit syiling. | 4.1.1 Mengenal pasti mata wang Malaysia dalam bentuk syiling dan wang kertas. <br> 4.1.2 Mewakilkan nilai wang: <br> (i) Sen hingga RM1. <br> (ii) Ringgit hingga RM10. <br> 4.1.3 Menukar wang: <br> (i) Syiling hingga RM1. <br> (ii) Ringgit hingga RM10. | Menggunakan wang semasa dalam situasi harian. <br> Mewakilkan nilai wang dengan menggunakan abakus 4:1. <br> Menggunakan gabungan wang dalam bentuk syiling dan wang kertas. |
| 4.2 Sumber kewangan dan simpanan. | 4.2.1 Mengenal pasti sumber kewangan dan simpanan. <br> 4.2.2 Merekod simpanan dan perbelanjaan daripada sumber kewangan. | Mengunakan situasi yang sesuai. |
| 4.3 Penyelesaian masalah. | 4.3.1 Menyelesaikan masalah harian melibatkan penambahan dan penolakan wang. | Sebelum menyelesaikan masalah proses penyelesaian secara mekanikal boleh dilakukan bagi menerangkan penambahan dan penolakan yang melibatkan: <br> (a) Sen hingga RM1. <br> (b) Ringgit hingga RM10 <br> Tambah dan tolak melibatkan wang dengan menggunakan abakus 4:1. |

## General Descriptor for Performance Standard Framework

| PERFORMANCE <br> LEvEL | DESCRIPTOR <br> FRAMEWORK | GENERAL DESCRIPTOR |
| :---: | :--- | :--- |
| 1 | Know | Pupils know the basics or can perform basic skills or to respond to <br> the basic subject matter. |
| 2 | Know and understand | Pupils demonstrate their understanding in communicating <br> mathematically; able to interpret and explain what they have <br> learned. |
| 3 | Know, understand and <br> able to do. | Pupils use their mathematical knowledge to perform particular <br> skills in a particular situation. |
| 4 | Know, understand and <br> able to do with good <br> manner. | Pupils demonstrate their skills systematically and procedurally. |
| 5 | Know, understand and <br> able to do with <br> admirable manner. | Pupils demonstrate their skills systematically and procedurally in <br> a new situation; and consistently with a positive attitude. |
| 6 | Know, understand and <br> able to do with <br> exemplary manner. | Pupils are able to apply their knowledge and skills in a new <br> situation systematically, positively, creatively, innovatively and <br> exemplary. |


| PERFORMANCE |
| :---: | :--- |
| LEVEL |$\quad$ PERFORMANCE INDICATOR



## MATHEMATICAL PROCESSES

- Prohlem Solving
various strategies.

Able to solve given routine problems with guidance.

Able to solve routin problems involving one step calculation without guidance.

Able to solve more complex routine problems.

Able to solve more complex routine problems with
Able to explain problem solving procedures but unable to solve the problems.

Able to solve non-routine
Able to solve non-routin
problems creatively and innovatively.

## PERFORMANCE INDICATOR



Able to give logical reasoning to mathematical activities with guidance.

Able to give logical reasoning to mathematical activities without guidance.
Able to show accurate reasoning to mathematical activities involving one step calculation.
Able to show accurate reasoning to mathematical activities involving more than one step calculation.

Able to show accurate reasoning to mathematical activities involving routine problem solving.

Able to explain accurate reasoning to mathematical activities involving non-routine problem solving creatively and innovatively.

Able to make connections between learned skills and to the other topics, as well as to daily life with guidance.
Able to make connections between learned skills and to the other topics, as well as to daily life without guidance.

Able to make connections between conceptual and procedural to solve mathematical statement.

Able to make connections between conceptual and procedural to solve routine daily problems.

Able to make connections between conceptual and procedural to solve routine daily problems using various strategies.

Able to make connections between conceptual and procedural to solve non-routine daily problems creatively, and innovatively.

## REPRESENTATIONS

Able to make representation with guidance

Able to make representations to show mathematical understanding without guidance.

Able to explain mathematical concept and procedure by making representations

Able to make representation
to solve routine daily problems

Able to make various representations to solve routine daily problems using various strategies.

Able to make representations to solve non-routine daily problems creatively and innovatively.

## COMMUNICATIONS

Able to explain mathematical ideas in words or writings using mathematical symbols or visuals representations.

Able to clarify mathematical ideas in words or writings using mathematical symbols or visual representations.

Able to use mathematical terms, mathematical symbols, or visual representations correctly.

Able to explain mathematical ideas systematically using mathematical term mathematical symbols, or visual representations correctly.
Able to explain mathematical ideas systematically using mathematical term mathematical symbols, or visual representations correctly to solve routin daily problems.
Able to explain mathematical ideas systematically using mathematical term mathematical symbols, or visual representations correctly to solve nonroutine daily problems creatively and innovatively.

MATHEMATICAL SKILLS PERFORMANCE INDICATOR
PERFORMANCE

| LEVEL | THINKING SKILLS | SOFT SKILLS | INFORMATION \& COMMUNICATION <br> TECHNOLOGY SKILLS |
| :---: | :--- | :--- | :--- |
| 1 | Able to restate mathematical knowledge <br> and skills. | Demonstrate interest and <br> willingness to learn. | Able to recognize and restate <br> mathematical tools. |
| 2 | Able to explain mathematical knowledge <br> and skills. | Strive to understand <br> problems' posed. | Able to use and handle basic <br> mathematical tools. |
| 3 | Able to apply mathematical knowledge <br> and skills in various situations. | Able to communicate and <br> have interest in learning. | Able to use and handle mathematical <br> tools, develop and understand the <br> mathematical concept, and to explore <br> mathematical ideas. |
| 4 | Able to segregate information into smaller <br> piece to have deeper understanding and <br> make connection between the <br> information. | Able to cooperate in team <br> to solve problems. | Able to use mathematical tools to solve <br> routine daily problems. |
| 5 | Able to make judgement and decision <br> using knowledge, experiences, and skills, <br> and give justifications. | Able to lead and guide <br> peers. | Able to use mathematical tools to solve <br> routine problems using various <br> strategies. |
| 6 | Able to produce creative and innovative <br> ideas, products or methods. | Able to lead, guide, and <br> be an exemplary to peers. | Able to use mathematical tools to solve <br> non-routine daily problems creatively <br> and innovatively. |


|  | gon. interest, alurreciation. nily resilient andil perseverance. ality, interaction, procediure. sic. |
| :---: | :---: |
| PERFORMANCE LEVEL | ATTITUDES AND VALUES IN MATHEMATICS PERFORMANCE INDICATOR |
| 1 | Able to restate one of the attitudes and values in mathematics with teacher guidance. |
| 2 | Able to explain one of the attitudes and values in mathematics by giving reasonable exemplar. |
| 3 | Able to demonstrate attitudes and values in mathematics with teacher guidance in a circumstance. |
| 4 | Able to demonstrate attitudes and values in mathematics in various circumstances. |
| 5 | Able to consistently apply attitudes and values in mathematics during teaching and learning processes. |
| 6 | Able to consistently apply positive attitudes and values in mathematics in daily life and able to guide and be exemplary to peers. |

## Singlapore

Mathem xice
Gurriculum

## Historical Development

1. Since to Singapore's self-independence in 1959, Singapore did not have an unified system of education.
2. Each type of school will teach their own type of mathematics, using textbooks from different countries.
3. A common curriculum was developed only after self-government, emphasis to ensure that Singapore could develop an industrialised economy.
4. setting up the Curriculum Development Institute of Singapore (CDIS) in 1980, deeper into developing teaching approaches and producing instructional materials.
5. The Primary Mathematics Project team, led by Dr Kho Tek Hong (an MOE subject specialist until his retirement), developed the Model Method (a pictorial way to represent mathematical quantities and relations in a concrete way) that proved very successful over the next few decades.
6. A Mathematical Framework was developed in the 1990s
7. Retaining mathematical problem solving as its core, and the five inter-related components of concepts, skills, processes, attitudes and metacognition.
8. Minor revisions were made to stress new initiatives such as thinking skills, information technology and National Education.
9. The CDIS worked hand in hand with the Ministry of Education (MOE) and together they developed learning goals that focused on problem solving.
10. In 1982, the first Singapore math program was created. Marshall Cavendish, the developer of Math Buddies, co-published the text book series with the Ministry of Education.

## Singapore's Mathematical Framework

- The Mathematical Framework (Pentagon framework) was introduced in the 1990 s to stress both the process and product in learning mathematics.
- mathematical problem solving is at the heart of mathematics learning, and it involves the application of mathematical concepts and skills, the development of process skills such as reasoning and communicating, raising meta-cognition in problem solving, and nurturing a positive attitude towards learning mathematics
- (summarised by the five inter-related components of concepts, skills, processes, attitudes and metacognition).


## Framework of the school mathematics curriculum


using textbooks from different countries.
common curriculum was developed only after selfgovernment
focused on problem solving.

A Mathematical Framework was developed in the 1990s, mathematical problem solving as its core, and the five inter-related components of concepts, skills, processes, attitudes and metacognition.

## Singapore Education

| $\begin{gathered} \text { Phase I } \\ 1946-1965 \end{gathered}$ | $\begin{gathered} \text { Phase II } \\ \text { 1965-1978 } \end{gathered}$ | $\begin{gathered} \text { Phase III } \\ \text { 1978-1984 } \end{gathered}$ |
| :---: | :---: | :---: |

## 19@4 - 1965 (Phase I) Conflicto

Resolution \& @uantitative Expansion
use of education, in the period after 1959 to resolve some of the pressing conflicts and dilemmas Singapore faced in the 1950s.
pressure to rapidly expand educational opportunities in Singapore with a view not only to democratizing education, but also to use education as a device for achieving national cohesion and the economic restructuring of the society.

## The White Paper

In 1959 when the People's Action Party (PAP) came to power it acted upon the White Paper of 1956 and put in place a Five-Year Plan in education.

- The main features of this Plan were:
- Equal treatment for the four language streams of education: Malay, Chinese, Tamil and English;
- The establishment of Malay as a national language of the new state;
- Emphasis on the study of Mathematics, Science and Technical Subjects.


## 1965-1978 (Phase II) Qualitative Consolidation

1965 witnessed the end of Singapore's merger with Malaysia
new chapter in the history of Singapore transformation from statehood to

## PHASE II

- emphasis from academic to technical education to provide the manpower base for industrialization.

Under the leadership of PAP, education remained a key to it's survival.

## The New Education System -

- Concern - high education wastage resulting in low literacy levels in the country.

Goh's report 1979

- New Education System introduced streaming by academic ability
- Streaming has served the system well as it is flexible
- Many pathways to cater to the diverse needs of students with varying academic abilities


## 1984-1996 (Phase IV) Towards Excellence in Schools

Future education policies in Singapore would be guided by three principles. These were:

Education policy must keep in pace with the economy and society;

Basics - Languages, Science,
Mathematics and
Humanities will be stressed to encourage logical thinking and life-long learning;

Creativity in schools must be boosted through a 'bottom up' approach
---initiative must come from principals and teachers instead of from the Ministry.

## 11996 - present(Phase V) The Way Forward

In 1997, the Prime Minister, Mr Goh Chok Tong in his speech (Goh, 1997) announced at the opening of the conference that Singapore's
vision for meeting this challenge is

- to prepare young Singaporeans for the new circumstances and new problems that they will face in the new millennium.
encapsulated in four words: THINKING
SCHOOLS, LEARNING NATION
emphasized that ensure our young can think for themselves, so that the next and future generations can find their own solutions to whatever new problems they may encounter.

Survival
Economics/Education
1965-1978
Sustainable development through efficiency-driven education, 1978-1996

Toward the knowledge
based economy
through ability-driven education, 1996present

## Overall look of Singapore education system




## Primary students

- Singapore's educational structure comprises
- six years of primary,
- four years of secondary and
- two years pre-university
- Only the first four years of primary follow a common curriculum
- pupils follow one of two 'orientation' curricula in the last two years of primary, one of these being a reduced curriculum at a slower pace.
-There is a leaving exam at the end of primary: some pupils take a different exam if they have followed the 'reduced' curriculum.


## The two courses of study for primary students

## The Foundation Stage (Primary 1 to 4)

- Emphasis is on building a strong foundation in English, Mathematics and Mother Tongue.
- All students take the same course of study for mathematics


## The Orientation Stage (Primary 5 to 6)

- Students are streamed.
- Subject-based banding is adopted.
- Students take either the Foundation Mathematics or Mathematics course of study.


The three courses of study for secondary students

- Pupils sit a national examination called the Primary School Leaving Examination (PSLE) at the end of Primary six.
The examination assesses pupils suitability for secondary education and places them in an appropriate secondary school course that suit their learning ability.
- Three Courses are available at the secondary school level.

Pupils undergo four or five years of secondary education with different emphases.

- Special Course
- Express Course
- Normal Course (Academic / Technical)


## Secondary School

Special/Express mathematics course - 4 year / GCE'O' level maths

- Normal (Academic) mathematics course - 4 year / GCE ' $N$ ' level maths syllabus A - Additional year / GCE 'O' level maths

Normal (Technical) mathematics course - 4 year / GCE ' N ' level maths syllabus T - Additional year / GCE ' N ' level maths syllabus $A$

Education System in Singapore
\(\left.\left.$$
\begin{array}{ll|l|c|c|c|c|c|l|l|}\hline \text { Education } & \text { School/Level } & \begin{array}{c}\text { Grade } \\
\text { From }\end{array} & \begin{array}{c}\text { Grade } \\
\text { To }\end{array} & \begin{array}{c}\text { Age } \\
\text { From }\end{array} & \begin{array}{c}\text { Age } \\
\text { To }\end{array} & \text { Years } & \text { Notes } \\
\hline \text { Primary } & \text { Primary Education } & 1 & 6 & 7 & 13 & 6 & \begin{array}{l}\text { a four-year foundation stage (Primary 1 to 4) and } \\
\text { a two-year orientation stage (Primary 5 to 6) }\end{array} \\
\text { four-year courses leading up to the Singapore- } \\
\text { Cambridge GCE O' Level examination. Based on } \\
\text { results of the PSLE, students are placed in } \\
\text { different secondary education tracks or streams: }\end{array}
$$\right] \begin{array}{llll}"Special", "Express", "Normal (Academic)", or <br>

"Normal (Technical)\end{array}\right]\)| Normal is a four-year course leading up to a |
| :--- |

## Primary Education

- School Education is a priority in well regulated Singapore and follows the core western model. The first 4 years of primary education form a foundation stage with a common curriculum.
- During the 2 year orientation phase that follows though, pupils are streamed per subject according to their learning abilities, or difficulties.


## Secondary Education

- The special and express tracks are 4-year programs leading to Cambridge GCE O Levels.
- The normal stream may take a student on a 5 year journey to the same destination but via N Levels, with choices of following academic or technical curriculae.


## Vocational Education

- Vocational training is provided by the institute of technical training.


## Tertiary Education

- Students who completed their GCE O Levels may proceed directly to polytechnics.
- But, to enter university though, students must first pass their A Levels after studying for 2 years more at a pre-university.


## Prior to PSLE Primary 1 to 5

- From January to May is the first Semester and at the end of the semester SA1 (Semestral Assessment 1) is conducted.
- The second Semester is from July to November and at the end of the semester SA2 (Semestral Assessment 2) is conducted.
- In the middle of each semester, a term test is conducted which is named CA1 (Continual Assessment 1) and CA2 (Continual Assessment 2).

PSLE Primary School Leaving Examination - Primary 6

- Based on their results, candidates are streamed into three different courses: Express, Normal (Academic) and Normal (Technical).


## iPSLE

- The iPSLE examination is offered to Singaporeans studying abroad and whose school has adopted a curriculum similar to that offered in Singapore.
- GCE 'Normal' Level
- conducted annually in Singapore.
- taken after four years in the normal academic or normal technical stream (secondary education).


## GCE N(Academic) Level ( after that can either go to PFP or O level)

- taken by Normal Academic students after four years of secondary school education.
- This may lead to a possibility of moving on to the Secondary 5 Normal (Academic)stream to take their ' $O^{\prime}$-Levels.
- GCE Normal(Technical) Level
- lead students to the ITE or Institute of Technical Education.
- Alternatively, if students performed well enough in Secondary One, they may be laterally transferred to the Secondary $2 \mathrm{~N}(\mathrm{~A})$-Normal Academic stream.


## Polytechnic Foundation Programme(PFP)

- Polytechnic Foundation Programme(PFP) is a programme that is for Secondary 4N(A) students.
- provide more pathways to the tertiary education for the Secondary 4 N(A) students instead of going Secondary 5 N to take the O -Level.


## - GCE 'O' Level

- The GCE 'O' Level examinations, or more commonly known as 'O' Levels, are conducted annually in Singapore. Like the ' $N$ ' Levels, it is done after four years of express or five years of normal academic secondary education and is under the same examining authority.


## - Singapore-Cambridge GCE 'A' Level

- is conducted annually. It is taken before the completion of 2 years of Junior College or 3 years at tertiary education.


## United [xingdom Mathematics

## Culpiculum

## Introduction of United Kingdom

- The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom, the UK or Britain.
- Consists of four countries: England, Northern Ireland, Scotland and Wales.
- The UK is a unitary state governed under constitutional monarchy and a parliamentary system, with its seat of government in a capital city of London.


## Introduction

- Education in UK is supervised by Ministry of Education and Department of Business, Innovation and Skills.
- Local government is responsible for implementation policy for public education and state schools.
- State provided free educations to students.
- Parents can choose to educate their children in any way appropriate.


## Historical Development of Educational System

## There are TWO types of educational institutions: religious and secular.

## Religious

- During the Middles Ages, formal education was already taking shape.
- School is run by different district people who always go to the Church often, and some are connected to Cathedrals, chantries and monasteries.
- It is a very elementary education.


## Secular

- Grammar school that prepared students to enter colleges in Oxford.

There are TWO separate systems providing different types of education: academic and vocational

## Academic

- Institution: provided specialised knowledge in Latin and Greek necessary for their future studies in one of the Oxford colleges.


## Vocational

- Apprentices learnt their trade skills in schools run by the various guilds.
- The modern system of education in England are affected mainly in the second half of the 19th-century.
- Later, leaders of the Chartist Movement (1838-1857) and the Radicals (late $18^{\text {th }}$ century and early $19^{\text {th }}$ century) were in favour of some sort of national system of education.
- There are some obstacles to develop a national system of free compulsory education.


## No 1

- During the first decade of $19^{\text {th }}$ century, they have indications of new thinking in the education field.


## No 2

- Whitbread support the local church responsible for education and every child should have 2 years of education between the ages of 7 and 14 .

No 3

- It was considered too expensive


## No 4

- It was helped by the gradual increase in collectivist thought especially after 1865.


## No 5

- The various Factory Acts of 1833,1844 , and 1867 were another contributory factor towards the general tendency towards national education.


## No 6

- 6. Political stability and economic prosperity were associated with the education of the people.


## No 7

- 7. In 1869, two other societies were established: the Education League, which turned secular and the National Education Union, which was conservative. It was mainly due to these two societies that the Education Act of 1870 (also known as Forster Act) was passed.


## The Education Act of 1870

-1. The act required the establishment of elementary schools nationwide, had to be non-denominational.

- 2. Religious instruction was an integral part of the school curriculum but was not compulsory. This was to be nondenominational.
-3. Elementary education became effectively free with the passing of the 1891 Education Act.


## $20^{\text {th }}$ Century Modern System of Education

- In the 20th century, education became a sensitive social, economic and political issue in England.
- The most important piece of legislation was the Education Act of 1944 (known as the "Butler Act").
- Education of the individual is the foundation of the education of the academic and community (1944 Education Act Part II, 7).
- "the school day in every county school and in every voluntary school shall begin with collective worship on the part of all pupils in attendance"


## Tripartate System

- Grammar Schools : who were interested in pursuing their studies beyond the O-level GCE stage. It provided an academic education for pupils between the ages of 12 and 19
- Secondary Modern Schools : attended a four year course leading to the School Leaving Certificate. The course usually offered instruction in English, at least one other language, geography, history, mathematics, science, drawing, manual instruction or domestic subjects, and physical exercise. When pupils left school they normally entered into the working world.
- Secondary Technical Schools: It provided a general education with special emphasis on technical subjects.


## Education System in UK



## Key :

- Compulsory Education
(A) Apprenticeship-
based qualifications

Basic Education General Education

Vocational Education
Vocational Education = Post-Secondary Non-Tertiary Education

## Education System in the UK

- Five stages of education system in the UK:
- Early years
- Primary [Keystage 1: 5-7years old (Year1-2) , Keystage 2: 7-11 (Year 3-6)]
- Secondary [Keystage 3: 11-14years old (Year7-9) , Keystage 4: 15-16 (Year 10-11)]
- Further Education (FE): is not compulsory and covers non-advanced education which can be taken at further (including tertiary) education colleges and HE institutions (HEIs).
- Higher Education (HE): is study beyond GCE A levels and their equivalent which, for most full-time students, takes place in universities and other HEls and colleges.
- Early years:
- The Education Act 2002 extended the National Curriculum for England to include the Foundation Stage which was first introduced in September 2000, and covered children's education from the age of 3 to the end of the reception year, when children are aged 5.
- The Early Years Foundation Stage (EYFS) came into force in September 2008, and is a single regulatory and quality framework for the provision of learning, development and care for children in all registered early years settings between birth and the academic year in which they turn 5 .
- September 2010 onwards, three and four year olds are entitled to $\mathbf{1 5}$ hours of free nursery education for 38 weeks of the year.


## Education System in the UK

## Primary education

- The major goals of primary education are achieving basic literacy and numeracy amongst all pupils, as well as establishing foundations in science, mathematics and other subjects. Children in England and Nare assessed at the end of Key Stage 1 and Key Stage 2.

Secondary education

- After four years of secondary school, at about the age of 16, pupils sit the General Certificate of Secondary Education (GCSE) examination. This is taken in a wide range of subjects according to the pupils' ability. Usually four to eight or even as many as ten subjects. The exams are marked by an independent body.


## Education System in the UK

FE education

- FE in the United Kingdom therefore includes education for people over 16, usually excluding universities. It is primarily taught in FE colleges, work-based learning, and adult and community learning institutions.


## HE education

- There are three main levels of HE course:
(i) Postgraduate courses leading to higher degrees, diplomas and certificates (including Doctorate, Masters (research and taught), Postgraduate diplomas and certificates as well as postgraduate certificates of education (PGCE) and professional qualifications) which usually require a first degree as entryqualification.
(ii) Undergraduate courses which include first degrees (honours and ordinary), first degrees with qualified teacher status, enhanced first degrees, first degrees obtained concurrently with a diploma, and intercalated first degrees (where first degree students, usually in medicine, dentistry or veterinary medicine, interrupt their studies to complete a one-year course of advanced studies in a related topic).
(iii) Other undergraduate courses which include all other higher education courses, for example SVQ or NVQ: Level 5, Diploma (HNC/D level for diploma and degree holders), HND (or equivalent), HNC (or equivalent) and SVQ or NVQ: Level 4 and Diplomas in HE.


## Cockcroft Report (1982)

- In the mid of 1970s, government started to concern curriculum, teaching methods and assessment.
- Definition of numeracy: the ability to apply mathematics in daily life, further education and employment.
- Aims: The setting up of the government-sponsored Cockcroft Report to improve national numeracy standards in England and Wales for age of up to 16 and providing an updated definition of numeracy, supported by Shirley Williams, then the Labour Government education minister.
- setting a minimal utilitarian numeracy curriculum, and gave greater curricular emphasis to application to real-life contexts, practical work, calculators and realistic problem-solving.


## Cockcroft Report (1982)

- Examinations at the end is to access whether students met the needs with a range of mathematical attainment.
- Incorporate coursework to assess practical problem-solving and investigational skills.
- Mediocre performance of England's Maths in international comparisons like SIMS (Second International Maths Study, in the early 1980s) and TIMSS (Trends in International Mathematics and Science Study) triggered government intervention, National Curriculum Strategy in the late 1980s.


## National Numeracy Strategy (1999-2005)

- England's international performance failed to rise, government decide to National Numeracy Strategy across all year groups in all elementary schools in 1999/2000.
- Definition of numeracy: 'proficiency' with calculation and solution of word problems.
- Cost: $\$ 150$ million in the first year (1999/2000)
$\$ 100$ million for the next 5 years
no expenses for within 10 years

Aims: To raise standards of numeracy, in national and international tests.

## National Numeracy Strategy (1999 - 2005)

- Funded by previous government in 1996, led by Anita Straker, and carried out in 13 local schools with low results in national test.
- Aspect of the reform:

1. An increased emphasis on number and on calculation, especially mental strategies for calculation
2. A three-part template for daily Maths lesson
3. Detailed planning using a centrally provided week-by-week framework of detailed objectives.

## Mathematics Textbooks of England

- There are different curriculum to cater for different needs and interests of students. for example: England's Oxford University Press (higher, intermediate and foundation)
- England textbooks are larger and thicker due to contains numerous and various contents.
- Class size is smaller, individualized teaching and small group activities.


## Mathematics Textbooks of England

- Teachers may use materials outside the book (class activities, exercise), taking into consideration of student's level of understanding.
- England's textbook has interesting pictures with colours and stories to attract student's interest.
- Consists of modules centred around themes ("High flyers", "Sealife" etc) and each module has several sections in which heterogeneous mathematical concept (Algebra, Function, and Statistics all in one section)


## Mathematics Textbooks of England

- Has several strands in one module (linear equation, solving simultaneous equations)
- Has various features (projects, practice, application exercises, technology, student self-assessments, and career connections etc)
- Inductive approach: accepting the facts only after evidence is given.


## Mathematics Textbooks of England

- Mathematical content in England's textbooks are presented in the context of real-life situations.
- Calculators are widely used in England and the types of questions given is not contrive which involved the real exchange rates.


## Aims of Cambridge Mathematics

1. To champion and secure access to a quality Maths education for all
2. To collaborate to use UK position in Maths education, to show leadership and to develop an authoritative voice
3. To develop and make
available world class teaching
and learning materials

## Aims of Cambridge Mathematics

4. To develop and
make available world class
teaching and learning materials.
5. to develop assessments that support the development of powerful mathematical reasoning
6. to support an infrastructure to enhance the quality of teacher education and continuing professional development
7. to develop an approach that is recognised and valued by parents, young people, teachers, institutions and governments.

## Principles

## Access for all

## Evidence based

## Collaboration and consultation

Coherent and integrated programme

## Framework

CAMBRIDGE MATHEMATICS FRAMEWORK

- The four integrated elements of Cambridge Mathematics are:

1. the Cambridge Mathematics

Framework, the content spine to which the other elements will link
2. resources, both paper based and electronic
3. a coherent formative and
summative assessment offer
4. a professional development framework encompassing both subject and pedagogical knowledge.

## Comparison

Malaysia
An on-going effort towards further developing the potential of individuals in a holistic and integrated manner, in order to produce individuals who are intellectually, spiritually,emotionally and physically ( Falsafah Pendidikan Negara)

The curriculum document is the main locus for the
class implementation, text book writings, and even the items to be asked in the students' assessment.

Singapore
United Kingdom
Prepare young Singaporeans for the new
circumstances and new problems that they
will face in the new millennium

After Pri 4, Pri 5 \& 6 divided to foundation and mathematics course. (refer to others) Secondary divided into three stream: Express, Normal and Technical. matter what background

To create a world-class state education system and a highly educated society in which same opportunity is given no

Consists of modules centred around themes each module has several sections in which heterogeneous mathematical concept (Algebra, Function, and Statistics all in one section)
Has several strands in one module (linear equation, solving simultaneous equations)

Support Resources, Professional
Development and Assessment

Assessment (Aged 7 and 11)
GCSE at Year 11 (Aged 16)
A Level (Aged 18)

## Ranking in the World

- TIMSS (Trends in International Mathematics and Science Study)
- OECD (Organization for Economic Cooperation and Development)
- PISA (Program for International Student Assessment)


## TIMSS (Trends in International Mathematics and Science Study)

- a series of international assessments of the mathematics and science knowledge of students around the world.
- Singapore ranked in the top three nations in the world in studies such as the Trends in International Mathematics and Science Study (TIMSS) since 1995

Haman
Destlopnete TIMMSS 2003

Mathematics


| - | - | 1 |  |  | Sexple | $\begin{aligned} & \text { Rermal } \\ & \text { Setheoling: } \end{aligned}$ | Ags at Tim: of Thasting | Devalcenment Indar" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oinse Tiape | Scrinetationt |  |  | 器 | H5) | 8 | 142 | 0.98 |
|  |  |  |  | $5{ }^{5}$ | (2) | 8 | 143 | 0.981 |
| Singapre | - | , |  | 59 | (38) | 8 | 14.4 | 0.93 |
| Hemg kray sah |  | [III |  | 572 | (58) | 8 | 14.4 | 0.93 |
| Jupen |  | 1 |  | 50 | (2, $)^{\text {a }}$ | 8 | 145 | 0.95 |
|  |  | $\square$ |  | 517 | (35) | 8 | 145 | 0834 |
| Enyend | - | $\rightarrow$ 1-111 |  | 513 | (45) | 9 | 142 | 0.946 |
| Resminamatal |  | 1 |  | 512 | (4.1) | $7 \times 8$ | 145 | asce |
| United Salas |  | 11 |  | 598 | (23) | 8 | 143 | 0.55 |
| Luthatio |  | 1-1 |  | 596 | (23) | 8 | 149 | 0.862 |
| CuehRephiv | cifleran frem <br> Alatra | $\square$ |  | 59 | (2, 21 | 8 | 14.4 | 0891 |
| Sluesta |  |  |  | 501 | (2) | $7 \times 8$ | 138 | 0.917 |
| TIMSS Scale Ang. |  |  |  | 500 |  |  |  |  |
| Aernesia |  | $1 / 1$ |  | 438 | (15) | 8 | 149 | 0.75 |
| Austrata |  | $1 \mid 11$ |  | 431 | (3.5) | 8 | 139 | 0.962 |
| Smackn |  | 11 |  | 431 | (2.3) | 8 | 148 | 0.856 |
| Mala |  | 111 |  | 438 | (1.2) | 9 | 140 | 0.978 |
| Sariand |  | III 1 |  | 487 | (1) | 9 | 13.7 | 0.345 |
| Sentia |  | 111 |  | 435 | (13) | 8 | 149 | 0.810 |
| lialy | Serisefation | 111 |  | 430 | (19) | 8 | 139 | 0.54 |
| Maysia |  | [1II, |  | 474 | [51 | 8 | 143 | 0.81 |
| Neway |  | 111 |  | 458 | 12.4 | 8 | 138 | а.58 |
| Cpras |  |  |  | 455 | (1.6) | 8 | 138 | 0.503 |
| Bayaia |  | III |  | 454 | 151 | 8 | 149 | 0.82 |
| \|syas |  | 111 |  | 453 | 1.9 | 8 | 14.0 | 0.332 |
| Uraine |  |  |  | 452 | (18) | 8 | 142 | 0.78 |
| Amonata |  |  |  | 451 | (41) | 8 | 150 | 0813 |
| Benia and Herrayoina |  |  |  | 455 | (2) | $8 \times 9$ | 14.7 | 0.353 |
| Letaren |  | [III ${ }^{\text {a }}$ |  | 49 | 140 | 8 | 14.4 | 0.72 |
| Thaiand |  | 1, III |  | 41 | (50) | 8 | 143 | 0.81 |
| Tutay |  | [, III |  | 432 | 148 | 8 | 14.0 | 0.75 |
| Jutran |  |  |  | 427 | (4) | 8 | 14.0 | 0.773 |
| Tunsia |  | $\square 11$ |  | 480 | 124 | 8 | 14.5 | 0.366 |
| Comb |  | +11111 |  | 410 | 5.5 | 8 | 14.1 | 0.54 |
| lant blaric Ficp of |  | $\xrightarrow{1}$ |  | 403 | (41) | 8 | 14.1 | 0.798 |
| Bzhan |  |  |  | 338 | (1.6) | 8 | 14.1 | 0.3s\% |
| Indossia |  | 1 |  | 377 | (18) | 8 | 143 | 0.78 |
| \$,pran Arab Repotik |  | 1-11 |  | 335 | Q 2.8 | 8 | 139 | 0.784 |
| Egpt |  | 1 11-1 |  | 371 | 1.81 | 8 | 14.1 | 0.088 |
| Ahyeia |  |  |  | 37 | (2.1) | 8 | 14.5 | 0.73 |
| Maxces |  |  |  | 31 | 30 | 8 | 14.8 | 0.545 |
| Camens |  | $\xrightarrow{1+111}$ |  | 332 | Q 3. | 8 | 145 | 0.791 |
| Oran |  | III, |  | 372 | (2,4 | 8 | 14.3 | 0.814 |
| Passinian Natilastit |  | 1 |  | 玉 |  | 8 | 14.1 | 0.731 |
| Botwana |  |  |  | 3 | Q2.3 | 8 | 149 | 0.554 |
| Kumak |  | $11$ |  | 3 | Q231 | 8 | 14.4 | 0891 |
| Elsakata |  | 1 |  | 340 | Q281 | 8 | 15. | 0.735 |
| Saud fratio |  | 1 |  | 37 | [2.8) | 8 | 14.4 | 0.812 |
| ${ }^{\text {Grana }}$ |  | $\xrightarrow{1}$ |  | 33 | ( 24 ) | 8 | 158 | 0.533 |
| arax |  |  |  | 37 | (1.4) | 8 | 139 | 0875 |
|  | $100 \quad 200$ | $\begin{array}{lllll}30 & 300 & 400 & 500 & 60\end{array}$ | $\pi$ |  |  |  |  |  |




International Mathematics Achievement

## East Asian Countries Top Achievers at Fourth Grade in Mathematics

TIMSS 2015 Mathematics has achievement results for 49 countries at the fourth grade.

Singapore 618 Hong Kong SAR615 Korea 608
Chinese Taipei 597 Japan 593


Northern Ireland 570
Russian Federation(564
Norway 549 Ireland (547) England 546 Belgium-Flemish (546) Kazakhstan(544) Portugal (54) United States(539) Denmark(539) Lithuania 535 Finland 635 Poland 635 Netherlands (330) Hungary 529 Czech Republic 528 Bulgaria (524) Cyprus 523 Germany (522) Slovenia (520) Sweden 519 Serbia 518 Australia (517) Canada (511) Italy 502 Spain 505 Croatia 502 Slovak Republic 488 New Zealand (991) France 483 Turkey ${ }^{483}$ Georgia (463) Chile (599 United Arab Emirates 452 Bahrain (51) Qatar (39) Iran(43i) Oman (425) Indonesia (397) Jordan 888 Saudi Arabia 683 Morocco 377 South Africa 376 Kuwait 353

## MATHEMATICS-EIGHTH GRADE <br> TIMSS <br> 2015

International Mathematics Achievement

East Asian Countries Widen Global Advantage in Mathematics Achievement at Eighth Grade TIMSS 2015 Mathematics has achievement results for 39 countries at the eighth grade.


Korea 606 Chinese Taipeis99 Hong Kong SAR 594 Japan 586

Russian Federation 538 Kazakhstan 528

Canadas527 Irelands53
England 518 United States 518
Slovenias56 Hungary(514 Norways 512
Lithuania(511 Israel 511 Australia(505 Sweden 501
Italy 494 Malta 494 New Zealand 493 Malaysia 465
United Arab Emirates 465 Turkey 458 Bahrain 454
Georgia 453 Lebanon 442 Qatar 437 Iran 436 Thailand 431
Chile427 Oman403 Kuwait 392 Egypt 392 Botswana 391
Jordan(386 Morocco 384 South Africa(372) Saudi Arabia 368
Please see Exhibit 1.4 for statistically significant differences.

Maths [edit]

Fourth grade [edit ]

| TIMSS (1995) | TIMSS(2003) | TIMSS(2007) | TIMSS(2011) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |


| Eighth grade [edit] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TIMSC (1995) | TIMSS-R (1999) | TIMSS(2003) | TIMSS(2007) | TIMSS(2011) |
|  |  | 1.  Singapore 605 <br> 2. South Korea 589  <br> 3. Hong Kong 586  <br> 4. Taiwan 585  <br> 5. - Japan 570  <br> 6. Felanders 537  <br> 7. (Bium)   <br> 8. Netherlands 536  <br> 9. Estonia 531   <br> 1. Hungary 529  <br> 1. Malaysia 508   |  |  |

## OECD (Organization for Economic Cooperation and Development)

- Singapore is the smartest country in the world, followed by Hong Kong, South Korea, Taiwan, Japan, Finland, Estonia, Switzerland, Netherlands and Canada rounding out the top 10.
- ranking countries' school systems based on students math and science test scores.


## OECD (Organization for Economic Cooperation and Development)

1. Singapore
2. Hong Kong
3. South Korea
4. Japan (tie)
5. Taiwan (tie)
6. Finland
7. Estonia
8. Switzerland
9. Netherlands
10. Canada
11. Poland
12. Vietnam
13. Germany
14. Australia
15. Ireland
16. Belgium
17. New Zealand
18. Slovenia
19. Austria
20. Czech Republic
21. Denmark
22. France
23. Latvia
24. Norway
25. Luxembourg
26. Spain
27. Italy (tie)
28. United States (tie)
29. Portugal
30. Lithuania
31. Hungary
32. Iceland
33. Russia
34. Sweden
35. Croatia
36. Slovak Republic
37. Ukraine
38. Israel
39. Greece
40. Turkey
41. Serbia
42. Bulgaria
43. Romania
44. UAE
45. Cyprus
46. Thailand
47. Chile
48. Kazakhstan
49. Armenia
50. Iran
51. Malaysia
52. United Kingdom

## Program for International Student Assessment (PISA)

- The Program for International Student Assessment (PISA) is an international assessment that measures 15 -year-old students' reading, mathematics, and science literacy every three years.
- PISA is coordinated by the Organization for Economic Cooperation and Development (OECD), an intergovernmental organization of industrialized countries, and is conducted in the United States by NCES.


## PISA 2009



| Ramania | 424 | 423 | 46 | 46 | 423 | 4.4 | 421 | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Omilnd | 421 | 431 | 416 | 421 | 423 | 43 | 419 | 42 |
| Prindda nd lidygo | 416 | 413 | 419 | 413 | 4118 | 417 | 414 | 410 |
| Colombia | 413 | $4 / 4$ | 411 | 42 | 415 | 4.9 | 314 | 40 |
| Inuil | 412 | 417 | 416 | 44 | 414 | 4016 | 张 | 416 |
| Mmineryo | 401 | 414 | 4.0 | 这 | 411 | 9 3 | 411 | 401 |
| Imadan | 465 | 394 | 410 | 447 | 417 | 38 | 314 | 413 |
| Onuin | 44 | 所 | 䁬 | 42 | 404 | 䢞 | 141 | 401 |
| Imdoneis | 402 | 弥 | 397 | 4414 | 405 | \％ | 141 | 造 |
| Alypulina | 390 | 39 | 族 | 40 | 4010 | 199 | 撸 | 4010 |
| Karkhtan | 30 | 39 | 397 | 313 | 㟋 | 171 | 4 15 | 400 |
| －illunia | 湱 | 䢞 | 捔 | 3\％ | 邀 | 36 | 371 | 199 |
| Odar |  | 134 | 179 | 376 | 175 | 361 | $3{ }^{3}$ | 379 |
| Phuma | 311 | 3 | 172 | 371 | 173 | 359 | 3616 | $37 \%$ |
| Prum | 371 | 36 | 171 | 16 | 174 | 356 | 36 | 36 |
| Maxbiliun | 36 | 361 | 371 | 33 | 312 | 35 | 441 | 371 |
| llyprida | 314 | \％ | 127 | 通 | 119 | 23 | 313 | 330 |

## Results from PISA 2012



