
MR

A MapReduce Programming Language

W4115 Programming Language and Translator
Prof. Stephen A. Edwards

Siyang Dai
Zhi Zhang
Zeyang Yu

Jinxiong Tan
Shuai Yuan

1

Table of Contents
MR
A MapReduce Programming Language

1. Introduction to MR
2. Tutorial
3. Language Reference Manual
4. Architectural Design
5. Project Plan
6. Test Plan
7. Acknowledgement
Appendix

1. Grammar
2. Contribution
3. Lessons Learned
4. Code Listings

2

#h.esx55bqioota
#h.esx55bqioota

1. Introduction to MR
1.1 Background
MapReduce (MR) is a program language whose aim is to provide a convenient and
effective way for users to develop distributed applications to process a large number
of data across a large number of computers. The MR programs mainly consist of two
functions, the Map function and the Reduce function, which are corresponding to
the two significant steps in distributed computing. The Map function is meant to take
the input and partition it up into smaller sub-problems, and then distribute them to
computers, while the Reduce function is supposed to collect the answers to all the sub-
problems from nodes and combines them in some way to form the output. Users can
perform specific computation based on their own needs by self-define the body of the
Map and Reduce function.

1.2 Features
The MR programming language has several features as follows.
1.2.1 Improving the efficiency

Hadoop is an effective framework in distributed computation. Users can develop
applications run by Hadoop in Java. However, users have to finish some routine
tasks first, say introducing a whole bunch of Hadoop libraries and defining the
classes in Java. Hence, the MR programming language is effective since it is
developed to eliminate such kinds of routine works.

1.2.2 Concice structure and syntax
The MR programming language consists of two functions, the Map function and
Reduce function. Such design is more structured and concise, which contributes
to the efficiency and readability of the MR programs. Nevertheless, we have
simplified some syntactic structures. For example, we replace the for-loop
structure with the followings,

foreach word in text {...}

1.3 Mechanism
The mechanism for the MR programming language is as follows.
Firstly, Users can write the codes to solve their own problems by merely focusing on the
body of the Map and Reduce function, which contributes to the efficiency of distributed
programming. Secondly, The compiler takes the MR codes from users as input, and
translate them into Java language. In order to effectively eliminate the routine works, the
compiler can automatically introduce all the necessary libraries, and define the classes
in Java. After successfully compiling the MR program, some files with “java” as their
suffixes are generated. Then we can use run a script to compile the java files with the
necessary Hadoop libraries. At last, we have to package the java files in a single jar file
and then the program can be run in Hadoop framework.

3

2. Tutorial

2.1 Prerequisties
Ensure that Hadoop is installed, configured and is running.

2.2 Example: wordcount.mr
Let’s take the program wordcount.mr as an example of MR application and see how it works.
wordcount.mr is a simple application that counts the number of occurrences of each word in a
given input set.
It works with a local-standalone Hadoop installation.

Source code

//wordcount.mr

#JobName = “WordCount”

//map function definition

def wordcount_map <(Int, Text) -> (Text , Int)> (offset, line): Mapper

{

List<Text> words;

Int one = 1;

words = split line by “ “;
foreach Text word in words

emit(word, one);
}

//reduce function definition

def wordcount_reduce <(Text , Int) -> (Text, Int)> (word, counts): Reducer

{
Int total = 0;
foreach Int count in counts

total = total + count;

4

emit(word, total);

}

2.3 Usage
The steps to show how to run the program are as follows:

0. Please run the Makefile to generate the actual compiler program - “translator”

1. ./mrc sample/wordcount.mr WordCount.java ./hadoop/
The first one is the compiler script; The second one is the source file; The third one is the target
file(which must be the same as the Jobname attribute in the mr source); The fourth one is the
hadoop directory

2. hadoop/bin/hadoop jar WordCount.jar WordCount ./input/ output
To run it, use the second command, the first one is the hadoop executable; the second one is
the parameter telling hadoop to run the following jar file; the third one is the executable jar file.
the fourth one is the main class of the executable; the last two are the input directory and output
directory (the output directory should not exist a priori)

2.4 Explanation

The wordcount.mr application is quite straight-forward.

The Mapper transforms records into intermediate records, its implementation via the
wordcount_map method, processes one line at a time. It then splits the line into tokens
separated by whitespaces, and emits a key-value pair of < <word>, one>.

//configuration declaration

#JobName = “WordCount”

//definition of mapping relation of input and output for the function.

def wordcount_map <(Int, Text) -> (Text , Int)> (offset, line): Mapper

{
//define text type of the list words
List<Text> words;

//define the constant one
Int one = 1;

5

//split the words when whitespace is met
words = split line by “ ”;

//Use foreach structure to traverse the List words given by the expression. It iterates
through each object in the list and execute the emit() statement to output.
foreach Text word in words

emit(word, one);

}

The Reducer reduces a set of immediate values which share a key to a small set of
values, its implementation, via the wordcount_reduce method, sums up the values,
which are the occurence counts for each key (i.e. words in this example).

//definition of mapping relation of input and output for the function.

def wordcount_reduce <(Text , Int) -> (Text, Int)> (word, counts): Reducer

{
//define the integer variable total and set it to zero which uses to count the word.
Int total=0;

//Use foreach structure to traverse and count the word to total and collect the result.
foreach Int count in counts

total = total + count;
emit(word, total);

}

6

3. Language Reference Manual
1. Introduction
MapReduce is a programming to support distributed computing on large data sets on clusters
of computer. The paradigm is inspired by the map and reduce functions universally used
in functional programming. The MR programming language is designed specifically for
MapReduce.

1.1 Concept of MapReduce

1.1.1 List Processing
Essentially, the basic idea of a MapReduce program is to convert a list of input data elements
into a list of output data elements. The transformation is done in two phases: map and reduce.

1.1.2 Map
The first phase of a MapReduce program is called mapping. A list of data pairs is fed, one at
a time, to a function called the Mapper, which transforms each input element individually to an
output data element. Logically, a map function is defined as the following form:

Map(k1,v1) → list(k2,v2)

Figure 1 Map (Figure from Yahoo Developer Network)
After that, all pairs with the same key from all lists generated by map function will be grouped
together, thus creating one group for each one of the different generated keys. The groups will
be the input of the next phase.

1.1.3 Reduce
Reduction aggregates values together. A reduce function receives a list of values with the
same key. It then combines these values together. Logically, a reduce function is defined as the
following form:

Reduce(k2, list (v2)) → (k3,v3)

7

Figure 2 Reduce (Figure from Yahoo Developer Network)
As a result, we get a pair of (k,v) for each distinct key generated by map function.

1.2 Data-flow of MapReduce
Combining map and reduce, we can have the following overview for the data-flow of a

MapReduce program on a cluster consisting of three nodes:

Figure 3 MapReduce (Figure from Yahoo Developer Network)

1.3 The MR Programming Language
MR is designed to support MapReduce paradigm. It hides the details of MapReduce framework
from the programmers. All the programmers need to do is to define a map function and a
reduce function. The program will be run according to the data-flow of MapReduce.

1.4 Input and Output of MR Program

8

An MR program takes two arguments from command line. The first one is the input directory.
And the second one is the output directory.

1.4.1 Input
All files under the input directory are used as input files. MR treats each line of each input file
as a separate record, and performs no parsing. It feeds the map function with the byte offset of
the line as key and the line content as value. Therefore, for map function, k1 is always an integer
and v1 is always one line of text.

1.4.2 Output
The output directory must not exist before the MR program runs. The MR program will create
one automatically. The output of reduce function will be written to files under the output directory
in form “key \t value” per line.

2. Lexical Elements

2.1 Tokens
There are five kinds of tokens in MR, i.e., literals, keywords, identifiers, operators and other
separators. Blanks, newlines and comments are ignored during lexical analysis except that they
separate tokens.

2.2 Constants

2.2.1 Text Constant
Text constant is a string containing a sequence of characters surrounded by a pair of double
quotes, i.e. “...”. For example, “hello world!” is a Text constant. Identical Text constants are the
same. All Text literal are immutable.

One thing to note is that, in MR, there is no character type. Even a single character is Text
constant type which can be regarded as an extended character set.

2.2.2 Int Constant
A Int constant refers to a integer consisting of a sequence of digits. It supports signed and
unsigned integers. Int constant cannot start with a 0 (digit zero). All integers are default to be
decimal (base 10). For example, -15 and 2012 are valid Int constant.

2.2.3 Double Constant
In MR, a double constant refers to a floating constant which consists a integer part, a decimal
point and a fraction part. In addition, it supports an ‘e’ followed by an optionally signed integer
exponent. The integer part and fraction part can be one digit or a sequence of digits. Either of
them can be missing, but not both. Also either the decimal point or the e and the exponent (not
both) may be missing. The following are valid Double constants: 1. or 0.5e15 or .3e+3 or .2 or
1e5

2.3 Keywords
The following words are reserved as the keywords which cannot be used otherwise.

Text Int Double Boolean List
def if else foreach emit
and or Mapper Reducer split
by true false

9

2.4 Identifiers
Identifiers are used for naming variables, parameters and functions. Identifier consists of a
sequence of letters, digits and the underscore _ , but it must start with a letter. Identifier should
not be the keywords listed above. It is case-sensitive.

2.5 Operators
An operator is a special token that performs an operation, such as addition or subtraction, on
either one or two operands. More details will be covered in later section.

2.6 Separators
A separator separates tokens. Other separators (Blanks, newlines and comments) are ignored
during lexical analysis except the following:
 () < > { } ;

2.7 Comments
// is used to indicate the rest of the line is comment (C++/Java style comment)

3. Data Types

3.1 Int
The 64-bit Int data type can hold integer values in the range of −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

3.2 Double
The Double type covers a range from 4.94065645841246544e-324d to
1.79769313486231570e+308d (positive or negative).

3.3 Boolean
A variable of Boolean may take on the values true and false only.

3.4 List
It is used as List<T>, i.e. List<Int> represents a list of Int values. It has unlimited size.

4. Program Structure
A MR program must exist entirely within a single source file (with a “.mr” extension). By
convention, a typical MR source file must include three parts: configuration, mapper and
reducer. That is,

program -> configuration-declaration mapper-definition reducer-definition

Here is an example program:
//wordcount.mr
#JobName = “WordCount”

//map function definition
def wordcount_map <(Int, Text) -> (Text , Int)> (offset, line): Mapper
{

10

List<Text> words;
words = split line by “ ”;
foreach Text word in words {

emit(word, 1);
}

}
//reduce function definition
def wordcount_reduce <(Text , Int) -> (Text, Int)> (word, counts): Reducer
{

Int total = 0;
foreach count in counts {

total = total + count;
}
emit(word, total);

}

4.1 Configuration
configuration-declaration -> #configuration-attribute = Textconst;
configuration-attribute -> JobName
In this field, users can specify attribute JobName using a Text constant, which is started with
a capital letter. (The support of specifying the number of Mapper/Reducer process will be
extended in the future.)

4.2 Mapper/Reducer Definition
mapper-definition -> def identifier mapping-relation parameters : function-type block
reducer-definition -> def identifier mapping-relation parameters: function-type block

The keyword def explicitly indicates the following code is a function definition. identifier field is
used to specify the name of function.

mapping-relation -> <(type-specifier1, type-specifier2) -> (type-specifier3, type-specifier4)>

mapping-relation defines the mapping relation of a pair of input and output for the function. The
format is given as < (type-specifier1, type-specifier2) -> (type-specifier3, type-specifier4) >. For
mapper, it specifies k1, v1 and k2, v2 as in Map(k1,v1) → list(k2,v2). For reducer, it specifies k2, v2
and k3, v3 as in Reduce(k2, list (v2)) → (k3,v3).

parameters -> (identifier1, identifier2)

Parameters refers to the identifiers that receive values passed to a function. identifier1 is of type
as type-specifier1 specifies. identifier2 is default to be a List of type as type-specifier2 specifies.

function-type -> Mapper

| Reducer

At the end of the function declaration, it is compulsory for users to explicitly specify the function
type. Exactly one mapper and one reducer is allowed and needed in one MR program.

11

4.3 Scope
A declared object can be visible only within a particular function. Also a declaration is not visible
to declarations that came before it. A variable name cannot be referred before declared.

5. Expression
An expression consists of at least one operand and zero or more operators. The operands may
be any value, including constants and variables.

5.1 Operators
The general view of the precedence and associative can be shown in the following table.
Operator Description Associativity

() Parentheses left-to-right

split by Split a Text value by delimiter

- Unary Negative Operator （%prec）

* / Multiplication/division left-to-right

+ - Addition/subtraction left-to-right

< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

and Logical AND left-to-right

or Logical OR left-to-right

= Assignment

The operators on top on the table possess a higher precedence than those on the bottom of the
table. The detail of the expression will be included in the following subsections with the order of
precedence from high to low.

5.2 Primary Expression
expression:

literal
identifier
(expression)
unary-expression
binop-expression
split identifier by Textconstant

identifier = expression
declaration

An identifier is a primary expression, e.g., age. Its type should be specifically declared in the
program before it is evaluated in an expression. A literal is a primary constant, e.g., 1, 2, 1.1,
true. The type could be Boolean, Int, Double and Text. A parenthesized expression is a primary
expression, e.g., (x+y). This expression allows you to group expressions together to allocate
them a higher precedence. The other expressions will be explained in the following sections.

12

5.3 Unary Negative Operator
unary-expression:

- expression
The operand of this operation should have a type of Int or Double. This operation converts the
value of the expression from a positive number to a negative number or vise versa.

5.4 Binop Operation
binop-expression:

arithmetic-expression
relational-expression
logical-expression

5.4.1 Arithmetic operators
The arithmetic operators include *, /, +, -.
arithmetic-expression:

 expression * expression
 expression / expression
 expression + expression
 expression - expression

The operands must be of type Int or Double.
The binop expression will return the arithmetic result of the operation. Operator * denotes
multiplication, / denotes division, + denotes addition, and – denotes subtraction. When applying
the division operation, the second operand could not be zero. Example: 11+22, 21.1*21.5

5.4.2 Relational operation
The relational operators group left-to-right.
relational-expression:

 expression < expression
 expression > expression
 expression <= expression
 expression >= expression

expression == expression
expression != expression

The result of operations < (less), > (greater), <= (less or euqal), >= (greater or equal), == (equal
to), and != (not equal to) is Boolean true/false according to the result of the boolean logic.
Examples: x<y, 11>=33

5.4.3 Logical Operation
logical-expression:

 expression and expression
 expression or expression

The and operator groups left-to-right. It returns true if both its operands are evaluated to be true.
Otherwise, it returns false. The or operator also groups from left-to-right. It returns true if either
of its operands is evaluated to be true. Otherwise it returns false. Both and and or follows short-
circuit evaluation, a.k.a. the second argument is only executed or evaluated if the first argument
does not suffice to determine the value of the expression. Examples: (1+1) and 0, (x>2) or (x <
1)

5.5 Split Operation

13

expression:
split identifier by Textconstant

This operation will separate a Text constant or variable according to the delimiters specified by
the Text constant. The Text constant represents a regular expression used as delimiter. For
example, split “a-b-c” by “-” gives a list of Text [“a”, “b”, “c”] using “-” as delimiter.

5.6 Assignment Expression
expression:
 identifier = expression
The value of the expression replaces that of the object referred to by identifier. The right
operand is converted to the type of the left by the assignment if applicable. Examples: x = 1

5.7 Declaration Expression
expression:

 declaration

declaration:

type-specifier identifier
type-specifier identifier = expression

Identifiers must be preceded by the type of the identifier.

6. Statements
statements -> statements statement | є
Statements are a list of statement. Statements are executed in sequence, which are executed
for their effect, and do not have values. Statements should not occur within the Literals. They
fall into one of the following production:

statement -> expression;
 | block
 | emit (expression, expression);
 | if (expression) block else block

| foreach declaration in expression block

6.1 Expression Statement
Most statements are expression statements, which have the following form:
statement:

expression;

Usually expression statements are expressions evaluated for their side effects, such as
assignments.

6.2 Block statement
statement:

{ statements }

Block statement is the compound statement surrounded by brackets. It groups a set of
statements into a syntactic unit, so that the several statements can be used where one is

14

expected.

6.3 Emit Statement
statement:

emit (identifier, identifier);
The emit statement is used for output in map function and reduce function: both a key and a
value must be emitted to the next list in the data flow.

6.4 Conditional Statement
statement:

if (expression) block else block
if (expression) block

Conditional statement chooses one of the two blocks to execute, based on the evaluation of
the expression. If the expression is evaluated as true, the first sub-statement is evaluated. If the
expression is false, the second sub-statement is executed.

6.5 Iteration Statement
statement:

foreach declaration in expression block

The foreach structure is used to traverse a list given by the expression. It iterates through each
object in the list and execute the block statement.

7. Reference
(Concept of Mapreduce)
Hadoop Tutorial on Yahoo Developer Network, http://developer.yahoo.com/hadoop/tutorial/
Wikipedia, http://en.wikipedia.org/wiki/MapReduce

15

http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce

4. Architectural Design

4.1 MR Overview

First, a file, say WordCount.mr, implementing some mapreduce algorithm, is written in MR
language. The MR compiler transforms it into a Java counterpart called WordCount.java. Then
the java program is fed to the hadoop framework to run on a cluster of computers.

In fact, using the compiler terminology, MR is the source language; MR compiler translates it
into corresponding Java form. Java, in this case, is the target language. And the Hadoop serves
as the interpreter. The relationship is shown as follows:

16

4.2 MR Compiler Overview
In general, a program written in MR is fed to the MR compiler, which transforms it into Java
counterpart step by step. First, scanner gives the tokens sequences. Second, the parser builds
up a abstract syntax tree based on the MR grammar. Third, the type checker validate the
elements in the AST is legal and meaningful. Finally, the translator converts the program into
Java form by walking the AST. Both type checker and translator resort to a symbol for name
resolving and type conversion. The compiler structure is shown as follows:

17

As to the translator, it is consisted of three major parts:

1. translate the mapper
2. translate the reducer
3. add java-required stuff, i.e. main class, import etc.

Both translate mapper and translate reducer requires translate statements, which depends on
translate expression. One subtlety in the translator is that we need to convert the type of the
parameters before using them. The reason is we have to deal with two type systems in Java.

Parameters Type Conversion
Hadoop uses its own type system for serialization, i.e. IntWritable, DoubleWritable, Text etc.

18

However, these types do not support basic operations, such as addition, concatenation. In order
to make use of the native support operation in Java, we have to convert all the parameters,
which is default to be in hadoop types, into Java types. After that, we can perform the logic
using Java operators. And finally, when we are ready to emit those values, we have to convert
them back to Hadoop types. As the key solution in computer science, we solve it by adding
another layer of indirection.

Mapper / Reducer (Parameters in Hadoop types) {

Convert Parameters from Hadoop types into Java types
mapper / reducer logic using Java-supported operations
Convert values from Java types back to Hadoop types
emit the values

}

19

5. Project Plan

Project Timeline
Milestone Estimate Time

Language Core Features 10-02-2011

Basic Flow Design for the Project 10-11-2011

Fully Outline Grammar 10-21-2011

Complete LRM 10-27-2011

Complete Scanner Parser and AST 11-10-2011

Finish Code Generation 12-01-2011

Final Testing 12-10-2011

Complete Final Report 12-14-2011

Log
10-09-2011:

1. Analyze Hadoop features and program for Hadoop
2. Basic grammar and structure for the program
3. Sample program for the project

10-11-2011:

1. Basic flow for the program
2. Basic flow for scanner
3. Basic flow for parser

10-21-2011:

1. Build up the project on Github
2. Successful run program on Hadoop
3. Refine Grammar
4. Sample token file and sample parser tree file

10-29-2011:

1. Finish LRM
2. Code for Scanner
3. Demo code for Parser and AST is postponed because of the midterm

11-11-2011

1. Demo code for Parser and AST

20

2. Test case for scanner
3. Hadoop platform
4. The code for parser is postponed due to the grammar

11-13-2011

1. Grammar modified

11-27-2011

1. Scanner and parser bug fixed
2. Second test program for the compile: maximum
3. Automated script compiling java file into jar

12-04-2011

1. Type checking
2. Translation part of the compiler

12-15-2011
1. Testing for the compiler
2. Finish the final report

21

6. Test Plan

Checklist

Illegal Variable Definition checked

Illegal Assignment Operation checked

Illegal Binary Operation checked

llegal Split Expression checked

Illegal If-Expression checked

Illegal Foreach Statement checked

Unmatched Emit Statement checked

6.1 Illegal Variable Defintion
Testcase1:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1;
 Text tmp = 1; //illegal vairable definition
 foreach word in words {
 emit(word, one);
 }
 }
Output:
Fatal error: exception Failure("illegal vdfn type")

Testcase2:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1;
 Text tmp = oops; //undefined variable oops
 foreach word in words {
 emit(word, one);
 }
 }
Output:

22

Fatal error: exception Failure("undeclared variable oops")

6.2 Illegal Assignment Operation
Testcase:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1;
 Text tmp;
 tmp = 1; // illegal assign operation
 foreach word in words {
 emit(word, one);
 }
 }
Output:
Fatal error: exception Failure("illegal assign type")

6.3 Illegal Split Expression
Testcase:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 Int oops = 123;
 List<Text> words = split oops by " "; //split parameter should be a Text type
 Int one = 1;
 foreach word in words {
 emit(word, one);
 }
 }
Output:
Fatal error: exception Failure("expected a Text type")

6.4 Illegal Binary Operation
Testcase1:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1 + "oops"; // illegal operation: Int + Text
 foreach word in words {
 emit(word, one);
 }
 }
Output:

23

Fatal error: exception Failure("illegal type of opprand")

Testcase2: emit(word, one);
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 35 > “a”; // illegal operation: Int *Relational Operand* Text
 foreach word in words {

 }
 }
Output:
Fatal error: exception Failure("illegal type of opprand")

Testcase3:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 0;

Text tmp = “a”;
if (one > tmp) // illegal relational operation
{

one = one + 1;
}

 foreach word in words {
 emit(word, one);
 }
 }
Output:
Fatal error: exception Failure("illegal type of opprand")

6.5 Illegal If-Expression
 Testcase:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 0;

Text tmp = “a”;
if (tmp) // illegal relational operation
{

one = one + 1;
}

 foreach word in words {
 emit(word, one);
 }
 }

24

Output:
Fatal error: exception Failure("illegal if type")

6.6 Illegal Foreach Statement
 Testcase:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1;

Text oops = “a”
 foreach word in oops { //oops is not a List
 emit(word, one);
 }
 }
Output:
Fatal error: exception Failure("oops is not a List")

6.7 Unmatched Emit Statement
Testcase:
 //map function definition
 def wordcount_map(offset, line) <(Int, Text) -> (Text , Int)> : Mapper
 {
 List<Text> words = split line by " ";
 Int one = 1;

Text oops = “a”
 foreach word in words {
 emit(word, oops); //emit type should correspond to (Text, Int)
 }
 }
Output:
Fatal error: exception Failure("illegal emit type")

25

7. Acknowledgement
First we would like to thank Prof. Steve for his vivid lecture and great analogies, i.e. the pac-
man, which has made the tough compiler topic more accessible. Second we would like to
thank Prof. Steve for his example code - the micro c compiler, which gives us a concrete idea
about how to construct a compiler on our own. And finally we want to thank Yahoo Developer
Network, which provides a great amount of resource about Mapreduce including the basic
Mapreduce concept in our language reference manual as well as the figures.

Appendix
1. Grammar

Notation Convention:

italic = non-terminal
bold = terminal

Grammar

1. Types
type-specifier -> atom-type-specifier

| list-type-specifier
atom-type-specifier -> Text

| Int
| Double
| Boolean

list-type-specifier -> List<atom-type-specifier>

2. Program Structure
program -> configuration-declaration mapper-definition reducer-definition

configuration-declaration -> # configuration-attribute = Textconst;
configuration-attribute -> JobName

mapper-definition -> def identifier parameters mapping-relation : Mapper { statements }
reducer-definition -> def identifier parameters mapping-relation : Reducer { statements }

mapping-relation -> < (type-specifier, type-specifier) -> (type-specifier, type-specifier) >
parameters -> (identifier, identifier)
function-type -> Mapper

| Reducer

3. Expression
literal -> Textconstant | Intconstant | Doubleconst | Booleanconst

26

expression -> literal
| identifier
| (expression)
| -expression
| expression binop expression
| identifier = expression
| split identifier by Textconstant

| declaration
binop -> + - * / and or < > <= >= == !=
declaration -> type-specifier identifier

| type-specifier identifier = expression

4. Statement
statements -> statements statement | є
statement -> expression;

| emit (expression, expression);
| if (expression) statement
| if (expression) statement else statement
| foreach identifier in identifier statement

2. Contribution
Siyang Dai
1. Project Motivator
2. Architectural Design
3. Grammar Design
4. Parser Implementation
5. Translator Implementation

Zhi Zhang
1. Type Checking Implementation
2. Test Plan Design and Implementation
3. Demo MR program (Wordcount)
4. Sample Token File

Zeyang Yu
Design: The basic structure and grammar for the language.
Coding: parser and ast

Shuai Yuan
1. Hadoop semantics
2. Language statement grammar
3. Wordcount tutorial
4. Scanner debug

Jinxiong Tan

27

1. Scanner
2. compiler script

3. Lessons Learned
Siyang Dai
1. Think Recursively
For parser and translator, especially for tree structure, thinking recursively eliminates
unnecessary attention to details.
2. Key - another level of indirection
Conversion between Hadoop type, Java type, MR type as mentioned in the Architectural Design
section.
3. Parametric Polymorphism is a magic for writing compilers, which is much easier than using
Subtype Polymorphism.

Zeyang Yu

1. Basic structure of the compiler and how each part works
2. Programming in Ocaml
3. Use LR(0) automaton to debug the parser
4. The mechanism of Hadoop
5. Team work: divide the work wisely so that the work can be done separately.

Zhi Zhang
1.Incremental Development and Testing
Abundant rules and expression need to be checked in this project, I realize that if I write the
whole program before I start any testing, then this process will become very tedious and
annoying. Therefore, I chose to write basic function module first and carry out the test plan
early. By iteratively appending more complex function into the program, I make the process of
development controllable and productive.
2. Everything is function.
It is my first time to use functional programming language to implement a big project. I have
to reshape my mind in writing code, and consider everything as the input/output of a function.
Recursive functions are widely used in this project. Especially in my work of type checking, the
correctness of expression could only be checked by recursive function.

Shuai Yuan

The project makes me understand more about compiler. Though we have learned a lot of
knowledge in the class, when we are facing to design our own language, it is a challenging
work. As far as I’m concerned, the following three aspects are most important for me:
First, we should understand the principles of compiler deeply before implementing our project.
In order to know much more about it, we should not only focus on the lectures related to it, but
also analysis the micro C example provided by professor. It’s a nice example for us to know the
real world design and implement.
Secondly, in order to implement the project, Ocaml is a very important language for us. I feel

28

difficult to learn at first. And afterwards, I find it’s really useful.
Finally, effective communication among team members is necessary for the teamwork, We can
always conclude the best ideas after our discussions and meetings.

Jinxiong Tan

In this course, I have learned the following three things.
1. Ocaml and the recursive method. Before learning Ocaml, I have very little knowledge about
recursion. I can only handle the problems, say transversing an array, with loops. Ocaml, in my
perspective, provide me with the recursive ways to think and deal with problems; Moreover,
recursion is quite helpful and effective in writing a compiler;
2. More than the knowledge of compiler itself, I have got a clearer picture of the principals of
the computer, for example, what would happen to the stack when the functions are calling
themselves, and how the data is stored in the memory;
3. Besides, since our projects are associated with distributed computation, I also learned
how distributed computation can be performed. For example, we can implement distributed
computation by programming in Java and run the Java program in Hadoop framework.

4. Code Listings
Makefile
ast.mli
scanner.mll
parser.mly
typechecker.ml
translator.ml
mrc

|-lib
header.mrlib
main_template.mrlib
mapper_template.mrlib
reducer_template.mrlib

 |-sample
wordcount.mr
WordCount.java

29

