
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

145 | P a g e

www.ijacsa.thesai.org

MRPPSim: A Multi-Robot Path Planning Simulation

Ebtehal Turki Saho Alotaibi, Hisham Al-Rawi

Computer Science Department, Al Imam Muhammad Ibn Saud Islamic University

Riyadh, SA

Abstract—Multi-robot path planning problem is an

interesting problem of research having great potential for several

optimization problems in the world. In multi-robot path planning

problem domain (MRPP), robots must move from their start

locations to their goal locations avoiding collisions with each

other. MRPP is a relevant problem in several domains,

including; automatic packages inside a warehouse, automated

guided vehicles, planetary exploration, robotics mining, and

video games. This work introduces MRPPSim; a new modeling,

evaluation and simulation tool for multi-robot path planning

algorithms and its applications. In doing so, it handles all the

aspects related to the multi-robot path planning algorithms.

Through its working, MRPPSim unifies the representation for

the input. This algorithm provides researchers with a set of

evaluation models with each of them serving a set of objectives. It

provides a comprehensive method to evaluate and compare the

algorithm’s performance to the ones that solve public benchmark

problems inas shown in literature. The work presented in this

paper also provides a complete tool to reformat and control user

input, critical small benchmark, biconnected, random and grid

problems. Once all of this is performed, it calculates the common

performance measurements of multi-robot path planning

algorithms in a unified way. The work presented in this paper

animates the results so the researchers can follow their

algorithms’ executions. In addition, MRPPSim is designed as set

of models, each is dedicated to a specific function, this allows new

algorithm, evaluation model, or performance measurements to

be easily plugged into the simulator.

Keywords—component; simulation; modeling; evaluation;

multi-robot path planning problem; performance measurements

I. INTRODUCTION

Formally, Multi-robot path planning problem (MRPP)
consists of a graph and a set of robots. In such problems, each
robot has to reach its destination in the minimum time with
minimum number of moves. MPP is a relevant problem in a
wide range of domains, including; automatic packages inside a
warehouse [2], automated guided vehicles [3], planetary
exploration [4], robotics mining [5], and video games [6].

There are several variants of MRPP algorithms in the
literature with their specialized strengths. However, to have
clear vision about these algorithms’ performance, these need to
be evaluated on a unified robust tool. The multi-robot path
planning simulation (MRPPSim) is a modeling, evaluation and
simulation tool for multi-robot path planning algorithms and its
applications. It handles all the aspects related to the multi-robot
path planning algorithms. Hence, the researchers need only to
worry about their algorithms. MRPPSim aims to provide the
researcher set of evaluation models, each of them serves one of
the following objectives;

Objective.1: Test and track the algorithm’s behavior for
specific cases in fully controlled problems.

Objective.2: Track the algorithm’s behavior and compare
its performance with the algorithms that are already evaluated
on predefined small critical problems in [7].

Objective.3: Test the algorithm’s behavior on very large
graphs when the occupying ratio (robots number/vertices
count) increases.

Objective.4: Compare the algorithm’s performance to the
performance of the algorithms already tested in publically
available large scale problems [1] such as [7-9].

Objective.5: Compare the algorithm’s performance to the
performance of the algorithms solves biconnected graphs [10],
[7, 8]

Objective.6: Test the algorithm’s behavior on fixed
biconnected graph’s size when the occupying ratio increases.

Objective.7: Evaluate the algorithm’s performance against
the algorithms that solve random graphs.

Objective.8: Track the algorithm’s behavior on fixed
random graph’s size when the occupying ratio increases.

Objective.9: Compare the algorithm’s performance to the
algorithms that solve grid graphs [7, 8, 10].

Objective.10: Test the algorithm behavior on fixed grid
graph’s size when the occupying ratio increases.

Objective.11: Evaluate the algorithm’s performance on
biconnected graphs of fixed occupying ratio when the graph’s
size increases.

Objective.12: Evaluate the algorithm’s performance on
random graphs of fixed occupying ratio when the graph’s size
increases.

Objective.13: Evaluate the algorithm’s performance on
grid graphs of fixed occupying ratio when the graph’s size
increases.

This paper is organized as follows; after this introduction,
the problem is defined in Section II. In Section III, the multi-
robot path planning simulation MRPPSim is introduced. In
Section IV, MRPPSim objectives are discussed in details.
Finally, conclusions and future works are presented in Section
V.

II. PROBLEM STATEMENT

Going through the literature related to MRPP algorithm, we
found an urgent need of having a graph-based multi-robot path

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

146 | P a g e

www.ijacsa.thesai.org

planning simulator that can cover different types of scenarios
and problems. The study of all available algorithms
implementations and its performance measurements
calculations as well was essential. The simulation is to provide
a ready implementation of state-of-art algorithms in the field.
During this study, the work started by looking into iRRT
simulator [11]. iRRT is a simple Java program for simulating
that is widely used for robotics path planning algorithm known
as Rapidly-exploring Random Tree or RRT. This algorithm
was developed by Sertac Karaman et al. [12] and it works for a
single-robot configuration. During the process, several
extensions were implemented to fit multi-robot RRT
requirements. However, the representation of the robots
environment was limited to being continuous environment,
while we were also interested in graph-based algorithms. This
would enable working with problem scenarios and variations
that have not been catered for previously.

III. METHODOLOGY

The proposed work, i.e. MRPPSim is written as an open
source C++ code

1
 designed to be fully modularized so that

researchers can have the ability to plug any modifications.

A. Input

The input parameter for MRPPSim can be classified based
on the simulation model which will be described in the next
section. In our implementation, the user is initially required to
select the simulation model and the algorithm to be used.
Based on that, the user can enter or select the main two input
for any algorithm. These inputs include; the representation of
the environment in the form of undirected graph; G(V,E),
whatever the simulation model or the algorithm, the graph that
would be sent to the algorithm in XML format representation
describing numbered vertices V, and the linking edges E
(Fig.1). The second input is the instance; I(R, Locations),
which is the representation of the number of robots; R, and
robots’ configuration within the environment; Locations, the
robots configuration is the definition of the robots start and
goal locations in graph’s vertices term. (Fig.2).

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

<key id="key0" for="node" attr.name="Coordinate"

attr.type="string" />

<key id="key1" for="edge" attr.name="Weight"

attr.type="double" />

<graph id="G" edgedefault="undirected"

parse.nodeids="canonical" parse.edgeids="canonical"

parse.order="nodesfirst">

<node id="n0">

<data key="key0">0.0 0.0 0.0</data>

</node>

<node id="n1">

<data key="key0">1.0 0.0 0.0</data>

</node>

<node id="n2">

<data key="key0">2.0 0.0 0.0</data>

</node>

<edge id="e0" source="n0" target="n1">

<data key="key1">1</data>

</edge>

<edge id="e2" source="n1" target="n2">

<data key="key1">1</data>

1 https://pushandspin.wordpress.com/source-code/

</edge>

<edge id="e3 source="n2" target="n0">

<data key="key1">1</data>

</edge>

 </graph>

 </graphml>

Fig. 1. The environment representation is a graph in xml format

graph =//Graph.xml

agent: start = 0, goal = 2

agent: start = 2, goal = 3

Fig. 2. The robots (agents) start and goal locations (instance) representation

is a text file in specific format

B. Simulation models

As already mentioned, MRPPSim is written as a C++ code
that offers a set of simulation models, Each of these can serve
as set of objectives in our problem definition. This section will
present an overview of each simulation model in detail starting
with the user input until the algorithm inputs which is the graph
and the instance, described earlier, in the following form;

AlgorithmX (G, I)

1) Fully controlled model
In this selection, the user will be able to set the attributes of

both graph and the instance to be tested. Once the user enters
the graph G(user defined, user defined) attributes and the
instance I(user defined) descriptions, MRPPSim then converts
the input to the form defined in the subsection A, and send
these inputs to the selected algorithm as;

AlgorithmX (G(user defined), I (user defined)).

The aim of this model is to provide the user with the ability
to track specific cases in fully controlled problem
(Objective.1).

2) Small benchmark model
In order to cater for a wider class of instances, MRPPSim

has defined six benchmark problems evaluated in [7], a tree
with cycle leaves problem evaluated in [11] and a biconnected
graph in [10](Fig.3). It is noteworthy that besides the graph
G(ready V, ready E), the instance is also defined in these
problems as I(ready R, ready locations). Therefore, the
algorithm input would be;

AlgorithmX(G(ready V, ready E), I(ready R, ready
locations)).

The aim of this model is to get the user with the ability to
compare the algorithm with already evaluated algorithm on
these problems (Objective.2).

Tree Tunnel String

https://pushandspin.wordpress.com/source-code/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

147 | P a g e

www.ijacsa.thesai.org

Loop-chaining

Tree with Cycle Leaves

Connecter Corners

Biconnected

Fig. 3. Small benchmark problems

3) Public benchmark model
Sturtevant in his paper [1] has presented a new repository

that has been placed online
2
 to improve the evaluation of grid-

based problems. The repository allows researchers to use the
same problems and test sets, thereby increasing the
reproducibility of published results. In the repository, two main
sets are described; Commercial Game Benchmarks and
Artificial Benchmarks. Each map has been coded in a way to
be parsed. The maps are attached with a set of scenarios
describing the instances. However, this repository requires a
little modification in order to be applicable to the chosen
problem domain. This is due to the fact that in some scenarios,
there would be multiple robots on the same start and/or goal
position. Consequently, instead of using attached scenarios, we
have designed random generator. It is used to generate any
number of robots for the given graph randomly. The
procedures for generating random instances is;

1. Parameter: n: the number of vertices, r: the number of

robots.

2 http://movingai.com/benchmarks/

2. For each r;

1. Select random node s such that s ∉ start set

2. Set s as starting vertex of r.

3. start set = start set s

4. Select random vertex g such that s ∉ goal set

5. Set s as goal vertex of r.

6. goal set = goal set g.
In the Commercial Game Benchmarks, the maps contain

areas of land or water and the robots can only move on water.
(Fig.4,5). Moreover, in the Artificial Benchmarks, the maps
contain areas of passageways and walls. We have designed a
parser to read the coded maps and transform them into graphs
with each element in the map converted to vertex if it not
obstacles (lands/walls). This results in graphs that are
characterized by a large set of connected vertices. The parser
generates a fixed graph representation; G(coded V, coded E),
for every coded map. In addition set of instances describing the
start and goal locations would also be generated for each graph
randomly by the generator given the number of robots R,
minimum number of robots, maximum number of robots and
the step size; I (R, ∑

 , random
locations). Hence, The algorithms input would be;

AlgorithmX (G(coded V,coded E),

I(R, ∑
 ,random locations)).

The aim of this model is to test the algorithm behavior on
very large graphs when the occupying ratio (robots
number/vertices count) increases (Objective.3) and to compare
the algorithm’s performance to the performance of the
algorithms already tested in these public problems
(Objective.4).

4) One-Factor controlled model
While studying Multi-Robot Path Planning problem, we

came across two critical factors affecting the algorithms’
performance. These are the size of the graph and the occupying
ratio (number of robots/ number of vertices). In this section we
will overview two type of models; each type controlling one of
these critical factor and randomize the other in order to
generate graphs and instance files.

a) Fixed-Graph with Variable-Robot model

In this model, number of instances are to be generated for
the same graph size. After setting the graph size, the user can
set the minimum number of robots, maximum number of
robots and the step size to generate required number of
instances varying in the occupying ratio.

BICONNECTED GRAPH

The biconnected graph is a connected graph on two or more
vertices having no articulation vertices. MRPPSim provides
Biconnected graph generator representing G(V,Ebi) with the
number of vertices; V. The generator will generate the
biconnected topology by inserting edges Ebi between these
vertices. In this version of MRPPSim we have used the same
biconnected graph generator in [10]. It generates random bi-
connected graphs conforming to three parameters; h the
number of handles, C0 the size of the initial cycle, and l the
maximum handle length (Fig.6).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

148 | P a g e

www.ijacsa.thesai.org

Fig. 4. AR0306SR map of Baldurs Gate II (left), its coded map (right)

Fig. 5. AR0603SR map of Baldurs Gate II (left), its coded map (right)

Fig. 6. initial cycle (C0), maximum handle length (l) and number off handles

(h) in Surynek grap

Since this model is FG-VR model, the instances I need to
be generated randomly. The user can set the minimum number
of robots, maximum number of robots and the step size to
generate a number of instances varying in the occupying
ratio; ∑

 . However, the robots
location; locations need to be randomized totally. Furthermore,
The algorithm input would be;

AlgorithmX (G(h, C0, l),

I (∑
 , random locations)).

The aim of this model is to provide the researcher with the
ability to compare the algorithm’s performance to the
performance of the algorithms thereby meeting objective 5 and
6 mentioned in earlier sections.

RANDOM GRAPH

MRPPSim provides random graph generator; G(V,E) given
the number of vertices; V, the generator would generate the
random topology by inserting edges Erand between these
vertices. Since this model is FG-VR model, the instances I will
be generated randomly. As has been described earlier, the user
can set the minimum number of robots, maximum number of
robots and the step size to generate number instances varying
in the occupying ratio; ∑

 , the robots
location; locations will be randomized totally. Therefore, the
algorithm input would be;

AlgorithmX (G(V,Erand),

I (∑
 , random locations))

The aim of this model is to provide the researcher with the
ability to evaluate the algorithm performance against the
performance of algorithms already exusting that solve random
graphs (Objective.7) and to track algorithm behavior on fixed
random graph’s size when the occupying ratio increases.
(Objective.8).

GRID GRAPH

MRPPSim provides random graph generator; G(V,E) given
the number of vertices; V, the generator would generate the
random topology by inserting edges Egrid between these
vertices. In this version of MRPPSim, We have used the same
generator in [10] to generate grid instances of n n size with a
constant value of the parameter (h, C0, l) = G ((n-1)

2
-1, 4, 4).

Since this model is FG-VR model, the instances I would be
generated randomly. On the other hand, the user can set the
minimum number of robots, maximum number of robots and
the step size to generate a number of instances varying in the
occupying ratio; ∑

 , the robots
location; locations will be randomized totally. The algorithm
input thus would be;

AlgorithmX (G((n-1)
2
-1, 4, 4),

I(∑
 , random locations)).

The aim of this model is to get the researcher with the
ability to compare the algorithm’s performance to the
performance of the algorithms that solve grid graphs, [8], [7].
(Objective.9) and to evaluate the grid graphs when the
occupying ratio increase (Objective.10).

b) Fixed-Robot with Variable-Graph model

In this model, a number of graphs will be generated for the
same occupying ratio (number of robots/number of vertices).
After setting the robot number, the user can set the minimum
number of vertices, maximum number of vertices and the step
size to generate a number of graphs varying in their size.

BICONNECTED GRAPH

Since we have used the same biconnected graph generator
as presented in [10], the graph would be generated according to
a single variable x that can range from the given minimum
number of vertices to the given maximum number of vertices
by the given step size. The variable x would be used for all
three parameters (number of handles; h, initial cycle size; C0,
and maximum handle length; l). The graph size V hence would
be C0+h*l. The number of empty vertices would be kept fixed
to the given occupying ratio. Hence, the instance would be I
(occupying ratio * V, random location). The algorithm input
will be:

AlgorithmX (G(x, x, x) , I(occupying ratio *(x+x*x),
random location)),

such that, x= ∑
 .

The aim of this model is to get the researcher with the
ability to evaluate algorithm’s performance on biconnected
graphs of fixed occupying ratio when the graph’s size
increases. (Objective.11).

RANDOM GRAPH

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

149 | P a g e

www.ijacsa.thesai.org

After the researcher has set the occupying ratio, minimum
number of vertices, maximum number of vertices and the step
size, the random generator would automatically generate graph
G (Vi = ∑

 , Erand). The instance
would be I (Vi * occupying ratio, random locations). Hence,
the algorithm input would be:

AlgorithmX (G(Vi = ∑
 , Erand),

I (Vi* occupying ratio, random locations)).
The aim of this model is to get the researcher with the

ability to evaluate the algorithm performance on random
graphs of fixed occupying ratio when the graph’s size
increases. (Objective.12).

GRID GRAPH

After the researcher has set the occupying ratio, the
minimum number of vertices, maximum number of vertices
and the step size. MRPPSim would automatically generate
different grids G (Vi =∑

), Egrid)
with the same occupying ratio. The instances would be I (Vi*
occupying ratio, random locations). Therefore, the algorithm
input would be;

AlgorithmX (G(∑
), Egrid),

I(Vi* occupying ratio, random locations)).

The aim of this model is to evaluate the algorithm
performance on grid graphs of fixed occupying ratio when the
graph’s size increases (Objective.13).

C. Output

The most common performance measurements of multi-
robot path planning algorithms in [7, 8, 10] are;

1) The path length

Even though some algorithms in literature have
implemented parallel implementation, our contribution in this
work is to unify the performance parameters allowing the
researchers to calculate the path length as the total number of
sequential moves.

2) The CPU time
The execution time has been calculated as the real time

between the algorithm start time to the end time. In addition,
we have ignored the execution time of the preprocess of the
algorithms.

3) The makespan
Makespan is the number of time steps required to get all

robots to their destination.

4) The optimized path length
These measurements carry any improvement of path length

on the original algorithm.

5) The optimized makespan
These measurements carry any improvement of makespan

on the original algorithm.

The animation results would be written in the format
readable to GraphRec simulator [14]. On its completion, all
these results would be stored in the experiment folder. The
researchers can then track the movement and the execution of
the algorithm by running the animation results in GraphRec.

IV. RESULTS

The results of this work are aimed to verify whether the
objectives described earlier are satisfied or not. In this section,
we will recall every objective and show the ability of
MRPPSim to achieve it.

Objective.1: We will track the
execution of Push and Swap

algorithm3 on -shape graph with
G(7,8) and two robots where the

goal location of each one is the
start location of the other

I(2,(2,5),(5,2))

3 One of the implemented algorithm in MRPPSim

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

150 | P a g e

www.ijacsa.thesai.org

Objective.2: We will track the

execution of Push and Swap
algorithm4 on Connector problem.

Objective.3: We will evaluate the
performance of Push and Spin

algorithm on public Commercial

game benchmark problem
AR0603SR with 57873 vertices

and number of robots ranging

between 100 to 3000 with step size
100.

4 One of the implemented algorithm in MRPPSim

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

151 | P a g e

www.ijacsa.thesai.org

Objective.4: We will compare the
performance of Push and Spin

algorithm to the performance of

Push and Swap, Push and Rotate
and MAPP algorithms on public

Commercial game benchmark

problem AR0307SR with a number
of robots ranging from 200 to 2000

with step size 100

Objective.5,6: Bibox is the

complete algorithm for biconnected

graphs. We will track the behavior
of Bibox algorithm on a

biconnected graph with initial

cycle=5, number of handles=4 and
maximum handle length=3 when

the number of free vertices ranging

between 2 to 10 with a step of size

1. Then, we will compare that

results to the results of Push and

Swap, Push and Rotate and Push
and Spin algorithms on the same

experiments settings.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

152 | P a g e

www.ijacsa.thesai.org

Objective.7,8: Push and Spin

algorithm assumes to solve any

random solvable graph, where the
solvable graphs are any graph with

a number of empty vertices equal

the longest bridge. Since Push and
Spin algorithm is the one which

able to solve such instances, we

will track its execution on a graph
with 100 vertices and the number

of free vertices ranging between 2

to 60 with step of size 2.

Objective.9,10: We will track Push
and Swap algorithm execution on a

graph of size 10x10 and number of

free vertices ranging between 2 to
50 with a step of size 2. Then, we

will compare that results to the

results of Push and Rotate, Push

and Spin and Bibox algorithms on

the same experiments settings.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

153 | P a g e

www.ijacsa.thesai.org

Objective.11: We will test Push
and Spin algorithm’s on different

sizes of biconnected graphs with a

fixed occupying ratio 0.98. The
graphs sizes are ranging between

(initial cycle, number of handles,

maximum handle length)=(4,4,4) to
(100,100,100) with step of size 4.

Objective.12: We will track the

execution of Push and Spin

algorithm’s on different sizes of
random graphs with a fixed

occupying ratio, 0.98. The graphs

sizes is ranging between 5 to 100

with step of size 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

154 | P a g e

www.ijacsa.thesai.org

Objective.13: We will test Bibox

algorithm’s on different sizes of
grid graphs with fixed occupying

ratio 0.98. The grid sizes are
ranging between 2x2 to 20x20 with

step of size 2.

V. CONCLUSION AND FUTURE WORKS

As can be observed, the MRPP simulator provides
complete simulation/evaluation tool for offline multi-robot
path planning. Its major strength is its ability to provide the
algorithms imposed graph representation for its environment.
MRPP allows the researchers to;

 Test and track the algorithm’s behavior for specific
cases in fully controlled instances.

 Track the algorithm’s behavior and compare its
performance with the algorithms that already evaluated
on predefined small critical instances in [7].

 Test the algorithm behavior on very large graphs when
the occupying ratio (robots number/vertices count)
increases.

 Compare the algorithm performance to the algorithms
already tested in public large problems [1] such as [7-
9] .

 Compare the algorithm’s performance to the
performance of algorithms solves biconnected graphs
[10], [7, 8].

 Test the algorithm behavior on fixed biconnected
graph’s size when the occupying ratio increases.

 Evaluate the algorithm performance against the
algorithms solves random graphs.

 Track the algorithm behavior on fixed random graph’s
size when the occupying ratio increases.

 Compare the algorithm’s performance to the
performance of algorithms solves grid graphs [7, 8,
10].

 Test the algorithm behavior on fixed grid graph’s size
when the occupying ratio increases.

 Evaluate the algorithm performance on biconnected
graphs of fixed occupying ratio when the graph’s size
increases.

 Evaluate the algorithm performance on random graphs
of fixed occupying ratio when the graph’s size
increases.

 Evaluate the algorithm performance on grid graphs of
fixed occupying ratio when the graph’s size increases.

 Plug new simulation model, MRPP algorithm
implementation or performance measurement
calculation.

Future work may include designing secure database,
reporting set of experiments using different types of diagrams
and adding new evaluation algorithms.

REFERENCES

[1] N. R. Sturtevant, "Benchmarks for grid-based pathfinding,"
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 4, pp. 144-148, 2012.

[2] E. Guizzo, "Three Engineers, Hundreds of Robots, One Warehouse,"
IEEE Spectr., vol. 45, pp. 26-34, 2008.

[3] K. Dresner and P. Stone, "A multiagent approach to autonomous
intersection management," Journal of Artificial Intelligence Research,
pp. 591-656, 2008.

[4] J. Leitner, "Multi-robot cooperation in space: A survey," in Advanced
Technologies for Enhanced Quality of Life, 2009. AT-EQUAL'09.,
2009, pp. 144-151.

[5] J. M. Roberts, E. S. Duff, and P. I. Corke, "Reactive navigation and
opportunistic localization for autonomous underground mining
vehicles," Information Sciences, vol. 145, pp. 127-146, 2002.

[6] D. Nieuwenhuisen, A. Kamphuis, and M. H. Overmars, "High quality
navigation in computer games," Science of Computer Programming, vol.
67, pp. 91-104, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

155 | P a g e

www.ijacsa.thesai.org

[7] R. Luna and K. E. Bekris, "Push and swap: Fast cooperative path-
finding with completeness guarantees," in IJCAI, 2011, pp. 294-300.

[8] B. d. Wilde, A. W. ter Mors, and C. Witteveen, "Push and Rotate: a
Complete Multi-agent Pathfinding Algorithm," Journal of Artificial
Intelligence Research, pp. 443-492, 2014.

[9] K.-H. C. Wang and A. Botea, "Mapp: a scalable multi-agent path
planning algorithm with tractability and completeness guarantees,"
Journal of Artificial Intelligence Research, pp. 55-90, 2011.

[10] P. Surynek, "A novel approach to path planning for multiple robots in
bi-connected graphs," in Robotics and Automation, 2009. ICRA'09.
IEEE International Conference on, 2009, pp. 3613-3619.

[11] E. T. S. Alotaibi and H. Al-Rawi, "Multi-Robot Path-Planning Problem
for a Heavy Traffic Control Application: A Survey International Journal

of Advanced Computer Science and Applications(IJACSA), ,"
International Journal of Advanced Computer Science and
Applications(IJACSA), vol. 7, p. 10, 1,7,2016 2016.

[12] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal
motion planning," The International Journal of Robotics Research, vol.
30, pp. 846-894, 2011.

[13] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications: IEEE,
1984.

[14] P. Koupý, "Visualization of problems of motion on a graph," BSc,
Department of Theoretical Computer Science and Mathematical Logic,
Charles University in Prague, Faculty of Mathematics and Physics,
Prague, 2010.

