Mrs. Ambre's Math Notebook

Almost everything you need to know for $7^{\text {th }}$ grade math
Plus a little about $6^{\text {th }}$ grade math
And a little about $8^{\text {th }}$ grade math

Table of Contents by Outcome

Outcome	Topic	Page
Pre-Requisite Skills	Multiplication chart	5
	Place Value	6
	Number Lines	6
	Divisibility Rules	6
	Order of Operations	6
	Rounding	6
	Prime Factors 1 through 100	7
	Properties	8
	Graphs and Diagrams	9
	Key Words	10
	How Do I Do it? Chart	11
	Fractions to Decimals	12
	Improper Fractions	12
	Fraction, Decimals and Percents	12
	Benchmark Percents	13
	Exponents	14
	Least Common Multiple	18
	Greatest Common Factors	18
	Improper Fractions	18
	Equivalent Fractions	18
	Prime Factor Tree	18
	Reciprocals	18
Other Skills	Scientific Notation	14
	Pythagorean Theorem	16
	Square Root	16
	Cube Root	61
	Rate of Change	25
	Slope	25
	Transformations	27
	Reflections	27
	Rotation	27
	Translation	27
Outcome A Integers	Adding Integers	15
	Subtracting Integers	15
	Multiplying Integers	16
	Dividing Integers	16

Outcome	Topic	Page
	Absolute Value	16
	Integers	16
Outcome B Decimals	Place Value	17
	Estimation	17
	Adding Decimals	17
	Subtracting Decimals	17
Outcome C Fractions	Fractions	18
	Fraction Ring	19
	Adding Fractions	20
	Subtracting Fractions	20
	Multiplying Fractions	20
	Dividing Fractions	20
	Percents, Fractions and Decimals	21
	Percent of Change	21
	Discount	21
	Percent	21
Outcome D Rates and Ratios	Unit Rates	22
	Rates	22
	Ratios	22
	Proportions	22
	Scale	22
	Scale Factor	22
	Constant of Proportionality	23
	Proportional Relationships	23
	Customary Conversions	24
Outcome E Equations	Graphing Function Tables	25
	Function Tables	25
	Equations	26
	Greater Than	26
	Less Than	26
	Inequalities	26
	One-Step Equations	26
	Two-Step Equations	26

Outcome	Topic	Page
Outcome F Geometry 1	Lines	27
	Angles	27
	Complimentary Angles	27
	Supplementary Angles	27
	Right Angles	27
	Acute Angles	27
	Obtuse Angles	27
	Vertical Angles	27
	3D Shapes	28
	Nets	28
	Polygons	29
Outcome G Geometry 2	Perimeter	3030
	Area	30
	Volume	30
	Surface Area	30
	Diameter	30
	Radius	30
	Circumference	30
	Pi	30
Outcome H Statistics	Mean	31
	Median	31
	Mode	31
	Outlier	31
	Range	31
	Scale	31
	Interval	31
Outcome I Probability	Combinations	32
	Permutations	33
	Tree Diagrams	33
	Probability	34
	Dependent Events	34
	Independent Events	34
	Theoretical Probability	34

N	N	N	\cdots	¢	8	N	¢	0	¢	을	N	I
E	$=$	N	ल	\％	40	\bigcirc	R	∞	0	을	玉	लै
ㅇ．	은	앙	¢	안	앙	8		¢	\％	\％	을	은
－	0	\propto	N	\cdots	4	¢	8	N	¢	앙	$\stackrel{\sim}{\circ}$	$\stackrel{\circ}{8}$
$\boldsymbol{\infty}$	∞	\bigcirc	＋	ल゙	ㅇ	$\underset{寸}{\infty}$	in	पु	N	8	\％	\bigcirc
N	N	\pm	－	$\underset{\sim}{\infty}$	$\stackrel{\sim}{m}$	\％	$\stackrel{\square}{+}$	in	0	앙	N	¢
\bullet	\bigcirc	N	$\underset{\sim}{\infty}$	＋	¢	\cdots	N	$\stackrel{\infty}{+}$	比	8	\bigcirc	N
19	\cdots	응	$\stackrel{\sim}{2}$	앙	${ }^{2}$	¢	¢	안	4	옹	18	8
＊	＋	∞	Y	\div	응	$\stackrel{ \pm}{\sim}$	¢	\mathcal{N}	๗ి	ㅇ	＋	$\stackrel{\infty}{+}$
\cdots	\cdots	\bigcirc	∞	$\underset{\sim}{\sim}$	4	$\stackrel{\infty}{\sim}$	－	N	N	O	\cdots	－
N	N	＋	\bullet	∞	응	$\stackrel{\sim}{\sim}$	\pm	\cdots	\propto	앙	N	N
－	－	N	\cdots	ष	in	\bigcirc	N	∞	0	응	$=$	\sim
\mathbf{x}	－	N	\boldsymbol{m}	＊	10	\bullet	N	ω	0	앙	E	N

Place Value and Number Lines

to order numbers:

Line up the decimals then compare the number in each place value (if a number has no decimal it is at the end) If the numbers are fractions, change them to decimals! (see fraction notes)

To Round:
Ex: Round 568.24 to the nearest tenth

- Find the place value you're supposed to round to and underline the digit.
568.24
- Copy all the numbers to the left of the underlined digit (those don't change) 568.
- Look to the right of the underlined digit. If it's 5 or
higher, add one to the underlined digit, if not, keep the underlined digit the same.
$4<5$ so it stays
the same 568.2
- Write zeroes for all the remaining digits to the right of the underlined digit.
- Your rounded number should have the same number of digits that you started with!

Divisibility Rules

A number is divisible by:
10 - if it ends in 0
5 - if it ends in 0 or 5
2 - if it ends in 0,2,4,6,8 (even numbers)
3 - if all the digits are added and their
total is a multiple of $3(3,6,9,12,15,18 \ldots)$
Prime Numbers are not divisible by anything (except 1 \& itself) Ex:2, 3, 5, 7, 11, 13, 17, 19...
Composite Numbers are composed of other numbers and have many Factors

Order of Operations Please Excuse My Dear Aunt Sally
P - Parenthesis ()
E-Exponents ${ }^{3}$
M/D - Multiply or Divide Left to Right
A/S - Subtract or Add Left to Right

Prime Factors: Numbers 1 through 100.

2:	2	$36:$	$2 \times 2 \times 3 \times 3$	$70:$	$2 \times 5 \times 7$
$3:$	3	$37:$	37	$71:$	71
$4:$	2×2	$38:$	2×19	$72:$	$2 \times 2 \times 2 \times 3 \times 3$
$5:$	5	$39:$	3×13	$73:$	73
6:	2×3	$40:$	$2 \times 2 \times 2 \times 5$	$74:$	2×37
$7:$	7	$41:$	41	$75:$	$3 \times 5 \times 5$
$8:$	$2 \times 2 \times 2$	$42:$	$2 \times 3 \times 7$	$76:$	$2 \times 2 \times 19$
$9:$	3×3	$43:$	43	$77:$	7×11
$10:$	2×5	$44:$	$2 \times 2 \times 11$	$78:$	$2 \times 3 \times 13$
$11:$	11	$45:$	$3 \times 3 \times 5$	$79:$	79
$12:$	$2 \times 2 \times 3$	$46:$	2×23	$80:$	$2 \times 2 \times 2 \times 2 \times 5$
$13:$	13	$47:$	47	$81:$	$3 \times 3 \times 3 \times 3$
$14:$	2×7	$48:$	$2 \times 2 \times 2 \times 2 \times 3$	$82:$	2×41
$15:$	3×5	$49:$	7×7	$83:$	83
$16:$	$2 \times 2 \times 2 \times 2$	$50:$	$2 \times 5 \times 5$	$84:$	$2 \times 2 \times 3 \times 7$
$17:$	17	$51:$	3×17	$85:$	5×17
$18:$	$2 \times 3 \times 3$	$52:$	$2 \times 2 \times 13$	$86:$	2×43
$19:$	19	$53:$	53	$87:$	3×29
$20:$	$2 \times 2 \times 5$	$54:$	$2 \times 3 \times 3 \times 3$	$88:$	$2 \times 2 \times 2 \times 11$
$21:$	3×7	$55:$	5×11	$89:$	89
$22:$	2×11	$56:$	$2 \times 2 \times 2 \times 7$	$90:$	$2 \times 3 \times 3 \times 5$
$23:$	23	$57:$	3×19	$91:$	7×13
$24:$	$2 \times 2 \times 2 \times 3$	$58:$	2×29	$92:$	$2 \times 2 \times 23$
$25:$	5×5	$59:$	59	$93:$	3×31
$26:$	2×13	$60:$	$2 \times 2 \times 3 \times 5$	$94:$	2×47
$27:$	$3 \times 3 \times 3$	$61:$	61	$9:$	5×19
$28:$	$2 \times 2 \times 7$	$62:$	2×31	$96:$	$2 \times 2 \times 2 \times 2 \times 2 \times 3$
$29:$	29	$63:$	$3 \times 3 \times 7$	$97:$	97
$30:$	$2 \times 3 \times 5$	$64:$	$2 \times 2 \times 2 \times 2 \times 2 \times 2$	$98:$	$2 \times 7 \times 7$
$31:$	31	$65:$	5×13	$99:$	$3 \times 3 \times 11$
$32:$	$2 \times 2 \times 2 \times 2 \times 2$	$66:$	$2 \times 3 \times 11$	$100:$	$2 \times 2 \times 5 \times 5$
$33:$	3×11	$67:$	67		
$34:$	2×17	$68:$	$2 \times 2 \times 17$		
$35:$	5×7	$69:$	3×23		

Properties d Identities

Commutative Property		
Words	Numbers	Algebra
You can add numbers in any order and multiply numbers in any order.	$3+8=8+3$ $5 \cdot 7=7 \cdot 5$	$a+b=b+a$
$a b=b a$		

The signs are all the same - the problem was just written with a different order

Associative Property		
Words	Numbers	Algebra
When you add or		
multiply, you can group	$(4+5)+1=4+(5+1)$	$(a+b)+c=a+(b+c)$
the numbers together	$(9 \cdot 2) \cdot 6=9 \cdot(2 \cdot 6)$	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
in any combination.		

The original signs are all multiply or all add. The parenthesis just moved

Distributive Property		
Numbers	$6 \cdot(9+14)=6 \cdot 9+6 \cdot 14$	$8 \cdot(5-2)=8 \cdot 5-8 \cdot 2$
Algebra	$a \cdot(b+c)=a b+a c$	$a \cdot(b-c)=a b-a c$

The problem is totally rewritten. A number is written more than once on the other side

Zero Property		
Words	Numbers	Algebra
The product of 0 and any number is 0 .	$4 \cdot 0=0$	$\mathrm{a} \cdot 0=0$
Multiply by zero		
Identity Property		
Words	Numbers	Algebra
The sum of 0 and any number is the number. The product of 1 and any number is the number.	$\begin{array}{r} 4+0=4 \\ 8 \cdot 1=8 \end{array}$	$\begin{aligned} a+0 & =a \\ a \cdot 1 & =a \end{aligned}$

Stem \& Leaf Plot

Adding zero or multiplying by 1^{}

Tables \& DIots

Frequency Table

- Tells the number of
times something occurs

Favorite Food	Tally	Frequency			
Taco	$\\|\mid\\|$	7			
Burger	$\\|\nmid\\| \\|$	9			

Number of Card Tower Levels
Stems ${ }^{\text {Leaves }}$
23455789
013335

15

24
01
Key: $1 \mid 5$ means 15
Arranges data by place value. The stems kpresent values of 10. The leaves are ones. Don't foraet

Line Dlot

Uses a number line \& X's or other symbols to show the frequencies of values.

Gramls

Bar Graph

To display countable data grouped in categories. Bars can't touch

Line Graph

To show change over time

Plot each dot then connect the dots

Double Line Graph

Use double lines or bars to compare similar data

All graphs must include:

*A title *A scale that starts at 0 (use the lightning bolt symbol to jump up)
*A label for the y axis (left side) what do those numbers stand for?
*A label for the x axis (bottom) \& labels for each point or bar

Die Chart

To compare parts to a whole

A complete circle is 100\%

Histogram

A bar graph that shows frequency of occurance of each interval. The bars touch each other and the y axis.

Venn Diagram

Used to compare two sets of data. A is one thing. B is another. C is what they have in common.

Word Problem Clues	Expression	Word Phrases
Put parts together - What is the sum? - How many in all? - How many / how much altogether? - What is the total? - If its repeated addition it would be better to multiply	$\begin{gathered} n+5 \\ \end{gathered}$	- Add 5 to a number - Sum of a number and 5 - 5 more than a number - The total of 5 and a number - A number increased by 5 - A number plus 5
How much more or less - How many more? Less? - Find the difference. - Compare two numbers: - How much bigger? - How much taller? - Heavier? Older?	$\mathrm{n}-11$ \square	- Subtract 11 from a number - Difference of a number and 11 - 11 less than a number - A number decreased by 11 - A number minus 11 - Take away 11 - a number less 11
Put equal parts together - How many in all? - What is 12% of 3 ? - This much per...how many/ how much altogether? - Find the product. - Each one is... total is? - He did it 3 times... total is?		- 3 multiplied by a number - Product of 3 and a number - a number times 3
Separate into equal parts - Find the quotient. - What would one unit be? - If shared? If divided? - How much Each? Per? - Find the average / mean (add numbers then divide by how many numbers were given)	$\frac{a}{7} \text { or } \mathrm{a} \div 7$	- 7 divided by a number - Quotient of a number and 7 - 7 divided into a number

	Add	Subtract	Multiply	Divide
Integers		$-3-2$ ADD the OPPOSITE $-3+(-2)=$	$\oplus x+=+$ $\Theta x-=+$ $+x-=$ $\Theta x \oplus=\Theta$	$\begin{aligned} & \oplus \div \oplus=\Theta \\ & \Theta \div \Theta=\Theta \\ & +\div \Theta=\Theta \\ & \Theta \div \oplus=\Theta \end{aligned}$
Fractions		Use the Butterfly Method OR Find Common Denominators	${ }_{515}^{\frac{7}{15}} \cdot \frac{\frac{3}{3}^{\prime}}{\frac{1}{1}}=x$	$\frac{1}{3} \div \frac{4}{5}$ flip the second fraction... and multiply! $\frac{1}{3} \times \frac{5}{4}$
Decimals				$\begin{gathered} \sqrt[.5]{6.85} \\ 5 . \longdiv { \uparrow _ { \text { don't need } } } \boldsymbol { 6 8 . 5 } \rightarrow 5 \longdiv { 6 8 . 5 } \end{gathered}$

How do I do it?

Changing Fractions to Decimals
Example: $\frac { 3 } { 4 } \rightarrow 3 \div 4 4 \longdiv { 3 ! 0 0 }$

Mixed Numbers to Improper Fractions

Improper Fractions to Mixed Numbers

Example2 Write 0.7 as a fraction

$$
0.7=\frac{7}{10}
$$

Fractions Decimals and Percents

Fraction		Decimal		Percent
3	Divide numerator by denominator		Multiply by 100	
4	Multiply by $\frac{10^{n}}{10^{n}}$ and reduce	0.75	$=$ Divide by 100	75%

Benchmark Percents

園

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

$1 / 20$.05
$1 / 10$.1 or .10
$1 / 8$.125
$1 / 5$.2 or .20
$1 / 4$.25
$1 / 3$	$.333 \ldots$
$1 / 2$.5 or .50

EXPONENTS \mathcal{E} SCIENTIFIC NOTATION

Scientific Notation:

The first part is a number that is greater than 1 and less than 10.

The second part is
a power of 10 .

Write 8,296,000 in scientific notation.
8,296,000
8,296,000 Move the decimal point 6 places left.
$8,296,000=8.296 \times 10^{6}$
Write 3.2×10^{7} in standard form.
3.2×10^{7}
The power of 10 is 7 .
3.2000000 Move the decimal point 7 places right.
Use zeros as placeholders.

Scientific notation using a calculator:

 Enter the given number. Press the $2^{\text {nd }}$ key then the DRG key. Use the arrows to move to SCI. Hit Enter twice. (To clear memory press the on and clear button at the same)$3.2 \times 10^{7}=32,000,000$
1.35×10^{-4}
$1.35 \times 10^{-4} \quad 10^{-4}=\frac{1}{10,000}$
$1.35 \times \frac{1}{10,000} \quad$ Divide by the reciprocal.
$1.35 \div 10,000$
Think: Move the decimal left 4 places.

Standard notation using a calculator: Enter the given number in scientific notation. 3.2 $\mathrm{x} 10 \wedge 7$ then hit Enter. The number will appear in standard notation.
0.000135

Positive Exponent - move to the Right Negative Exponent - move to the Left

The Ten Trick
To multiply any number by ten or multiple of 10: multiply the front digits then add on the total number of zeroes to the end
2×10 Think $2 \times 1=2$ then add 1 zero $=20$
30×10 Think $3 \times 1=3$ then add 2 zeroes $=30$
15×50 Think $15 \times 5=75$ then add 1 zero $=750$

Addime

ロローtcescros

Subtracting Integers it is no fuss．．． Just change the Minus Sign into a Plus．

Don＇t forget the next digit＇s sign Change that that too \＆you＇ll be fine．

It＇s now time to add， you＇re good to go．

Just flip over the page and go with the flow！

Integers (the set of positive \& negative numbers) Its best just to enter in your calculator \& check twice!

Multiplying / Dividing: If the signs are the same: Positive.

If the signs are different: Negative

Adding: Your answer will always be the sign of the "bigger" number (not looking at positive or negative - just the number)
$-10+5=-5 \quad-++$ find the difference between the two numbers
$10+-5=5++$ find the difference between the two numbers
$-10+-5=-15-+-$ add the two numbers $10+5=15+++$ add the two numbers
Subtracting: Add the opposite of the second number

$-10--5$ change to	$10--5$ change to	$-10-5$ change to
$-10+5=-5$	$10+5=15$	$-10+-5=-15$

10--5 change to $-10+-5=-15$

Squares \& Square Roots:

To find Squares enter the number then press the x^{2} key. To find Square Roots Press the Blue $2^{\text {nd }}$ key then the x^{2} key to get the $\sqrt{ }$ sign then enter the number you want to find the square root of.

Absolute Value: the distance from 0 on the number line $|-5|$ the absolute value of -5 is 5
$|6|$ the absolute value of 6 is 6
$|-5+3|$ find the value of what's inside then take its absolute value of $-5+3$ is 2

Place Value Chart

		Tens	Ones			Hundreths	Thousandths	
								Thousandths

There are three kinds of Estimation:

Front End, Rounding, and Compatible Numbers.
Front End Estimation: use only the whole number to estimate.
Rounding: Look at the tenths place to round. If it is a $0,1,2,3$, or 4 you should leave the number the same. If it is $5,6,7,8$, or 9 you should round up .

Compatible Numbers: Make the problems easier by finding close numbers that are easy to add, subtract, multiply or divide.

Adding and Subtracting Decimals

1. Line Up Your Decimals
2. Like The Buttons On A Shirt.
3. Even out the Place Values with Zeros
4. Bring the Decimal Straight Down
5. Don't forget when to carry (adding)
6. And when to borrow (subtracting)
$3.02+.4$
$12.03-4.8$
3.02
12.03
$+\quad .40$
3.42
7.23

FRACTIONS, LCM, © CE

WITH FRACTIONS WHATEVER YOU DO TO THE TOP - YOU MUST DO TO THE BOTTOM

| Numerator
 Denominator | How many pieces you have
 (the number you need to make a whole) |
| :--- | :---: | :---: |

ERActions To mecrumass
The fraction bar ALWAYS means divide
$\qquad \quad 3 / 8=0.375$
Using a calculator: enter fraction using
A^{b} / c key, press $2^{\text {nd }}$ key then PRB key \& Enter

TOEMTEAEAACTIOMS TMTOYOUECAICUEATOE Use the A^{b} / c key
Ex: $\frac{1}{4}$ is entered as $1 \mathrm{~A}^{b / c} 4$ $1 \frac{2}{3}$ is entered as $1 \mathrm{~A}^{b / c} \quad 2 \mathrm{~A}^{b / c} \quad 3$ To Reduce or Simplify just enter the fraction then the Enter key

$$
0.27=27 / 100
$$

Using a calculator: enter decimal, press $2^{\text {nd }}$ key then PRB key \& Enter
TOIMPROPERERACTIOX

LCM (xEASTCOMMOX MEXTIPEX) smallest big number

Write the factorization of each number in columns using exponents. Bring down the number with the biggest exponent from each column. Multiply to get the LCM.
have in common. Multiply

$$
\begin{aligned}
& 24=2 \cdot 2 \cdot 2 \cdot 3 \\
& 60=2 \cdot 2 \cdot(3 \cdot 5 \\
& 2 \cdot 2 \cdot 3=12
\end{aligned}
$$

the common numbers to get the GCF.

Use when Adding or Subtracting

Multiplying and Dividing Fractions

Multiplying Fractions

Dividing Fractions

$$
\frac{2}{5} \div \frac{2}{3}=\frac{2}{5} \times \frac{3}{2}=\frac{2 \times 3}{5 \times 2}=\frac{6}{10}=\frac{3}{5}
$$

take the reciprocal of the divisor
$\frac{4}{7} \div 2=\frac{4}{7} \times \frac{1}{2}=\frac{4 \times 1}{7 \times 2}=\frac{4}{14}=\frac{2}{7}$

45%
$=\frac{45}{100}$ or$\frac{9}{20} \quad$ Write the percent over 100, Use As Fractions $/$ b button to simplify
(If number on top is bigger - temporarily flip the numbers to simplify then flip them back)

At the Pet Expo, $\mathbf{3 5}$ out of every $\mathbf{5 0}$ dogs were Yellow Labs.
35 out of 50 $\frac{35}{50}$ Divide 35 by 50 $=.7$ right $.7=70 \%$

Percents as Decimals $55 \%=0.55$

Divide percent by 100 and remove percent symbol (or just move the decimal 2 places to the left)

Find the Percent

18 is what percent of 120 ?
$\frac{i s}{o f}=\frac{\%}{100} \rightarrow \frac{18}{120}=\frac{x}{100} \quad$ Replace $i s$ with 18
Replace of with 120.
Cross multiply to solve

Find the Part

18 is 15% of
120.

What number is $\mathbf{7 0 \%}$ of $\mathbf{3 0 0}$?
$\frac{i s}{o f}=\frac{\%}{100} \rightarrow \frac{x}{300}=\frac{70}{100} \quad 210$ is 70% of 300.

Sale Price So-Fro Fabrics is having a sale. All of their fabric is 25% off. Find the sale price of fabric originally priced \$10 a yard.

Find the amount of the discount.
Find 25% of $\$ 10$. of means multipy
$0.25 \cdot 10 \quad$ Change the percent to a decimal and multiply $=2.5$
Subtract the amount of the discount from the original price. $\quad \$ 10-\$ 2.50=\$ 7.50$
The discounted price is $\$ 7.50$ a yard

Percent of Change

The Math Club had 20 members. Now it has 30 members. Find the percent of increase.

Step 1 Subtract to find the amount of change.

$$
30-20=10
$$

Step 2 Write a ratio that compares the amount of change to the original number of members. Write the ratio as a percent.
percent of change $=\frac{\text { amount of change }}{\text { original amount }}$
$=\frac{10}{20} \quad$ The amount of change is 10
The original amount is 20 .
$=0.5$ or 50% Divide then write as a
Percent

The percent of increase is 50%.

Ratios: Compare two numbers

Ex: In basketball practice, I made 17 of the 25 shots I attempted.

17 to 25 17:25 17/25

The number stated first in the text is the number that goes first in the

Rates: Compares two
numbers that have different labels (units)

Ex: Denise ran 5 miles in 40 minutes.

Cross Multiply

Using proportions to solve problems

A volleyball court is a rectangle
thate is similari in shape to an
Olympic-sized pool. Find the
width of the pool

Court
Short side $\quad \frac{9 \mathrm{~m}}{\text { Sool }}=\frac{\mathrm{x}}{50 \mathrm{~m}}$
$9 x 50=18 \mathrm{x}$
$450=18 x$

$\underline{450}=\mathrm{x} \quad \mathrm{x}=25 \quad$ The width of the pool is 25 m

18

Unit Rates: Always have a denominator of 1. The fraction bar may be read as per in a rate.

Ex: Denise ran 5 miles in 40 minutes. How many minutes did it take her to run 1 mile?

Rate: 40 mins Unit Rate: 8 mins 5 miles 1 mile

40 divided by $5=8 \quad$ Or 8 minutes per mile

To use proportions:

Joe ran the 500 yard dash for fun. How many feet does he run?

What you want
What you know to find out
$\left.4 \frac{1 \text { yard }}{3 \text { feet }}=\frac{500 \text { yards }}{\mathrm{X} \text { feet }} \right\rvert\,$

What do you wans to couvert? Find the Fact from the table.	Information from given in the problem. This side contains the X.

Cross multiply to solve:
1 yard (x) $=3$ feet (500 yards)
$\mathrm{X}=1500$ feet

Scale	Map measurement between points A and B: 4.5 in . Map scale: 1 in . $=50 \mathrm{mi}$
A model boat is 4 inches long. The scale factor is $\frac{1}{24}$. How long is the actual boat?	$\underline{\text { map }}=\underline{\text { Scale (fact) }} \text { Info from problem }$
Fact Info from problem	actual 50 mi x
$\text { model }=1=4$	$1 \mathrm{x}=50 \times 4.5$
	$=225$
$\begin{aligned} 1 \mathrm{x} & =24 \times 4 \\ x & =96 \text { The actual boat is } 96 \text { in long. } \end{aligned}$	The actual distance between points A and B is 225 mi .

Scale Factox

	Race Car	Model
Length (in.)	132	11
Height (in)	66	5.5

You can use the lengths or heights to find the scale factor.
$\frac{\text { model length }}{\text { race car length }}=\frac{11}{132}=\frac{1}{12}$
$\frac{\text { model height }}{\text { race car height }}=\frac{5.5}{66}=\frac{1}{12}$

Write a ratio then simplify. The scale factor is $1 / 12$.

Proportional Relationship

Jessica is going to the movies with her friends. How much will she have to pay to bring X number of friends if tickets are $\$ 6$ each.

Number of Movie Tickets (x)	Price (y)
1	$\$ 8$
2	$\$ 16$
4	$\$ 32$
10	$\$ 80$

Number of Tickets

The Constant of Proportionality is $\$ 8 . \quad y=8 x$

Non-Proportional Relationship

In a science experiment Logan had to roll a marble and chart the distance the marble traveled
over 10 minutes.

Time in Minutes (x)	Distance in Feet(y)
1	3
2	8
4	15
10	21

How Far Did the Marble Travel?

There is no Constant of Proportionality

Customary Conversions

Coordinate Dlane, Graphing, Slome \& Date of Change

Finding Rate of Change
Pick 2 points on the groph that land perfectly on an intersection (nothing where you have to guess the \#)

Formula $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Enter the two points into the formula subtract then simplify leaving your answer as a fraction.

Do not divide or turn into a mixed number!

Creating a line given slope
3: $(-1,-2)$
$3=\frac{3}{1}$
Write the slope
as a fraction.
slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{1}$
From point ($-1,-2$), move 3 units up and 1 unit right. Mark the point where you end up, and draw a line through the two points.

The graph is a line, so the The graph is not a line, so the rate of change is constant rate of change is variable.

Intermpeting Graphs

The heat was turned on in the moming,
The temperature increased until it reached a comfortable level. The temperature stayed constant throughout the workday. Finally, the heat was turned off and the temperature dropped.

To solve an EQUATION you need to get the variable (letter) alone on one side of the equal sign.

$x+5=-3$	right now x is being increased by 5 so we do the opposite to both sides of the equal sign to get it alone -5
$x+5=-3$	+5 and -5 cancel each other out so all that's left on that side is x
$\frac{-5}{-5}$	$-3-5=-8$ so that is what is on the right side of the equation
$x=-8$	substitute your answer for x to check if you are correct!
$-8+5=-3$	

$x-3=7$ +3 $x=10$ (x is being decreosed by 3 so the opposite is to add 3) $5 \times \frac{x}{5}=15 \times 5$ (x is being divided by 5 so the opposite is to multiply by 5) $x=75$ $2 x=10$ (x is being multiplied by 2 so the opposite is to divide by 2) $x=5$

If an equation has 2 steps - cancel the
addition (+) or

or (\div)

$$
x=3
$$

Watch your signs! $\mathbf{I}+$ is very easy to make mistakes when working with positive and negative numbers. Use your calculator and double check!

Remember to reverse the inequality sign when multiplying or dividing by a negative

$$
\begin{aligned}
& 2 x<14 \div \text { by positive } \\
& 2 \quad 2 \\
& x<7
\end{aligned}
$$

Inequalities

Sign	Meaning	Dot on graph
$>$	Greater than	\bigcirc
\geq	Greater than or equal to	\bigcirc
$<$	Less than	\bigcirc
\leq	Less than or equal to	\bigcirc
$=$	equal	\bigcirc

LINES © ANELES \& TRANSEDRMATIDNS

Point	Line	Segment	Ray	Plane	Parallel	Perpendicular
$\bullet A$	\longrightarrow	\bullet	\longrightarrow			
An exact location	Straight path that extends in both directions forever A line is 180°	A part of a line that has a beginning \& end point	A part of a line that extends from a beginning point to forever	A flat surface that can be named by 3 points that don't all extends forever	2 lines that do not ever intersect	2 lines that intersect at a right angle

Right Angle	Acute Angle	Obtuse Angle	Complementary Angles	Supplementary Angles	Vertical Angles
An angle that					
measures 90°					

$\mathrm{m} \angle 1 \cong \mathrm{~m} \angle 2 \cong \mathrm{~m} \angle 7 \cong \mathrm{~m} \angle 8$
$\mathrm{~m} \angle 3 \cong \mathrm{~m} \angle 4 \cong \mathrm{~m} \angle 5 \cong \mathrm{~m} \angle 6$
\cong means congruent or equal
$\mathrm{m} \angle 1 \& \mathrm{~m} \angle 2$ are vertical angles
alternate interior angles are $\mathrm{m} \angle 4 \& \mathrm{~m} \angle 5$
Transformations alternate exterior angles are $\mathrm{m} \mathrm{m} \angle 3$ \& $\mathrm{m} \angle 6$

Reflection	Rotation	Translation
A mirror image or FLIP	A TURN or rotation around a given point. Can rotate 90° or 180° clockwise (to the right) or counter clockwise (to the left)	A SLIDE can be to the side or down or both

To tessalate a figure on a cooridinate grid you need to figure if you are going over a horizontal (x axis) or vertical (y axis) line, then the opposite x or y coordinate changes.
Ex 1: To reflect over the y axis; point $(3,2)$ becomes $(-3,2)$ the x coordinate changed to the opposite.
Ex 2: To slide 2 points up and one point to the left : point (3.2) becomes (2,4) as $3-1$ (to the left on a

3 DSHAPESANDNETS

	Picture	Net
Cylinder	θ	\bigcirc
Sphere	S	
Cone	θ	\bigcirc
Square / Rectangular Prism	\square	$\square \square$
Triangular Prism	Δ	\forall
Square Pyramid	A	θ
Triangular Pyramid	Δ	θ

Polygons

Polygon	Triangle	Quadrilateral	Pentagon	Hexagon	Octagon	n-gon
 Angles	3	4	5	6	8	any (n)
Regular: all sides \& angles the same						Can find the measure of the angle by dividing the fof degrees in the shape (below) by the \# of angles
Irregular all sides \& angles different	$\sqrt{7}$		\square	\sum	5	Can find the measure of missing angle by adding given angles and subtracting from \#of degrees in the shape (found below)
\# of degrees	180°	${ }^{360^{\circ}}$	540°	720°	1080°	$\mathrm{n}-2 \times 180^{\circ}$

Isosceles	Right	Scalene	Obtuse	Equilateral
2 sides \& 2 angles the same size (can be an acute triangle if each angle measures less than 90°	Contains a 90° angle (also can be scalene if all sides are different lengths)	All 3 sides and angles are different	Has at least 1 obtuse angle (an obtuse angle is larger than 90°)	All 3 sides \& angles are the same (always an acute triangle)

Triangle Sum Theorem: the measures of all 3 angles in a triangle add up to 180°

Area: the amount of squares inside (used on flat shapes 2D)

ex: How much fence is needed?
The formulas all ask for \mathbf{r} (radius)
remember to find \mathbf{r} if given diameter (d)
diameter $\div \mathbf{2}=$ radius

$$
\pi=3.14
$$

It is only used with circles!

Volume: the amount INSIDE
ex: How much water will it hold?
(Used with 3D shapes)

Surface Area: covers the shape
ex: How much wrapping paper is needed? (Used with 3D shapes)

$$
\begin{align*}
& \mathrm{S}=\text { Front } \mathrm{L} \times \mathrm{W}= \\
& \text { Side } W \times H= \\
& \text { Top } \mathrm{H} \times \mathrm{L}=+\quad+ \\
& \mathbf{x} \quad \mathbf{2} \\
& S=\mathbf{2 \pi r} \mathbf{r}^{2}+\mathbf{2 \pi r h}
\end{align*}
$$

Face : flat surface
Edge: where 2 flat surface meet
Vetex: where 3 or more edges meet (a 3D corner)

Analyzing Data

Outlier

The number that is much higher or lower than the rest of the data
The ourlier of this data is 34

To find Scale \& Interval
Find the range of the data. This sample is 24 so I can use a scale of 0 25 and use an interval of 5. My scale would be $0,5,10,15,20,25$. If I had a data set that ranged from 150 to 578 . The range would be 428. So I could use an interval of 100. My scale would be 0 , lightning bolt, 100 , 200, 300, 400, 500, 600.

Range

The difference between the highest number and the lowest number in the data. It is used to determine the scale \& interval to create a graph. Ex: 34-10=24 The range of this data is 24

COMBINATIONS

GEOMETRY:

Five points are loceted on a circle. How many line
segments can be drawn with these points at endpoints?

Find the number of permutations of 5 points
 taken 2
at a time.
$P(5,2)=5.4$ or 20
Since order is not important, divide the number of permutations by the number of ways 2 things can be arranged.
$\frac{20}{2!}=\frac{20}{2 \cdot 1}$ or 10
There are 10 segments that can be drawn.

Combination Notation

Find $C(7,3)$.

$$
\begin{aligned}
C(7,3) & =\frac{p(7,3)}{3!} & & \text { Definition of } C(7,3) \\
& =\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} \text { or } 35 & & p(7,3)=7 \cdot 6 \cdot 5 \text { and } 3!=3 \cdot 2 \cdot 1
\end{aligned}
$$

Permutations

Permutation

A pizza place offers 12 different toppings. Jack wants to buy a three-topping pizza. How many pizzas can he buy if order is important?

number of possible toppings $\underbrace{\text { available, }}$	\times	number of possible toppings available after the first topping is chogen,	\times	number of possible toppings available after the second topping is chosen,	$=$	total number of possible pizzas with 3 toppings
12	\times	11	\times	10	=	1,320

There are 1,320 different pizzas Jack can order.

Permutation Notation

Find $P(7,3)$.
$P(7,3)=7 \cdot 6 \cdot 5$ or $210 \quad 7$ things taken 3 at a time.

Tree Diagram

Classic Pizza bakes their pizzas in red or white sauce on a thin or thick crust. They offer pepperoni, sausage, or olives as their toppings. Draw a tree diagram to determine the number of different pizzas they offer with one topping.

There are 12 different pizzas.
Method 2:
3 toppings $\times 2$ sauces $\times 2$ crusts
$3 \times 2 \times 2=12$

Probability

A box contains 3 blue marbles, 6 red marbles, 4 black marbles, and 7 white marbles. A marble is picked at random. What is the probability the marble is blue?

There are $3+6+4+7$ or 20 marbles in the box.

$$
\begin{aligned}
P(\text { blue }) & =\frac{\text { blue marbles }}{\text { total number of marbles }} & & \text { Definition of probability } \\
& =\frac{3}{20} & & \text { There are } 3 \text { blue marbles out of } 20 \text { marbles. }
\end{aligned}
$$

The probability the marble is blue is $\frac{3}{20}$. The probability can also be written as 0.15 or 15%.

Probability of independent Events

The two spinners are spun. What is the probability that both spinners will show an odd number?

$P($ first spinner is odd $)=\frac{1}{2}$
$P($ second spinner is odd $)=\frac{4}{7}$
$P($ both spinners are odd $)=\frac{1}{2} \cdot \frac{4}{7}$ or $\frac{2}{7}$

Probability of Dependent Events

There are 3 red, 6 blue, and 11 green marbles in a bag. Once a marble is selected, it is not replaced. Find the probability that 2 red marbles are chosen.

Since the first marble is not replaced, the first event affects the second event. These are dependent events.
$P($ first marble is red $)=\frac{3}{20} \quad$ Number of red marbles divided by the total number of marbles.
P (second marble is red) $=\frac{2}{19} \quad$ Number of red marbles after one red marble is removed divided by the number of marbles after one red marble is removed.
$P($ two red marbles $)=\frac{3}{2 \sigma} \cdot \frac{\dot{z}^{2}}{19}$ or $\frac{3}{190}$

Theoretical Probability

What is the theoretical probability of getting heads on a coin and a 4 on a dice?
The theoretical probability is $\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{12}$.

Index

Topic	Page
3D Shapes	28
Absolute Value	16
Acute Angles	27
Adding Decimals	17
Adding Fractions	20
Adding Integers	15
Angles	27
Area	30
Associative Property	8
Bar Graph	9
Benchmark Percents	13
Capacity	24
Centimeter	24
Chord	29
Circle Graph	9
Circumference	30
Combinations	32
Commutative Property	8
Compatible Numbers	17
Complimentary Angles	27
Composite Number	6
Congruent	27
Constant of Proportionality	23
Coordinate Plane	25
Cross Multiply	22
Cube Root	16
Customary Conversions	24
Dependent Events	34
Diameter	29,30
Difference	10
Discount	21
Distributive Property	8
Dividing Fractions	20
Dividing Integers	16
Divisibility Rules	6
Equations	26
Equilateral Triangle	29
Equivalent Fractions	18
Estimation	17
Exponents	14

Topic	Page
Expression	10
Feet	24
Fraction Ring	19
Fraction, Decimals and Percents	12
Fractions	18
Fractions to Decimals	12
Frequency Table	9
Front End Estimation	17
Function Tables	25
Graphing Function Tables	25
Graphs and Diagrams	9
Greater Than	26
Greatest Common Factors	18
Hexagon	29
Histogram	9
How Do I Do it? Chart	11
Identity Property	8
Improper Fractions	12, 18
Inches	24
Independent Events	34
Inequalities	26
Integers	16
Interval	31
Isosceles Triangle	29
Key Words	10
Least Common Multiple	18
Length	24
Less Than	26
Line Graph	9
Line Plot	9
Lines	27
Mass	24
Mean	31
Median	31
Meters	24
Metric Units	24
Miles	24
Millimeter	24
Mode	31
Multiplication Chart	5

Index

Topic	Page
Multiplying Fractions	20
Multiplying Integers	16
Nets	28
Number Lines	6
Obtuse Angles	27
Obtuse Triangle	29
Octagon	29
One-Step Equations	26
Order of Operations	6
Ordered Pair	25
Ounces	24
Outlier	31
Parallel	27
Pentagon	29
Percent	21
Percent of Change	21
Percents, Fractions and Decimals	21
Perimeter	30
Permutations	33
Perpendicular	27
Pi	30
Pie Chart	9
Place Value	6,17
Plane	27
Point	27
Polygons	29
Pounds	24
Prime Factor Tree	18
Prime Factors 1 through 100	7
Prime Number	6
Probability	34
Product	10
Properties	8
Proportional Relationships	23
Proportions	22
Pythagorean Theorem	
Quadrilateral	29
Quotient	10
Radius	29,30
Range	31

Topic	Page
Rate of Change	25
Rates	22
Ratios	22
Ray	27
Reciprocals	18
Rectangle	29
Reflections	27
Right Angles	27
Right Triangle	29
Rotation	27
Rounding	6,17
Scale (Probability)	31
Scale	22
Scale Factor	22
Scalene Triangle	29
Scientific Notation	14
Segment	27
Slope	25
Square Root	16, 29
Stem and Leaf	9
Subtracting Decimals	17
Subtracting Fractions	20
Subtracting Integers	15
Sum	10
Supplementary Angles	27
Surface Area	30
Theoretical Probability	34
Ton	24
Transformations	27
Translation	27
Tree Diagrams	33
Triangle Sum Theorem	29
Two-Step Equations	26
Unit Rates	22
Venn Diagram	9
Vertical Angles	27
Volume	30
Weight	24
Yard	24
Y-intercept	25
Zero Property	8

