MS Algebra - F-BF-2
 Geometric Sequences
 Recursive \& Explicit Formulas

Mr. Deyo

Recursive Rule $a_{1}=$ start

$$
a_{n}=\left(a_{n-1}\right)(r)
$$

Explicit Rule

$$
a_{n}=\left(a_{1}\right)(r)^{n-1}
$$

Title: F-BF-2 Geometric Sequences - Recursive \& Explicit Formulas

Learning Target

By the end of the period, I will write geometric sequences both recursively and with an explicit formula.

I will demonstrate this by completing FourSquare Notes and by solving problems in a pair/group activity.

Home Work 1-2-3: 1) Class 4-Square Notes Put In Binder?

2) Section

TxtBk. Problems.
Solved and Put in Binder?
3) Section

Notes Copied on blank sheet of paper in Binder?

Table of Contents
Description

Storm Check (Think, Write, Discuss, Report) Questions on which to ponder and answer:

1. How are the two images similar?
2. How are they different?
3. How can these two images be related to math?

IMAGE 1

IMAGE 2

Vocabulary

1) Geometric Sequence
2) Common Ratio (or Factor)
3) Geometric Recursive Formula
4) Geometric Explicit Formula

Sketch	Friendly Definition		
DAY 2 1. Review word	DAY 1		
	1. Review word 1. Use Visuals		
\bullet Physical Representation 2. Introduce the word			
2. Draw a sketch \quad * Friendly Definition			
Word List ${ }^{\text {3 }}$ 3. Use Cognates			
1. 4. Write friendly definition			
3. 5. Physical Representation			
Wordwork 4.4 Sentence			
DAY 3 and/or DAY 4 DAY 5			
1. Review the word \quad 1. Review the word			
\bullet Friendly Definition \quad Friendly definition			
\bullet Physical Representation \quad Physical Representation			
2. Show how the word works 3. Write a sentence			
- Synonyms/antonym $\quad \checkmark$ at least 2 rich words (1 action)			
- Word Problems $\quad \checkmark$ correct spelling			
\bullet Related words/phrases $\quad \checkmark$ correct punctuation			
- Example/non-example	\checkmark correct subject/predicate agreement \checkmark clear and clean writing		

Notes:

 Recursion is the process of choosing a starting term and repeatedly applying the same process to each term to arrive at the next term.Recursion requires that you know the value of the term immediately before the term you are trying to find.

A recursive formula always has two parts:

1. the starting value for a_{1}.
2. the recursion equation for a_{n} as a function of a_{n-1} (the term before it.)

Geometic Recursion

$$
\begin{aligned}
& a_{1}=\text { start } \\
& a_{n}=a_{n-1}(r) \\
& a_{n}=\text { current term } \\
& a_{n-1}=\text { previous term } \\
& r=\text { common ratio or factor } \\
& n=\text { term number }
\end{aligned}
$$

A-B Problem A notes:

Recursive Formula

 for Geometric Sequence$$
\begin{aligned}
& a_{1}=\text { start } \\
& a_{n}=a_{n-1}(r)
\end{aligned}
$$

$$
\begin{gathered}
a 1=\square \\
\frac{a_{n}=a_{n-1}(\square)}{1,-6,36,-216, \ldots}
\end{gathered}
$$

297, 99, 33, 11, ...

$$
a_{n}=\text { current term }
$$

$$
a_{n-1}=\text { previous term }
$$

$$
r=\text { common ratio or factor }
$$

$$
\mathrm{n}=\text { term number }
$$

a1 =

$$
a_{n}=a_{n-1}(\square)
$$

A-B Problem B SOLVE!!:

$$
3,-6,12,-24, \ldots
$$

Recursive Formula

 for Geometric Sequence$$
\begin{aligned}
& a_{1}=\text { start } \\
& a_{n}=a_{n-1}(r)
\end{aligned}
$$

$a_{n}=$ current term
$a_{n-1}=$ previous term
$r=$ common ratio or factor
$\mathrm{n}=$ term number

$$
\begin{aligned}
& a 1=\square \\
& a_{n}=a_{n-1}(\square) \\
& 5,15,45,135, \ldots
\end{aligned}
$$

Storm Check (Think, Write, Discuss, Report)

What are the two parts of a recursive formula?
The two parts of a recursive formula are:
a) \qquad
b)

Complete the sentence:
Recursion requires that you know the of the term
before the term you are trying to find.

Notes: To find the value of ANY term of an geometric sequence, you need:

Explicit Formula for an Geometric Sequence

$a_{n}=a_{1}(r)^{n-1}$

$a_{1}=$ first term
$a_{n}=$ current term
$r=$ common ratio (or factor)
$\mathrm{n}=$ term number

A-B Problem A notes:

297, 99, 33, 11, ...

Explicit Formula

for Geometric Sequence

$$
a_{n}=a_{1}(r)^{n-1}
$$

$a_{n}=$ current term
$a_{1}=$ first term
$r=$ common ratio
$\mathrm{n}=$ term number

$$
\begin{aligned}
& 1,-6,36,-216, \ldots \\
& a_{n}=a_{1}(r)^{n-1} \\
& a_{n}=
\end{aligned}
$$

A-B Problem B SOLVE!!:

Explicit Formula

for Geometric Sequence

$$
a_{n}=a_{1}(r)^{n-1}
$$

$$
a_{n}=\text { current term }
$$

$a_{1}=$ first term
$r=$ common ratio $\mathrm{n}=$ term number

$$
\begin{aligned}
& 3,-6,12,-24, \ldots \\
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=
\end{aligned}
$$

$$
\begin{aligned}
& 5,15,45,135, \ldots \\
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=
\end{aligned}
$$

Storm Check (Think, Write, Discuss, Report)

 What is the geometric explicit formula?The geometric explicit formula is:

From the above formula, what does each term represent?
a_{1} :
r:
n:

Title: F-BF-2 Geometric Sequences - Recursive \& Explicit Formulas

Learning Target

By the end of the period, I will write geometric sequences both recursively and with an explicit formula.

I will demonstrate this by completing FourSquare Notes and by solving problems in a pair/group activity.

