MSE Retaining Wall Design Considerations

by Marcus Galvan, P.E. TxDOT Bridge Division Geotechnical Branch

Wall Selection

CONCRETE BLOCK

TEMPORARY EARTH

Gabions

Drilled Shaft

Hybrid Walls – MSE/Soil Nail

Soil Nail

RETAINING WALL SELECTION

CUT SITUATIONS

MSE CONCRETE BLOCK SPREAD FOOTING TEMPORARY EARTH GABION

FILL SITUATIONS

DRILLED SHAFT TIEDBACK SOIL NAIL MSE WITH SHORING SPREAD FOOTING WITH SHORING

DRILLED SHAFT MSE WITH SHORING SPREAD FOOTING WITH SHORING HYBRID – SOIL NAIL/MSE

CUT/FILL

SITUATIONS

Wall Usage by TxDOT (August 2010 through September 2011)

Retaining Wall By Type

■ MSE ■ Conc. Block □ CIP □ SN ■ RN ■ DS ■ TB □ other

Wall Usage by TxDOT (August 2010 through September 2011)

Wall Type	Area (ft ²)	%
MSE	3,196,417	72
Concrete block (no r/f)	47,791	1
Cantilever drilled shaft	72,286	2
Soil Nailed	146,793	3
Rock Nailed	197,216	5
Tied-back	161,827	4
Spread footing	505,019	12
Other	22,389	1

Responsibility

The Project Engineer (Designer of Record) must ensure that the retaining wall system (design) selected for a given location is appropriate.

MSEW Construction Project Development

- External Stability Check by TXDOT or Consultant
 - Sliding
 - Limiting Eccentricity
 - Bearing Capacity
 - Global Stability
 - Settlement
- Internal Stability Check by Vendor
 - Tensile Resistance
 - Pullout Resistance
 - Face Element
 - Face Element Connection
- MSEW reinforcement and wall type is NOT specified at project bidding stage

MSEW Construction Project Development

- External Stability Check by TXDOT or Consultant
 - $Sliding FS \geq 1.5$
 - Limiting Eccentricity e \leq B/6
 - Bearing Capacity $-FS \ge 2.0$
 - Global Stability FS ≥ 1.3
 - Settlement

Assumed Soil Parameters (External Analysis)

	Material	Short- term		Long-term	
		c (psf)	φ (°)	c (psf)	φ (°)
Reinforced fill	Type A,B,D	0	34	0	34
	Туре С	0	30	0	30
Retained backfill	controlled fill, PI<30	750	0	0	30 or PI- correlation
Foundation soil (Fill)	controlled fill, PI<30	750	0	0	30 or PI- correlation

Principal Modes of Failure - External

(a) Sliding

(b) Overturning (eccentricity)

- (c) Bearing capacity
- (d) Deep seated stability (Rotational)

Figure 21. Potential external failure mechanisms for a MSE wall.

Principal Modes of Failure - External

(c) Bearing capacity

K UK W SUK

(d) Deep seated stability (Rotational)

Figure 21. Potential external failure mechanisms for a MSE wall.

MSE WALL STANDARD

SHEE

External Stability - Sliding

DESIGN PARAMETERS:

Design of retaining walls shall be based on the following design parameters unless stated elsewhere in the plans: Random Backfill, Foundation Soil unit weight = 125 pcf

Select Backfill Cement Stabilized Select Backfill 0 = 30° c = 0 psf unit weight = See Table (4) 0 = 34° c = 0 psf unit weight = 125 pcf 0 = 45° c = 0 psf

Stress in steel and concrete shall be in accordance with current AASHTO Standard and Interim Specifications.

The minimum length of earth reinforcements shall be 8'-0" or 70% of the wall design height, whichever is greater. Wall height and wall design height may differ depending on project geometry and loading conditions.

(4)		SELECT BACKFILL UNIT WEIGHT					
	Unit Weight		Inernal Stability	y External Stability			
A, B & D	105 PCF	Pul lout	Sliding, Overturning, Eccentricity				
	& U	125 PCF	Rupture	Bearing			

$FS - Sliding = \frac{V_1(Tan (phi))}{F_1 + F_2}$

105/125 = 0.84 or a 16% reduction in sliding resistance

FORCE DIAGRAM FOR FACTOR OF SAFETY CALCULATIONS

WEIGHT OF RETAINED EARTH MASS \sim VI

EARTH PRESSURE FROM RANDOM BACKFILL \sim Fi

Fi

EARTH PRESSURE FROM TRAFFIC SURCHARGE \sim F2

CALCULATIONS

٧L	= Υ _S Β Η	$\gamma_{\rm S}$ = UNIT WEIGHT OF SELECT	E BACKFILI
		B = MESH LENGTH	
		H = WALL HEIGHT	
Fı	= ¹ / ₂ γ _R H ² Kα	Υ _R = UNIT WEIGHT OF RANDOM	BACKFILL
		Ka = COEFFICIENT OF ACTIVE PRESSURE FOR RANDOM E	E EARTH BACKFILL
F2	= Υr h H Ka	<pre>h = DEPTH OF TRAFFIC SURC (USUAL 2')</pre>	HARGE

Sliding Analysis

Sliding Analysis

Sliding Analysis

We find that the sliding analysis is very sensitive to the unit weight in both the resisting and driving zones and to the coefficient of friction utilized at the base of the wall.

Principal Modes of Failure - External

(b) Overturning (eccentricity)

Soil Characteristics

- Stability of every wall must be evaluated
- Short-term and Long-term conditions (make sure that the soil strengths used in analysis are valid for the given soil profile).

Soil Characteristics

If the site investigation and geotechnical analysis results in design parameters that are different from those shown on the RW(MSE) standard, minimum factors of safety for the principle external modes of failure and a ground improvement strategy is not employed that would improve strength values to meet or exceed design parameters shown on the standard, the design strengths must be communicated to the wall supplier. This can be accomplished by plan note or a modified standard reflecting lower strengths as applicable.

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH OF FINE GRAINED SOILS Short Term Analysis

- TEXAS CONE PENETROMETER
- UNDRAINED TRIAXIAL TESTING
- IN-SITU VANE SHEAR TESTING
- DIRECT SHEAR TESTING

Texas Cone Penetrometer - TCP

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH OF FINE GRAINED SOILS

TEXAS CONE PENETROMETER

 Revised Correlation for blow counts less than 15 blows/12", CTR Research Project 0-5824

Su = 300 + 60 (blow count)

TRIAXIAL TESTING

ADVANTAGES

- Long history of use in engineering practice
- Soil sample is retrieved
- Principle stresses are known
- Stresses can be varied to simulate the burial conditions in the field

DISADVANTAGES

- Test and Equipment are expensive
- Test is complicated
- Need a fair amount of soil for testing
- Results can vary due to:
 - End restraint conditions
 - Sample disturbance

IN-SITU VANE SHEAR TESTING

ADVANTAGES

- Rapid, simple, and inexpensive test
- Long history of use in engineering practice
- Reproducible results in homogeneous fine grained soils
- Minimal soil disturbance
- Yields the peak and residual undrained shear strength of fine grained soils

DISADVANTAGES

- No sample is recovered
- Limited to soft to medium stiff fine grained soils
- Results can be affected by roots, shells, gravel, sand seams, and lenses

SHORT TERM GLOBAL STABILITY ANAYLYS BASED ON APPROPRIATE SHEAR STRENGTH

DETERMINATION OF THE DRAINED SHEAR STRENGTH OF FINE GRAINED SOILS Long Term Analysis

• Consolidated Undrained TRIAXIAL Test with Pore Pressure measurements.

• P.I. Correlation

CU TRIAXIAL TESTING

ADVANTAGES

- Long history of use in engineering practice
- Soil sample is retrieved
- Principle stresses are known
- Stresses can be varied to simulate the burial conditions in the field

DISADVANTAGES

- Test and Equipment are expensive
- Test is complicated
- Testing Takes Time.
- Need a fair amount of soil for testing
- Results can vary due to:
 - End restraint conditions
 - Sample disturbance

CU Triaxial Test Results

P.I. Strength Correlation

<u>ADVANTAGES</u>

- Quick
- History of use in engineering practice
- Various studies have contributed to the correlation charts.

DISADVANTAGES

- Correlation, does not take into account secondary structure of materials.
- Indirect measure of soil shear strength.
- Uncertainty in correlation.
- Cohesive component is unknown.

P.I. Strength Correlation

Long Term GLOBAL STABILITY ANAYLYS BASED ON APPROPRIATE SHEAR STRENGTH

Principal Modes of Failure - External

(b) Overturning (eccentricity)

Figure 21. Potential external failure mechanisms for a MSE wall.

OTHER CONSIDERATIONS

POOR PREPARATION OF RETAINING WALL FOUNDATION SOILS

MSE Wall W/Fill and Ground Improvement

Foundation Settlement

Ground Water Table

Wall Drainage

Special Design Considerations

- Ground Improvement
 - Remove and Replace
 - Stone Columns
 - Rammed Aggregate Piers

Pile Supported Embankment

Stone Columns/Geopiers

Remove and Replace/Wick Drains

Remove and Replace – Reinforced Pad

CONCLUSIONS

- TxDOT has designed and constructed numerous MSE retaining walls.
- In spite of the increased usage, TxDOT has had relatively few retaining wall failures.
- The design and planning phase of retaining walls is critical and must address the actual site conditions, including soil and loading, that the wall will be subjected to.
- If values in the analysis of the wall (i.e. friction angle for both the retained and foundation soils) are less than that shown on the RW(MSE) standard and do not result in a ground improvement that would positively impact these values, the designer of record should include the soil strength information in the plan set for use by the wall supplier.

QUESTIONS?

Ground Conditions

- Soil Shear Strength

 Short Term, C and phi
 Long Term, C' and phi'

 Ground Water Table
- Necessary Fill
- Necessary Cut

MSE Principal Modes of Failure

LOSS OF MSE BACKFILL

LOSS OF MSE BACKFILL

and the state

Obstructions

Obstructions

Obstructions

Omitted Reinforcement

P.I. Strength Correlation

Design Considerations vs Special Design Considerations

TEW WALL Dissimilar Earth Reinforcement

TEW WALL

