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Abstract: Lake water body extraction from remote sensing images is a key technique for
spatial geographic analysis. It plays an important role in the prevention of natural disasters,
resource utilization, and water quality monitoring. Inspired by the recent years of research in
computer vision on fully convolutional neural networks (FCN), an end-to-end trainable model
named the multi-scale lake water extraction network (MSLWENet) is proposed. We use ResNet-101
with depthwise separable convolution as an encoder to obtain the high-level feature information of
the input image and design a multi-scale densely connected module to expand the receptive field
of feature points by different dilation rates without increasing the computation. In the decoder,
the residual convolution is used to abstract the features and fuse the features at different levels,
which can obtain the final lake water body extraction map. Through visual interpretation of the
experimental results and the calculation of the evaluation indicators, we can see that our model
extracts the water bodies of small lakes well and solves the problem of large intra-class variance
and small inter-class variance in the lakes’ water bodies. The overall accuracy of our model
is up to 98.53% based on the evaluation indicators. Experimental results demonstrate that the
MSLWENet, which benefits from the convolutional neural network, is an excellent lake water body
extraction network.

Keywords: deep learning; convolutional neural network; semantic segmentation; Tibetan plateau;
lake water body extraction; residual learning module; multi-scale convolution

1. Introduction

Lake water body extraction is a fundamental and important field of remote sensing image analysis.
There are approximately 304 million natural lakes on the surface of the Earth, which are composed by
millions of small water bodies, covering about 4.6 million kilometers of water [1]. With the crisis of
global warming, lakes are very sensitive to global temperature changes and play an important role
in the carbon cycle [2]. On the other hand, lakes also have the function of developing irrigation [3],
providing a source of drinking water on which human life depends [4], and transportation [5].
Remote sensing images of lakes contain a great deal of information that can be used in other areas,
such as disaster monitoring, the development of agriculture, livestock farming, and geographic
planning. Therefore, it is important to study the automatic lake water body extraction from remote
sensing images.

Since remote sensing image acquisition information is less affected by natural conditions,
large area images can be acquired in a short time and at a low cost. Therefore, a large number
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of remote sensing images have been used for sea-land segmentation [6,7], water extraction [8–19],
and other applications. In the recent years of research, numerous water extraction methods have been
proposed, such as the threshold method [8,9,16–18], machine learning method [10,11,19], and deep
learning method [12–14].

Remote sensing images use different bands and contain different information. The threshold
method is widely used in the field of water extraction, which involves with the number of bands used,
mainly single band [16] and multi-band [8,17]. The difference between the water bodies and non-water
objects in the NIR band is the largest, and a single NIR band as the water index can be used to obtain
satisfactory results for water bodies’ extraction [16]. The use of multi-band water index thresholding
to extract water can make use of spectral information from different bands as much as possible,
but can also result in redundancy. Since mountain shadows and cloud shadows have similar spectral
characteristics as water bodies, a single, fixed threshold may lead to over- or under-segmentation of the
water bodies [18]. Therefore, achieving dynamic adjustment of the threshold and producing optimal
segmentation results are complex and time-consuming. Feyisa et al. [8] introduced an automatic
water extraction index to improve classification accuracy in the presence of various environmental
noises, including shadows and areas within dark surfaces that cannot be correctly classified by
other classification methods. This method provides a stable threshold while improving accuracy.
Zhang et al. [9] achieved automatic dynamic adjustment of thresholds, which reduced the dependence
on data without degradation of the accuracy and could be applied in massive remote sensing images.

Methods based on spectral information provide a good result on low resolution multispectral
images, but when applied to medium or high resolution images, they become less robust as more
spatial detail becomes visible. With the development of machine learning algorithms, which use
artificially designed features, traditional machine learning algorithms have shown strong robustness in
water bodies’ extraction [10,11,19]. The water extraction methods can be classified as pixel-based [10]
or object-based [19]. Zhang et al. [10] proposed a pixel area index to assist normalized differential
water index detection of major water bodies, while using K-means clustering of water image elements
near the boundary section to solve the complete boundary image element extraction problem, but there
was still the problem of the optimal selection of the thresholds. Chen et al. [19] used object-oriented
classification techniques combined with the spectral, textural, and geometric features of remote sensing
images to extract information from the water bodies. Both the pixel-oriented and object-oriented
methods of water extraction are lacking in the study of water body types. There are many methods
for water extraction, but the research to determine its type based on water extraction is lacking [11].
Huang et al. [11] presented a two-level machine learning framework for identifying water types at
the target level using geometric and textural features under pixel-based water extraction conditions,
filling a gap in the research. Although machine learning based algorithms have achieved good results
in remote sensing image analysis, they are limited by the artificial design of features to compute and
stitch together, which are fed into support vector machines [20], random forests [21], etc, and are less
adaptive to different datasets.

In the last decade, deep learning techniques have made significant breakthroughs in the
field of image processing, such as semantic segmentation [22–25], object detection [26,27], and
image classification [28–30]. Deep convolutional neural networks (DCNN) can automatically learn
features at different levels from a large number of training images, which avoids the drawbacks
of manually designed features. Krizhevsky et al. [28] formally proposed AlexNet, which won
the 2012 ImageNet classification task and had a 10% lower error rate than the second place one,
establishing the dominance of deep learning in image recognition. However, there are the problems
of high computational cost and the lack of depth in the network. Simonyan et al. [29] employed
small convolutional kernels that not only increased the nonlinear expression of the model, but also
reduced the amount of computation. A shallow convolutional layer captures pixel boundary and
location information, while a deep convolutional layer captures pixel semantic information for pixel
classification. As the depth of the convolutional layer increases, rich semantic features are acquired,
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but this can also lead to gradient loss or gradient explosion problems. He et al. [30] represented the
layer as a learning residual function and solved the degradation problem caused by increasing the
depth of the network, so performance can be improved by increasing the depth of the network.

Semantic segmentation is a typical pixel-level classification task, assigning a label based on
the maximum probability that each pixel belongs to a region. Long et al. [22] replaced the last
fully connected layer of convolutional neural network with a convolutional layer that could accept an
arbitrary size input, which was the first end-to-end learnable neural network for semantic segmentation.
However, some of the details are lost due to pooling operations. Badrinarayanan et al. [23] proposed
a semantic segmentation model with an encoder and decoder structure that recovers the resolution
of the feature map by max-pooling indices during up-sampling of the decoder, but it did not make
good use of shallow, detailed location information. In the same year, Unet [24] employed high level
semantic information and low level detail information in the up-sampling process to obtain more
accurate pixel-level classifications through connection operations. DeepLab V3+ [25] is one of the
best-performing semantic segmentation models for image segmentation, which expands the receptive
field of feature points by dilated convolution and combines feature maps at different scales using
the atrous spatial pyramid pooling module (ASPP). These end-to-end networks can be applied to the
semantic segmentation of remote sensing images. However, due to the large amount of noise in remote
sensing images, their performance will not be very satisfactory.

Multi-scale features, noise interference, and boundary blurring are the main factors affecting
accuracy in lake water body extraction research. Miao et al. [12] proposed the RRFDeconvnet model
by combining the Deconvnet, residual unit, and skip connection strategies, while proposing a new
loss function that applies area information to convolutional neural networks to solve the boundary
blurring problem. However, it is not strong enough to deal with noise interference and the problem
of multi-scale features due to a single dilated rate. Guo et al. [14] proposed a multi-scale water
extraction convolutional neural network, where the feature map encoded by the encoder is input into
four parallel dilated convolutions with different dilated rates for learning, which solves the noise
interference problem. However, due to the loss of important information caused by the large dilated
rates, small lake water bodies cannot be extracted well. Furthermore, using only bottom level features
leads to boundary blurring problems.

In this paper, the lake dataset is classified at the pixel level based on fully convolutional neural
networks. The proposed algorithm consists of three main parts: an encoder, a multi-scale densely
connected feature extractor, and a decoder. We try to improve the performance of the model by a
modified ResNet-101 as an encoder to extract deep semantic features. In our dataset, lakes have
multi-scale features due to the gradual improvement in resolution. They are very rich in textural
and spectral features, with large intra-class variance and small inter-class variance in remote sensing
images due to the presence of shadows and snow. We propose a multi-scale densely connected feature
extractor that preserves small lakes’ information to solve the multi-scale problem while also expanding
the receptive field to solve the problem of large intra-class variance and small inter-class variance.
In the decoder phase, we use residual convolution to combine the features between the different layers
to obtain accurate boundary segmentation results.

The main contributions of this paper are as follows:

1 In order to take full advantage of the features at different levels and prevent model
degradation problems, this article proposes the novel multi-scale lake water extraction network,
named MSLWENet.

2 Inspired by Xception [31] and MobileNet [32], in order to reduce the number of model parameters
to prevent overfitting, depthwise separable convolution is used to reduce the volume of the model
without reducing the overall accuracy.

3 In order to solve the problem of lakes with large intra-class variance, small inter-class variance,
and multiple scales, we design a multi-scale densely connected feature extractor with multiple
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atrous rates that not only fully extract the information of small lakes, but also in the further
expansion of the receptive field, to extract the integrity of the lake water bodies.

4 Compared with other end-to-end models, the algorithm for semantic segmentation proposed in
this paper achieves optimal performance on all five evaluation metrics.

This paper is organized as follows: Section 2 presents the structure of the lake water extraction
model and the data pre-processing. Section 3 describes the implementation details, dataset and
experimental results. Section 4 is a discussion of our method, and Section 5 presents our conclusions.

2. Materials and Methods

2.1. General Process of Model Training

The general process of semantic segmentation is divided into the training phase, validation phase,
and testing phase. In the training phase, the RGB images of each batch size and the ground truth (GT)
labels (all labels in the dataset are black for the background and red for the lakes) are input into a
classification network as training samples. In the forward propagation process, the predicted label
maps are obtained by performing the softmax function, then the predicted label maps are input into
the loss function and compared with the GT labels to calculate the loss value. Finally, the parameters
of the model are updated using the gradient descent method during the back propagation process [33].
When one or more epochs are completed in the training process, validating the model performance
under the current parameters enables you to determine whether the model has reached an optimal
state and prevent overfitting. In the testing phase, the images in the test set are inferred using the
model parameters that have achieved the best performance. The resulting prediction label maps
are compared with the GT labels to determine the final performance of the model through relevant
evaluation metrics.

2.2. Dilated Convolution

Dilated convolution is also known as atrous convolution, the simplest variation on normal
convolution, which is the expansion of the distance between the elements of each convolutional kernel.
In dilated convolution, there may be gaps (or holes) between each position of the filter compared to the
standard convolution. In other words, each position of the filter is weighted differently. The dilated
convolution was first proposed for the computation of wavelet transforms [34], and then gradually
applied to the field of semantic segmentation [25,35,36]. In the 1D case, for pixel x located at i,
the output of the dilated convolution y(i) is computed by a filter w with a convolutional kernel size
k as:

y(i) =
k

∑
i=0

x(i + r× k)w(k) (1)

The dilated rate (r ∈ N) represents the distance between the elements of each convolutional
kernel. Dilated convolutions with rates of 1, 2, and 4 are demonstrated in Figure 1. In the traditional
CNN, the image is convolved and pooled to reduce the size of the feature map and increase the
receptive field. However, some information is lost in the up-sampling process, so dilated convolution
is proposed. It has several advantages, such as: (1) increasing the receptive field of the network
without increasing the computational effort, which is useful for obtaining rich contextual information
in image segmentation tasks; (2) the resolution of the feature map is kept fixed in order to retain more
useful information in the input data. It is theoretically possible to apply dilated convolution at each
convolutional layer of the network to maintain the resolution. However, this will be prohibitively
expensive and diminish the benefits of translation invariance for down-sampling operations.

Dilated convolution with a rate of one (i.e., standard convolution) is used to convolve the
input image with a receptive field of 3× 3. Due to large intra-class variance and small inter-class
variance, it is difficult to determine whether the central pixels of a convolutional kernel are the
foreground or background. As a comparison, we use dilated convolution with rates of two and four to
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convolve the same size input data with feature point receptive fields of 7× 7 and 15× 15, respectively.
The combination of features extracted at different scales is important to distinguish water bodies from
noises. The size v of the receptive field can be expressed as:

v = ((k + 1)× (r− 1) + k)2 (2)

Figure 1. Dilated convolutions with rates of 1, 2, and 4, respectively. Dilated convolution supports the
expansion of the receptive field without increasing the computation.

2.3. Depthwise Separable Convolution

Convolutional neural networks have been widely used in the field of computer vision with great
success. In the pursuit of accuracy, the depth and complexity of the network is increasing, which may
lead to the following problems, such as: (1) lack of memory due to the limitations of hardware
devices; (2) slow response time. Depthwise separable convolution is a useful method for solving this
problem, simplifying the number of trainable parameters without reducing its accuracy. Sifre et al. [37]
proposed deep convolutional networks that allow independent learning of the orientation and spatial
information, thus guaranteeing rotation and translation invariance and providing global invariance at
arbitrary scales; subsequently used in networks such as Xception [31] and MobileNet [32].

The structure of the depthwise separable convolution is shown in Figure 2. A standard convolution
can be decomposed into a depthwise convolution and a pointwise convolution to extract features.
In depthwise convolution, the convolution kernel is connected to each input channel and generates
the same number of feature maps as the input channel. The pointwise convolution is a standard 1× 1
convolution used to fuse information from multiple channels to enhance the expressive capability
of the network. For a standard K × K convolution, the input and output channels are M and N,
respectively, so the number of parameters is M× K× K× N. After converting to depthwise separable
convolution, the number of parameters is M× K× K in depthwise convolution and 1× 1×M× N
in pointwise convolution, which greatly reduces the number of parameters in the network. Thus,
we apply depthwise separable convolution in our model to reduce the number of parameters.

Depthwise Convolution

Pointwise Convolution

M

Filters × M

1

1

M

Maps × M Maps × N

Maps × M

Filters × N

K

K

1

Figure 2. The structure of depthwise separable convolution.
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2.4. Data Pre-Processing

First, due to the limitations of hardware devices, large remote sensing images cannot be directly
imported into the classification network. In this paper, we cut the remote sensing images into
non-overlapping patches for model training. Second, we use a data-balancing strategy. If the
background of the image is too high, we will discard the image. On the contrary, we do not do
anything with it. Finally, as the depth of the network increases, the convergence of the network
becomes difficult and the training speed becomes very slow. In order to improve the accuracy of the
network and training efficiency, it is necessary to standardize the input images. The distribution of the
input image is standardized to a normal distribution with a mean of 0 and variance of 1. The formulas
are as follows:

I =
I − µ√

σ2
(3)

µ =
1

c× w× h

c

∑
i=1

w

∑
j=1

h

∑
k=1

Ii,j,k (4)

σ2 =
1

c× w× h

c

∑
i=1

w

∑
j=1

h

∑
k=1

(Ii,j,z − µ)2 (5)

where c, w, and h are the channel, width, and height of the input images, µ is the mean of the input
image, and σ2 is the variance of the input image. I and I are the input images and the result of its
normalization, respectively.

2.5. Model Structure

Over the past few years, deep learning methods, represented by semantic segmentation,
have become the state-of-the-art pixel level classification algorithms in the field of remote sensing
image processing. In the remote sensing images, due to the different sizes of lakes and the influence of
noise such as shadows and snow, the standard convolution has great limitations in its application and
cannot classify the central pixels correctly. As shown in Figure 3, the model proposed in the paper
uses the modified ResNet-101 as an encoder to extract deep semantic features and sends the output
feature maps in four ways to a multi-scale densely connected feature extractor module for extracting
features at different scales. Finally, by combining it with the shallow features of the encoder, we obtain
the predicted label maps of lake water bodies.

⊕ ⊕ ⊕ ⊕

c

c

c

c

c

c

c

c

c

c

⊕
 

Decoder

Multi-scale densely connected feature extractor

Encoder

Softmax

Residual Block

Down-sample

Up-sample

ReLU
different rate+BN
3×3Conv with

1×1Conv+BN
3×3Conv+BN
7×7Conv+BN

Figure 3. The structure of the multi-scale lake water extraction network. It consists of three main parts:
an encoder, a multi-scale densely connected feature extractor, and a decoder.
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2.5.1. Residual Learning Module

The results of the research show that the more the layers of the neural network, the better the
fit to the data is [30]. As the depth increases, the performance of the network does not improve,
most likely due to the disappearance of the gradient during the back propagation between layers.
The gradient is so small that it cannot update the layer parameters. This problem can be solved by a
residual learning module of ResNet. A typical residual learning module is shown in Figure 4 (left).
The residual learning module bypasses the inputs and outputs of the convolutional layer so that those
small gradients can be bypassed to compensate for the vanishing gradients. In the encoder stage,
as shown in Figure 4 (mid), due to the difference in size and number of channels between the input
and output feature maps, the traditional residual structure cannot be used directly. Therefore, it is
necessary to adjust the size of the input feature maps in the bypass using a 1× 1 convolution for
channel adjustment or down-sampling.

As the depth of the network gets deeper, the number of parameters in the model will increase,
making it easy to overfit our dataset. Inspired by Xception [31] and MobileNet [32], we replace the
3× 3 convolution in the residual learning module with a depthwise separable convolution to reduce
the number of parameters in the model. For the example in Figure 4 (right), the residual learning
module can be defined as:

y = σ(ϕ(σ(ϕ(σ(ϕ(x, w1)), w3)) + ϕ(x, w1))) (6)

where x and y are the input and output of the residual learning module, respectively, and wi (i ∈ N)
represents the parameter settings of the convolutional layer with a kernel size of i× i. ϕ(·) represents
batch normalization (BN) [38], and its role is to convert the input distribution into a standard
normal distribution with a mean of 0 and variance of 1 to accelerate the convergence of the network.
σ(·) represents the activation function. In this paper, we use the rectified linear unit (ReLU) [39]
as the activation function, which has become the mainstream function in the field of the semantic
segmentation of remote sensing images. Its formula is as follows:

σ(x) = max(0, x) (7)

Conv+BN

ReLu

Conv+BN

⊕

ReLu

𝑥

𝑦

Conv+BN

ReLu

Conv+BN

⊕

ReLu

𝑥

𝑦

Id
en

tity

1×1Conv

Downsample

1×1Conv+

BN

ReLu

DSConv+

BN

⊕
ReLu

𝑥

𝑦

1 × 1Conv

Downsample

ReLu

1×1Conv+

BN

(left) (mid) (right)

Figure 4. The structure of the residual learning module. (left) is a typical residual learning module,
(mid) is a residual learning module commonly used in the encoder stage, and (right) is the residual
learning module used in our model.
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2.5.2. Multi-Scale Densely Connected Feature Extractor

The difficulty of lake water body extraction lies in the existence of noise in remote sensing images,
which have similar features as water bodies, and the existence of differences in the size of lakes.
In order to improve the extraction accuracy of lake water bodies, the multi-scale high level semantic
information of lakes needs to be fully extracted and effectively encoded. DeepLab V3+ [25] proposes
atrous spatial pyramid pooling module (ASPP) to capture the contextual information of feature maps
at multiple scales by parallel sampling at different dilated rates. However, the extraction accuracy of
small water bodies and the ability of suppressing noise are still not high. This paper improves this
based on this idea and designs a multi-scale densely connected feature extractor.

The use of dilated convolution can lead to sparse convolutional kernels and a large amount
of computational information will be lost. To solve this problem, denser computation is needed by
increasing the expansion factor. First, the 1× 1 convolution is used for dimensionality adjustment
to reduce the number of parameters. Then, we use a gradual expansion factor to make the receptive
field larger and denser. Prior to each dilated convolution, the feature map is channeled to the previous
layer to obtain more detailed contextual information, in order to improve the accuracy of water bodies’
extraction in small lakes. The most significant aspect of the multi-scale densely connected feature
extraction module is to extract and fuse high level semantic information at different scales, which is
very effective for pixel level classification, thus solving the problem of small water bodies’ extraction
and noise interference.

3. Experiment

3.1. Implementation Details

In this paper, our experiment was based on Python3.6 and the open source deep learning
framework PyTorch [40]. The GPU was NVIDIA 2070 SUPER, having 8GB of RAM and using cuDNN
10.0 for acceleration. The CPU was an AMD Ryzen 5 3600, with a frequency of 3.6GHz. Our model
was not pre-trained initialized, and all initial weights of the convolutional layers were obtained from
Kaiming initialization [41]. We shuffled all the images before the start of each epoch to improve the
generalization of the model and set the batch sizes to 8. In this experiment, the cross-entropy loss [42]
was calculated by predicted label maps and GT labels. Its formula is as follows:

H(p, q) = −
n

∑
i=1

p(xi)log(q(xi)) (8)

where p(xi) and q(xi) are the true probability distribution and the predicted probability distribution,
respectively. To minimize the cross-entropy loss, the Adam [43] optimizer was used to update the
parameters of the model and set the weight decay to 0.001 to prevent overfitting. The initial learning
rate was set to 0.001 with the learning rate decline strategy, which can be represented as Formula (9).
lr0 represents the initial learning rate. epoch indicates the times to train the full sample of the training
set. The reason for using a learning rate decay strategy is that a larger learning rate at a later stage
of training will prevent the model from converging to a minimum value, thus not providing optimal
results. Our model achieved optimal performance after 70 epochs.

lr = lr0 × 0.8(epoch+1)/2 (9)

3.2. Dataset

In this paper, we create a new visible-spectrum Google Earth remote sensing images of lake water
bodies dataset captured on the Tibetan Plateau, which consists of RGB images. The images were
divided into non-overlapping patches, to obtain 6774 images sized 256 × 256 with a DPI of 96 and a
bit depth of 24. In this dataset, only lakes (excluding rivers, reservoirs, ponds, etc.) were positively
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annotated, all of which were labeled using labelme. We randomly selected 6164 images for training
and the remaining 610 images for testing. We did not set the validation set due to the limitations of
our dataset.

The lakes on the Tibetan Plateau can be typologically divided into salt and freshwater lakes.
The shores of salt lakes are accompanied by salt belts, which present a complex texture. Freshwater lakes
are white, light blue, dark blue, and black in spectral features. Black lakes have similar features to the
shadows of mountains and clouds, while white lakes have similar features to snow. In terms of state,
there are frozen, semi-frozen, and non-frozen lakes. The study area and its overview are shown in
Figure 5.

Figure 5. The study area of lake water bodies’ extraction.

Data augmentation is one of the techniques commonly used in deep learning, mainly used to
generate new samples to increase the training dataset when the training sample is small. In this paper,
we use the most common methods of flipping (up and down, left and right) and rotating (0◦, 90◦) for
all the training samples before each training epoch, and the results of data augmentation are shown
in Figure 6.

3.3. Results

To assess the performance of our proposed model, we used the five evaluation metrics, which are
overall accuracy (OA), recall, the mean intersection over union (MIoU), the true water rate (TWR) [10],
and the false water rate (FWR) [10]. OA is the ratio of the correctly classified pixel numbers to the total
pixel numbers in the test dataset. Recall is the ratio of the number of pixels correctly predicted to be a
lake to all the number of pixels for the lake. MIoU is the average of the ratio of the number of correctly
classified pixels to the number of ground reference pixels and the number of pixels detected in the
corresponding category. TWR is the ratio of the number of properly classified water pixels and the
number of labeled water pixels. FWR is the ratio of the number of misclassified water pixels and the
number of labeled water pixels. The formulas of these indicators are as follows:

OA =
TP + TN

TP + TN + FP + FN
× 100% (10)

Recall =
TP

TP + FN
× 100% (11)
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MIoU =
1

k + 1

k

∑
i=0

TP
FN + TP + FP

× 100% (12)

TWR =
TP

TP + FP
× 100% (13)

FWR =
FP

TP + FP
× 100% (14)

（a） (b) (c)

(d) (e) (f)

Figure 6. Examples of data augmentation. (a) is the original image; (b) is flipping the original image
left and right; and (c) is flipping the original image up and down. (d–f) is rotating the original image at
any angle of (0◦, 90◦).

3.3.1. Comparison of Overall Performance among Different CNNs

To analyze the performance of the classification algorithms proposed in this paper, Unet, MWEN,
PSPNet, and DeepLab V3+ were used to perform the comparisons. After obtaining the optimal model,
the test images were predicted. The metrics of these models are shown in Table 1. Our model improves
by 0.43% relative to DeepLab V3+, one of the best models for image segmentation. For the Unet model,
the depth is not sufficient to extract deep semantic features at the encoding stage, resulting in poor
accuracy. Although, the OA improvement is not much, there are significant improvements in small
lake water body extraction and noise interference suppression. We also applied depthwise separable
convolution in our model to get higher accuracy with fewer parameters. The efficiency of the training
model is influenced by many factors, and the depthwise separable convolution theoretically reduces
the computational effort. Due to its poor optimization by cuDNN, the training time is not significantly
reduced, as shown in Table 2 for a comparison of the number of model parameters and training time.
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Table 1. The metrics of the CNN models in the testing phase. MSLWENet, multi-scale lake water
extraction network; MIoU, mean intersection over union; TWR, true water rate; FWR, false water rate.

CNN Models MSLWENet DeepLab V3+ PSPNet MWEN Unet

Overall Accuracy 98.53% 98.10% 98.08% 97.75% 96.12%
Recall 97.67% 97.01% 96.29% 96.94% 96.06%
MIoU 96.09% 95.61% 95.55% 94.84% 91.36%
TWR 97.47% 97.01% 97.11% 96.94% 96.06%
FWR 2.52% 2.99% 2.89% 3.06% 4.30%

Table 2. Comparing CNN models in the number of parameters and training time.

CNN Models Number of Trainable Parameters Training Time per Epoch (s)

MSLWENet 2.90× 107 254.8
DeepLab V3+ 5.89× 107 255.0

PSPNet 6.76 ×107 375.8
MWEN 2.89× 107 161.6

Unet 3.10× 107 221.1

3.3.2. Performance Comparison for Small Lakes’ Identification

With the gradual improvement in the resolution of remote sensing satellites, an increasing amount
of detail in remote sensing images becomes visible. Small lakes are an important challenge for lake
water extraction. We used the strategy introduced in Section 2.5.2 to improve the extraction accuracy
of small lakes. The visualization results are shown in Figure 7, and the quantitative results are shown
in Table 3.

Table 3. The metrics of the CNN models on the images in Figure 7.

CNN Models MSLWENet DeepLab V3+ PSPNet MWEN Unet

Overall Accuracy 98.70% 98.57% 98.26% 98.30% 96.81%
Recall 95.89% 96.65% 96.18% 95.55% 89.11%
MIoU 96.00% 95.61% 94.65% 94.79% 90.75%
TWR 97.53% 96.06% 94.88% 95.76% 95.38%
FWR 2.47% 3.94% 5.12% 4.24% 4.62%

As we see, the input image contains a large number of small water bodies of the lakes that are
very close to each other, shadows, and tiny boundaries. These factors have a significant impact on the
performance of the model for small lake extractions. As shown in Figure 7, the network we propose in
this paper is basically able to extract small lakes from remote sensing images quite well, but it is still
lacking in the accuracy of the boundaries, while other networks give some incorrect segmentations for
the small lakes. In Figure 7g(1), it is possible that the features extracted by Unet are not sufficient and
thus cannot handle the complex regions well enough, resulting in a large number of misclassifications.
As shown in Table 3, MSLWENet improves by 0.13% on OA and 1.47% on TWR relative to DeepLab
V3+. It shows that our model is able to extract small water bodies well.
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Figure 7. Performance comparison of different models for small lake water extraction. (a(1)–a(5)) are
the raw images in the test set; (b(1)–b(5)) are the ground truths to which the raw images correspond;
(c(1)–c(5)), (d(1)–d(5)), (e(1)–e(5)), (f(1)–f(5)), and (g(1)–g(5)) are the extracted results of MSLWENet,
DeepLab V3+, PSPNet, MWEN, and Unet, respectively.

3.3.3. Performance Comparison of Small Interclass Variance Regions

In remote sensing images, shadows, snow, and other disturbances have similar spectral
characteristics to lakes, which have a significant impact on lake water body extraction. In order
to compare the robustness of these networks to noise interference, the visualization results are shown
in Figure 8 and the quantitative results are shown in Table 4.

In Figure 8 (Rows 1, 6–7), frozen lakes and snow are very similar in spectral features, and shadows
are also one of the major factors in the accuracy of lake water body extraction, which can easily lead to
misclassification. DeepLab V3+, PSPNet, MWEN, and Unet all more or less mistake snow for frozen
lakes. In Figure 8e(7), PSPNet is able to suppress the noise interference well, yet it does not fully extract
the detailed boundaries of the lake water bodies. An incompletely frozen lake appears in Figure 8
(Row 2), where DeepLab V3+ and MWEN produce better results relative to PSPNet and Unet, mainly
in the presence of less noise within the water bodies. In Figure 8g(5), Unet identifies the text on the
image as a lake. In Figure 8 (Row 3), the lake is black in the spectrum, while in Figure 8 (Row 4),
there are black shadows. Our proposed MSLWENet is able to get as accurate segmentation results as
possible while discriminating the shadows as interfering factors, while other models can only do one
of the two. For all input images, Unet produces the worst segmentation results. As shown in Table 4,
PSPNet performs better than DeepLab V3+ in the region of small inter-class variance, but MSLWENet
has a greater improvement over PSPNet.
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Table 4. The metrics of the CNN models on the images in Figure 8.

CNN Models MSLWENet DeepLab V3+ PSPNet MWEN Unet

Overall Accuracy 98.78% 95.87% 96.85% 95.30% 84.89%
Recall 96.54% 85.92% 89.66% 83.33% 53.50%
MIoU 95.85% 87.11% 89.86% 85.67% 66.86%
TWR 96.37% 90.90% 92.36% 90.90% 94.02%
FWR 3.63% 9.10% 7.64% 9.10% 5.98%
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Figure 8. Performance comparison of different models for lake water extraction from small interclass
variance regions. (a(1)–a(7)) are the raw images in the test set; (b(1)–b(7)) are the ground truths to
which the raw images correspond; (c(1)–c(7)), (d(1)–d(7)), (e(1)–e(7)), (f(1)–f(7)), and (g(1)–g(7)) are the
extracted results of MSLWENet, DeepLab V3+, PSPNet, MWEN, and Unet, respectively.

3.3.4. Performance Comparison of Large Intraclass Variance Regions

In the Google remote sensing images, due to the different shooting seasons, the lakes show a large
intra-class variance, even if they are all frozen lakes. They are very different in texture and spectral
features; therefore, it is an important challenge to correctly segment the lakes with different features.
The visualization results are shown in Figure 9, and the quantitative results are shown in Table 5.
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Figure 9. Performance comparison of different models for lake water extraction from large intraclass
variance regions. (a(1)–a(6)) are the raw images in the test set; (b(1)–b(6)) are the ground truths to
which the raw images correspond; (c(1)–c(6)), (d(1)–d(6)), (e(1)–e(6)), (f(1)–f(6)), and (g(1)–g(6)) are the
extracted results of MSLWENet, DeepLab V3+, PSPNet, MWEN, and Unet, respectively.

Table 5. The metrics of the CNN models on the images in Figure 9.

CNN Models MSLWENet DeepLab V3+ PSPNet MWEN Unet

Overall Accuracy 98.31% 97.07% 97.70% 96.22% 92.97%
Recall 97.13% 97.33% 97.03% 97.25% 89.52%
MIoU 96.48% 93.95% 95.24% 92.22% 86.22%
TWR 98.43% 94.87% 96.90% 92.62% 92.20%
FWR 3.63% 9.10% 7.64% 9.10% 5.98%

As shown in Figure 9 (Rows 1–3), all models basically do a good job at segmenting the lake water
bodies. However, there are still differences in some of the details marked by the yellow circles on
the images. For some lakes with complex textures in Figure 9 (Rows 4–6), DeepLab V3+, PSPNet,
and MWEN can segment the lake water bodies and land well, but there is much noise on the surface
of the lakes, while the performance of Unet is still not good enough. Our proposed model is able to
extract different types of lake water bodies completely, with robustness and generalization capabilities.
As in Section 3.3.3, PSPNet has better performance relative to DeepLab V3+; however, MSLWENet
improves by 1.24% on MIoU relative to PSPNet.

3.3.5. Performance Comparison of Different Encoders and Decoders

In this subsection, we focus on the impact of different encoders and decoders on the performance
during the presentation of our model. The performance comparisons are shown in Table 6. Firstly,



Remote Sens. 2020, 12, 4140 15 of 19

in order to reduce the parameters and training time of the model, we used VGG-16 as the backbone
network in the encoder part and the same decoder as our proposed model. Although it reduces
the trainable parameters and training time of the model, it only improves the performance by 1.25%
compared to Unet, which is not satisfactory. This may be due to the inability of VGG-16 to extract
rich semantic information for segmentation. Secondly, we used ResNet-101 as the backbone extraction
network, operated with layer-by-layer up-sampling in the decoder part and element-wise summing
with different feature layers in the encoder. Compared to DeepLab V3+, it improves performance
by 0.07%, but the training time is significantly longer. Finally, we used ResNet-101 with depthwise
separable convolution as the backbone network to extract features while reducing the parameters of
the model. In the decoder part, the label prediction map is obtained by using the channel connection
method and reusing features from different layers of the encoder. Compared to DeepLab V3+,
the overall accuracy is improved by 0.43% without increasing the training time, while reducing
the number of parameters. The visualization results are shown in Figure 10.

Table 6. Performance comparison of different encoders and decoders in Figure 10.

CNN Models Overall Accuracy Number of Trainable Parameters Training Time per Epoch (s)

MSLWENet 98.53% 2.90× 107 254.8
DeepLab V3+ 98.10% 5.89× 107 255.0
ResNet-Sum 98.17% 6.46× 107 327.5
VGG-Concat 97.37% 2.68× 107 146.4

Unet 96.12% 3.10× 107 221.1
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Figure 10. Performance comparison of different encoders and decoders. (a(1)–a(5)) are the raw images
in the test set; (b(1)–b(5)) are the ground truths to which the raw images correspond; (c(1)–c(5)),
(d(1)–d(5)), (e(1)–e(5)), (f(1)–f(5)), and (g(1)–g(5)) are the extracted results of MSLWENet, DeepLab
V3+, ResNet-Sum, VGG-Concat, and Unet, respectively.
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4. Discussion

With the improvement in the resolution of remote sensing images, the methods of water extraction
are changing, such as thresholding, machine learning, and deep learning. The Tibetan Plateau is the
highest, most numerous and largest lake region on Earth and one of the two most densely distributed
lake regions in China.

In this paper, our proposed method named MSLWENet achieves state-of-the-art performance
on the lake dataset than DeepLab V3+, PSPNet, MWEN, and Unet. In Section 3, the performance of
the model is evaluated by five evaluation metrics and visualization results. In particular, our method
achieves an overall accuracy of 98.53%, an improvement of 0.43% over DeepLab V3+. In small lake
water extraction, OA is not much improved due to the large portion of background in the image,
but TWR is improved by 1.47% compared to DeepLab V3+. This result shows that the proposed model
is capable of extracting small lakes. In the large intra-class variance and small inter-class variance
regions, PSPNet has better performance than DeepLab V3+. However, MSLWENet has improved
performance over other CNN models, which means it can suppress noise better. The results are mainly
from the multi-scale densely connected feature extraction module, which is a good solution to the
problem of information loss caused by a large dilated rate and a too small dilated rate to correctly
identify noise. We fully utilize spatial and channel dimensional features to better capture the multi-scale
relationship between pixels, resulting in the better feature extraction capability and segmentation
performance of our model. In Section 3.3.5, MSLWENet improves the OA by 1.16% compared to
VGG-Concat. The result shows that using VGG-16 as the backbone extraction network does not extract
enough semantic features for segmentation and may be an argument for the poor performance of
Unet. Furthermore, MSLWENet improves the OA by 0.36% compared to ResNet-Sum. The result
shows that the operation with the channel connection has a greater improvement in performance
than element-by-element addition, which may be related to its ability to retain more information
during up-sampling.

The segmentation performance of these convolutional neural networks may be related to their
own structure and dataset complexity. For relatively simple datasets, overly complex neural network
models are prone to overfitting. FCN and Unet will be able to achieve better performance. On the other
hand, the datasets in this paper have complex texture and spectral features, so more complex models
are required for feature extraction, such as DeepLab V3+, PSPNet, and other networks. However,
since our dataset is relatively small, we apply depthwise separable convolution in our model to
drastically reduce the number of trainable parameters to effectively suppress overfitting.

5. Conclusions

In this paper, a new MSLWENet model for remote sensing image semantic segmentation based on
convolutional neural networks is proposed. The adopted structure consists of an encoder, a multi-scale
dense connect module, and a decoder. For feature extraction, a modified ResNet-101 is used as the
feature extractor, where the residual structure is capable of extracting a large number of useful semantic
features without causing degradation of the model. Dilated convolution is necessary due to lakes’
scale features, but excessive dilated rates can lead to the loss of useful information and incomplete
segmentation of small lakes, so we use progressively larger dilated rates and connect channels at
different layers of dilated convolution to preserve as much information as possible. In the training
process of the model, we use data augmentation processing, which can avoid overfitting of the network
and improve the generalization of the network. Compared to existing models, the method achieves
the highest OA, recall, MIoU, and TWR and the lowest FWR, while the integrity of the segmented lake
is significantly better than other methods.

Although our method achieves good segmentation results on this dataset, there are still many
shortcomings, which will guide our future research directions. Due to the relatively small size of
our dataset, it is easy to overfit the model. On the one hand, we need to enrich our dataset, and on
the other hand, pre-training on ImageNet and fine-tuning on our dataset would be a better solution.
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Finally, due to the rich surface texture of lakes, segmentation is prone to noise, so some morphological
treatments, such as conditional random fields and morphological filtering, will be applied to optimize
the segmentation results.
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