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Index 134

1 Riemannian metrics

De�nition 1.1. Let M be a manifold. A Riemannian metric on M is a bilinear form д ∈ Γ(S2T ∗M)
onTM which is positive de�nite. A Riemannian manifold is a pair (M,д) consisting of a manifold

M and a Riemannian metric д on M .

Notation 1.2. If (M,д) is a Riemannian manifold, x ∈ M , and v,w ∈ TxM , then we set

(1.3) 〈v,w〉д B д(v,w) and |v |д B
√
д(v,v).

Notation 1.4. If x1, . . . , xn : M ⊃ U → R are local coordinates, for a,b ∈ {1, . . . ,n}, we set

∂a B
∂

∂xa
and дab B д(∂a, ∂b ).

De�nition 1.5. The musical isomorphisms ·[ : TM → T ∗M and ·] : T ∗M → TM are de�ned by

v[ B 〈v, ·〉 and

〈
α ], ·

〉
B α(·).

De�nition 1.6. Let (M,д) be Riemannian manifold. Let f ∈ C∞(M). The gradient of f is the

vector �eld ∇f de�ned by

〈∇f , ·〉 B df .

The Hessian of f is the bilinear form Hess f ∈ Γ(S2T ∗M) de�ned by

Hess f B
1

2

L∇f д.

2 The Riemannian distance
De�nition 2.1. The length of a curve γ : [t0, t1] → M is de�ned by

(2.2) `(γ ) B

ˆ t1

t0

| Ûγ (t)| dt .

Remark 2.3. The length functional ` is invariant under reparametrizations of γ .

De�nition 2.4. A curve γ : [t0, t1] → M is parametrized by arc-length or has unit speed if

(2.5) `(γ |[t0,t ]) = t − t0 or, equivalently, | Ûγ | = 1.
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De�nition 2.6. TheRiemannian distance associated with (M,д) is the functiond : M×M → [0,∞]
de�ned by

(2.7) d(x,y) B inf{`(γ ) : γ ∈ C∞([t0, t1],M) with γ (t0) = x and γ (t1) = y}.

Proposition 2.8. (M,d) is a metric space.

3 The Riemanian volume form

De�nition 3.1. Let (M,д) be an oriented Riemannian manifold. The Riemannian volume form is

the unique positive volume form

(3.2) volд satisfying |volд | = 1.

Proposition 3.3. In local coordinates x1, . . . , xn ,

volд =
√

detд dx1 ∧ · · · ∧ dxn .

De�nition 3.4. Let (M,д) be an oriented Riemannian manifold of dimension n. The Hodge star
operator is the linear map ? : Λ•T ∗M → Λ•−nT ∗M de�ned by

α ∧?β = 〈α, β〉volд .

De�nition 3.5. Let (M,д) be an Riemannian manifold. The divergence of v ∈ Vect(M) is the

function divv ∈ C∞(M) de�ned by

div(v)volд =Lvvolд .

(Here volд need only be locally de�ned.)

De�nition 3.6. Let (M,д) be Riemannian manifold. The Laplacian of f ∈ C∞(M) is the function

∆f ∈ C∞(M) de�ned by

∆f = − div∇f .

Proposition 3.7. For f ∈ C∞(M), in local coordinates x1, . . . , xn ,

Hess f =
n∑

a,b=1

(
∂a∂b f −

n∑
c=1

Γcab∂c f

)
dxa ⊗ dxb and

∆f = −
n∑

a,b=1

1√
detд

∂a

(√
detд · дab∂b f

)
.

Proposition 3.8. For f ∈ C∞(M),
∆f = − tr Hess f .
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4 The Levi-Civita connection

De�nition 4.1. Let M be a manifold. An a�ne connection is a connection on TM . An a�ne

connection ∇ is called torsion-free if for all v,w ∈ Vect(M),

∇vw − ∇wv = [v,w].

De�nition 4.2. Let (M,д) be Riemannian manifold. An a�ne connection ∇ is called metric if

∇д = 0;

that is: for all v,w ∈ Vect(M),

dд(v,w) = д(∇v,w) + д(v,∇w).

Theorem 4.3 (Fundamental Theorem of Riemannian Geometry). Let (M,д) be a Riemannian
manifold.

1. There exists a unique a�ne connection ∇LC which is torsion-free and metric.

2. The a�ne connection ∇LC satis�es Koszul’s formula:

2

〈
∇LC

u v,w
〉
=Lu 〈v,w〉 +Lv 〈w,u〉 −Lw 〈u,v〉

+ 〈[u,v],w〉 − 〈[u,w],v〉 − 〈[v,w],u〉.
(4.4)

3. Suppose x1, . . . , xn are local coordinates onM . The Christo�el symbols Γcab de�ned by

(4.5) ∇LC

∂a
∂b =

n∑
c=1

Γcab∂c .

satisfy

(4.6) Γcab =
1

2

дcd (∂aдbd − ∂dдab + ∂bдad ).

De�nition 4.7. We call ∇LC
the Levi-Civita connection associated with (M,д).

Remark 4.8. It is customary to drop the super-script LC.
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5 The Riemann curvature tensor

Theorem 5.1. Let (M,д) be a Riemannian manifold.

1. There exists a unique tensor �eld Rд ∈ Ω2(M, o(TM)) satisfying

(5.2) Rд(u,v)w = ∇u∇vw − ∇v∇uw − ∇[u ,v]w .

2. The tensor �eld Rд satis�es

(5.3)

〈
Rд(u,v)w, z

〉
=

〈
Rд(w, z)u,v

〉
.

3. The tensor �eld Rд satis�es the algebraic Bianchi identity:

(5.4) Rд(u,v)w + Rд(v,w)u + Rд(w,u)v = 0.

4. The tensor �eld Rд satis�es the di�erential Bianchi identity:

(5.5) d
∇Rд = 0.

De�nition 5.6. We call Rд the Riemann curvature tensor of (M,д).

Remark 5.7. LetV be a Euclidean space of dimension n. The space of algebraic curvature tensors
on V is

R(V ) B ker

(
S2Λ2V

∧
−→ Λ4V

)
⊂ Λ2V ⊗ Λ2V .

Since

dimR(V ) =
n4 − n2

12

,

at each point x ∈ M , the Riemann curvature tensor Rд has (n4 − n2)/12 components.

De�nition 5.8. The sectional curvature of (M,д) is the map secд : Λ2TM\{0} → R de�ned by

(5.9) secд(v ∧w) B

〈
Rд(v,w)w,v

〉
|v ∧w |2

.

Remark 5.10. The Riemann curvature tensor Rд can be recovered from the sectional curvature

secд algebraically.

Remark 5.11. The sectional curvature really is a map Gr2(TM) → R.

De�nition 5.12. The curvature operator is the self-adjoint map Rд ∈ Γ(Sym
2(Λ2TM)) de�ned by〈

Rд(u ∧v),w ∧ z
〉
B

〈
Rд(u,v)z,w

〉
.

7



6 Model spaces

Example 6.1 (Rn). Rn with the Riemannian metric

д0 B
n∑
a=1

dxa ⊗ dxa

has vanishing Riemann curvature tensor: R = 0.

Exercise 6.2 (Sn). Consider the n–dimensional unit sphere

Sn B
{
x ∈ Rn+1

: |x | = 1

}
with the Riemannian metric д1 induced by д0 on Rn+1

. Prove that:

1. If u,v,w ∈ Vect(Sn) ⊂ C∞(Sn,Rn+1), then at every point x ∈ Sn

∇vw = ∂vw + 〈v,w〉x .

2. The Riemannian curvature tensor of (Sn,д1) is given by

R(u,v)w = 〈v,w〉u − 〈u,w〉v ; that is: sec = 1.

Exercise 6.3 (Hn
). Consider Rn+1

with the Lorentzian metric

дL = −dx0 ⊗ dx0 +

n∑
a=1

dxa ⊗ dxa .

Set

Hn B
{
x ∈ Rn+1

: дL(x, x) = −1 and x0 > 0

}
.

Prove that:

1. The symmetric bilinear form д−1 obtained by restricting дL to Hn
is positive de�nite; that is:

a Riemannian metric.

2. The Riemannian curvature tensor of (Hn,д−1) is given by

R(u,v)w = −〈v,w〉u + 〈u,w〉v ; that is: sec = −1.

De�nition 6.4. Let n ∈ {2, 3, . . .} and κ ∈ R. The n–dimensional model space of constant sectional

curvature κ is

(Snκ ,дκ ) B


(
Sn,κ−1/2д1

)
if κ > 0,

(Rn,д0) if κ = 0,(
Hn, (−κ)−1/2д1

)
if κ < 0.
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Theorem 6.5 (Riemann [Rie68], Killing [Kil91], and Hopf [Hop25]). If (M,д) is a simply-connected
Riemannian manifold of constant sectional curvature κ ∈ R, then it is isometric to an open subset of
(Snκ ,дκ ).

Proof sketch. The proof relies on Proposition 11.10, which can then be combined with a unique

continuation argument. �

De�nition 6.6. Let n ∈ {2, 3, . . .} and κ ∈ R. The function V n
κ : [0,∞) → [0,∞) is de�ned by

(6.7) V n
κ (r ) B vol(Br (x))

for Br (x) ⊂ Snκ .

Remark 6.8. The functions V n
κ satisfy the scaling relation

V n
κ (r ) = V

n
r 2κ (1).

De�nition 6.9. For κ ∈ R, set

sinκ (r ) B


sin(
√
κr ) if κ > 0,

r if κ = 0,

sinh(
√
−κr ) if κ < 0.

Exercise 6.10. Let n ∈ {2, 3, . . .} and κ ∈ R. Denote by

vol
n
κ

the Riemannian volume form of (Snκ ,дκ ). Prove that, in geodesic polar coordinates,

дκ = dr ⊗ dr + sinκ (r )
2дSn−1 and(6.11)

vol
n
κ = sinκ (r )

n−1
dr ∧ volSn−1 .(6.12)

Remark 6.13. It is exercise to compute that

(6.14) vol(Sn−1) =
2πn/2

Γ(n/2)
; and thus: Vn,0(r ) =

πn/2

Γ(n/2 + 1)
rn .

V n
κ for κ , 0 can be expressed in terms of trigonometric/hyperbolic functions and Gauß’ hyperge-

ometric function 2F1; but these formulae are unwieldy.

If κ > 0, then V n
κ is constant equal to κn/2vol(Sn) on [π/

√
κ,∞).

For κ < 0 and r � 1,

sinh(
√
−κr )n−1 ∼

e(n−1)
√
−κr

2
n−1

.

Therefore,

(6.15) V n
κ (r ) ∼

πn/2

(n − 1)2n−2Γ(n/2)
√
−κ

e(n−1)
√
−κr .
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7 Geodesics

De�nition 7.1. Let I ⊂ R be an interval. A curve γ : I → M is called a geodesic if

(7.2) ∇t Ûγ = 0.

Here ∇t is the pull-back of the Levi-Civita connection to γ ∗TM .

Remark 7.3. Suppose x1, . . . , xn are local coordinates on M . Setting γ i B x i ◦ γ , (7.2) becomes

(7.4) Üγ k + Γki j Ûγ
i Ûγ j = 0.

Theorem 7.5 (Existence and Uniqueness of Geodesics).

1. Given t? ∈ R, x ∈ M , andv ∈ TxM , there exists an open interval I containing t? and a geodesic
γ : I → M satisfying γ (t?) = x and Ûγ (t?) = v .

2. Letγ : I → M and δ : J → M be two geodesics. If there is and t? ∈ I∩ J such thatγ (t?) = δ (t?)
and Ûγ (t?) = Ûδ (t?), then γ and δ agree on I ∩ J .

3. Let γ : I → M be a geodesic with I = (t0, t1) maximal. If t0 , −∞, then for every compact
subset K ⊂ M , there exists a tK

0
∈ (t0, t1) such that if t ∈ (t0, tK0 ), then γ (t) < K . An analogous

statement holds if t1 , +∞.

In particular, ifM is compact, then I = R.

De�nition 7.6. We say that (M,д) is geodesically complete (at x ∈ M) if every geodesic (passing

through x ) can be extended to R.

8 The exponential map

De�nition 8.1. Given x ∈ M and v ∈ TxM , denote by γ xv : Ixv → M the maximal geodesic with

γ xv (0) = x and Ûγ xv (0) = v . Set

(8.2) Ox B
{
v ∈ TxM : 1 ∈ Ixv

}
and O B

⋃
x ∈M

Ox ⊂ TM

The exponential map at x is the map expx : Ox → M de�ned by

(8.3) expx (v) B γv (1).

The exponential map exp : O→ M is de�ned by exp|Ox B expx .
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Proposition 8.4.

1. O is open and exp is smooth.

2. The derivative at 0 ∈ Ox of the exponential map expx ,

(8.5) d0 expx : T0TxM → TxM,

is invertible; in fact, it is the inverse of the canonical isomorphism TxM � T0TxM .

In particular, expx induces a di�eomorphism between a neighborhood of the origin inTxM and
a neighborhood of x inM .

3. The derivative of the map (π , exp) : O→ M ×M along the zero section is invertible.

In particular, this map induces a di�eomorphism between a neighborhood of the zero section of
TM and a neighborhood if the diagonal inM ×M .

Lemma 8.6 (Gauß’ Lemma). Let x ∈ M . Denote by ∂r ∈ Vect(TxM) the radial vector �eld. Suppose
Br (0) ⊂ Ox is such that exp|Br (0) is a di�eomorphism onto its image. On Br (0),

(8.7)

〈
(expx )∗∂r , (expx )∗w

〉
= 〈∂r ,w〉.

Theorem 8.8 (Short geodesics are minimal). Let r > 0 and x ∈ M . If expx : Br (0) → M is a
di�eomorphism onto its image, then, for every v ∈ Br (0), γ : [0, 1] → M de�ned by γ (t) B expx (tv)
is the unique minimal geodesic from x to expx (v); in particular: expx (Br (0)) = Br (x).

Proof. We have `(γ ) = |v |. Let δ : [0, 1] → M be a curve from x to y = expx (v). We will show that

(8.9) `(δ ) > |v |.

We can assume that the image δ is contained expx (B̄ |v |(0)); otherwise, the upcoming argument

shows that part of δ already has length at least |v |. Set

(8.10) w(t) B exp
−1

x (δ (t)).

By the Cauchy–Schwarz inequality and Lemma 8.6,

`(δ ) =

ˆ
1

0

| Ûδ (t)| dt

>

ˆ
1

0

〈
Ûδ (t), (expp )∗∂r

〉
dt

=

ˆ
1

0

〈 Ûw(t), ∂r 〉 dt =

ˆ
1

0

〈 Ûw(t),w(t)〉

|w(t)|
dt =

ˆ
1

0

∂t |w(t)| dt = |v |.

Equality holds if and only if Ûw(t) and ∂r are parallel. �
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De�nition 8.11. Let x ∈ M . Normal coordinates of M at x are coordinates obtained by composing

exp
−1

x with an isometry TxM � Rn .

Proposition 8.12. Suppose x1, . . . , xn are normal coordinates.

1. The Christo�el symbols Γki j vanish at the origin.

2. We have дi jx j = δi jx j .

3. Setting

(8.13) Ri jk` B
〈
R(∂i , ∂j )∂k , ∂`

〉
,

we have

(8.14) дi j = δi j +
1

3

n∑
k ,`=1

Rik`jx
kx ` +O(|x |3).

9 The energy functional

De�nition 9.1. A variation of a curve γ : [t0, t1] → M is a smooth map γ : (−ε, ε) × [t0, t1] → M
such that γ (0, ·) = γ . The variation γ is called proper if γ (·, t0) and γ (·, t1) are constant. We set

γs (t) B γ (s, t).

Proposition 9.2 (First Variation Formula). Given a variation γ of a curve γ : [t0, t1] → M ,

d

ds

����
s=0

E (γs ) = −

ˆ t1

t0

〈
∇t Ûγ0(t), ∂sγ (0, t)

〉
dt

+
〈
Ûγ0(t0), ∂sγ (0, t0)

〉
−

〈
Ûγ0(t1), ∂sγ (0, t1)

〉
.

(9.3)

Corollary 9.4. A curve γ : [t0, t1] → M is a geodesic if and only if, for every proper variation γ , 0 is
a critical point of s 7→ E(γs ); that is:

(9.5)

d

ds

����
s=0

E (γs ) = 0.

Proposition 9.6. For every curve γ : [t0, t1] → M ,

(9.7) `(γ ) 6
√

2E(γ ) ·
√
t1 − t0

with equality if and only if | Ûγ | is constant.
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Corollary 9.8. Let t0 < t1 and x,y ∈ M . Set

(9.9) γ ∈ Px ,y B {δ ∈ C
∞([t0, t1],M) : δ (t0) = x and δ (t1) = y}.

If γ ∈ Px ,y satis�es ∂t | Ûγ | = 0 and minimizes ` in Px ,y , then γ also minimizes E in Px ,y ; in particular:
it is a geodesic.

10 The second variation formula
Lemma 10.1 (The second variation formula). Let γ : [t0, t1] → M be a geodesic. If γ is a variation
of γ , then

d
2

ds2

����
s=0

E (γs ) =

ˆ t1

t0

��∇t ∂sγ (0, t)��2 − 〈
R(∂sγ (0, t), Ûγ (t)) Ûγ (t), ∂sγ (0, t)

〉
dt

+
〈
∇s∂sγ (0, t), ∂tγ (t1)

〉
−

〈
∇s∂sγ (0, t), ∂tγ (t0)

〉
.

(10.2)

Remark 10.3. If γ is a proper variation, then (10.2) depends only on V B ∂sγ (0, ·).

De�nition 10.4. Let γ : [t0, t1] → M be a geodesic. The index form of γ is the bilinear map

I : S2Γ(γ ∗TM) → R is de�ned by

I (v,w) =

ˆ t1

t0

〈∇tv,∇tw〉 − 〈R(v, Ûγ (t)) Ûγ (t),w〉 dt

De�nition 10.5. Let γ : [t0, t1] → M be a geodesic passing through x and y. We say that x and y
are conjugate along γ if there is a non-zero Jacobi �eld J along γ with J (t0) = 0 and J (t1) = 0.

De�nition 10.6. Let x ∈ M . The conjugate locus of x in TxM is the set of points v ∈ Ox such that

x and expx (v) are conjugate along t 7→ expx (tv).

Remark 10.7. The conjugate locus of x is the set of pointsv ∈ Ox such that dv expx is not injective.

Theorem 10.8 (Jacobi). Let γ : [t0, t1] → M with γ (t0) = x and y = γ (t?) for t? ∈ (t0, t1). If x and y
are are conjugate along γ |[t0,t?], then γ is not minimal; that is: there is a proper variation γ of γ with

(10.9) `(γ (s, ·)) < `(γ )

for all s , 0.

Sketch proof. Since x and y are conjugate along γ |[t0,t?], there is a non-trivial Jacobi �eld J along

γ |[t0,t?] vanishing at t0 and t?. Extend J to a piecewise smooth Jacobi �eld along γ by declaring it

to vanish on [t?, t1].
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∇t J (t?) , 0 for otherwise J would be trivial. Choose V ∈ Γ(γ ∗TM) with

(10.10) V (t0) = 0, V (t1) = 0, and 〈∇t J (t?),V (t?)〉 < 0.

For 0 < ε � 1, set

Jε B J + εV .

De�ne the pricewise smooth proper variation γ ε of γ by

(10.11) γ ε (s, t) B exp(s Jε (t)).

By Lemma 10.1,

(10.12)

d
2

ds2

����
s=0

E (γs ) = I (Jε , Jε ) = 2εI (J ,V ) + ε2I (V ,V ).

An integration by parts, shows that

(10.13) I (J ,V ) = −

ˆ t1

t0

〈
∇2

t J + R(J , Ûγ (t)) Ûγ (t),V
〉

dt + 〈∇t J (t?),V (t?)〉.

The �rst term vanishes since J is a Jacobi �eld and the second term is negative. Consequently,

I (Jε , Jε ) < 0 provided 0 < ε � 1. �

De�nition 10.14. Let x ∈ M . The cut locus of x is the subset of those v ∈ Ox such that γ (t) B
expx (tv) is minimizing for t ∈ [0, 1] but fails to be minimizing for t ∈ [0, 1 + ε) for every ε > 0.

Proposition 10.15. If v is in the cut locus if x , then

1. v is in the conjugate locus of x or

2. there is more than one minimal geodesic from x to expx (v).

11 Jacobi �elds

Proposition 11.1. Let γ be a variation of a geodesic γ : [t0, t1] → M . If every γs is a geodesic, then
the vector �eld J ∈ Γ(γ ∗TM) de�ned by

(11.2) J B ∂sγ (0, ·)

satis�es the Jacobi equation:

(11.3) ∇2

t J + R(J , Ûγ ) Ûγ = 0.

De�nition 11.4. Let γ be a geodesic. A vector �eld J ∈ Γ(γ ∗TM) is called a Jacobi �eld along γ if

(11.3) holds.
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Proposition 11.5. Let γ : [0, 1] → M be a geodesic. Given J0, ÛJ0 ∈ Tγ (0)M , there exists a unique Jacobi
�eld along γ with J (0) = J0 and ∇t J (0) = ÛJ0.

Proposition 11.6. Let x ∈ M , v ∈ Ox , and w ∈ TxM = TvTxM . Denote by J the Jacobi �eld along
t 7→ expx (tv) with

(11.7) J (0) = 0 and ∇t J (0) = w .

Then
dv expx (w) = J (1).

Theorem 11.8 (Hadamard). If (M,д) is complete and secд 6 0, then expx : TxM → M is a covering
map. In particular, the universal cover ofM is di�eomorphic to Rn .

Sketch proof. Suppose that J is a Jacobi �eld along γ (t) = exp(tv) with J (0) = 0 and ∇t J (0) = w .

Since

(11.9) ∂t |J |
2 = 2〈∇t J , J 〉 and ∂2

t |J |
2 = −2〈R(J , Ûγ ) Ûγ , J 〉 + 2|∇t J |

2,

the function t 7→ |J (t)|2 vanishes at 0 and is strictly convex. Consequently, J (1) , 0. �

Proposition 11.10. Let (M,д) be a Riemannian manifold of dimension n and let x ∈ R. Suppose r > 0

is such that Br (x) lies within the cut-locus of x . Suppose that for some κ ∈ R, and every y ∈ Br (x)
and v ∈ ∂⊥r ⊂ TyM ,

sec(∂r ,v) = κ .

Let p ∈ Snκ and �x an isometry TxM � TpS
n
κ . Then the map

Br (x)
exp

Snκ
p ◦ exp

−1

x
−−−−−−−−−−→ B

Snκ
r (p)

is an isometry.

Proof. Let v ∈ Br (0) ⊂ TxM and w ∈ TvTxM � TvM . By Lemma 8.6, we can assume that w ⊥ v .

Denote by J the Jacobi �eld along t 7→ exp(tv) with initial condition

J (0) = 0 and ∇t J (0) = w .

Denote byW the parallel vector �eld along t 7→ exp(tv) with

W (0) = w .

By (11.3),

J (t) =
sinκ (|v |t)

|v |
W (t).
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Consequently,

|dv expx (w)|
2 =

sinκ (|v |)
2

|v |2
|w |2.

This computation depended only on the radial sectional curvatures being precisely κ. Therefore,

exp
Snκ
p ◦ exp

−1

x is an isometry. �

12 Ricci curvature
De�nition 12.1. Let (M,д) be a Riemannian manifold. The Ricci curvature of (M,д) is the tensor

�eld Ricд ∈ Γ(S
2T ∗M) de�ned by

(12.2) Ricд(v,w) B tr(Rд(·,v)w) =
n∑
a=1

〈R(ea,v)w, ea〉.

Here (e1, . . . , en) is a orthonormal basis of TxM .

Remark 12.3. If secд = κ, then

Ricд = (n − 1)κд.

Remark 12.4. The map

tr : R(V ) → S2V

is injective if n < 3, bijective for n = 3, and surjective for n > 3. Therefore, for n > 3, the Ricci

curvature Ricд has

(n+1

2

)
components. For a Riemannian 3–manifold (M,д), Ricд determines all of

Rд .

Proposition 12.5. In normal coordinates,

(12.6)

volд

dx1 ∧ · · · ∧ dxn
= 1 −

1

6

n∑
a,b=1

Ricabx
axb +O(|x |3).

Proof. Let x ∈ M . Set

θ B
volд

volTxM
.

Let v ∈ TxM with |v | = 1. Set γ (t) = expt (v). Let e1 = v, . . . , en be a positive orthonormal basis

of TxM . For a = 1, . . . ,n, let Ja(t) be the Jacobi �eld along γ with Ja(0) = 0 and ∇t Ja(0) = ea . By

Proposition 11.6,

dtv expx (ea) =
Ja(t)

t
.

Therefore,

θ (tv) = t−n+1

√
detG(t) with Gab (t) = 〈Ja(t), Jb (t)〉.
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Since Ja is a Jacobi �eld, its Taylor expansion is given by

Ja(t) = tea −
t3

6

R(ea,v)v +O(t
4).

Hence, the Taylor expansion of G(t)/t2
is

Gab (t)

t2
= δab −

t2

6

[〈R(ea,v)v, eb〉 + 〈R(eb ,v)v, ea〉] +O(t
3).

Therefore,

θ (tv) = t−n+1

√
detG(t) = 1 −

t2

6

Ric(v,v) +O(t3). �

13 Scalar curvature

De�nition 13.1. Let (M,д) be a Riemannian manifold. The scalar curvature of (M,д) is the function

scalд ∈ C
∞(M) de�ned by

(13.2) scalд B tr(Ricд) =

n∑
a,b=1

〈
Rд(ea, eb )eb , ea

〉
.

Here (e1, . . . , en) is a orthonormal basis of TxM .

Proposition 13.3. If (M,д) is a Riemannian manifold and x ∈ M , then, for 0 < r � 1,

vol(Bx (r ))

V n
0
(r )

= 1 −
scalд(x)

6(n + 2)
r 2 +O(r 3).

14 Einstein Metrics

De�nition 14.1. A Riemannian metric д is called a Einstein metric if there is a constant λ ∈ R
such that

(14.2) Ricд = λд.

If д is a Einstein metric on M , then (M,д) is called a Einstein manifold.

Lemma 14.3 (Schur’s Lemma). Let (M,д) be a Riemannian manifold of dimension n > 3. If λ ∈
C∞(M) and

Ricд = λд,

then λ is locally constant.

17



Corollary 14.4. Let (M,д) be a connected Riemannian manifold of dimension n > 3. If

Ric
◦
д B Ricд −

scalд

n
д = 0,

then д is an Einstein metric.

Proposition 14.5 (Contracted Bianchi identity). If (M,д) is a Riemannian manifold, then

(14.6) dscalд = −2∇∗Ricд .

Proof. Let x ∈ M and let e1, . . . , en be a local orthonormal frame such that (∇eaeb )(x) = 0. At the

point x , by the di�erential Bianchi identity (5.5),

ec · scal =

n∑
a,b=1

〈
(∇ecR)(ea, eb )eb , ea

〉
= −

n∑
a,b=1

〈
(∇eaR)(eb , ec )eb , ea

〉
+

〈
(∇ebR)(ec , ea)eb , ea

〉
= 2

n∑
a,b=1

〈
(∇eaR)(eb , ea)ec , eb

〉
= −(∇∗Ric)(ec ). �

Proof of Lemma 14.3. By hypothesis, dscalд = ndλ. However, by the contracted Bianchi identity

(14.6), dscalд = 2dλ. Therefore, dλ = 0. �

15 Bochner’s vanishing theorem for harmonic 1–forms

Theorem 15.1 (Bochner’s vanishing theorem for harmonic 1–forms [Boc46, Theorem 1]). Let (M,д)
be a closed, connected Riemannian manifold of dimension n. If Ricд > 0, then the following hold:

1. Every harmonic 1–form α is parallel and satis�es Ricд(α
],α ]) = 0. In particular, b1(M) 6 n.

2. If there exists some x ∈ M with Ricд(x) > 0, then every harmonic 1–form vanishes. In particular,
b1(M) = 0.
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Proposition 15.2 (Bochner–Weitzenböck formula for 1–forms [Boc46, Lemma 2]). Let (M,д) be a
Riemannian manifold. For every α ∈ Ω1(M),

(15.3) (dd
∗ + d

∗
d)α = ∇∗∇α + Ricд(α

], ·).

in particular,

(15.4)

1

2

∆|α |2 = 〈(dd
∗ + d

∗
d)α,α〉 − |∇α |2 − Ricд(α

],α ]).

Proof. Let x ∈ M and let e1, . . . , en be a local orthonormal frame such that (∇eaeb )(x) = 0. At the

point x ,

(dd
∗ + d

∗
d)α = −

n∑
a,b=1

ea ∧ i(eb )∇ea∇ebα + i(ea)e
b ∧ ∇ea∇ebα

= −

n∑
a=1

∇ea∇eaα −
n∑

a,b=1

eai(eb )[∇ea ,∇eb ]α

= ∇∗∇α +
n∑

a,b=1

α(R(ea, eb )eb )e
a

= ∇∗∇α +
n∑

a,b ,c=1

α(ec )〈R(ea, eb )eb , ec 〉e
a .

This proves (15.3). The identity (15.4) follows from

∆|α |2 = 2〈∇∗∇α,α〉 − 2|∇α |2. �

Proof of Theorem 15.1. Let α be a harmonic 1–form. By the Bochner–Weitzenböck formula (15.4),

0 = −
1

2

ˆ
M
∆|α |2

=

ˆ
M
|∇α |2 + Ric(α ],α ]).

Both terms under the integral are non-negative. Therefore, they vanish. This proves (1). If

Ricд(x) > 0, then α must vanish in order for the second term to vanish. This proves (2). �

Remark 15.5. If Ricд > 0 and M is non-compact, then there often (always?) are many non-parallel

harmonic 1–forms.
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16 Bochner’s vanshing theorem for Killing �elds

De�nition 16.1. Let (M,д) be a Riemannian manifold. A vector �eldv ∈ Vect(M) is called a Killing
�eld if

(16.2) Lvд = 0.

The space of Killing �elds is denoted by

iso(M,д) B {v ∈ Vect(M) : Lvд = 0}.

Remark 16.3. If u,v,w ∈ Vect(M), then

(16.4) (Luд)(v,w) = 〈∇vu,w〉 + 〈∇wu,v〉

Exercise 16.5 (Bochner). Let v be Killing �eld and let α ∈ Ω1(M) be a harmonic 1–form. Prove

that the function α(v) is constant.

Theorem 16.6 (Bochner’s vanishing theorem for Killing �elds [Boc46, Theorem 2]). Let (M,д) be
a closed, connected Riemannian manifold of dimension n. If Ricд 6 0, then the following hold:

1. Every Killing �eld v is parallel and satis�es Ricд(v,v) = 0. In particular, dim iso(M,д) 6 n.

2. If there exists some x ∈ M with Ricд(x) < 0, then every Killing �eld vanishes. In particular,
Iso(M,д) is �nite.

This follows from the following proposition and the argument from the proof of Theorem 15.1.

Proposition 16.7 (Bochner–Weitzenböck formula for vector �elds [Boc46, Lemma 2]). Let (M,д)
be a Riemannian manifold. For every v ∈ Vect(M),

(16.8) ∇∗Lvд − d divv = 〈∇∗∇v, ·〉 − Ricд(v, ·)

in particular,

(16.9)

1

2

∆|v |2 = (∇∗Lvд)(v) −Lv divv + Ricд(v,v) − |∇v |
2.

Proof. Let x ∈ M and let e1, . . . , en be a local orthonormal frame such that (∇eaeb )(x) = 0. At the
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point x ,

(∇∗Lvд)(w) = −
n∑
a=1

(∇eaLvд)(ea,w)

= −

n∑
a=1

∇ea [(Lvд)(ea,w)] − (Lvд)(ea,∇eaw)

= −

n∑
a=1

∇ea (
〈
∇eav,w

〉
+ 〈∇wv, ea〉) −

〈
∇eav,∇eaw

〉
−

〈
ea,∇∇eawv

〉
= 〈∇∗∇v,w〉 −

n∑
a=1

∇ea 〈∇wv, ea〉 −
〈
ea,∇∇eawv

〉
;

and, furthermore,

−

n∑
a=1

∇ea 〈∇wv, ea〉 −
〈
∇∇eavv, ea

〉
= −

n∑
a=1

〈
∇ea∇wv, ea

〉
−

〈
∇∇eawv, ea

〉
= −Ric(v,w) +

n∑
a=1

〈
∇w∇eav, ea

〉
= −Ric(v,w) +Lw divw . �

Corollary 16.10. If (M,д) is a compact Riemannian manifold, then v ∈ Vect(M) is a Killing �eld if
and only if

∇∗∇v − Ricд(v, ·)
[ = 0.

Application to Riemann surfaces Theorem 16.6 can be used to proof Hurwitz’ automorphism

theorem.

Theorem 16.11 (Uniformization Theorem). Let (Σ, j) be a closed Riemann surface.

1. If χ (Σ) = 2, then (Σ, j) � CP1.

2. If χ (Σ) = 0, then (Σ, j) � C/Λ with Λ ⊂ C a co-compact lattice.

3. If χ (Σ) < 0, then (Σ, j) � H 2/Γ with Γ ⊂ PSL2(R) a discrete subgroup acting freely on H2.

Theorem 16.12 (Metric Uniformization Theorem). Let (Σ, j) be a closed Riemann surface. In the
conformal class determined by j there is a unique Riemannian metric д satisfying

Ricд = λд with λ =


1 if χ (Σ) = 2,

0 if χ (Σ) = 0,

−1 if χ (Σ) < 0.
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Theorem 16.13 (Hurwitz’ Automorphism Theorem [Hur93, p. 424]). If (Σ, j) is a closed Riemann
surface with χ (Σ) < 0, then

(16.14) # Aut(Σ, j) 6 −42χ (Σ).

Equality holds in (16.14) if and only if Σ is a branched cover of CP1 with rami�cation indicies 2, 3,
and 7.

Remark 16.15. See de Saint-Gervais [dSai16] for an account of the history of the Uniformization

Theorem.

Proof of Theorem 16.13. By Theorem 16.12, for the Einstein metric д,

Aut(Σ, j) = Iso(Σ,д).

Therefore, by Theorem 16.6, Aut(Σ, j) is �nite.

The inequality is proved by a somewhat tedious—but nevertheless enlightening—case distinc-

tion. Set Γ B Aut(Σ, j). Consider the quotient map

π : Σ→ S B Σ/Γ.

Since Aut(Σ, j) acts holomorphically, π is locally given by z 7→ zn . Therefore, S is a Riemann

surface and π is a branched covering map.

A point z ∈ Σ is called a rami�cation point of the stabilizer Γz is non-trivial. In this case,

Γz = Z/nZ and we call ez B #Gz the rami�cation index of z. A point w ∈ S is called a branch
point if it is the image of a rami�cation point. Since Γ acts transitively on π−1(w), every z ∈ π−1(w)
is a rami�cation point and they all have the same rami�cation index. The rami�cation indexw is

the rami�cation index of any of its preimages and denoted by ew . By the preceding discussion,

#π−1(w) =
#Γ

ew
.

Denote by z1, . . . , zm the rami�cation points and by w1, . . . ,wk the branch points of π . By the

Riemann–Hurwitz formula,

−χ (Σ) = −#Γ · χ (S) +
m∑
a=1

(eza − 1)

= #Γ ·

[
−χ (S) +

k∑
a=1

(
1 −

1

ewa

)]
︸                           ︷︷                           ︸

CA

.

Therefore,

#Γ = −
χ (Σ)

A
.

Since χ (Σ) < 0, A > 0. The following case distinction shows that A > 1

42
:
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• If χ (S) < 0, then A > 2.

• If χ (S) = 0, then k > 1; therefore: A > 1

2
.

• It remains to analyze the case χ (S) = 2. In this case k > 3.

– If k > 5, then A > 1

2
.

– If k = 4, then at least one of the rami�cation indices is bigger than two; therefore:

A > 1/6.

– A further case distinction in the case k = 3 shows thatA > 1/42 with equality achieved

if the rami�cation indices are 2, 3, and 7.

This �nishes the proof. �

Remark 16.16. It should be stressed that they crucial part of the above proof is establishing that

Aut(Σ, j) is �nite. The remainder, although much longer, is really just bookkeeping.

17 Myers’ Theorem

Theorem 17.1 (Myers [Mye41]). Let (M,д) be a connected, complete Riemannian manifold. Let κ > 0.
If

Ricд > (n − 1)κд,

then
diam(M,д) 6 π/

√
κ .

In particular, π1(M) is �nite.

Proof. If π1(M) is not �nite, then the universal cover M̃ has in�nite diameter but also satis�es the

lower Ricci bound: a contradiction to the asserted diameter bound.

The diameter bound follows once we prove that if γ : [0,T ] → M is a minimal geodesic

parametrized by arc-length, then

T 6 π/
√
κ .

To see this, let e1 = Ûγ , e2, . . . , en be a parallel orthonormal frame along γ . For a = 2, . . . ,n, set

(17.2) Va B sin

(π
T
t
)
ea

and let γa be a proper variation of γ with ∂sγa(0, ·) = Va . By the second variation formula for the
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energy functional,

n∑
a=2

d
2

ds2

����
s=0

E
(
γa,s

)
=

n∑
a=2

ˆ T

0

|∇tVa(t)|
2 − 〈R(Va(t), Ûγ (t)) Ûγ (t),Va(t)〉 dt

= (n − 1)

(π
T

)
2

ˆ T

0

cos

(π
T
t
)

2

dt −

ˆ T

0

sin

(π
T
t
)

2

Ric(e1(t), e1(t)) dt

6 (n − 1)

(π
T

)
2

ˆ T

0

cos

(π
T
t
)

2

dt − (n − 1)κ

ˆ T

0

sin

(π
T
t
)

2

dt

=

[(π
T

)
2

− κ

]
(n − 1)T

2

.

If T > π/
√
κ, then this is negative; hence, one of the γa is an energy decreasing (hence: length

decreasing) variation; therefore, γ is cannot be minimal. �

Remark 17.3. The diameter bound in Theorem 17.1 is sharp since Sn has Ric = д.

Remark 17.4. The conclusion of Theorem 17.1 is much stronger than that of Theorem 15.1; however,

so is its hypothesis. In fact, Ricд > (n−1)κд with κ > 0 is a much stronger condition than Ricд > 0

which in turn is much stronger than Ricд > 0.

18 Laplacian comparison theorem

De�nition 18.1. Let (M,д) be a Riemannian manifold of dimension n and x ∈ M . The distance
function associated with x is the function r : M → [0,∞) de�ned by

r (y) B d(x,y).

Remark 18.2. Within of the cut-locus of x in M , the distance function r associated with x is smooth

and, by Gauß’ lemma, satis�es

|∇r | = 1.

Theorem 18.3 (Laplacian Comparison Theorem). Let (M,д) be a Riemannian manifold and let
x ∈ M . Let κ ∈ R. If

Ricд > (n − 1)κд,

then, within the cut-locus of x inM ,

(18.4) − ∆r 6 (n − 1)
sin
′
κ (r )

sinκ (r )
.

Moreover, at a point y within the cut-locus of x inM , equality holds in (18.4) if and only if all radial
sectional curvatures are equal to κ; that is: for all v ∈ ∂⊥r ⊂ TyM ,

secд(∂r ,v) = κ .
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This might seems to be a “technical” result, but we will see that it has far-reaching consequences.

As a �rst indication, we give a second proof of Myers’ theorem.

Proof of Theorem 17.1 using Theorem 18.3. Suppose κ > 0 and Ricд > (n − 1)κд. If diam(M,д) >

π/
√
k , then there is a minimal geodesic γ : [0,T ] → M parametrized by arc-length withT > π/

√
k .

Set x B γ (0). The geodesic is contained in within of the cut-locus of x in M and r ◦ γ (t) = t . This

contradicts (18.4) because the function sin
′
κ (t)/sinκ (t) =

√
κ cot(

√
κt) diverges to −∞ as t tends

π/
√
k . �

The following propositions prepare the proof of Theorem 18.3.

Proposition 18.5 (Bochner–Weitzenböck formula for gradients). Let (M,д) be a Riemannian mani-
fold. For f ∈ C∞(M),

(18.6)

1

2

∆|∇f |2 = 〈∇∆f ,∇f 〉 − |Hess f |2 − Ric(∇f ,∇f ).

Proof. By the Bochner–Weitzenböck formula (15.4) for α = df ,

1

2

∆|∇f |2 = 〈dd
∗
df ,∇f 〉 − |∇df |2 − Ric(df ], df ])

= 〈∇∆f ,∇f 〉 − |Hess f |2 − Ric(∇f ,∇f ). �

Proposition 18.7. In the situation of Theorem 18.3,

(18.8) − ∂r∆r +
(∆r )2

n − 1

+ (n − 1)κ 6 0.

Equality holds in (18.8) if and only if

(18.9) Hess r = −
∆r

n − 1

(д − dr ⊗ dr ) and Ricд = (n − 1)κд.

Proof. By the Cauchy–Schwarz inequality, if A ∈ Rm×m is symmetric, then

(18.10)

(trA)2

m
6 |A|2

with equality if and only if A = trA
m 1. Therefore and since Hess r (∂r , ·) = 0,

(∆r )2

n − 1

6 |Hess r |2

with equality if and only if the �rst part of (18.9) holds.

By the Bochner–Weitzenböck formula for gradients (18.6),

0 = −∂r∆r + |Hess r |2 + Ric(∂r , ∂r ).

Consequently, (18.8) holds with equality if and only if (18.9). �
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Proposition 18.11 (Riccati Comparison Principle). Let κ ∈ R. If f : (0,T ) → R satis�es

f ′ + f 2 + κ 6 0 and f (t) =
1

t
+O(1),

then

f (t) 6
sin
′
κ (t)

sinκ (t)
.

Proof. The function fκ = sin
′
κ/sinκ satis�es the Riccati equation

f ′κ + f 2

κ + κ = 0 and fκ (t) =
1

t
+O(1),

Choose a smooth function G : (0,T ) → R such that

G ′ = f + fκ and G(t) = 2 log t +O(1).

Since

d

dt

[
eG (f − fκ )

]
= eG

(
f ′ − f ′κ + f 2 − f 2

κ
)
6 0,

the function eG (f − fκ ) is decreasing. This implies the assertion because

lim

t→0

eG(t )(f (t) − fκ (t)) = 0. �

Proof of Theorem 18.3. Let γ : [0,T ] → M be a geodesic emerging from x and parametrized by

arc-length. Set

f (t) B −
∆r

n − 1

◦ γ (t).

By (18.8),

f ′ + f 2 + κ 6 0.

Since

∆r =
n − 1

r
+O(1),

(18.4) follows from Proposition 18.11.

If equality holds in (18.4) at y, then, by Proposition 18.7,

Hess r =
sin
′
κ (r )

sinκ (r )
(д − dr ⊗ dr ).

Let e1 = ∂r , e2, . . . , en be a local orthonormal frame de�ned near y such that at y, for all a,b =
2, . . . ,n,

Hess r (ea, eb ) =
sin
′
κ (r )

sinκ (r )
δab and [∂r , ea] = 0.
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Since

Hess r (ea, eb ) =
〈
∇ea∂r , eb

〉
,

the former means that

∇ea∂r =
sin
′
κ (r )

sinκ (r )
ea = fκea .

Therefore,

secд(∂r ∧ ea) = −
〈
∇∂r∇ea∂r , ea

〉
= −

〈
∇∂r fκea, ea

〉
= −

〈
(f ′κ + f 2

κ )ea, ea
〉

= κ . �

Remark 18.12. There is also is a proof of Theorem 18.3 using Jacobi �elds.

19 The Lichnerowicz–Obata Theorem

Theorem 19.1 (Lichnerowicz [Lic58] and Obata [Oba62, Theorems 1 and 2]). Let κ > 0. Let (M,д)
be a closed Riemannian manifold of dimension n with Ricд > (n − 1)κд. If λ is a non-zero eigenvalue
of the Laplacian, then

(19.2) λ > nκ .

Equality is achieved in (19.2) if and only if (M,д) is isometric to (Snκ ,дκ ).

The analysis of the case λ = nκ requires the following result.

Theorem 19.3 (Obata [Oba62, Theorem A]). Let (M,д) be a complete Riemannian manifold of
dimension n. Let κ > 0. There exists a non-zero function f ∈ C∞(M) satisfying

(19.4) Hess f = −κ f д

if and only if (M,д) is isometric to (Snκ ,дκ ).

Remark 19.5. Is straight-forward to verify that the coordinate functions x1, . . . , xn+1 on Sn ⊂ Rn+1

have satisfy (19.4).

Proof of Theorem 19.1 assuming Theorem 19.3. Suppose f ∈ C∞(M) is an eigenfunction of the Lapla-

cian with eigenvalue λ , 0. By (18.6),

1

2

∆|∇f |2 = λ |∇f |2 − |Hess f |2 − Ric(∇f ,∇f ).
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Using the lower-bound on Ricд and (18.10),

1

2

∆|∇f |2 6 (λ − (n − 1)κ)|∇f |2 −
λ2 f 2

n
.

By integrating both sides and by integration by parts,

0 6 (λ − (n − 1)κ)

ˆ
M
|∇f |2 −

λ2

n

ˆ
M
f 2

=
(n − 1)

n
λ(λ − nκ)

ˆ
M
f 2.

Since λ , 0, (19.2) holds.

It follows from the above, that equality holds in (19.2) if and only if

Hess f = −κ f д and Ric(∇f ,∇f ) = κ |∇f |2.

The result thus follows from Theorem 19.3. �

Proof of Theorem 19.3. Without loss of generality, we restrict to the case κ = 1 and assume that

the maximum of f is equal to 1. Let x? be a point at which f achieves its maximum.

Proposition 19.6. For every geodesic γ : [0,T ] → M parametrized by arc-length with γ (0) = x?,

f ◦ γ = cos .

In particular, with r = rx? ,
f = cos(r ).

Proof. The function F : [0,T ] → R de�ned by

F B f ◦ γ .

satis�es

F ′′ + F = 0.

Hence, there are constants A,B ∈ R such that

F (t) = A cos(t) + B sin(t).

Since f achieves its maximum at x and f (x) = 1, the coe�cients are A = 1 and B = 0. �

For y ∈ Bπ (x?), if γ : [0, r (y)] → M is a minimizing geodesic parametrized by arc-length from

x? to y, then

∇f (y) = − sin(r (y)) Ûγ (r (y)).
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Therefore and since sin(r ) , 0 for r ∈ (0, π ), γ is uniquely determined by y. Thus, expx : Bπ (0) →
Bπ (x?) is a di�eomorphism.

We have

∇f = − sin(r )∂r .

Thus, for v,w ⊥ ∂r ,

− sin(r )Hess r (v,w) = − sin(r )〈∇v∂r ,w〉

= 〈∇v∇f ,w〉

= Hess f (v,w)

= − cos(r )д(v,w).

Therefore,

Hess r = cot(r )(д − dr ⊗ dr ).

It follows as in the proof of Theorem 18.3, that the sectional curvature on Bπ (x?) is equal to 1. One

can now use Theorem 17.1, to argue that the sectional curvature is equal to 1 on all of M and then

appeal to Theorem 6.5.

One can also argue directly. First of all Bπ (x?) is isometric to Sn\{p} by Proposition 11.10.

There must be a unique point x† at distance π from x?. To see this, note that: f achieves its

minimum −1 on ∂Bπ (x?). Every y ∈ ∂Bπ (x?) is a non-degenerate critical point; hence, ∂Bπ (x?)
is discrete. On the other hand, ∂Bπ (x?) is connected and thus consists of precisely one point x†.
The above argument also shows that, Bπ (x†) is isometric to Sn\{q} with q antipodal to p.

M is covered by Bπ (x?) and Bπ (x†); and their intersection is precisely

Bπ (x?)\{x?} = Bπ (x†)\{x?}.

The isometries Bπ (x?) → Sn\{p} and Bπ (x†) → Sn\{q} glue to a global isometry M → Sn . �

Remark 19.7. A more detailed proof can be found in Berger, Gauduchon, and Mazet [BGM71,

Théorème d’Obata D.1.6].
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20 Bishop–Gromov volume comparison

Theorem 20.1 (Bishop–Gromov’s Relative Volume Comparison Theorem [BC64, Section 11.10

Corollary 3; Gro81a, Section 2.1]). Let (M,д) be a complete Riemannian manifold of dimension n
and let x ∈ M . Let κ ∈ R and 0 < r 6 R. If

Ricд > (n − 1)κд

on BR(x), then

(20.2)

vol(BR(x))

vol(Br (x))
6
V n
κ (R)

V n
κ (r )
.

Moreover, equality holds in (20.2) if and only if all radial sectional curvatures are equal to κ on BR(x).

Remark 20.3. The conclusion of Theorem 20.1 is equivalent to the function θ : (0,R] → (0,∞)
de�ned by

(20.4) θ (r ) B
vol(BR(r ))

V n
κ (r )

being non-increasing.

Theorem 20.5 (Bishop’s Absolute Volume Comparison Theorem [Bis63; BC64, Section 11.10 Corol-

lary 4]). Let (M,д) be a complete Riemannian manifold of dimension n and let x ∈ M . Let κ ∈ R.
If

Ricд > (n − 1)κд,

then, for all r > 0,
vol(Br (x)) 6 V

n
κ (r ).

Proof of Theorem 20.5 assuming Theorem 20.1. This is a consequence of

lim

r→0

vol(Br (x))

V n
κ (r )

= 1. �

The following proposition prepares the proof of Theorem 20.1.

De�nition 20.6. For n ∈ {2, 3, . . .} and κ ∈ R, set

νnκ (r ) B

{
0 if κ > 0 and r > π/

√
κ and

sinκ (r )
n−1

otherwise.
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Proposition 20.7. Let (M,д) be a Riemannian manifold of dimension n and let x ∈ M . Within of the
cut-locus of x in TxM , de�ne ν by

exp
∗
x volд = νdr ∧ volSn−1 .

Let κ ∈ R. If
Ricд > (n − 1)κд,

then

(20.8) ∂r

(
ν

νnκ

)
6 0.

Moreover, equality holds in (20.8) if and only if all radial sectional curvatures are equal to κ within of
the cut-locus of x inM .

Proof. For f ∈ C∞(M),

L∇f volд = di(∇f )volд = (div∇f )volд = −∆f volд .

Therefore,

∂rν = −ν∆r .

Hence, by Theorem 18.3,

∂rν

ν
6 (n − 1)

sin
′
κ (r )

sinκ (r )
.

Since

∂rν
n
κ

νnκ
= (n − 1)

sin
′
κ (r )

sinκ (r )
,

it follows that

∂r

(
ν

νnκ

)
=
∂rν

νnκ
−

ν

νnκ

∂rν
n
κ

νnκ
6 0.

Equality holds in (20.8) if and only if equality holds in (18.4). By Theorem 18.3, the latter holds

if and only if all radial sectional curvatures are equal to κ within the cut-locus of x in M . �

Proof of Theorem 20.1. By Remark 20.3, it su�ces to prove that the function θ : (0,R] → (0,∞)
de�ned by (20.4) is non-increasing.

Let ν : TxM → [0,∞) be such that, within the cut-locus of x in TxM ,

exp
∗
x volд = νdr ∧ volSn ;

and ν = 0 on and beyond the cut-locus of x in TxM . For r > 0,

vol(Br (x)) =

ˆ
Br (0)

νdr ∧ volSn−1 and V n
κ (r ) =

ˆ
Br (0)

νnκ dr ∧ volSn−1 .
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Therefore,

V n
κ (r )

2
d

dr

(
vol(Br (x))

V n
κ (r )

)
= vol(∂Br (x)) ·V

n
κ (r ) − vol(Br (x)) · (V

n
κ )
′(r )

=

ˆ r

0

(ˆ
Sn−1

ν (rx̂) ·

ˆ
Sn−1

νnκ (s) −

ˆ
Sn−1

ν (sx̂) ·

ˆ
Sn−1

νnκ (r )

)
ds

= vol(Sn−1)

ˆ r

0

ˆ
Sn−1

(
ν (rx̂)νnκ (s) − ν (sx̂)ν

n
κ (r )

)
ds .

The integrand is non-positive if and only if, for 0 < s 6 r ,

ν (rx̂)

νnκ (r )
6
ν (sx̂)

νnκ (s)

which follows from (20.8). This proves that θ is non-increasing.

Equality holds in (20.2) if and only if equality holds in (20.8) on BR(x). By Proposition 20.7,

the latter holds if and only if and only if all radial sectional curvatures are equal to κ on BR(x). �

A minimal modi�cation of the proof of Theorem 20.1 establishes the following variant.

De�nition 20.9. Let Γ ⊂ Sn−1
be measurable and 0 6 r 6 R. Set

AΓ
r ,R B {ρx̂ ∈ R

n
: x̂ ∈ Γ and ρ ∈ [r ,R]}

Let (M,д) a Riemannian manifold, x ∈ M , and 0 6 r 6 R. The annular sector associated with Γ
centered at x and with radii r and R is

AΓ
r ,R(x) = AΓ,M

r ,R (x) B expx (A
Γ
r ,R).

For n ∈ {2, 3, . . .} and κ ∈ R, set

V n
κ (Γ, r ,R) B vol(A

Γ,Snκ
r ,R (x)).
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Theorem 20.10 (Relative Volume Comparison Theorem for annular sectors [Zhu97, Theorem 3.1]).
Let (M,д) be a complete Riemannian manifold of dimension n and let x ∈ M . Let κ ∈ R. Suppose that

Ricд > (n − 1)κд.

If 0 6 r 6 R and 0 6 s 6 S with r 6 s and R 6 S , then

(20.11)

vol(AΓ
s ,S (x))

vol(AΓ
r ,R(x))

6
V n
κ (Γ, s, S)

V n
κ (Γ, r ,R)

.

Moreover, equality holds in (20.11) if and only if all all radial sectional curvatures are equal to κ on
AΓ
r ,S (x).

21 Volume growth

Exercise 21.1. Let (M,д) be a complete Riemannian manifold with Ricд > 0. Prove that, for r > 1,

vol(Br (x)) 6 vol(B1(x))r
n .

Exercise 21.2 (maximal volume growth rigidity). Let (M,д) be a complete Riemannian manifold

with Ricд > 0. Prove that if

lim

r→∞

vol(Br (x))

rn
> V n

0
(1) =

πn/2

Γ(n/2 + 1)
,

then (M,д) is isometric to Rn .

Remark 21.3. The preceding exercise shows, in particular, that asymptotically Euclidean manifold

cannot be Ricci �at without being �at. There are, however, Ricci �at manifolds which are asymptotic

to Rn/Γ for Γ acting freely outside the origin.

Theorem 21.4 (Yau [Yau76, Theorem 7]). If (M,д) is a connected, complete, non-compact Riemannian
manifold of dimension n and with Ricд > 0, then, for x ∈ M and r > 1,

vol(Br (x)) &n vol(B1(x))r .

De�nition 21.5. Let (M,д) be a Riemannian manifold. A geodesic ray is a geodesicγ : [0,∞) → M
satisfying

(21.6) d(γ (s),γ (t)) = |t − s |

for all s, t ∈ [0,∞). A geodesic line is a geodesic γ : R→ M satisfying (21.6) for all s, t ∈ R.

Exercise 21.7. Let (M,д) be a connected, complete, non-compact Riemannian manifold Prove that

every for every x ∈ M there is a geodesic ray γ with γ (0) = x .
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Remark 21.8. The following proof is not due Yau’s original proof. If you know how this proof is

due to, let me know.

Proof of Theorem 21.4. There is a geodesic ray γ : [0,∞) → M with γ (0) = x . By Theorem 20.10,

for t > 2,

vol(Bt+1(γ (t))\Bt−1(γ (t))

vol(Bt−1(γ (t)))
6
(t + 1)n − (t − 1)n

(t − 1)n

=

(
2

t − 1

+ 1

)n
− 1

.n
1

t
.

Therefore, for t > 2,

tvol(B1(x)) 6 tvol(Bt+1(γ (t))\Bt−1(γ (t)))

.n vol(Bt−1(γ (t)))

. vol(B2t (x)).

This proves the assertion for r > 4. Since the assertion holds trivially for r ∈ [1, 4], the proof is

complete. �

Example 21.9. The �at metric on T n−k × Rk has polynomial volume growth of order k .

Remark 21.10. For more interesting examples of complete, Ricci-�at manifolds with linear volume

growth see Hein [Hei12], Biquard and Minerbe [BM11], and Haskins, Hein, and Nordström [HHN15]

22 S.Y. Cheng’s maximal diameter sphere theorem

Theorem 22.1 (S.Y. Cheng’s maximal diameter sphere theorem [Che75]). Let (M,д) be a complete
Riemannian manifold. Let κ > 0. If

Ricд > (n − 1)κд and diam(M,д) = π/
√
κ,

then (M,д) is isometric to (Snκ ,дκ ).

Remark 22.2. The analogous result for secд is due to Topogonov.

Remark 22.3. The following proof is due to Shiohama [Shi83, Section 2].

Proof of Theorem 22.1 . Without loss of generality κ = 1. Let x,y ∈ M with

d(x,y) = π
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The cut-locus of x lies in the complement of Bπ (x). The balls Bπ /2(x) and Bπ /2(y) do not intersect.

By hypothesis,

vol(Bπ (x)) = vol(B̄π (y)) = vol(M).

Therefore and by Theorem 20.1,

2vol(M) = vol(Bπ (x)) + vol(Bπ (y))

6
V n

1
(π )

V n
1
(π/2)

(
vol(Bπ /2(x)) + vol(Bπ /2(y))

)
6 2

(
vol(Bπ /2(x)) + vol(Bπ /2(y))

)
.

By Theorem 20.1, all radial sectional curvatures are equal to 1 in Bπ (x). Therefore, for every p ∈ Sn ,

the composition

Bπ (x)
exp

Sn
p ◦ exp

−1

x
−−−−−−−−−−→ BS

n−1

π (p)

is an isometry; see Proposition 11.10. Hence, for every z ∈ Bπ (x)\{x} there is a point w ∈ M with

d(z,w) = π . Therefore, x was arbitrary and it follows that

secд = 1.

The assertion thus follows from Theorem 6.5. (Alternatively, one can argue directly that the

isometry Bπ (x) � BS
n−1

π (p) extends to an isometry M � Sn .) �

Remark 22.4. Theorem 22.1 can be used to give analyze the equality case in Theorem 19.1; see Xia

[Xia13, Theorem 1.6]. In the proof of Theorem 19.1, assuming κ = 1, if f is an eigenfunction with

eigenvalue n, then

|∇f |2 + f 2

is constant. Without loss of generality,

|∇f |2 + f 2 = 1; that is:

|∇f |√
1 − f 2

= 1.

Let x? be a point where f achieves its maximum and let x† be a point where f achieves its

minimum. By the above, f (x?) = 1 and f (x†) = −1. If γ be a minimizing geodesic parametrized

by arc-length, then by the coarea formula,

`(γ ) =

ˆ d (x ,y)

0

| Ûγ (t)|dt

=

ˆ
γ

|∇f |√
1 − f 2

◦ γ (t)dt

>

ˆ
1

−1

1

√
1 − s2

ds

= π .

Thus, diam(M,д) > π .

35



23 The growth of groups

De�nition 23.1. Let G be a group. Suppose G is �nitely generated and S is a �nite generating set.

The word length with respect to S is the map `S : G → N0 de�ned by

`S (д) B min

{
m : д = д1 · · ·дm with дa ∈ S ∪ S

−1
}
.

For r ∈ N, set

BS (r ) B {д ∈ G : `s (д) 6 r } and VS (r ) B #BSr .

Proposition 23.2. Let G be a �nitely generated group and let S,T ⊂ G both be �nite generating sets.
With

c B max ({`S (д) : д ∈ T } ∪ {`T (д) : д ∈ S})

the inequalities
1

c
`T 6 `S 6 c`T .

hold. �

De�nition 23.3. Let G be a �nitely generated group. G is said to have polynomial growth of rate

ν > 0 if, for some (hence: every) �nite generating set S ,

VS (r ) � r
ν .

G is said to have exponential growth if, for some (hence: every) �nite generating set S ,

lim

r→∞
VS (r )

1/r > 1.

Exercise 23.4. Try to work out the growth rates for a few of your favorite groups. (If you have

no favorite group, try: the free abelian group Zn , the free group Fn , surfaces groups π1(Σ), the

lamp-lighter group, ...)

The above can also be phrased in terms of Cayley graph equipped with the counting measure

and the obvious metric.

De�nition 23.5. LetG be a group and let S be a generating set. The Cayley graph associated with

S is the colored, directe graph whose vertices are the elements of G with (д,h) an directed edge

colored by s ∈ S if and only if h = дs .

Finally, we have to mention the celebrated theorem of Gromov.
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Figure 1: B7(e) in the Cayley graph of F2.

Figure 2: B7(e) in the Cayley graph of Z2
.
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De�nition 23.6. LetG be a group. The lower central series ofG is the sequence of groups (Ga)a∈N0

de�ned by

G0 B G and Ga+1 B [G,Ga].

The group G is called nilpotent if its lower central series terminates in the trivial group after

�nitely many steps. The group G is called virtually nilpotent if it has a �nite index subgroup

which is nilpotent.

Example 23.7. Zn is nilpotent.

Example 23.8. The discrete Heisenberg group

H3(Z) B
©«

1 a b
0 1 c
0 0 1

ª®¬ : a,b, c ∈ Z


is nilpotent.

Theorem 23.9 (Bass [Bas72, Theorem 2] and Guivarc’h [Gui73, Théorème II.4]). If G is nilpotent,
then it has polynomial volume growth of rate∑

a>0

a · rk(Ga/Ga+1).

Exercise 23.10. Show that H3(Z) has polynomial growth of rate 4; that is: although H3(Z) appears

to be 3–dimensional, it behaves 4–dimensional.

Theorem 23.11 (Gromov’s theorem on groups of polynomial growth [Gro81b]). A �nitely generated
group has polynomial growth if and only if it is virtually nilpotent.

Remark 23.12. An elementary, but long, proof can be found on Terry Tao’s blog.

24 Non-negative Ricci curvature and π1(M)

Theorem 24.1 (Milnor [Mil68, Theorem 1]). If (M,д) is a complete Riemannianmanifold of dimension
n with Ricд > 0, then every �nitely generated subgroup G < π1(M) has polynomial growth of rate at
most n.

Conjecture 24.2 (Milnor’s �nite generation conjecture [Mil68]). If (M,д) is a complete Riemannian
manifold of dimension n with Ricд > 0, then π1(M) is �nitely generated.

Remark 24.3. Li [Li86, Theorem 2] and Anderson [And90b, Corollary 1.5] proved Conjecture 24.2

assuming M has maximal volume growth. Sormani [Sor00, Theorem 1] proved Conjecture 24.2

assuming small linear diameter growth. Liu [Liu13, Corollary 1] proved Conjecture 24.2 in dimen-

sion three using minimal surface techniques; see also, Pan [Pan18, Theorem 1.1] for a proof using

Cheeger–Colding theory.
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Proof of Theorem 24.1. Denote by π : M̃ → M the universal cover. Let x̃0 ∈ π
−1(x0). The funda-

mental group π1(M, x0) acts on M̃ as the deck transformation group Deck(M̃). Let S ⊂ π1(M, x0) �

Deck(M) be �nite subset and denote by G the group generated by S . Set

D B max{d(x̃0,дx̃0) : д ∈ S}.

For r ∈ N, B̄Dr (x̃0) contains at least VS (r ) distinct points of the form дx̃0 with д ∈ Deck(M̃).
Set

δ B inf{d(x̃0,дx̃0) : д ∈ Deck(M̃)}.

Since Deck(M) acts discretely, δ > 0. The ball BDr+δ (x̃0) contains at least VS (r ) disjoint subsets of

the form Bδ (дx̃0). Therefore and by Theorem 20.1,

VS (r ) 6
vol(BDr+δ (x̃0))

vol(Bδ (x̃0))

6
(Dr + δ )n

δn

6

(
D

δn
+ 1

)
rn . �

Theorem 24.4 (Milnor [Mil68, Theorem 2]). If (M,д) is a complete Riemannianmanifold of dimension
n with secд < 0, then π1(M) has exponential growth.

Theorem 24.5 (Anderson [And90c, Theorem 2.3]). Given n ∈ N, κ ∈ R, D,V > 0, there are only
�nitely many isomorphism types of groups which appear as π1(M) for connected, closed Riemannian
manifolds (M,д) of dimension n with

Ricд > (n − 1)κ, vol(M,д) > V , and diam(M,д) 6 D.

The proof relies on the following lemma.

Lemma 24.6 (Gromov [Gro81c; Gro07, Proposition 3.22]). Let (M,д) be a closed Riemannian mani-
fold. Given x0 ∈ M , there are loops γ1, . . . ,γm based at x0 with

`(γa) 6 3 diam(M,д)

and a presentation
π1(M, x0) = 〈[γ1], . . . , [γm]|R〉

with every relation in R of the form

(24.7) [γa][γb ] = [γc ].

Remark 24.8. The lemma makes no assertion about the number of generators.
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Proof. Choose a triangulation K of M such that x0 is one of the vertices, and every edge eab has

length at most one-half of the injectivity radius of M . For every vertex va in K , denote by δa the

minimal geodesic from x0 to va . The loop

γab B δaeabδ
−1

b

has length at most 3 diamM .

Every loop based x0 in the 1–skeleton of K is homotopic to a product of the γab . Since every

loop based at x0 is homotopic to a loop in the 1–skeleton of K , the γab generate π (M, x0).

If va , vb , vc form a 2–simplex in K , then γabγbc ' γac . Every homotopy between two loops

based at x0 in the 1–skeleton of K is homotopic to a homotopy lying in the 2–skeleton. Since

homotopies in the 2–skeleton correspond to a collection of 2–simplices, every relation is generated

by relations of the form γabγbc = γac . �

Proof of Theorem 24.5. It su�ces to estimate the number of loops γa in Lemma 24.6, because, if

there arem generators, then there can be at most 2
m3

relations of the form (24.7).

Let (M,д) be a connected, closed Riemannian manifold of dimension n with Ricд > (n − 1)κ,

vol(M) > V , and diam(M) 6 D. Denote by π : M̃ → M the universal cover of M . Let x̃0 ∈ M̃ and

set x0 B π (x̃0). The [γa] acts as deck transformations: π1(M, x0) � Deck(M̃). Set

K B
{
x ∈ M̃ : d(x, x̃0) 6 d(γ · x, x̃0) for all γ ∈ π1(M, x0)

}
The sets [γa] · K all have volume equal to vol(M) and are all contained in B6D (x̃0). Furthermore,

they intersect in sets of measure zero. Therefore,

m 6
vol(B6D (x̃0))

vol(K)

6
V n
κ (6D)

V
. �

Theorem 24.9 (Anderson [And90c, Theorem 2.1]). Let n ∈ N, κ ∈ R, D,V > 0. Set

N = N (n,κ,D,V ) B
V n
κ (2D)

V
.

Suppose (M,д) is a closed Riemannian manifold of dimension n with

Ricд > (n − 1)κ, vol(M,д) > V , and diam(M,д) 6 D.

If γ is a loop inM for which [γ ] has order at least N in π1(M), then

`(γ ) >
DV

V n
κ (2D)

.

Exercise 24.10. Prove Theorem 24.9.
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25 The Maximum Principle

De�nition 25.1. Let (M,д) a Riemannian manifold. A function f ∈ C∞(M) is called subharmonic
if ∆f 6 0 and superharmonic if ∆f > 0.

Theorem 25.2 (E.Hopf’s Maximum Principle [Hop27]). Let (M,д) a connected Riemannian manifold.
Let f ∈ C∞(M) be subharmonic. If f has a local maximum at x ∈ M , then f is constant on a
neighborhood of x . In particular, f has a global maximum if and only if it is constant.

De�nition 25.3 (Calabi [Cal58]). Let (M,д) is a Riemannian manifold. Let f ∈ C0(M) and д ∈
C0(M). A lower barrier (resp. upper barrier) for f at x ∈ M is a smooth function fx de�ned in a

neighborhood of x satisfying

fx (x) = f (x) and fx 6 f (resp. fx > f ).

We say that

∆f 6 д (resp. ∆f > д)

in the barrier sense if, for every x ∈ M and every ε > 0, there exists a lower barrier (resp. upper

barrier) fx ,ε for f at x such that

∆fx ,ε 6 д + ε (resp. ∆fx ,ε > д − ε).

The function f is called subharmonic in the barrier sense (resp.superharmonic in the barrier
sense) if ∆f 6 0 (resp. ∆f > 0).

Theorem 25.4 (Calabi’s Laplacian Comparison Theorem [Cal58, Theorem 3]). Let (M,д) be a
complete Riemannian manifold and let x ∈ M . Let κ ∈ R. If

Ricд > (n − 1)κд,

then

(25.5) − ∆r 6 (n − 1)
sin
′
κ (r )

sinκ (r )

holds in the barrier sense on all ofM .

Proof. Let y ∈ M and denote by γ : [0,T ] → M a minimal geodesic γ with γ (0) = x and γ (T ) = y
parametrized by arc-length. For ε > 0, de�ne rε : M → [0,∞) by

rε (z) B ε + d(γ (ε), z).
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By the triangle inequality, rε is an upper barrier for r . The point y lies within the cut-locus of γ (ε)
for ε > 0. (This is an easy exercise.) Thus, by Theorem 18.3,

−∆rε (y) 6 (n − 1)
sin
′
κ (rε (y) − ε)

sinκ (rε (y) − ε)

= (n − 1)
sin
′
κ (r (y) − ε)

sinκ (r (y) − ε)
.

Since sin
′
κ/sinκ is decreasing, it follows that (25.5) holds in the barrier sense. �

Theorem 25.6 (Calabi’s Maximum Principle [Cal58, Theorem 1]). Let (M,д) a Riemannian manifold.
Let f ∈ C0(M) be subharmonic in the barrier sense. If f has a local maximum at x ∈ M , then f is
constant on a neighborhood of x . In particular, f has a global maximum if and only if it is constant.

Proof. If fx is a lower barrier for f at x , then x is also a local maximum for fx . Therefore,

∆fx (x) > 0.

Suppose that f achieves a local maximum at x , but f is not constant. Then there is a 0 < r � 1

such that

f (x) = sup{ f (y) : y ∈ Br (x)} and Γ B {y ∈ ∂Br (x) : f (y) = f (x)} , ∂Br (x).

As we will see shortly, there is a smooth function д : B̄r (x) → R satisfying

д(x) = 0, д |Γ 6 −1/2, and ∆д 6 −1.

For 0 < δ � 1,

f (x) = f (x) + δд(x)

> sup{ f (y) + δд(y) : y ∈ ∂Br (x)}.

Therefore, the function f + δд has achieves a local maximum at some y ∈ Br (x). This, however,

contradicts the observation in the �rst paragraph because ∆(f + δд) 6 −δ in the barrier sense.

To construct д, we proceed as follows. Since Γ , ∂Br (x), we can choose a function χ satisfying

χ (x) = 0, χ |Γ < 0, and |∇χ | > 0.

For Λ � 1, the function

д B eΛχ − 1,

has the required properties, because

∆д = ΛeΛχ
(
∆χ − Λ|∇χ |2

)
. �

Theorem 25.7. Let (M,д) be a Riemannianmanifold. If f ∈ C0(M) is subharmonic and superharmonic
in the barrier sense, then it is smooth and harmonic.

Proof. For x ∈ M and 0 6 r � 1, standard elliptic theory constructs a continuous function

h : B̄r (x) → R which is smooth and harmonic on Br (x) and satis�es the Dirichlet boundary

condition h |∂Br (x ) = f |∂Br (x ). By the maximum principle applied to f − h and h − f , f = h. �
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26 Busemann functions
Proposition 26.1. Let (M,д) be a Riemannian manifold. Given a geodesic ray γ inM , there exists a
function bγ : M → R such that, for all x ∈ M ,

(26.2) bγ (x) B lim

t→∞
d(x,γ (t)) − t .

The function bγ is Lipschitz with Lip(bγ ) 6 1.

De�nition 26.3. In the situation of Proposition 26.1, bγ is called the Busemann function associated

with (M,д).

Remark 26.4. Morally, a Busemann function is a renormalized distance function associated to∞.

Example 26.5. Consider (Rn,д0). The Busemann function bγ associated with geodesic ray γ (t) =
x0 + tv is given by

bγ (x) = 〈v, x0 − x〉.

Exercise 26.6. Compute the Busemann functions on H2
. What are the level sets (so called horo-

spheres) of these functions?

Proof of Proposition 26.1. De�ne btγ : M → R by

btγ (x) B d(x,γ (t)) − t .

By the triangle inequality:

1. btγ (x) is non-increasing in t ,

2. |btγ (x)| 6 d(x,γ (0)), and

3. |btγ (x) − b
t
γ (y)| 6 d(x,y).

The �rst two show that the limit in (26.2) exists. The last implies Lip(bγ ) = 1. �

Proposition 26.7. If (M,д) is a Riemannian manifold with Ricд > 0 and γ is a geodesic ray, then

∆bγ > 0

in the barrier sense.

Proof. Let x ∈ M . For s > 0, denote by δs : [0,Ts ] → M the geodesic parametrized by arc-length

from x to γ (s). There is a sequence (sn)n∈N converging to in�nity, such that (δsn )n∈N converges to

a geodesic ray δ with δ (0) = x . This geodesic ray is called an asymptote from x to γ .
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The function bγ (x) + b
t
δ is smooth in a neighborhood of x and agrees with bγ (x) at x . By the

triangle inequality, for s > 0 and 0 6 t 6 Ts ,

bsγ (y) − b
s
γ (x) = d(y,γ (s)) − d(γ (s), x)

= d(y,γ (s)) − d(γ (s), δs (t)) − d(δs (t), x)

6 d(y, δs (t)) − d(δs (t), x)

= d(y, δs (t)) − t .

Setting s = sn and taking the limit n →∞,

(26.8) bγ (y) 6 bγ (x) + b
t
δ (y).

Therefore, bγ (x) + b
t
δ is an upper barrier for bγ at x .

By Theorem 18.3,

∆btδ (x) > −
n − 1

d(x, δ (t))
.

Since the right-hand side goes to zero as t tends to in�nity, bγ is superharmonic. �

27 Cheeger–Gromoll Splitting Theorem

Proposition 27.1. Let (M,д) be a connected, complete, non-compact Riemannian manifold. If M
contains a compact subset K withM\K disconnected, then there is a geodesic line passing through K .

Proof. SinceM\K is disconnected, for everyn ∈ N, we can choose a minimal geodesicγn : [−n,n] →
M of the form

γn(t) = expxn (tvn)

with xn ∈ K and |vn | = 1. A subsequence of (xn)n∈N converges to a limit x∞ ∈ K , and a further

subsequence of (vn)n∈N converges to v∞ ∈ TxM . The limit geodesic γ∞ : R→ M de�ned by

γ∞ B expx∞(tv∞)

is the desired geodesic line. �

Theorem 27.2 (Cheeger–Gromoll Splitting Theorem [CG71, Theorem 2]). Let (M,д) be a connected,
complete Riemannian manifold with Ricд > 0. If (M,д) contains a geodesic line, then there is a
complete Riemannian manifold (N ,h) and an isometry

(M,д) � (R × N , dt ⊗ dt + h).

The following propositions prepare the proof. This argument is due to Eschenburg and Heintze

[EH84].
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Proposition 27.3. Let (M,д) be a complete Riemannian manifold with Ricд > 0. If (M,д) contains a
geodesic line, then there exists a harmonic function ` : M → R with

|∇` | = 1.

Proof. Denote the geodesic line by γ . De�ne γ± : [0,∞) → M by

γ±(t) B γ (±t).

Denote by bγ± the Busemann function associated withγ±. Both ` = bγ± have the asserted properties.

To prove this we proceed as follows

Set

b B bγ+ + bγ− .

By construction,

b(γ (t)) = lim

s→∞
d(γ (t),γ (s)) + d(γ (t),γ (−s)) − 2s

= lim

s→∞
s − t + t + s − 2s

= 0.

By the triangle inequality,

b(x) = lim

t→∞
(d(γ (−t), x) + d(x,γ (t)) − 2t)

> 0.

By Proposition 26.7,

∆b > 0.

Therefore and by the maximum principle,

b = 0; that is: bγ+ = −bγ− .

Therefore, bγ± is harmonic.

Let x ∈ M . Let δ± be geodesic rays emanating from x , constructed as in the proof of Proposi-

tion 26.1. By (26.8),

btδ+(y) > bγ+(y) − bγ+(x)

= bγ−(x) − bγ−(y) > −b
t
δ−
(y).

Lemma 27.4. LetM be a manifold and x ∈ M . Let f+, f , f− : M → R be functions satisfying

f+ > f > f− and f+(x) = f (x) = f−(x).

If f± both are di�erentiable at x , then so is f and, moreover,

dx f+ = dx f = dx f−.
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Proof. Without loss of generality, M is an open subset of Rn , x = 0, and f− = 0. If d0 f+ , 0, then

there is a v ∈ Rn with d0 f+(v) < 0. Therefore, for 0 < ε � 1, f+(εv) < 0. Thus d0 f+ = 0. For every

v ∈ Rn with |v | � 1,

| f+(v) − f+(0)|

|v |
>
| f (v) − f (0)|

|v |
> 0.

Since f+ is di�erentiable, the limit of the left-hand side as |v | tends to zero vanishes. Thus, the

same holds for the limit of the middle, proving that f is di�erentiable at 0 with d0 f = 0. �

It follows from the lemma that

∇bγ±(x) = ∇b
t
δ±
(x).

This completes the proof since

|∇btδ± | = 1. �

Proposition 27.5. Let (M,д) be a complete Riemannian manifold. Suppose ` ∈ C∞(M) satis�es

|∇` | = 1 and Hess ` = 0.

Set
N B `−1(0) and h = д |N .

The map f : (R × N , dt ⊗ dt) → (M,д) de�ned by

f (t, x) B expx (t∇`(x))

is an isometry.

Remark 27.6. N is a submanifold by the Regular Value Theorem.

Proof of Proposition 27.5. Since ∇∇` = 0, for every x ∈ N , t 7→ f (t, x) is a gradient �ow line for

the function `. Therefore and since ` is no critical points, f is a di�eomorphism.

It remains to prove that f is an isometry. Forv ∈ TxN , let J be the Jacobi �eld along t 7→ f (t, x)
with

J (0) = 0 and ∇t J (0) = v

and let V be the parallel vector �eld along t 7→ f (t, x) with

V (0) = v .

Since ∇∇` = 0, the Jacobi equation for J (0) becomes

∇t∇t J = 0; hence: J (t) = tV (t) and

Therefore,

| f∗v | = |J (1)| = |v |.
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Since, also,

| f∗∂t | = |∇` | = 1 = |∂t |,

f is as isometry. �

Proof of Theorem 27.2. Proposition 27.3 provides us with a harmonic function ` : M → R with

|∇` | = 1. By Proposition 18.5,

|Hess ` |2 + Ric(∇`,∇`) = 〈∇∆`,∇`〉 −
1

2

∆|∇` |2

= 0.

Therefore and since Ric > 0,

∇∇` = 0.

The assertion thus follows from Proposition 27.5. �

Exercise 27.7 (Gallot). Prove that if (M,д) is closed Riemannian manifold with Ricд > 0 and

b1(M) = dimM , then it is isometric to a �at torus.

Exercise 27.8 (Gallot). Prove that if (M,д) is closed Riemannian manifold with Ricд 6 0 and

dim iso(M) = dimM , then it is isometric to a �at torus.

De�nition 27.9. A subgroup Bn < O(n) n Rn is called a Bieberbach group if it acts freely on Rn

and Rn/Bn is compact.

Remark 27.10. Zn obviously is a Bieberbach group. The group B2 generated by

(x,y) 7→ (x + 1/2,−y) and (x,y) 7→ (x,y + 1)

also is a Bieberbach group. What is R2/B2?

Theorem 27.11 (Bieberbach). Every Bieberbach group Bk contains Zk as �nite index subgroup.

Theorem 27.12 (Structure Theorem for Nonnegative Ricci Curvature [CG71, Theorem 3]). If (M,д)
is a closed, connected Riemannian manifold with Ricд > 0, then the following hold:

1. The universal cover M̃ is isometric to Rk × N with N compact.

2. There is a �nite subgroup G < Iso(N ), a Bieberbach group Bk , and an exact sequence

0→ G → π1(M) → Bk → 0.
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Proof. By Theorem 27.2,

(M̃,д) � (Rk × N ,дRk ⊕ h)

with N containing no geodesic lines. Every geodesic line in M̃ must be of the form t 7→ (γ (t), x). If

д ∈ Iso(M̃), then it is an isometry of M̃ and thus maps geodesic lines to geodesic lines. In particular,

if v1,v2 ∈ Rk , then the N–component of д(tv1 + (1 − t)v2, x) is independent of t ∈ R. Therefore, д
is of the form

д(v, x) = (дRk (v, x),дN (x))

Furthermore, for every v ∈ Rk and x ∈ N , d(v ,x )д preserves TvRk . Since d(v ,x )д is and isometry, it

also preserves TxN ; hence: d(v ,x )дRk |TxN = 0. Therefore, Deck(M̃) ⊂ Iso(M̃) ⊂ Iso(Rk ) × Iso(N ).
Since M is compact, there is a compact subset K ⊂ M̃ with

Deck(M̃) · K = M̃ and thus Deck(M̃) · πRk (K) = Rk and Deck(M̃) · πN (K) = N .

To prove (1), observe that if N were not compact, then it would contain a geodesic ray γ . By

the above, there is a sequence дn ∈ Deck(M̃) such that дn(γ (n)) ∈ πN (K). Since K and Sn−1
are

compact, after passing to a subsequence, дn(γ (n)) converges to a limit x ∈ πN (K) and (дn)∗( Ûγ (n))
converges to a limit v ∈ TxM . This shows that the geodesics γn : [−n,∞) → N de�ned by

γn(t) B дn(γ (n + t))

converges to the geodesic γ∞ : R → N de�ned by γ∞(t) B expx (tv). By construction, γ∞ is a

geodesic line in N : a contradiction.

It remains to prove (2). Set

Bk B im(Deck(M̃) → Iso(Rk )) and G B ker(Deck(M̃) → Iso(Rk )).

By construction, Bk acts freely. Since Bk · K = Rk , Bk is a Bieberbach group. G acts discretely on

N ; hence, is �nite because N is compact. �

28 S.Y. Cheng’s �rst eigenvalue comparison theorem

De�nition 28.1. If (M,д) is a closed, connected Riemannian manifold, then λ1(M,д) denotes the

�rst non-zero eigenvalue of the Laplacian. If (M,д) is a compact, connected Riemannian manifold

with boundary, then λD
1
(M,д) denotes the �rst eigenvalue of the Laplacian with Dirichlet boundary

conditions.

De�nition 28.2. Let n ∈ N and κ ∈ R. The function Λn
κ : [0,∞) → [0,∞) is de�ned by

Λn
κ (r ) B λD

1
(Br (x),дκ )

for Br (x) ⊂ Snκ .
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Theorem 28.3 (S.Y. Cheng’s �rst eigenvalue comparison theorem). Let n ∈ N and κ ∈ R LetM be
a compact, connected Riemannianian manifold of dimension n and satisfying

Ricд > (n − 1)κд.

The following hold:

1. Let x ∈ M and R > 0. If BR(x) is contained within the cut locus of x , then

λD
1
(BR(x)) 6 Λn

κ (R).

2. If ∂M = �, then
λ1(M,д) 6 Λn

κ
(

1

2
diam(M,д)

)
.

Proof sketch. To prove (1), let f nκ be a Dirichlet eigenfunction on BR(x) ⊂ Sκn with eigenvalue

Λκn(R). The function f nκ has no zeros and thus we can assume f nκ > 0; moreover, it can be written

as f nκ (y) = Fnκ (rx (y)) for some function Fnκ . By the maximum principle (Fnκ )
′ 6 0.

De�ne f : M ⊃ BR(x) → [0,∞) by

f (y) = Fnκ (rx (y)).

By Theorem 18.3 and using (Fκn )
′ 6 0,

∆f = −(Fnκ )
′′(rx )|∇rx |

2 + (Fnκ )
′(rx )∆rx

6 (∆Sκν f
n
κ )(rx )

= Λn
κ (R)f .

Denote by rx the distance function

Therefore,

λD
1
(BR(x)) 6

´
BR (x )
|∇f |2´

BR (x )
f 2

6 Λn
κ (R).

To prove (2), let x,y ∈ M with d(x,y) = diam(M,д). Set D B 1

2
diam(M,д). Let fx be a

Dirichlet eigenfunction with eigenvalue λD
1
(BD (x)) and let fy be a Dirichlet eigenfunction with

eigenvalue λD
1
(BD (y)). Assume both are normalized to have L2

–norm equal to 1 and opposite

signs. De�ne f to be equal to fx and BD (x), equal to fy and BD (y), and zero elsewhere. A short

computation shows that

λ1(M,д) 6 max{λD
1
(BD (x)), λ

D
1
(BD (y))}

6 Λn
κ (D). �

Exercise 28.4. Fill in the missing details of the above proof.
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Exercise 28.5. Using that, on Snκ ,

∆r = −(n − 1)
sin
′
κ (r )

sinκ (r )
,

compute Fnκ and Λn
κ explicitly.

29 Poincaré and Sobolev inequalities

Notation 29.1. Given a Riemannian manifold (M,д), f ∈ L1

loc
(M), x ∈ M , and r >, set

¯f =

 
M
f B

1

vol(M)

ˆ
M
f and

¯fx ,r B

 
Br (x )

f .

Theorem 29.2 (Neumann–Poincaré–Sobolev inequality). Let κ 6 0 and D > 0. Let (M,д) be a
complete Riemannian manifold of dimension n with

Ricд > (n − 1)κд.

For all f ∈ Lip(M), x ∈ M , and 0 < r 6 D,

(29.3)

( 
Br (x )
| f − ¯fx ,r |

n
n−1

) n−1

n

6 c(n,κD2)

 
Br (x )
|∇f |.

The proof presented below goes back to Hajłasz and Koskela [HK95]. It involves a number of

steps. Before delving into the proof, let us observe the following consequence.

Theorem 29.4 (Sobolev inequality). Let κ 6 0 and D > 0. Let (M,д) be a complete Riemannian
manifold of dimension n with

Ricд > (n − 1)κд.

For all f ∈ Lip(M), x ∈ M , 0 < r 6 D, and p ∈ [1,n),

(29.5)

( 
Br (x )
| f |

pn
n−p

) n−p
pn

6
p(n − 1)

n − p
c(n,κD2)

( 
Br (x )
|∇f |p

) 1

p

+

( 
Br (x )
| f |p

) 1

p

.

Proof. Exercise. Hint: p = 1 uses the triangle inequality; p > 1 uses p = 1 applied to f q for an

appropriate choice of q. �

Remark 29.6. The above shows that uniform lower Ricci bounds do give uniform upper bounds on

Poincaré constants, Sobolev constants, etc. However, there are situation in which uniform lower

Ricci bounds are not available, but Poincaré upper bounds can be established, for example, using

discretization techniques [GS05]. In fact, it is also clear from the proof that Ricci lower bounds are

only used for volume doubling estimates and volume lower bounds.
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The proof of Theorem 29.2 proceeds by amplifying the following weak L1
Neumann–Poincaré

inequality.

Theorem 29.7 (weak L1
Neumann–Poincaré inequality). Let κ 6 R and D > 0. Let (M,д) be a

complete Riemannian manifold of dimension n with

Ricд > (n − 1)κ .

For every f ∈ Lip(M), x ∈ M , 0 < r 6 D,
ˆ
Br (x )
| f − ¯fx ,r | 6 c(n,κD2)r

ˆ
B2r (x )

|∇f |.

Remark 29.8. This is the weak L1
Neumann–Poincaré inequality because the integral on the

right-hand side is over B2r (x) instead of Br (x). It will be evident from the proof that B2r (x) can

be replaced by the convex hull of Br (x). In particular, if Br (x) is geodesically convex, the proof

establishes the L1
Neumann–Poincaré inequality.

The proof of Theorem 29.7 will be completely analogous to the classical proof on Rn once we

have the following.

Theorem 29.9 (Cheeger–Colding Segment Inequality). Let κ 6 0 and D > 0. Let (M,д) be a
complete Riemannian manifold of dimension n with

Ricд > (n − 1)κд.

Let A,B ⊂ C ⊂ M be measurable and suppose that diam(C) 6 D. If, for every x ∈ A and y ∈ B, let
γx ,y : [0, 1] → C be a minimizing geodesic with with γx ,y (0) = x and γx ,y (1) = y, then, for every
f ∈ L∞(M, [0,∞)),

(29.10)

ˆ
A

ˆ
B

ˆ
1

0

f ◦ γx ,y (t)dtdydx 6 c(n,κD2)(vol(A) + vol(B))

ˆ
C
f .

Proof. Set

c(n,κD2) B max

{
νnκ (r )

νnκ (r/2)
: r ∈ (0,D]

}
.

Let x ∈ A and y ∈ B. In geodesic polar coordinates centered at x , write

volд = νdr ∧ volSn−1

By Proposition 20.7,

∂r

(
ν

νnκ

)
6 0.
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Therefore, for t ∈ [ 1
2
, 1],

f ◦ γx ,y (t)ν (y)dr ∧ volSn−1 6 c(n,κD2)f ◦ γx ,y (t)ν (γx ,y (t))dr ∧ volSn−1,

and, thus, ˆ
1

1/2

ˆ
A

ˆ
B
f ◦ γx ,y (t)dydxdt 6

1

2

c(n,κD2)vol(A)

ˆ
C
f .

Swapping the roles of x and y shows that

ˆ
1/2

0

ˆ
A

ˆ
B
f ◦ γx ,y (t)dydxdt 6

1

2

c(n,κD2)vol(B)

ˆ
C
f . �

Proof of Theorem 29.7. For every pair x,y ∈ Br (x), choose a minimizing geodesic γx ,y : [0, 1] →

B2r (x)with γx ,y (0) = x and γx ,y (0) = y. By the fundamental theorem of calculus and Theorem 29.9,

ˆ
Br (x )
| f (y) − ¯fx ,r | dy =

ˆ
Br (x )

����f (y) − 1

vol(Br (x))

ˆ
Br (x )

f (z)dz

���� dy
=

1

vol(Br (x))

ˆ
Br (x )

����ˆ
Br (x )

f (y) − f (z)dz

���� dy
6

1

vol(Br (x))

ˆ
Br (x )

ˆ
Br (x )
| f (y) − f (z)| dzdy

6
1

vol(Br (x))

ˆ
Br (x )

ˆ
Br (x )

ˆ
1

0

d(y, z)|∇f |(γy,z (t)) dzdy

6
2r

vol(Br (x))

ˆ
Br (x )

ˆ
Br (x )

ˆ
1

0

|∇f |(γy,z (t)) dtdzdy

6 c(n,κD2)r

ˆ
B2r (x )

|∇f |. �

Theorem 29.11 (weak type Neumann–Poincaré–Sobolev inequality). Let κ 6 0 and D > 0. Let
(M,д) be a complete Riemannian manifold of dimension n with

Ricд > (n − 1)κд.

For every f ∈ Lip(M), x ∈ M , 0 < r 6 D, and t > 0,

t
n
n−1 vol

({
| f − ¯fx ,r | > t

})
6

c(n,κD2)

vol(Br (x))
1

n−1

‖∇f ‖
n
n−1

L1(Br (x ))
.

The proof requires a basic result about the maximal function.
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De�nition 29.12. Let D > 0. Let (M,д) be a Riemannian manifold and let U be a bounded subset.

Given f ∈ L1

loc
(M), the Hardy–Littlewood maximal function associated with f and D is the

function Mf = MD f : M → [0,∞) is de�ned by

Mf (x) B sup

0<r6D

1

vol(Br (x))

ˆ
Br (x )
| f |.

Theorem 29.13 (weak type estimate for the maximal function). Let κ 6 0 and D > 0. Let (M,д) be
a complete Riemannian manifold of dimension n with

Ricд > (n − 1)κд.

For every f ∈ L1

loc
(M),

tvol ({Mf > t}) 6 c(n,κD2)

ˆ
M
| f |.

Proof. For every x ∈ {Mf > t}, choose 0 < rx 6 D such that

tvol(Brx (x)) <

ˆ
Brx (x )

| f |.

Choose {xa : a ∈ Λ} such that⋃
a∈Λ

B5rxa (xa) ⊃ {Mf > t} and, for a , b, Brxa (xa) ∩ Brxb (xb ) = �.

Exercise 29.14 (Vitali covering lemma). Prove that this can actually be done.

By Theorem 20.1,

tvol ({Mf > t}) 6 t
∑
a∈Λ

vol(B5rxa (xa))

6 c(n,κD2)
∑
a∈Λ

tvol(Brxa (xa))

6 c(n,κD2)
∑
a∈Λ

ˆ
Brxa (x )

| f |

6 c(n,κD2)

ˆ
M
| f |. �

Proposition 29.15. Let κ 6 0 and D > 0. If (M,д) is a complete Riemannian manifold of dimension
n with

Ricд > (n − 1)κд,

then, for x ∈ M , y ∈ Br (x), and 0 < s 6 r 6 D,

vol(Bs (y)) > c(n,κD2)vol(Br (x))s
n .
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Proof. By Theorem 20.1,

vol(Br (x))

vol(Bs (y))
6

vol(B2r (y))

vol(Bs (y))

6
V κ
n (2r )

V κ
n (s)

6
c(n,κr 2)

sn
. �

Proof of Theorem 29.11. For a ∈ Z, set

Ra B 2
−a−1r .

For every y ∈ Br (x), set y0 B x , and, for a ∈ N0, inductively de�ne ya+1 to be the mid-point of a

minimal geodesic from ya to y. By construction:

1. for every a ∈ N0, d(ya,y) 6 2Ra ,

2. for every a ∈ N0, BRa−1
(ya) ⊂ Br (x), and

3. for every a ∈ N0, there is a point za ∈ M with BRa+2
(za) ⊂ BRa (ya) ∩ BRa+1

(ya+1).

Since f is continuous,

f (y) = lim

a→∞
¯fya ,Ra .

Therefore, by Theorem 29.7,

| f (y) − ¯fx ,R0
| 6

∞∑
a=0

�� ¯fya+1,Ra+1
− ¯fya ,Ra

��
6
∞∑
a=0

�� ¯fya+1,Ra+1
− ¯fza ,Ra+2

�� + �� ¯fya ,Ra −
¯fza ,Ra+2

��
6 c(n,κD2)

∞∑
a=0

 
BRa (ya )

��f − ¯fya ,Ra
��

6 c(n,κD2)

∞∑
a=0

Ra

 
BRa−1

(ya )
|∇f |.

Given ρ > 0, for T ∈ N such that
1

2
ρ 6 2

−TR0 6 ρ,

∞∑
a=T+1

Ra

 
BRa−1

(ya )
|∇f | 6 c(n,κD2)

∞∑
a=T+1

Ra

 
BR

3a−1
(y)
|∇f |

6 c(n,κD2)

∞∑
a=T+1

RaM |∇f |(y)

6 c(n,κD2)2−TRM |∇f |(y)

6 c(n,κD2)ρM |∇f |(y)
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and, by Proposition 29.15,

T∑
a=0

Ra

 
BRa−1

(ya )
|∇f | 6 c(n,κD2)

T∑
a=0

Ra
Rna−1

 
Br (x )
|∇f |

= c(n,κD2)R1−n
0

T∑
a=0

2
n(a−1)−a

 
Br (x )
|∇f |

6 c(n,κD2)R1−n
0

T∑
a=0

2
(n−1)(a−1)

 
Br (x )
|∇f |

6 c(n,κD2)

(
2
−TR0

)
1−n

 
Br (x )
|∇f |

6 c(n,κD2)ρ1−n
 
Br (x )
|∇f |.

Therefore,

| f (y) − fx ,r | 6 c(n,κD2)

(
ρM |∇f |(y) + ρ1−n

 
Br (x )
|∇f |

)
.

Choosing

ρ =

(ffl
Br (x )
|∇f |

M |∇f |(y)

)
1/n

,

yields

| f (y) − fx ,r | 6 c(n,κD2)

( 
Br (x )
|∇f |

) 1

n

M |∇f |(y)
n−1

n .

By Theorem 29.13,

vol

(
{| f − fx ,r | > t}

)
6 vol

(
{| f − fx ,R0

| > t}
)

= vol

({
| f − fx ,R0

|
n
n−1 > t

n
n−1

})
6 vol

({
c(n,κD2)

( 
Br (x )
|∇f |

) 1

n−1

M |∇f | > t
n
n−1

})
6 t−

n
n−1

c(n,κD2)

vol(Br (x))
1

n−1

‖∇f ‖
n
n−1

L1(Br (x ))
. �
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Theorem 29.16 (Hajłasz and Koskela [HK00, Theorem 2.1]). Let (M,д) be a complete Riemannian
manifold with �nite volume. If there is a constant c > 0 such that, for every f ∈ Lip(M) and t > 0,

(29.17) t
n
n−1 vol(

{
| f − ¯f | > t

}
) 6 c∗S ‖∇f ‖

n
n−1

L1
,

then, for every f ∈ Lip(M),

(29.18) ‖ f − ¯f ‖
L

n
n−1

6 cS ‖∇f ‖L1

with cS B 16(c∗S )
n−1

n .

Proof of Theorem 29.16. The following shows that it su�ces to consider a restricted class of func-

tions f .

Proposition 29.19. If (29.18) holds for every f ∈ Lip(M) with

(29.20) f > 0 and vol({ f = 0}) > vol(M)/2,

then it holds for every f ∈ Lip(M).

Proof. To see this, let s ∈ R such that

vol({ f > s}) > vol(M)/2 and vol({ f 6 s}) > vol(M)/2.

Both sides of (29.18) are una�ected by shifting f by a constant. Hence, there is no loss in assuming

that s = 0. Split f into its positive and negative part:

f = f + − f − with f + B max{ f , 0} and f − B max{−f , 0}.

By hypothesis, (29.18) hold for f + and f −. Therefore,

‖ f − ¯f ‖
L

n
n−1

6
f + − f +


L

n
n−1

+

f − − f −

L

n
n−1

6 C‖∇f +‖L1 +C‖∇f −‖L1

= C‖∇f ‖L1 . �

Henceforth, let f ∈ Lip(M) and suppose that (29.20) holds. Given 0 6 a 6 b, set

f ba B max{min{ f ,b},a} − a.

The proof of (29.18) proceeds by applying (29.17) to the shifted truncations f ba . These satisfy

(29.21) ∇f ba = χ {a<f <b }∇f

and, for every c ∈ R,

(29.22) vol({ f ba > t}) 6 2 vol({| f ba − c | > t/2}).
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The latter is trivial if c 6 t/2. It holds for c > t/2, because then

{| f ba − c | > t/2} ⊃ { f ba = 0} and vol({ f ba = 0}) > vol(M)/2.

By (29.22), (29.21), and (29.17), for every 0 6 a 6 b, t > 0, and c ∈ R,

t
n
n−1 vol({ f ba > t}) 6 2

2n
n−1

( t
2

) n
n−1

vol

({
f ba − f ba > t/2

})
6 2

2n
n−1c∗S ‖χ {a<f <b }∇f ‖

n
n−1

L1
.

Therefore, ˆ
f

n
n−1 6

∑
a∈Z

2

na
n−1 vol({2a−1 < f 6 2

a})

6
∑
a∈Z

2

na
n−1 vol({ f > 2

a−1})

6
∑
a∈Z

2

na
n−1 vol({ f 2

a−1

2
a−2
> 2

a−2})

6 c∗S

∑
a∈Z

2

na
n−1 2

−
n(a−2)

n−1 2

2n
n−1 ‖χ {a<f <b }∇f ‖

n
n−1

L1

6 2

4n
n−1c∗S ‖∇f ‖

n
n−1

L1
.

This implies (29.18) with cS B 16(c∗s )
n−1

n . �

30 Moser iteration

De�nition 30.1. Let (M,д) be a complete Riemannian manifold of �nite volume. Let ν > 1. The

(ν, 2)–Sobolev constant cS = cS (д,ν ) of (M,д) is the smallest constant c > 0 such that, for every

f ∈ C∞(M),

(30.2)

( 
M
| f |2ν

) 1

2ν

6 c

( 
M
|∇f |2

) 1

2

+

( 
M
| f |2

) 1

2

.

The function c∆ : [0,∞) → [0,∞] is de�ned by

c∆(д, λ) B sup

{
‖ f ‖L∞ : f ∈ C∞(M) withf > 0,

 
M
f 2 = 1, and ∆f 6 λ f

}
.

Theorem 30.3 (Moser [Mos60]). If (M,д) is a complete Riemannian manifold of �nite volume and
ν > 1, then

c∆(д, λ) 6 exp

(
cS (д,ν )

√
λν

√
ν − 1

)
.
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Proof. For every q ∈ R,  
M
f 2q−1∆f =

 
M

〈
∇f 2q−1,∇f

〉
= (2q − 1)

 
M
|∇f |2 f 2q−2.

Therefore, for every q > 1/2,  
M
|∇f q |2 = q2

 
M
|∇f |2 f 2q−2

=
q2

2q − 1

 
M
f 2q−1∆f

6
q2λ

2q − 1

 
M
f 2q .

By the Sobolev inequality (30.2),( 
M
f 2qν

) 1

2ν

6 cS

( 
M
|∇f q |2

) 1

2

+

( 
M
f 2q

) 1

2

6

[
cS

(
q2λ

2q − 1

)
1/2

+ 1

] ( 
M
f 2q

) 1

2

.

With q = νk , this becomes( 
M
f 2νk+1

) 1

2νκ+1

6

[
cSν

k
(

λ

2νk − 1

)
1/2

+ 1

] 1

νk
( 

M
f 2νk

) 1

2νk

.

Therefore,

‖ f ‖L∞ = lim

k→∞

( 
M
f 2νk+1

) 1

2νk+1

6
∞∏
k=0

[
cSν

k
(

λ

2νk − 1

)
1/2

+ 1

] 1

νk
( 

M
f 2

) 1

2

.

Since log(1 + x) 6 x , the logarithm of the in�nite product is bounded as follows:

∞∑
k=0

ν−k log

[
1 + cSν

k
(

λ

2νk − 1

)
1/2

]
6
∞∑
k=0

cS

(
λ

2νk − 1

)
1/2

6 cS
√
λ
∞∑
k=0

1

νk/2

6
cS
√
λ

1 − 1/
√
ν
. �
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31 Betti number bounds

Theorem 31.1 (Gromov [Gro07, Theorem 5.21]; Li [Li80, Theorem 12], Gallot [Gal83, Théorème

3.1]). Let κ 6 0 and D > 0. If (M,д) is a closed Riemannian manifold of dimension n > 3 with

Ricд > (n − 1)κд and diamM 6 D,

then
b1(M) 6 c(n,κD2).

Moreover, there is a constant ε(n) > 0, such that if −κD2 6 ε(n), then b1(M) 6 n.

Remark 31.2. This result complements Theorem 15.1. This is an estimating theorem. As far as I
know, the idea for proving such results originates with Li [Li80]. For an survey of such results see

Bérard [Bér88].

The following propositions prepare the proof of Theorem 31.1.

Lemma 31.3 (Li [Li80, Lemma 11]). Let (M,д) be a closed Riemannian manifold and let E be a
Euclidean vector bundle overM . Let V ⊂ Γ(E) be a linear subspace. With

c(V ) B sup

{
‖s‖2L∞ : s ∈ V with

 
M
|s |2 = 1

}
the following holds

dimV 6 rkE · c(V ).

Remark 31.4. The constant c(V ) is the best constant c such that, for every s ∈ V ,

‖s‖2L∞ 6 c

 
M
|s |2.

Proof of Lemma 31.3. Without loss of generality, V is �nite dimensional and vol(M) = 1. Set

m B dimV and r B rkE. Let s1, . . . , sm be a L2
–orthonormal basis of V . Set

f (x) B
m∑
a=1

|sa(x)|
2.

This function only depends on V and not on the choice of s1, . . . , sm . By construction,

m =

 
M
f 6 max

x ∈M
f (x).

Let x? ∈ M be a point at which f achieves its maximum. Without loss of generality, the rank of

the evaluation map ev : V → Ex? is at most r . Thus its kernel has dimension at leastm − r , and

we can assume that sr+1, . . . , sm ∈ ker ev. Therefore,

m 6
r∑

a=1

|sa(x?)|
2 6 r · c(V ). �
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Theorem 31.5 (Estimating theorem). Let (M,д) be a closed Riemannian manifold. Let E be an
Euclidean vector bundle, let ∇ be an orthogonal connection on E, and let R ∈ End(E). With

Λ B sup

x ∈M
sup spec(−Rx )

the following holds
dim ker(∇∗∇ + R) 6 rkE · c∆(д,Λ).

Proof. Set V B ker(∇∗∇ + R). For s ∈ V ,

∆|s |2 = 2〈∇∗∇s, s〉 − 2|∇s |2

= −2〈Rs, s〉 − 2|∇s |2.

Since

∆|s |2 = 2(∆|s |)|s | − 2|∇|s | |2,

by Kato’s inequality,

∆|s | 6 −
〈Rs, s〉

|s |

6 Λ|s |.

The assertion thus follows from Lemma 31.3. �

Proof of Theorem 31.1. By Proposition 15.2, Theorem 31.5 applies with Λ 6 −(n − 1)κ. Estimating

c∆(д,Λ) using Theorem 30.3 and Theorem 29.4,

b1(M) 6 n exp

(
c(n,κD2)

√
−κD

)
.

This proves the �rst part of Theorem 31.1. To prove the second part, observe that if −κD2 �n 1,

then ⌊
exp

(
c(n,κD2)

√
−κD

) ⌋
= 1. �

Exercise 31.6. What is the generalization of Theorem 31.1 to bk? What replaces the Ricci lower

bound?

32 Metric spaces

De�nition 32.1. A metric space (X ,d) is called separable if it contains a countable, dense subset.

De�nition 32.2. A metric space (X ,d) is called totally bounded if for every ε > 0 there is a �nite

collection of balls of radius ε covering X .

Theorem 32.3. A metric space (X ,d) is compact if and only if it is complete and totally bounded.
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Exercise 32.4. Prove Theorem 32.3.

Theorem 32.5. Every totally bounded metric space is separable.

Exercise 32.6. Prove Theorem 32.5.

Theorem 32.7 (Kuratowski). Let (X ,d) be a metric space. For every x? ∈ X , the δ : X → L∞(X )
de�ned by

δ (x) B d(x, ·) − d(x?, ·)

is an isometric embedding.

Proof. This immediately follows from the fact that, for x,y ∈ X ,

‖δ (x) − δ (y)‖L∞ = sup

z∈X
d(x, z) − d(z,y) = d(x,y). �

Theorem 32.8. Every separable metric space (X ,d) admits an isometric embedding in `∞(N).

Proof. By Theorem 32.7, every countable subset of X admits an isometric embedding into `∞(N).
This extends extends to an isometric embedding of X if the subset is dense. �

33 Hausdor� distance

De�nition 33.1. Let X be a set. The power set of X is the set of all subsets of X and denoted by

P(X ).

De�nition 33.2. Let (X ,d) be a metric space. The Hausdor� distance is the map dH = d
X
H : P(X )×

P(X ) → [0,∞] de�ned by

dH (A,B) B inf{ε > 0 : A ⊂ Bε (B) and B ⊂ Bε (A)}.

Proposition 33.3. Let (X ,d) be a metric space. Denote by C(X ) ⊂ P(X ) the set of all closed subsets
of X . Then (C(X ),dH ) is a metric space.

Exercise 33.4. Prove Proposition 33.3.

Theorem 33.5. If (X ,d) is a complete metric space, then (C(X ),dH ) is complete.

Proof. Let (An)n∈N be a Cauchy sequence in (C(X ),dH ). Set

A∞ B
∞⋂
n=1

∞⋃
m=n

Am .

61



Let ε > 0. Let N ∈ N such that, for n,m > N , dH (An,Am) 6 ε . By de�nition, for every x ∈ A∞,

there is an m > N such that x ∈ Bε (Am). Therefore and since x ∈ A∞ was arbitrary, for every

n > N , A∞ ⊂ B2ε (An)

Letx ∈ An withn > N . Choose (nk )k ∈N withN1 = n such that, for everyk ∈ N,dH (Ank ,Ank+1
) <

ε/2k . Furthermore, choose (xk )k ∈N with x1 = x , xk ∈ Ank , and such that, for every k ∈ N,

d(xk , xk+1) < ε/2
k

. Since X is complete, the Cauchy sequence (xk )k ∈N converges to a limit x∞. By

de�nition, x∞ ∈ A∞. Since

d(x, x∞) <
∞∑
k=1

ε/2k

< ε

and x ∈ An was arbitrary, for every n > N , An ⊂ B2ε (A∞). �

Theorem 33.6. If (X ,d) is a compact metric space, then (C(X ),dH ) is compact.

Exercise 33.7. Prove Theorem 33.6.

34 The Gromov–Hausdor� distance

The theory of Gromov–Hausdor� distance was invented by Edwards [Edw75] and then invented

again by Gromov [Gro81b].

De�nition 34.1 ([Gro81b, Section 6; Gro07, Chapter 3.A]). Let (X ,dX ) and (Y ,dY ) be two metric

spaces. The Gromov–Hausdor� distance between (X ,dX ) and (Y ,dX ) is denoted by

dGH (X ,Y )

and de�ned as the in�mum of the numbers

dZH (i(X ), j(Y ))

for all metric spaces (Z ,dZ ) and all isometric embeddings i : X → Z and j : Y → Z .

62



Proposition 34.2. Let (X ,dX ) and (Y ,dY ) be metric spaces and let ε > 0. If dGH (X ,Y ) < ε , then
there are maps f : X → Y and д : Y → X such that:

1. For every x1, x2 ∈ X , y1,y2 ∈ Y :

|dX (x1, x2) − dY (f (x1), f (x2))| 6 2ε and

|dY (y1,y2) − dX (д(y1),д(y2))| 6 2ε .
(34.3)

2. For every ε > 0, x ∈ X , y ∈ Y :

dX (x,д(f (x))) 6 2ε and

dY (y, f (д(y))) 6 2ε .
(34.4)

Proof. Let (Z ,dZ ) be a metric space and let i : X → Z and j : Y → Z be isometric embeddings

such that

dZH (i(X ), j(Y )) 6 ε .

By de�nition, there are maps f : X → Y and д : Y → X such that, for every x ∈ X and y ∈ Y ,

dZ (x, f (x)) 6 ε and dZ (y,д(y)) 6 ε .

By the triangle, (34.3) and (34.4) hold. �

Proposition 34.5. If (X ,dX ) and (Y ,dY ) are separable, then dGH (X ,Y ) is equal to the in�mum of
the numbers

d`
∞(N)

H (i(X ), j(Y ))

for all isometric embeddings i : X → `∞(N) and j : Y → `∞(N).

Proof. This is a consequence of Theorem 32.8. �

Proposition 34.6. The Gromov–Hausdor� distance satis�es the triangle inequality: If X ,Y ,Z are
metric spaces, then

dGH (X ,Z ) 6 dGH (X ,Y ) + dGH (Y ,Z ).

Exercise 34.7. Prove Proposition 34.6.

Proposition 34.8. Two compact metric space (X ,dX ) and (Y ,dY ) are isometric if and only
dGH (X ,Y ) = 0.

Proof. If (X ,dX ) and (Y ,dY ), then trivially dGH (X ,Y ) = 0.

If dGH (X ,Y ) = 0, then, for every ε > 0, there are fε : X → Y and дε : Y → X as in Proposi-

tion 34.2. Let Γ ⊂ X and ∆ ⊂ Y be countable, dense subsets. Since X and Y are compact and by
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a diagonal sequence argument, there is a null-sequence (εn)n∈N such that, for every x ∈ Γ and

y ∈ ∆, the limits

f (x) B lim

n→∞
fεn (x) and д(y) B lim

n→∞
дεn (y)

exist. By (34.3), the maps f : Γ → Y and д : ∆ → X are isometric embeddings, and extend to

isometric embeddings f : X → Y andд : Y → X . By (34.4), f andд are mutual inverses. Therefore,

X and Y are isometric. �

De�nition 34.9. Denote byM the set of isometry classes of non-empty, compact metric spaces.

The metric space (M,dGH ) is called Gromov–Hausdor� space.

Theorem 34.10 (Edwards [Edw75, Theorems III.3 and III.7]). (M,dGH ) is separable and complete.

Proof. The subset of �nite metric spaces (X ,d) with d taking only rational values is dense in

(M,dGH ). Therefore, (M,dGH ) is separable.

Let (Xn,dXn )n∈N be a Cauchy sequence in (M,dGH ). By Proposition 34.5, there are isometric

embeddings in : Xn → `
∞(N) such that An B in(Xn) is a Cauchy sequence in C(`∞(N)). By

Theorem 33.5, (An)n∈N converges to a limit A∞ in C(`∞(N)). A∞ is complete and totally bounded;

hence, compact. By Proposition 34.5, Xn converges to X∞ B A∞ in (M,dGH ). �

Exercise 34.11. Prove that (M,dGH ) is contractible, has in�nite diameter, is a length space, and is

not locally compact.

Exercise 34.12. Prove that Gromov–Hausdor� limits of length spaces are length spaces.

De�nition 34.13. Let X be a set of isometry classes of metric spaces. X is uniformly bounded if

sup{diam(X ,d) : [X ,d] ∈ X} < ∞. X is uniformly totally bounded if, for every ε > 0, there is an

n ∈ N such that every [X ,d] ∈ X can be covered by at most n balls of radius ε .

De�nition 34.14. Let (X ,d) be a metric space and A ⊂ X . A is relatively compact if Ā is compact.

Theorem 34.15 (Gromov’s compactness criterion [Gro81b, p.64]). A subset X ⊂ M is relatively
compact if and only if it is uniformly bounded and uniformly totally bounded.

Proof. By Theorem 34.10, it su�ces to show that X is totally bounded. Since X is uniformly

bounded,

D B sup{diam(X ,d) : [X ,d] ∈ X} < ∞

Let ε > 0. Since X is uniformly totally bounded, there is an n ∈ N such that every [X ,d] ∈ X
contains n points x1, . . . , xn such that

X ⊂ Bε (x1) ∪ · · · ∪ Bε (xn).
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Therefore, (X ,d) and ({x1, . . . , xn},d) have Gromov–Hausdor� distance at most ε . There is a

metric
˜d on {1, . . . ,n} taking values in {0, ε, 2ε, . . . , dD/εeε} and such that, for a,b = 1, . . . ,n,

|d(xa, xb ) − ˜d(a,b)| 6 ε .

By construction, (X ,d) and ({1, . . . ,n}, ˜d) have Gromov–Hausdor� distance at most 2ε . Since

there are �nitely many metrics
˜d on {1, . . . ,n} as above and [X ,d] was arbitrary, it follows that X

is totally bounded. �

De�nition 34.16. Let (X ,d) be a metric space and r > 0. The r–covering number of (X ,d) is the

minimum number of balls of radius r required to cover X and denoted by

cov(X ,d ; r ).

De�nition 34.17. Let (X ,d) be a metric space and r > 0. The upper Minkowski dimension of

(X ,d) is

dimM (X ,d) B lim sup

r→0

log cov(X ,d ; r )

log(1/r )

and the lower Minkowski dimension of (X ,d) is

dimM (X ,d) B lim inf

r→0

log cov(X ,d ; r )

log(1/r )
.

In case both agree, we say that (X ,d) has Minkowski dimension dimM (X ,d) = dimM (X ,d).

Theorem 34.18. A subset X ⊂ M is relatively compact if and only if there exists a function
c : (0,∞) → N such that, for every [X ,d] ∈ X and r > 0,

cov(X ,d ; r ) 6 c(r ).

Theorem 34.19 ([Gro07, Theorem 5.3]). Let κ ∈ R, D > 0, and n ∈ N. There is a constant
c = c(κD2,n) > 0 such that if (M,д) is a complete Riemannian manifold of dimension n with

diam(M,д) 6 D and Ricд > (n − 1)κд,

then, for every 0 < r 6 D,
cov(M,д; r ) 6 c(κ,D,n)r−n .

Proof. Let x1, . . . , xm ∈ M such that

m⋃
a=1

Br (xa) = M

and, for a , b,

Br/2(xa) ∩ Br/2(xb ) = �.
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Denote by x? the center of the ball Br/2(xa) with smallest volume. By construction and by

Theorem 20.1,

m 6
vol(M)

vol(Br (x?))

6
vol(BD (x?))

vol(Br (x?))

6
V n
κ (D)

V n
κ (r )

. �

Corollary 34.20. Let κ ∈ R, D > 0, and n > 0. The subset of isometry classes of complete Riemannian
manifolds (M,д) of dimension n with

diam(M) 6 D and Ricд > (n − 1)κд

is relatively compact in (M,dGH ).

Exercise 34.21. Prove that the Minkowski dimension is lower semi-continuous on the closure of

the above subset.

Proposition 34.22 (Boileau). Let (M,д) be a complete Riemannian manifold of dimension n. For
every x ∈ M , and 0 < r 6 inj(M,д),

vol(Br (x)) > c(n)rn .

Proposition 34.23. Let (M,д) be a closed Riemannian manifold of dimension n and let δ ,V > 0. If
inj(M,д) > δ > 0 and vol(M,д) 6 V < ∞, then, for every 0 < r 6 δ ,

cov(M,д; r ) 6 c(n, δ ,V )r−n .

Proof. Let 0 < r 6 δ . If x1, . . . , xm is a maximal set of points such that, for a , b,

Br/2(xa) ∩ Br/2(xb ) = �,

then

mc(n)rn 6 V

and
m⋃
a=1

Br (xa) = M .

Therefore,

cov(M,д; r ) 6 c(n)Vr−n . �
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Corollary 34.24. Let V , δ > 0, and n > 0. The subset of isometry classes of compact Riemannian
manifolds (M,д) of dimension n with

inj(M,д) 6 δ and vol(M,д) 6 V

is relatively compact in (M,dGH ).

Exercise 34.25. Prove that the Minkowski dimension is lower semi-continuous on the closure of

the above subset.

Exercise 34.26 (*). Prove that the Minkowski dimension is continuous on the closure of the above

subset.

35 Pointed Gromov–Hausdor� convergence

De�nition 35.1. A pointed metric space is a metric space (X ,d) together with a point x ∈ X .

De�nition 35.2. Let (X , x,dX ) and (Y ,y,dY ) be two pointed metric spaces. The uniform pointed
Gromov–Hausdor� distance between (X , x,dX ) and (Y ,y,dX ) is denoted by

dpGH (X ,Y )

and de�ned as the in�mum of the numbers

dZH (i(X ), j(Y ))

for all pointed metric spaces (Z , z,dZ ) and all pointed isometric embeddings i : X → Z and

j : Y → Z .

For non-compact spaces, it is too restrictive to demand convergence with respect to dupGH .

De�nition 35.3. A metric space is called proper if every closed ball is compact.

De�nition 35.4. Denote byM? the set of isometry classes of proper, pointed metric spaces. The

pointed Gromov–Hausdor� topology is the topology onM? generated by the subbasis consisting

of the subsets{
[Y ,y,dY ] ∈ M? : there is an s > 0 with |r − s | < δ such that dpGH (Bs (x),Br (y)) < ε

}
for [X , x,dX ] ∈ M? and r , δ , ε > 0.
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Proposition 35.5. Let (Xn, xn,dXn )n∈N be a sequence of proper, pointed metric spaces and let
(X∞, x∞,dX∞) be a proper, pointed metric space. In the pointed Gromov–Hausdor� topology,

lim

n→∞
[Xn, xn,dXn ] = [X∞, x∞,dX∞]

if and only if, for every r > 0, there is a sequence (rn)n∈N converging to r such that

lim

n→∞
dpGH (Brn (xn),Br (x∞)) = 0.

Remark 35.6. The variation of r is needed to make sure that ((1 + 1/n) · Z, 0) converges to (Z, 0),
etc.

Theorem 35.7 (Gromov’s compactness criterion for the pointed Gromov–Hausdor� topology

[Gro81b, p.64]). A subset X ⊂ M? is relatively sequentially compact if, for every r > 0, the set
{Br (x) : [X , x,dX ] ∈ X} is uniformly totally bounded.

36 Topologies on the space of Riemannian manifolds

De�nition 36.1. Let k ∈ N0 and α ∈ (0, 1). Two pairs (M,д) and (N ,h) consisting of a Ck+1,α

manifold and a Ck ,α
Riemannian metric on this manifold are said to be equivalent if and only if

exists a Ck+1,α
di�eomorphism ϕ : M → N such that ϕ∗д = h. Denote by Rk ,α the corresponding

set of equivalence classes [M,д].

De�nition 36.2. Let k ∈ N0 and α ∈ (0, 1). The Ck ,α–topology is the coarsest topology on Rk ,α

in which, for every [M,д] ∈ Rk ,α and ε > 0, the set{
[M,h] : ‖h − д‖Ck ,α (M ,д) < ε

}
is open.

Proposition 36.3. A sequence ([Mν ,дν ])ν ∈N ∈
(
Rk ,α

)N converges to [M,д] in the Ck ,α topology if
and only if, for every ν � 1, there exists a Ck+1,α di�eomorphism ϕν : Mν → M such that

lim

ν→∞
‖(ϕν )∗дν − д‖Ck ,α (M ,д) = 0.

De�nition 36.4. Let k ∈ N0 and α ∈ (0, 1). Two triples (M, x,д) and (N ,y,h) consisting of aCk+1,α

manifold, a point in this manifolds, and a Ck ,α
Riemannian metric on this manifold are said to

be equivalent if and only if exists a Ck+1,α
di�eomorphism ϕ : M → N such that ϕ(x) = 0 and

ϕ∗д = h. Denote by R
k ,α
? the corresponding set of equivalence classes [M,д].
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De�nition 36.5. Let k ∈ N0 and α ∈ (0, 1). The pointed Ck ,α–topology is the coarsest topology

on R
k ,α
? in which, for every [M, x,д] ∈ Rk ,α? , R > 0, and ε > 0, the set consisting of those

[N ,y,h] for which there are an open neighborhood U of y and a pointed Ck+1,α
di�eomorphism

ϕν : (U ,y) → (BR(x), x) with

‖ϕ∗h − д‖Ck ,α (BR (x )) < ε

is open.

Proposition 36.6. A sequence ([Mν , xν ,дν ])ν ∈N ∈
(
Rk ,α

)N converges to [M, x,д] in theCk ,α topology
if and only if, for every R > 0 and ν �R 1, there exists open subset Uν of xν ∈ Mν and a pointed
Ck+1,α di�eomorphism ϕR,ν : (Uν , xν ) → (BR(x), x) such that

lim

ν→∞
‖(ϕR,ν )∗дν − д‖Ck ,α (BR (x )) = 0.

There are numerous interesting variations on these; in particular, the (pointed)W k ,p
topology.

37 Controlled atlases

De�nition 37.1. Let k ∈ N0, α ∈ (0, 1), Λ ∈ N and r , c > 0. Let (M,д) be a Riemannian manifold of

dimension n. An (r ,Λ, c)–controlled Ck+1,α atlas for (M,д) is a collection charts

{xλ : Uλ → B4r (0) ⊂ Rn : λ ∈ {1, . . . ,Λ}}

such that

M =
Λ⋃
λ=1

x−1

λ (Br (0));

for every λ ∈ {1, . . . ,Λ},

1. in the coordinate chart xλ , for every x ∈ B2r (0) and v ∈ Sn−1
,

1

2

6
n∑

a,b=1

дabv
avb 6 2;

2. in the coordinate chart xλ ,

‖дab − δab ‖Ck ,α
r
6 1;

and, for every λ, µ ∈ {1, . . . ,Λ},

3. for Ũλµ B B2r (0) ∩ xλ(Uλ ∩Uµ ),

‖xµ ◦ x−1

λ ‖Ck+1,α
r (Ũλµ )

6 c .

69



Lemma 37.2 (Fundamental Lemma of Riemannian Convergence Theory). Let k ∈ N0, 0 < β <
α < 1, Λ ∈ N, and r , c > 0. If (Mν ,дν )

∞
ν=1

be a sequence of Riemannian manifolds of dimension n
each of which admits an (r ,Λ, c)–controlled Ck+1,α atlas, then, after passing to a subsequence, there
is a Ck+1,β manifold M , a Ck ,β Riemannian metric д on M , and a sequence of Ck+1,β embeddings
ϕν : Mν → M such that:

1.
⋃
ν ∈N ϕν (Mν ) = M ; in fact, if theMν are closed, then ϕν are di�eomorphism.

2. limν→∞‖(ϕν )∗дν − д‖Ck ,β (ϕν (Mν ),д) = 0.

The proof relies on the following almost trivial observation.

De�nition 37.3. The graph of a map f : X → Y is the subset Γf ⊂ X × Y de�ned by

Γf B {(x, f (x)) : x ∈ X }.

Proposition 37.4. Let n,m ∈ N, k ∈ N0, and 0 < β < α < 1. Let дν ∈ Ck ,α (Bn
2
(0), Symn(R))

N,
(fν ) ∈ C

k+1,α (Bn
2
(0),Rm)N, and f ∈ Ck+1,α (Bn

2
(0);Rm). LetU be a tubular neighborhood of Γf and

Π : U → Γf the projection map. Suppose that

specдν ∈ [1/2, 2], ‖дν − 1‖Ck ,α 6 1, lim

ν→∞
‖ fν − f ‖Ck+1,α = 0,

and that, for every ν ∈ N, Γfν ⊂ U . De�ne ϕν : Bn
2
(0) → Bn

2
(0) by

ϕν (x) B prRn ◦ Π(x, fν (x))

The following hold:

1. limν→∞‖ϕν − id‖Ck+1,α = 0; in particular, for ν � 1, ϕν |B1(0) is a C
k+1,α embedding.

2. There is a д ∈ Ck ,β (B1(0); Symn(R)) satisfying specд ∈ [ 1
2
, 2] and such that, after passing to a

subsequence,
lim

ν→∞
‖(ϕν )∗дν − д‖Ck ,β (B1(0))

= 0.

Proof. The assumed Ck+1,α
convergence of (fν ) to f implies the Ck+1,α

convergence of (ϕν ) to

prRn ◦ Π(x, f (x)) = id.

By hypothesis and construction of ϕν ,

sup

ν ∈N
‖(ϕν )∗дν ‖Ck ,α (B1(0))

< ∞.

This implies the asserted convergence after passing to a subsequence. �
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Proof of Lemma 37.2. Choose a smooth function χ ∈ C∞
0
(B4r (0), [0, 1]) with χ |B2r (0) = 1. For every

ν ∈ N, choose an (r ,Λ, c)–controlled Ck+1,α
atlas {xλ,ν : Uλ,ν → B4r (0) : λ ∈ {1, . . . ,Λ}}. For

every ν ∈ N and λ ∈ {1, . . . ,Λ}, de�ne the embedding ιν : Mν →
(
Rn+1

)Λ
by

ιν (x) B
(
χ (xνλ(x)) · x

ν
λ(x), χ (x

ν
λ(x))

)Λ
λ=1
.

By construction,

ιν (Mν ) =

Λ⋃
λ=1

Vλ,ν with Vλ,ν B ιν (x−1

λ,ν (B2r (0)))

and

Vλ,ν = Γfλ,ν

for fλ,ν : B2r (0) → R ×
(
Rn+1

)Λ−1

de�ned by

fλ,ν (y) B
[
1;

(
χ (xµ ◦ x−1

λ (y)) · xµ ◦ x
−1

λ (y), χ (xµ ◦ x
−1

λ (y))
)
µ ∈{1, ..., ˆλ, ...,Λ}

]
.

Furthermore,

sup

λ,ν
‖ fλ,ν ‖Ck+1,α

r
< ∞.

Let γ ∈ (β,α). By the above, there are fλ : B2r (0) → R ×
(
Rn−1

)Λ−1

such that, after passing to a

subsequence,

lim

ν→∞
‖ fλ,ν − fλ ‖Ck+1,γ = 0.

The union of the graphs of fλ forms a Ck+1,γ
submanifold

M B
Λ⋃
λ=1

Γfλ ⊂
(
Rn+1

)Λ
.

In fact, M is already the union of the graphs of the restrictions fλ |Br (0).
Let U be a tubular neighborhood of M ⊂ RΛ(n+1)

and Π : U → M the projection map. For

ν � 1, ιν (Mν ) ⊂ U and we de�ne ϕν : Mν → M by

ϕν B Π ◦ ιν .

Proposition 37.4 constructs a Ck ,β
Riemannian metric д on M and shows that, after passing to a

subsequence, (ϕν )∗дν converges to д in Ck ,β
. �
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38 Harmonic coordinates

De�nition 38.1 (Einstein [Ein16]). Let (M,д) be a Riemannian manifold of dimension n. A coordi-

nate system x = (x1, . . . , xn) : M ⊃ U → Ũ ⊂ Rn is harmonic if, for every a = 1, . . . ,n,

∆xa = 0.

Proposition 38.2. Let (M,д) be a Riemannian manifold of dimension n. For every x ∈ M , there is an
open neighborhoodU and a harmonic coordinate system x = (x1, . . . , xn) : M ⊃ U → Ũ ⊂ Rn .

Proof. Lety1, . . . ,yn : M ⊃ V → R be normal coordinate system withya(x) = 0. In this coordinate

system,

∆f = −
n∑

a,b=1

1√
detд

∂a

(√
detд · дab∂b f

)
.

Since dд vanishes at 0,

(∆ya)(x) = 0.

For 0 < ε � 1, let xa : Bε (x) → R be the unique solution of the Dirichlet problem

∆xa = 0 on Bε (x) and xa = ya on ∂Bε (x).

By Schauder theory (see, e.g., Gilbarg and Trudinger [GT01, Chapter 6]),

‖xa − ya ‖C2,α (Bε (x )) . ‖∆(x
a − ya)‖C0,α (Bε (x ))

= ‖∆ya ‖C0,α (Bε (x ))

. εα .

Since 0 < ε � 1, x1, . . . , xn is a coordinate system; by construction, it is harmonic. �

Proposition 38.3. Let (M,д) be a Riemannian manifold of dimension n. In a harmonic coordinate
system x1, . . . , xn : M ⊃ U → R,

∆f = −
n∑

a,b=1

дab∂a∂b f .

Proof. Since xc is harmonic,

0 = ∆xc

= −

n∑
a,b=1

1√
detд

∂a

(√
detд · дab∂bx

c
)

= −

n∑
a=1

1√
detд

∂a

(√
detд · дac

)
.
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Therefore,

∆f = −
n∑

a,b=1

1√
detд

∂a

(√
detд · дab∂b f

)
= −

n∑
a,b=1

1√
detд

∂a

(√
detд · дab

)
∂b f −

n∑
a,b=1

дab∂a∂b f

= −

n∑
a,b=1

дab∂a∂b f . �

Proposition 38.4 (Lanczos [Lan22]). Let (M,д) be a Riemannian manifold of dimension n. In a
harmonic coordinate system x1, . . . , xn : M ⊃ U → R,

1

2

∆дab = Ricab +Q(д,dд).

Proof. By Proposition 18.5 for f = xa ,

1

2

∆д(∇xa,∇xa) = −|Hessxa |2 − Ric(∇xa,∇xa).

Since ∇xa =
∑n
b=1

дab∂b ,

1

2

∆дaa = −|Hessxa |2 − Ric
aa .

Polarizing this identity yields

1

2

∆дab = −
〈
Hessxa,Hessxb

〉
− Ric

ab .

From
n∑

b=1

дabд
bc = δca

it follows that

0 =

n∑
b=1

(∆дab )д
bc − 2

〈
∇дab ,∇д

bc
〉
+ дab (∆д

bc ).
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Therefore,

∆дad =
n∑

b=1

(∆дab )д
bcдcd

=

n∑
b ,c=1

2

〈
∇дab ,∇д

bc
〉
дcd − дabдcd (∆д

bc )

= 2

n∑
b ,c=1

〈
∇дab ,∇д

bc
〉
дcd + дabдcd

〈
Hessxb ,Hessxc

〉
+ дabдcdRic

bc

= 2Ricad + 2Qad

with

Qad =

n∑
b ,c=1

〈
∇дab ,∇д

bc
〉
дcd + дabдcd

〈
Hessxb ,Hessxc

〉
. �

Remark 38.5. See DeTurck and Kazdan [DK81] for a discussion of the use of harmonic coordinates

for question of regularity in Riemannian geometry.

Remark 38.6. The relation between harmonic coordinates and the DeTurck trick is clari�ed in

Graham and Lee [GL91].

39 The harmonic radius

De�nition 39.1. Let k ∈ N0, α ∈ (0, 1), x ∈ Rn , r > 0, and U ⊂ R. For f ∈ Ck ,α (U ), we de�ne the

Hölder norm at scale r by

‖ f ‖Ck ,α
r (U ) B

∑
|I |6k

r |I | ‖∂I f ‖C0(U ) + r
|I |+α [∂I f ]C0,α (U ).

Exercise 39.2. If f : Br (0) → R and fr B f (r ·) : B1(0) → R, then

‖ f ‖Ck ,α
r (Br (0))

= ‖ fr ‖Ck ,α (B1(0))
.

In our upcoming discussion, the following re�nements of the injectivity radius will play an

central role.

74



De�nition 39.3. Let (M,д) be Riemannian manifold. Let k ∈ N0 and α ∈ (0, 1). For x ∈ M , the

Ck ,α harmonic radius of (M,д) at x , denoted by

rH (M,д;k,α ;x),

is the supremum of those r > 0 for which there exists a harmonic coordinate system x : U → Br (0)
such that x(x) = 0, with respect to this coordinate system, for every v ∈ Sn−1

,

1

2

6
n∑

a,b=1

дabv
avb 6 2 and ‖дab − δab ‖Ck ,α

r
6 1.

The Ck ,α harmonic radius of (M,д) is

rH (M,д;k,α) B inf

x ∈M
rH (M,д;k,α ;x).

Remark 39.4. The choice of
1

2
, 1, and 2 is somewhat arbitrary.

Proposition 39.5. Let k ∈ N0, α ∈ (0, 1). If (M,д) is a Riemannian manifold and x ∈ M , then

rH (M,д;k,α, x) > 0.

In particular, ifM is closed, then
rH (M,д;k,α) > 0.

Proof. Since M is closed, it su�ces to prove that, for every x ∈ M , rH (1,α ;x) > 0. By Proposi-

tion 38.2, there is some harmonic coordinate system x : U → Rn with x ∈ U . After shrinking

U and shifting and scaling x, the coordinate system takes values in Br (0), satis�es x(x) = 0, and

дab (0) = δab . For su�ciently small r > 0, the estimates hold. �

Proposition 39.6. Let n ∈ N, k ∈ N0, and α ∈ (0, 1). Let (M,д) be a Riemannian manifold of
dimension n. If x : U → Ũ and y : V → Ṽ are harmonic coordinates systems such that:

1. 1

2
6

∑n
a,b=1

дabv
avb 6 2,

2. ‖дab − δab ‖Ck ,α
r
6 1, and

3. B4r (0) ⊂ x(U ∩V ),

then
‖y ◦ x−1‖Ck+2,α

r (B2r (0))
6 c(n,k,α).

Proof. Denote by дab the Riemannian metric in the coordinate system y. By Proposition 38.3 and
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since x = (x1, . . . , xn) is a harmonic coordinate system, for every a ∈ {1, . . . ,n},

∆
(
xa ◦ y−1

)
=

n∑
b ,c=1

дbc∂b∂c
(
xa ◦ y−1

)
= 0.

Since |x ◦ y−1 | 6 8r , by interior Schauder estimates

‖x ◦ y−1‖Ck+2,α
r (B2r (0))

6 c(n,k,α). �.

Proposition 39.7. Let n ∈ N, k ∈ N0, α ∈ (0, 1), and δ > 0. If (M,д) is a closed Riemannian manifold
of dimension n with

rH (M,д;k,α) > δ ,

then, for r = r (δ ) > 0, Λ B cov(M,д; r/2), and c = c(n,k,α), there exists a (r ,Λ, c)–controlled
Ck+1,α atlas for (M,д).

Proof. It follows directly from the hypothesis, that there is an r = r (δ ) such that, for every x ∈ M ,

there is a harmonic coordinate system x : V → B64r (0) satisfying x(x) = 0,

1

2

6
n∑

a,b=1

дabv
avb 6 2 and ‖дab − δab ‖Ck ,α

r
6 1.

These conditions imply that, for every t ∈ [0, 64],

B 1

2
tr (x) ⊂ x−1(Btr (0)) ⊂ B2tr (x).

Choose x1, . . . , xΛ ∈ M such that

Λ⋃
λ=1

Br/2(xλ) = M .

For every λ ∈ {1, . . . ,Λ}, choose a harmonic coordinate system xλ : Uλ → B4r (0) which is the

restriction of a harmonic coordinate system bλ : Vλ → B64r (0) as above. To see that this is an

(r ,Λ, c)–controled Ck+1
atlas, observe that

Λ⋃
λ=1

x−1

λ (Br (0)) ⊃
Λ⋃
λ=1

Br/2(xλ) = M

and Proposition 39.6 applies because, for every λ, µ ∈ {1, . . . ,Λ}, if

x−1

λ (B2r (0)) ∩ x−1

µ (B4r (0)) , �,
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then

d(xλ, xµ ) 6 12r ;

and, therefore,

B8r (xλ) ⊂ B20r (xµ );

hence,

B4r (0) ⊂ xλ(Vλ ∩Vµ ). �

40 Compactness under Ricci and injectivity radius bounds

Theorem 40.1 (Anderson [And90a, Theorem 1.1], Hebey and Herzlich [HH97, Main Theorem]). Let
n ∈ N, c,D, δ > 0, k ∈ N0, and α ∈ (0, 1). The set of isometry classes of closed Riemannian manifold
(M,д) of dimension n satisfying

diam(M,д) 6 D, inj(M,д) > δ , and |∇`Ricд | 6 c for all ` = 0, . . . ,k,

is relatively compact in the Ck+1,α–topology.

This result has the following curious corollary.

Corollary 40.2. There are only countably many di�eomorphism types of closed manifolds.

However, there is also the following.

Theorem 40.3 (Taubes [Tau87, Theorem 1.1]). There exists an uncountable family of di�eomorphism
classes of oriented 4–manifolds which are homeomorphic to R4.

This follows immediately from Lemma 37.2, Proposition 39.7, and the following lower bound

for the harmonic radius.

Theorem 40.4 (Anderson [And90a, Main Lemma 2.2], Hebey and Herzlich [HH97, Theorem 6]).
Let n ∈ N, k ∈ N0, δ , c > 0, and α ∈ (0, 1). If (M,д) is a closed Riemannian manifold of dimension n
satisfying

inj(M,д) > δ and |∇`Ricд | 6 c for all ` = 0, . . . ,k,

then
rH (M,д;k,α) > ε(n,k,α, c, δ ) > 0.

Remark 40.5. The case k = 0 is due to Anderson [And90a]; the general case is due to Hebey

and Herzlich [HH97]. Anderson and Cheeger [AC92] proved that Theorem 40.4 for k = 0 holds

assuming only a Ricci lower bound.
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Proof of Theorem 40.4. If the assertion fails, then there exists a sequence of (Mν ,дν )ν ∈N of Rieman-

nian manifolds satisfying

inj(Mν ,дν ) > δ and |∇`Ricдν | 6 c,

for ` = 0, . . . ,k , and such that

εν B rH (Mν ,дν ;k,α) → 0 as ν →∞.

For every ν ∈ N, choose xν ∈ Mν such that

rH (Mν ,дν ;k,α ;xν ) = εν .

Construction of a rescaled limit. For every ν ∈ N, de�ne sν : Bε−1

ν
(0) → Mν by

sν (y) B expxν (ενy)

and set

д̃ν B ε−2

ν s∗νдν .

By construction, for every R > 0,

1. ‖Ricд̃ν ‖Ck (BR (0)) → 0,

2. supx ∈BR (0) injx (Bε−1

ν
(0), д̃ν ) → ∞, and

3. infx ∈BR (0) rH (Bε−1

ν
(0), д̃ν ;k,α) = rH (Bε−1

ν
(0), д̃ν ;k,α ; 0) = 1.

Therefore, by Proposition 39.7, for R > 0, there exists a Λ = Λ(R) ∈ N and, for every ν �R 1,

there exists a (k,Λ, c)–controlled atlas Ck+2,α
harmonic atlas for (BR(0),дν ). By Lemma 37.2, after

passing to a subsequence (BR(0),дν ) converges to a Riemannian manifold (MR,дR) in the Ck ,β
–

topology for every β ∈ (0,α). Since R > 0 is arbitrary, a diagonal sequence argument shows that,

there is a Riemannian manifold (M,д) such that, after passing to a subsequence, for every R > 0

and β ∈ (0,α), the sequence (BR(0), д̃ν ) converges in the Ck+1,β
–topology to an open submanifold

MR ⊂ M ; more precisely, there exists a sequence of maps ϕν : Bε−1

ν
(0) → M such that, for every

β ∈ (0,α),

1. ϕν is a Ck+2,β
embedding,

2. (ϕν )∗д̃ν converges to д in the Ck+1,β
–topology, and

3. the sequence ϕν (0) converges to a limit x? ∈ M .

That is: (Bε−1

ν
(0), 0, д̃ν )ν ∈N converges to (M, x?,д) in the pointed Ck+1,β

topology.
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Improving convergence. By Proposition 38.4, for every R > 0 and ν �R 1, in the a chart of the

harmonic atlas constructed above,

−
1

2

n∑
c ,d=1

д̃cdν ∂c∂d (д̃ν )ab =
(
Ricд̃ν

)
ab +Q(д̃ν ,dд̃ν ).

Since |Ricд̃ν | tends to zero, elliptic theory shows that, for every p ∈ [1,∞),

‖дν ‖W k+2,p 6 c(p).

Therefore, the conclusion of the previous paragraph, actually, hold for every β ∈ (0, 1).

Analysis of the limit. A priori, д is only a Ck+1,α
metric. However, since |Ricд̃ν | tends to zero,

with respect to the limits of the chart of the harmonic atlas constructed above,

−
1

2

n∑
c ,d=1

дcd∂c∂d (дν )ab = Q(д,dд).

Therefore, elliptic regularity implies that д is a smooth Ricci-�at metric. Furthermore, by (2),

inj(M,д) = ∞. By Theorem 27.12, (M,д) is isometric to (Rn,д0).

The contradiction. Denote by x = (x1, . . . , xn) the standard coordinates onRn . De�ne yν : B4(0) →

Vν ⊂ Rn by

yν = x ◦ ϕν .

These satisfy

lim

ν→0

‖∆дν ỹ
a
ν ‖Ck ,α = 0.

Therefore, arguing as in the proof of Proposition 38.2, for ν � 1, there exists a harmonic coordinate

system xν : B4(0) → Uν ⊂ Rn with

lim

ν→∞
xν (0) = 0 and B2(0) ⊂ Uν .

Therefore, for ν � 1,

rH (Bε−1

ν
(0), д̃ν ;k + 1,α ; 0) > 2;

contradicting (3). �

The proof of Theorem 40.1 has the following consequence.

Theorem 40.6 (Anderson [And90a, Proposition 3.4]). Given n ∈ N, D, δ > 0, and λ ∈ R there exists
a constant ε = ε(n,D, δ , λ) > 0 such that if (M,д) is a closed Riemannian manifold of dimension n
with

diam(M,д) 6 D, inj(M,д) > δ , and ‖Ricд − λд‖L∞ 6 ε,

then there exists a Ricci �at metric onM .
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41 Compactness under Ricci bounds and volume pinching

Theorem 41.1 (Anderson [And90a, Proof of Theorem 1.2]). Given n ∈ N, k ∈ N0, r , c > 0, and
α ∈ (0, 1), exists an δ = δ (r , c,α) > 0 such that the following holds. If (M,д) is a closed Riemannian
manifold of dimension n satisfying

vol(Br (x))

vol(Bnr (0))
> 1 − δ and |∇`Ricд | 6 c for all ` = 0, . . . ,k,

then
rH (M,д;k,α) > ε(n,k,α, c) > 0.

The proof relies on the following result, which replaces the application of the Theorem 27.12

in the proof of Theorem 40.4. The details of the proof are left as an exercise.

Theorem 41.2 (Anderson [And90a, Gap Lemma 3.1]). Given n ∈ N, there exists an ε = ε(n) > 0

such that if (M,д) is complete Riemannian manifold of dimension n which is Ricci-�at and, for some
x ∈ M , satis�es

lim

r→∞

vol(Br (x))

vol(Bnr (0))
> 1 − ε,

then (M,д) is isometric to (Rn,д0).

Proof. Suppose not; then there exists a null-sequence (εν ) and a sequence of complete Ricci �at

manifolds (Mν ,дν ) of dimension n none of which are isometric to (Rn,д0) and, for every ν ∈ N,

there exists a xν ∈ Mν with

(41.3) lim

r→∞

volдν (Br (xν ))

vol(Bnr (0))
> 1 − εν ,

For every ν ∈ N, choose yν ∈ Bν (xν ) realizing the minimum of the function

cν (y) B
injy (Mν ,дν )

ν − d(xν ,y)
.

By Theorem 27.12, injyν (Mν ,дν ) < ∞. Therefore, after rescaling, which does not a�ect (41.3) and

Ricci-�atness, we can assume that

injyν (Mν ,дν ) = 1.

Since

cν (y) B
injy (Mν ,дν )

ν − d(xν ,y)
.

By construction, for every R > 0 and y ∈ BR(yn), injy (Mν ,дν ) is bounded below independent of ν .

Therefore, (Mν , xν ,дν ) converges in the pointed C1,α
topology to a pointed complete Riemannian

manifold (M, x,д) which is Ricci �at and satis�es

lim

r→∞

vol(Br (x))

vol(Bnr (0))
= 1.
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Therefore, (M,д) is isometric to (Rn,д0). However, the injectivity radius is lower semi-continuous

with respect to the C1,α
topology. This implies injx (R

n,д0) = 1, a contradiction. �

Theorem 41.4 (Anderson [And90a, Theorem 1.2]). Given n ∈ N and c > 0, there exists an ε =
ε(n, c) > 0 such that if (M,д) is a closed Riemannian manifold of dimension n satisfying

(41.5) (n − 1)д 6 Ricд 6 cд and
vol(M,д)

vol(Sn,д1)
> 1 − ε,

then (M,д) is di�eomorphic to Sn .

Proof. Suppose not; then there exists a null-sequence (εν ) and a sequence (Mν ,дν ) of closed

Riemannian manifold of dimension n satisfying

(41.6) (n − 1)дν 6 Ricдν 6 cдν and

vol(M,дν )

vol(Sn,д1)
> 1 − εν

and all of which are not di�eomorphic to Sn . By Theorem 17.1,

diam(Mν ,дν ) 6 π .

In fact, by Theorem 20.1,

lim

ν→∞
diam(Mν ,дν ) = π

and, for every r > 0,

lim

ν→∞

BMν
r (x)

BS
n

r (?)
= 1.

By Theorem 41.1, after passing to a subsequence (Mν ,дν ) converges in the C1,α
topology to a

limit (M,д). A close reading of the proof of Theorem 20.1 reveals that |Ricдν − (n − 1)дν | tends

zero almost everywhere; hence, limν→∞‖Ricдν − (n − 1)дν ‖Lp = 0 for every p ∈ [1,∞).

Exercise 41.7. Actually prove this.

Therefore, (M,д) is weakly Einstein; hence, Einstein:

Ricд = (n − 1)д.

Hence, by Theorem 41.1, (M,д) is isometric to (Sn,д1). This implies that, for ν � 1, Mν is already

di�eomorphic to Sn ; a contradiction. �
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42 Harmonic curvature

Proposition 42.1. For every Riemannian manifold (M,д)

d
∗
∇R =

n∑
b ,c ,d=1

(∇cRicbd − ∇dRicbc ) · e
b ⊗ ec ⊗ ed .

Remark 42.2. Thinking of Ric as a T ∗M valued 1–form and raising the d–index, the right-hand

side can be identi�ed with d∇Ric ∈ Ω2(M,T ∗M).

Corollary 42.3. If (M,д) is a Riemannian manifold with

∇Ricд = 0,

then it has harmonic curvature; i.e.:
d
∗
∇R = 0.

Remark 42.4. See Derdziński [Der82] for a (outdated) survey of Riemannian manifolds with

harmonic curvature.

Proof of Proposition 42.1. Using the symmetry (5.3) and the di�erential Bianchi identity (5.5),

∇eaR
d

abc + ∇ecR
a

abd + ∇edR
c

aba = 0.

Therefore

d
∗
∇R = −

n∑
a,b ,c ,d=1

∇eaR
d

abc · e
b ⊗ ec ⊗ ed

=

n∑
a,b ,c ,d=1

(
∇ecR

a
abd − ∇edR

a
abc

)
· eb ⊗ ec ⊗ ed

=

n∑
b ,c ,d=1

(
∇ec Ricbd − ∇ed Ricbc

)
· eb ⊗ ec ⊗ ed . �

82



43 ε–regularity

Theorem 43.1 (Anderson [And89, Lemma 2.1]). Given n ∈ N and cS > 0, there are constants
ε0 = ε0(n, cS ) > 0 and c = c(n, cS ) > 0 such that the following holds. Let (M,д) be a Riemannian
manifold of dimension n with harmonic curvature and ( n

n−2
, 2)–Sobolev constant at most cS . If x ∈ M

and r > 0 are such that
ε B

ˆ
Br (x )
|R |n/2 6 ε0,

then
sup

y∈Br /4(x )
|R |2(y) 6 cεr−4.

Remark 43.2. In the context of Yang–Mills theory, a slight improvement of this result is due to

Uhlenbeck [Uhl82, Theorem 3.5]. She in turn derives it from an extension of Theorem 30.3 due

to Morrey [Mor08, Theorem 5.3.1]. There is an important strengthening of Uhlenbeck’s due to

Nakajima [Nak88, Lemma 3.1], using Price’s monotonicity formula [Pri83] and the Heinz trick

[Hei55]. The proof given below is rather similar to Nakajima’s argument.

Proof of Theorem 43.1. Since the Levi-Civita connection is a Yang–Mills, by the Bochner–Weitzenböck

formula,

∇∗∇R = R ?R.

Therefore,

∆|R |2 6 c(n)|R |3.

De�ne f : B̄ r
2

(x) → [0,∞) by

f (y) B
[ r
2

− d(x,y)
]

4

|R |(y)2.

The assertion follows once we prove that

f 6 c(n, cS )ε .

Since f is non-negative and vanishes on the boundary of B r
2

(x), there is a y? ∈ B r
2

(x) with

f (y?) = max

y∈B r
2

(x )
f (y).

Set

s? B
1

2

[ r
2

− d(x,y?)
]

and c? B |R |(y?).
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Suppose y ∈ Bs?(y?). By the triangle inequality,

r

2

− d(x,y) >
r

2

− d(x,y?) − s?

= s?.

Therefore and since f (y) 6 f (y?),
|R |(y) 6 16c?.

Hence, on Bs?(x)
∆|R |2 6 c(n)c3

?.

By [GT01, Theorem 9.20], for every s ∈ (0, s?],

c2

? = |R |(y?)
2

6 c(n, cS )

(
s−n

ˆ
Bs (y0)

|R |2 + s2c(n)c3

?

)
6 c(n, cS )

(
s−4ε + s2c3

?

)
.

This can be rewritten as

s4c2

? 6 c(n, cS )
(
ε + s6c3

?

)
.

Setting

t = t(s) B s2c?

the above inequality reads

t2(1 − ct) 6 cε .

with c = c(n, cS ). Since ε 6 ε0 � 1, the corresponding equation t2(1 − ct) = cε has two small roots

t± ∼
√
cε and one large root. Since t(0) = 0, by continuity t(s) 6 |t± | 6 2

√
cε for all s ∈ [0, s?].

Therefore,

f (y?) = 8s4

?c
2

? 6 c(n, cS )ε . �

44 Compactness under integral curvature bounds

Theorem 44.1 (Anderson [And90a, Proposition 2.5]). Given n ∈ N, R, c,v > 0, and α ∈ (0, 1), exists
an ε(n, ca,v) > 0 such that the following holds. If (M,д) is a Riemannian manifold of dimension n
and x ∈ M such that

|Ricд | 6 c, vol(BR(x)) > v, and
ˆ
B4R (x )

|Rд |
n/2 6 ε,

then
rH (M,д; 1,α ;x) > r (n,κ,v,α) > 0.
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Proof. Let ε be as in Theorem 43.1. If the assertion does not hold with this choice; then is a sequence

of counterexamples whose limit gives rise to a pointed complete Riemannian manifold (M, x,д)
with

Ricд = 0, rH (M,д, 1,α) 6 1, vol(Br (x)) > c(v)rn > 0, and

ˆ
M
|Rд |

n/2 6 ε .

But by Theorem 43.1, for every r > 0,

sup

y∈Br /4(x )
|Rд |

2(y) 6 cεr−4.

Taking the limit r → ∞ proves that (M,д) is �at. Since it also has Euclidean volume growth, it

must be Rn . But then its harmonic radius is∞; a contradiction. �

Theorem 44.2 (Anderson [And90a, Theorem 2.6]). Given n ∈ N, R, c,v > 0, and α ∈ (0, 1), If
(Mν ,дν ) is a sequence of Riemannian manifolds of dimension n satisfying

|Ricдν | 6 c, vol(Mν ,дν ) > v, and
ˆ
M∇
|Rд |

n/2 6 c,

then, after passing to a subsequence, (Mν ,дν ) converges in the Gromov–Hausdor� topology to a
Riemannian orbifold (M,д) with a �nite number of singular points, each of which so modeled on a
cone over Sn−1/Γ; д is a continuous Riemannian metric and C1,α on the regular part ofM .

Proof sketch. For every r > 0, cover Mν balls of radius r . On the balls with

ˆ
Br (x )
|R |n/2 6 ε

on obtains a harmonic radius bound. As r goes to zero, for �xed ν , these balls cover all of Mν . This

gives theC1,α
convergence of an exhaustion of Mν . The limit of this will be the regular part of the

orbifold. For more details see [And89]. �

Remark 44.3. Anderson [And89] proved that in odd dimension orbifold singularities cannot appear

since RP2n
does not bound an orientable manifold and is the only relevant space form. Thus in

odd dimensions an integral curvature bound of the above form gives compactness.

45 Weyl curvature tensor

De�nition 45.1. The Kulkarni–Nomizu product is de�ned as

(h ? k)(u,v,w, z) B h(u, z)k(v,w) + h(v,w)k(u, z) − h(u,w)k(v, z) − h(v, z)k(u,w).
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Proposition 45.2.

1. If e1, . . . , en is an orthonormal basis, then

n∑
a=1

(h ? д)(ea,v,w, ea) = (n − 2)h(v,w) + trh · 〈v,w〉.

2. (д ? д)(u,v,w, z) = −2〈u ∧v,w ∧ z〉.

Proof. If e1, . . . , en is an orthonormal basis, then

n∑
a=1

(h ? д)(ea, eb , eb , ea)

=

n∑
a=1

h(ea, ea)д(eb , eb ) + h(eb , eb )д(ea, ea) − h(ea, eb )д(eb , ea) − h(eb , ea)д(ea, eb )

=

n∑
a=1

h(ea, ea) + (n − 2)h(eb , eb ).

This implies the assertion. �

De�nition 45.3. The Weyl curvature tensorW ∈ Γ(S2Λ2T ∗M) of (M,д) is de�ned by

W (u,v,w, z) B 〈R(u,v)w, z〉 −
1

n − 2

(Ric
◦
д ? д)(u,v,w, z) −

scalд

2n(n − 1)
(д ? д)(u,v,w, z).

De�nition 45.4. In dimension 4, the self-dual Weyl curvature tensorW+ ∈ Γ(S2Λ+T ∗M) and the

anti-self-dual Weyl curvature tensorW− ∈ Γ(S2Λ−T ∗M) are the corresponding components of

W .

46 Hitchin–Thorpe inequality

Theorem 46.1 (Hitchin–Thorpe inequality). If (M,д) is a closed, oriented 4–manifold, then

(46.2) 2χ (M) ± 3σ (M) =
1

4π 2

ˆ
M

2|W± |
2 − |Ric

◦
д |

2 +
scal

2

д

24

.

In particular, if д is Einstein,

2χ (M) ± 3σ (M) =
1

4π 2

ˆ
M

2|W± |
2 +

scal
2

д

24

> 0.

Equality holds in (46.1) if and only if д is �at or the universal cover of (M,д) is a K3 surface equipped
with a Ricci-�at metric.
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This is a direct consequence of the following (tedious to prove) Chern–Weil formulae.

Proposition 46.3.

χ (M) =
1

8π 2

ˆ
M
|W |2 − |Ric

◦
д |

2 +
scal

2

д

24

.

Proposition 46.4.

σ (M) =
1

12π 2

ˆ
M
|W+ |

2 − |W− |
2.

47 The metric uniformization theorem

De�nition 47.1. Let (Σ,д) be a Riemannian 2–manifold. The Gauß curvature of (Σ,д) is the

function K = Kд ∈ C
∞(Σ) characterized by the property that, for every non-zero v ∧w ∈ Λ2TM ,

Kд B

〈
Rд(v,w)w,v

〉
|v ∧w |2

.

The curvature form of (Σ,д) is the 2–form Ω = Ωд ∈ Ω
2(M) de�ned by

Ωд B Kд volд .

Remark 47.2. The Gauß curvature and the scalar curvature of (Σ,д) are related by

scalд = 2Kд .

Theorem 47.3 (Gauß–Bonnet). For every closed, connected, oriented Riemannian 2–manifold,
ˆ
Σ
Kд volд = 2π χ (Σ).

Theorem 47.4 (Wallach and Warner [WW70]). Let Σ be a closed, connected, oriented 2–manifold
and let Ω̄ ∈ Ω2(M). There exists a Riemannian metric д such that

Ωд = Ω̄

if and only if

(47.5)

ˆ
Σ
Ω̄ = 2π χ (Σ).

In fact, if (47.5), then every conformal class contains a Riemannian metric д satisfying Ωд = Ω̄.
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Proposition 47.6. Let (M,д) be a Riemannian manifold of dimension n, f ∈ C∞(M), and

д̃ = e2f д.

The following hold:

д̃∇LC

v w = д∇LC

v w + df (v)w + df (w)v − 〈v,w〉∇f and(47.7)

scalд̃ = e−2f
(
scalд + 2(n − 1)∆д f + (n − 2)(n − 1)|∇д f |

2

д

)
.(47.8)

Proof. A direct computation shows that
д̃∇LC

as de�ned above is both metric with respect to д̃
and torsion-free. The computation of scalд̃ is an exercise. (It is a bit easier if you specialize to

n = 2) �

Proof of Theorem 47.4. By Theorem 47.3, it su�ces to construct д provided (47.5) is satis�ed. Let д
be an arbitrary Riemannian. By (47.5),

ˆ
Σ
Ω̄ =

ˆ
Σ
Ωд .

Therefore, by Hodge theory, there exists an f ∈ C∞(Σ) such that

Ω̄ = Ωд − d ∗ df .

By Proposition 47.6,

Ωe2f д =
1

2

scale2f дvole2f д

=
1

2

e−2f (scalд + ∆д f )e
2f

volд

= Ωд + ∆д f · volд

= Ωд − d ∗ df . �

Theorem 47.9 (Metric Uniformization Theorem). Let (Σ, j) be a closed Riemann surface. In the
conformal class determined by j there is a Riemannian metric д satisfying

scalд =


1 if χ (Σ) = 2,

0 if χ (Σ) = 0,

−1 if χ (Σ) 6 −2.

If χ (Σ) , 0, then д is unique up to scaling by a constant; otherwise, д is unique.

The cases χ (Σ) = 2 is best treated separately as follows.
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Theorem 47.10 (Riemann–Roch). If Σ is a closed Riemann surface of genus д and D is a divisor on Σ,
then

dimH 0(Σ,OΣ(D)) − dimH 1(Σ,OΣ(D)) = 1 − д + degD.

Proposition 47.11. If Σ is a closed Riemann surface of genus д and x ∈ Σ, then there exists a non-
constant meromorphic function on Σ which has a pole at x of order at most д + 1 and is holomorphic
away from x .

Proof. Set

D = (д + 1) · {x}.

By Theorem 47.10,

dimH 0(OΣ(D)) > 2.

Therefore, there is a non-constant f ∈ H 0(OΣ(D)) with the desired properties. �

Corollary 47.12. If Σ is a closed Riemann surface of genus д, then there exists a holomorphic map
π : Σ→ CP1 of degree at most д + 1.

Corollary 47.13. If Σ is a closed Riemann surface of genus 0, then it is biholomorphic to CP1.

Proof of Theorem 47.9 if χ (Σ) = 2. If χ (Σ) = 2, then Σ = S2
a unique complex structure up to

automorphism and the standard metric д = д1 on S2
satis�es Kд = 1. �

Proof of Theorem 47.9 if χ (Σ) = 0. Denote by д a representative of the conformal class determined

by j. By Theorem 47.3, ˆ
Σ
Kд volд = 0.

Therefore, there exists a function f , unique up to an additive constant, such that

Ke2f д = e2f (Kд + ∆д f )
= 0. �

Proof of Theorem 47.9 if χ (Σ) = 0. Denote by д a representative of the conformal class determined

by j. By Theorem 47.3, ˆ
Σ
Kд volд < 0.

The task at hand is to �nd a function f , such that

e2f (Kд + ∆д f ) = −1;

or, equivalently,

∆f + e2f = −Kд .

Theorem 47.14 completes the proof. �
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Theorem 47.14 (Kazdan and Warner [KW74]). Let n ∈ N and p > n
2
. Let (M,д) be a closed, oriented

Riemannian manifold of dimension n. Let a,b ∈ Lp (M) with

µ > 0,

ˆ
M
µ > 0, and

ˆ
M
A > 0.

There exists a unique solution f ∈W 2,p (M) of the Kazdan–Warner equation

(47.15) ∆f + e f µ = A.

Proof. I learned the following proof from Dietmar Salamon.

Proposition 47.16. Theorem 47.14 holds if and only if its holds with constant A > 0.

Proof. Set

Ā B

 
M
A

and denote by f0 the unique solution of

∆f0 = A − Ā and

ˆ
M
f0 = 0.

A function f ∈W 2,p (M) solves (47.15) if and only if f − f0 solves (47.15) with e f0µ instead of µ and

Ā instead of A. �

Proposition 47.17. If A > 0 is a constant, then the unique solution of (47.15) with µ = A is f = 0.

Proof. Obviously, f = 0 is a solution. To prove uniqueness, suppose that

∆f + e f A = A.

Denote by x? a point at which f achieves its maximum and by x† a point at which f achieves its

minimum. Since

0 6 ∆f (x?) = A
(
1 − e f (x?)

)
and 0 > ∆f (x?) = A

(
1 − e f (x†)

)
and A > 0,

0 6 min f 6 max f 6 0.

Therefore, f = 0. �

Henceforth, �x a constant A > 0 and µ ∈ Lp as in Theorem 47.14. For t ∈ [0, 1], set

µt B tµ + (1 − t)A
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and de�ne Ft : W 2,p (M) → Lp (M) by

Ft (f ) B ∆f + e f µt −A.

Consider the parametrized moduli space

M B
{
(t, f ) ∈ [0, 1] ×W 2,p (M) : Ft (f ) = 0

}
.

Denote by π : M → [0, 1] the projection map.

Proposition 47.18. M is a smooth manifold of dimension one with boundary and the map π : M →

[0, 1] is a submersion.

Let me brie�y recall the following.

Theorem 47.19 (Implicit Function Theorem). Let X ,Y ,Z be Banach spaces. Let F : X ×Y → Z be a
smooth map. If, for every (x?,y?) ∈ F−1(0), the derivative

d(x?,y?)F : X → Z

is invertible, then there exist open neighborhoodsU of x? and V of y? and a smooth mapG : V → U
such that:

1. for every y ∈ V , F (G(y),y) = 0 and

2. for every (x,y) ∈ U ×V , if F (x,y) = 0, then x = G(y).

Proof of Proposition 47.18. For every t ∈ [0, 1] and f ∈W 2,p
,

df Ft ( ˆf ) = (∆ + e f µt ) ˆf .

The operator

df Ft : W 2,p (M) → Lp (M)

is injective. To see that, observe that if df Ft ( ˆf ) = 0, then

0 =

ˆ
M

ˆf (∆ + e f µt ) ˆf

=

ˆ
M
|∇ ˆf |2 + e f µt | ˆf |

2.

Since e f µt is non-negative and positive somewhere, it follows that
ˆf = 0. The derivative df Ft is

an injective Fredholm operator of index zero; therefore, it is invertible. Thus the result follows

from the Implicit Function Theorem. �

Proposition 47.20. The map π : M → [0, 1] is proper; that is, if (tn, fn)n∈N is a sequence inM with
lim tn = t ∈ [0, 1], then a subsequence of (fn) converges inW 2,p (M) to a limit f with (t, f ) ∈ M.
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The proof relies on the following a priori estimate.

Proposition 47.21. Set

µ̄ B

 
M
µ .

If f satis�es (47.15) with A constant, then

‖ f ‖L∞ 6 c
A

µ̄
‖µ‖Lp + log

A

µ̄
.

Proof. The proof uses a rather clever barrier argument. Denote by ν the unique solution of

∆ν = µ − µ̄ and

ˆ
M
ν = 0.

By standard elliptic theory,

‖ν ‖L∞ 6 c‖ν ‖W 2,p

6 c‖∆ν ‖Lp

6 c‖µ − µ̄‖Lp

6 c‖µ‖Lp .

In particular,

ν − c ‖µ‖Lp 6 0.

For every ε > 0, set

˜fε B f +
A − ε

µ̄
(ν + c0‖µ‖Lp ) − log

(
A − ε

µ̄

)
.

If
˜fε achieves its maximum at x?, then

0 6 ∆ ˜fε (x?)

= A − e f (x?)µ(x?) +
A − ε

µ̄
(µ(x?) − µ̄)

= ε + µ(x?)

(
A − ε

µ̄
− e f (x?)

)
.

If ε > 0, then µ(x?) > 0 and

f (x?) < log

(
A − ε

µ̄

)
.

Therefore,

˜fε (x?) < 0.
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The above proves that, for every, max
˜fε < 0. Therefore,

˜f0 6 0.

This implies that

‖ f ‖L∞ 6 c
A

µ̄
‖µ‖Lp + log

A

µ̄
.

�

Proof of Proposition 47.20. It follows from Proposition 47.21 that there is a constant Λ > 0 such

that, for every n ∈ N, ‖ fn ‖L∞ 6 Λ. By standard elliptic theory,

‖ fn ‖W 2,p 6 c(‖∆fn ‖Lp + ‖ fn ‖Lp )

6 c‖e fn µt −A‖Lp + c‖ fn ‖Lp

6 c(Λ).

Therefore, by the sequential Banach–Alaoglou theorem, after passing to a subsequence, (fn)
converges in the weakW 2,p

topology to a limit f . Since the embeddingW 2,p → L∞ is compact,

(fn) converges to f in the L∞ topology.

Again, by standard elliptic theory,

‖ fn − fm ‖W 2,p 6 c(‖∆(fn − fm)‖Lp + ‖ fn − fm ‖Lp )

6 c
e fn µtn − e fm µtm

Lp
+ c‖ fn − fm ‖Lp

6 c‖ fn − fm ‖L∞ .

Therefore, (fn) is a Cauchy sequence inW 2,p
as well and converges. �

Proposition 47.18 and Proposition 47.20 imply thatM is a compact one-dimensional manifold

with boundary and the map π : M → [0, 1] is a submersion. This implies that π is a covering map.

Since 0 ∈ [0, 1] has precisely on preimage under π , it follows that π is a di�eomorphism. �

48 Kähler manifolds

De�nition 48.1. A Kähler manifold is a Riemannian manifold (X ,д) together with a parallel

complex structure I which satis�es

д(I ·, I ·) = д.

The 2–form ω ∈ Ω2(X ) de�ned by

ω(·, ·) B д(I ·, ·)

is called the Kähler form.
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Proposition 48.2. If X is a Riemannian manifold and I is an almost complex structure satisfying

д(I ·, I ·) = д,

then

∇I ⇔

{
NI = 0

dω = 0.

It is customary, in Kähler geometry to emphasize ω over д.

De�nition 48.3. If (X , I ,ω) is a Kähler manifold with Kähler metric д = ω(·, I ·), then its Ricci form
is de�ned by

(48.4) Ricω = Ricд(I ·, ·).

Example 48.5 (Cn
). On Cn

consider the coordinates za B xa + iya and metric

д0 B
n∑
a=1

(dxa)
2 + (dya)

2

as well as the complex structure de�ned by

I0(∂xa ) B ∂ya

This makes Cn
into a Kähler manifold. The associated Kähler form is

ω0 B д0(I0·, ·) =
n∑
a=1

dxa ∧ dya .

De�ne

∂za B
1

2

(∂xa − i∂ya ) and
¯∂za B

1

2

(∂xa + i∂ya )

and

∂ B
n∑
a=1

dza ∧ ∂za and
¯∂ B

n∑
a=1

dz̄a ∧ ¯∂za

with

dza = dxa + idya and dz̄a = dxa − idya .

We have

ω0 = −i ¯∂∂

(
|z |2

2

)
=

n∑
a=1

idza ∧ dz̄a
2

=

n∑
a=1

dxa ∧ dya .
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We say that
1

2
|z |2 is a Kähler potential.

The following provides us with a plethora of easy to write down Kähler manifolds.

Proposition 48.6. If (X , I ,д) is a Kähler manifold and Y ⊂ X is a complex submanifold, then
(Y , I |Y ,д |Y ) is a Kähler manifold.

Corollary 48.7. Every smooth projective variety is canonically equipped with the structure of a Kähler
manifold.

De�ne I on T ∗X , by

Iα B α ◦ I .

De�nition 48.8. Let (X , I ) is a complex manifold. Set

TX 1,0 B {v ∈ TX ⊗R C : Iv = iv}

TX 0,1 B {v ∈ TX ⊗R C : Iv = −iv}

T ∗X 1,0 B {α ∈ T ∗X ⊗R C : Iα = iα }

T ∗X 0,1 B {α ∈ T ∗X ⊗R C : Iα = −iα }

Λp,qT ∗X B Λ
p
CT
∗X 1,0 ⊗C Λ

q
CT
∗X 0,1.

We have

ΛkT ∗X ⊗R C =
⊕
p+q=k

Λp,qT ∗X .

Set

Ωp,q(X ) B Γ(Λp,qT ∗X ).

De�ne ∂ : Ωp,q(X ) → Ωp+1,q(X ) and
¯∂ : Ωp,q(X ) → Ωp,q+1(X ) to be the composition of d with

the projection onto the corresponding summand.

49 Fubini–Study metric

Example 49.1 (CPn). There is a Kähler form ωFS on CPn called the Fubini–Study form which

when pulled back via σ : Cn+1\{0} → CPn can be written as

σ ∗ωFS = −
i

2π
¯∂∂ log|z |2

=
i

2π
∂

n∑
a=0

zadz̄a
|z |2

=
i

2π

(
n∑
a=0

dza ∧ dz̄a
|z |2

−

n∑
a,b=0

z̄bdzb ∧ zadz̄a
|z |4

)
.

95



Here is another way to think about ωFS . Recall, that CPn is equipped with the holomorphic atlas

{ϕa : CPn ⊃ Ua → Cn
: a = 0, . . . ,n} with

Ua B {[z0 : · · · : zn] ∈ CPn : za , 0} and

ϕa([z0 : · · · : zn]) B

(
z0

za
, . . . ,

ẑa
za
, . . . ,

z0

za

)
.

For a = 0, . . . ,n, de�ne ω̂FS ∈ Ω
2(Cn) by

ω̂FS B −
i

2π
¯∂∂ log

(
1 +

n∑
b=1

|wb |
2

)
=

i

2π
∂ ¯∂ log

(
1 +

n∑
b=1

|wb |
2

)
=

i

2π
∂

n∑
b=1

wbdw̄b

1 + |w |2

=
i

2π

(
n∑

b=1

dwb ∧ dw̄b

1 + |w |2
−

n∑
b ,c=1

w̄cdwc ∧wbdw̄b

(1 + |w |2)2

)
.

A computation shows that ω̂FS is a Kähler form on Cn
. A further computation shows that, for

every a,b = 0, . . . ,n, on Ua ∩Ub ,

ϕ∗aω̂FS = ϕ
∗
bω̂FS .

Therefore, the 2–form ϕ∗aω̂FS de�ne a Kähler form on CPn . A moment’s thought shows that under

σ this form pulls back to − i
2π

¯∂∂ log|z |2. Thus it agrees with ωFS .

Proposition 49.2. The Fubini study metric is an Einstein metric; more precisely:

RicдFS = 2π (n + 1)дFS .

To prove that дFS is Einstein is easy: just note the metric is U(n + 1)–invariant.

Remark 49.3 (Complex polar coordinates). Write the holomorphic coordinate zb on Cn
as

zb = rbe
iϕb

with rb > 0 and ϕb ∈ R. Set

r B

√√
n∑
a=1

r 2

a and

θ B
n∑
a=1

r 2

a

r 2
dϕa .
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We compute

n∑
a,b=1

z̄bdzb ∧ zadz̄a =
n∑

a,b=1

(rbdrb + ir
2

bdϕb ) ∧ (radra − ir
2

adϕa)

= −2i
n∑

a,b=1

rbdrb ∧ r
2

adϕa

= −2ir 3
dr ∧ θ .

Therefore,

ω0 = πr
2σ ∗ωFS + rdr ∧ θ .

Remark 49.4. Denote by ρ : S2n+1 → CPn the restriction of ρ : Cn+1\{0} → CPn . This makes

S2n+1
into a U(1)–principal bundle over CPn with the right U(1)–action given by

z · λ B λz.

This bundle is often called the Hopf bundle and we will denote it by L. The vector �eldv generating

the U(1)–action can be written as

v(z) = iz.

The radial vector �eld can be written as

∂r = z/|z |.

Therefore,

θ (v) = r−1ω0(∂r ,v)

= |z |−2ω0(z, iz)

= 1.

This proves that iθ ∈ Ω1(S2n+1, u(1)) is a connection 1–form on L. By Chern–Weil theory,

c1(L) =
i

2π
[idθ ].

We compute dθ as follows,

dθ = d(r−2ir ∂rω0)

= −2r−3
dr ∧ ir ∂rω0 + r

−2Lr ∂rω0

= −2r−2(rdr ∧ θ ) + 2r−2ω0

= 2πσ ∗ωFS .

Therefore,

[ωFS ] = −c1(L)
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In particular, [ωFS ] de�nes an integral cohomology class. This explains why we put a π in the

de�nition of ωFS . We can also think of CPn as the Kähler reduction Cn+1//U(1). With the usual(?)

conventions the resulting Kähler form will not be integral.

De�nition 49.5. Let n ∈ N and k ∈ Z. The holomorphic line OCPn (k) is de�ned by

OCPn (k) B
(
Cn+1\{0} × C

)
/C∗

with

λ · (z0, . . . , zn,v) B (λz0, . . . , λzn, λ
kv).

Remark 49.6. If ` : Cn+1 → C is a linear function, then the map

CPn 3 [z0 : · · · : zn] 7→ [z0 : · · · : zn : `(z0, . . . , zn] ∈ OCPn (1)

is a section. In fact, every holomorphic section of OCPn (1) is of this form. Invariantly, if V is a

complex vector space, then H 0(OPV (1)) = V ∗. Moreover, if k > 0, H 0(OPV (k)) = Sym
k V ∗ is the

space of homogeneous degree k polynomials on V . If k < 0, then H 0(OPV (k)) = 0.

Recall that for a general principal G–bundle P and a representation G → GL(V ), we de�ne

P ×G V B
P ×V

G

with the G–action given by

д(p,v) B (p · д−1,д · v).

Denote by L̄, the Hopf bundle but with the right U(1)–action given by

z · λ B λ−1z.

Letting U(1) act on C via λ · v = λkv , we have

OCPn (k) = L̄ ×U(1) C.

In particular,

c1(OCPn (k)) = k · c1(L̄)

= k[ωFS ].

Example 49.7 (Bl0 Cn
). The blow-up of Cn

at the origin is

Bl0 Cn B {(`, x) : ` ⊂ Cn
line, x ∈ `}.

The exceptional divisor in Bl0 Cn
is

E B {(`, 0) ∈ Bl0(Cn)} � CPn−1.
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De�ne ϖ : Bl0 Cn → Cn
by

ϖ(`, x) B x .

De�ne ς : Bl0 Cn → CPn−1
by

ς(`, x) B `.

On Bl0 Cn\E,

ς = σ ◦ϖ .

For every ε > 0, there exists a unique Kähler form ωε on Bl0 Cn
such that, on Bl0 Cn\E,

ωε = ϖ
∗
[
(ε2 + πr 2)σ ∗ωFS + rdr ∧ dθ

]
and, on E,

ωε = ε
2ωFS .

Note that as ε tends to zero, (Bl0 Cn,дε ) Gromov–Hausdor� converges to Cn
, but fails to

converge in the C1,α
topology near (and because of) E.

50 Hermitian vector spaces

De�nition 50.1. A Hermitian vector space is a real vector spaceV together with an inner product

д and an endomorphism I ∈ End(V ) satisfying

I 2 = −idV and д(I ·, I ·) = д.

The Hermitian form associated with (V , I ,д) is the 2–form ω ∈ Λ2V ∗ de�ned by

ω(·, ·) = д(I ·, ·).

Proposition 50.2. If (V , I ,д) is a Hermitian vector space, then (V ∗, I ∗,д∗) is a Hermitian vector space.

De�nition 50.3. Let (V , I ,д) be a Hermitian vector space. Set

VC B V ⊗R C, V 1,0 B {v ∈ VC : Iv = iv}, and V 0,1 B {v ∈ VC : Iv = −iv}.

For p,q ∈ N0, set

Λp,qV B Λ
p
CV

1,0 ⊗C Λ
q
CV

0,1.

Remark 50.4. Set The extension of I to Λ•CVC acts on the summand Λp,qV as ip−q .
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De�nition 50.5. Let (V , I ,д) be a Hermitian vector space. The Lefschetz operator L : Λ•V ∗ →
Λ•+2V ∗ is de�ned by

L B ω ∧ ·.

The dual Lefschetz operator Λ : Λ•V ∗ → Λ•−2V ∗ is the adjoint of Λ. A form α ∈ Λ•V ∗ is called

primitive if Λα = 0. For k ∈ N, set

PkV ∗ B {α ∈ ΛkV ∗ : Λα = 0}.

Remark 50.6. For every Hermitian vector space (V , I ,д),

Λ = ∗−1L ∗ and Λ = ∗L ∗−1 .

De�nition 50.7. Let (V , I ,д) be a Hermitian vector space of complex dimension n. The counting
operator H : Λ•V ∗ → Λ•V ∗ is de�ned by

H |ΛkV ∗ B (k − n)idΛkV ∗ .

Proposition 50.8. Let (V1, I1,д1) and (V2, I2,д2) be two Hermitian vector spaces. Denote the cor-
responding Lefschetz operators by L1 and L2, the dual Lefschetz operators by Λ1 and Λ2, and the
counting operators by H1 and H2. The Lefschetz operator L, the dual Lefschetz operator Λ, and the
counting operator associated with (V B V1 ⊕ V2, I B I1 ⊕ I2,д B д1 ⊕ д2) are given by

L = L1 ⊗ idΛ•V ∗
2

+ idΛ•V ∗
1

⊗ L2, Λ = Λ1 ⊗ idΛ•V ∗
2

+ idΛ•V ∗
1

⊗ Λ2, and

H = H1 ⊗ idΛ•V ∗
2

+ idΛ•V ∗
1

⊗ H2.

Proposition 50.9. For every Hermitian vector space (V , I ,д) of complex dimension n,

[H , L] = 2L, [H ,Λ] = −2Λ, and [L,Λ] = H .

Proof. By Proposition 50.8, it su�ces to prove the result for V = C. In this case, it follows by a

simple direct computation. �

Remark 50.10. The above shows that for every Λ•V is a representation of the Lie algebra sl2(C).

Proposition 50.11. Let (V , I ,д) be a Hermitian vector space of complex dimension n. For every
α ∈ ΛkV ∗,

[Lj ,Λ]α = j(k − n + j − 1)Lj−1α .

Exercise 50.12. Proof this.

Theorem 50.13 (Lefschetz decomposition). Let (V , I ,д) be a Hermitian vector space of dimension n.
For every k ∈ N0,

ΛkV ∗ =

bk/2c⊕
j=0

LjPk−2jV ∗.
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Exercise 50.14. Proof this. Hint: you can use the representation theory of sl2(C).

Theorem 50.15 (Weil [Wei58, Théorème I.2]). Let (V , I ,д) be a Hermitian vector space of complex
dimension n. For j,k ∈ N0 and every primitive form α ∈ ΛkV ∗,

∗Ljα = (−1)(
k+1

2
) j!

(n − k − j)!
Ln−k−j Iα .

De�nition 50.16. For a Hermitian vector space (V , I ,д), de�ne the operator T : Λ•V ∗ → Λ•V ∗ by

T |ΛkV ∗ = (−1)(
k+1

2
) ∗−1 I .

Lemma 50.17 (Anthes [Ant, Proposition 1.6]). For every Hermitian vector space (V , I ,д),

exp(L) exp(−Λ) exp(L) = T .

Proof. In the situation of Proposition 50.8,

exp(L) exp(−Λ) exp(L) = exp(L1) exp(−Λ1) exp(L1) ⊗ exp(L2) exp(−Λ2) exp(L2).

Let T1, T2, and T be the operators associated with (V1, I1,д1), (V2, I2,д2), and (V , I ,д) as in De�ni-

tion 50.16. For α ∈ ΛkV ∗
1

and β ∈ Λ`V ∗
2

,

∗−1(α ⊗ β) = (−1)k`(∗−1α) ⊗ (∗−1β);

therefore,

T (α ⊗ β) = (−1)(
k+`+1

2
) ∗−1 I (α ⊗ β) = (−1)(

k+`+1

2
)+k`(∗−1I1α) ⊗ (∗

−1I2β) = (T1α) ⊗ (T2β).

As a consequence of the above, it su�ces to verify the assertion for V = C. In this case,

exp(L) exp(−Λ) exp(L) = (1 + L)(1 − Λ)(1 + L) = (1 + L − Λ + L − LΛ − ΛL − LΛL).

Therefore,

exp(L) exp(−Λ) exp(L)1 = ω = T 1 and exp(L) exp(−Λ) exp(L)ω = −1 = Tω;

moreover, for every α ∈ V ∗, ∗α = Iα and thus

exp(L) exp(−Λ) exp(L)α = α = Tα . �.

Proof of Theorem 50.15. By Remark 50.6 and Lemma 50.17, for every α ∈ ΛkV ∗,

∗ exp(L)α = (−1)(
k+1

2
)

exp(L) exp(−Λ)Iα .

Therefore, for every primitive α ∈ ΛkV ∗,

∗

∞∑
j=0

Lj

j!
α = ∗ exp(L)α = (−1)(

k+1

2
)

exp(L)Iα = (−1)(
k+1

2
)
∞∑̀
=0

L`

`!
Iα .

Comparing degrees �nishes the proof. �
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51 The Kähler identities

De�nition 51.1. For a Kähler manifold (X , I ,д), dc : Ω•(X ) → Ω•+1(X ) is de�ned by

d
c B I−1

dI

Remark 51.2. The operator d
c

satis�es

d
c = −i(∂ − ¯∂) and (dc )∗ = i(∂∗ − ¯∂∗).

Theorem 51.3 (Kähler identities). For every Kähler manifold (X , I ,ω),

i[Λ, ¯∂] = ∂∗ and i[Λ, ∂] = − ¯∂∗.

Remark 51.4. The proof presented here is from Huybrecht’s book. It has the feature of being

essentially coordinate free, while most proofs rely crucially on proving the Kähler identities for

Cn
.

These identities are equivalent to

[Λ, d] = −(dc )∗.

Therefore, Theorem 51.3 follows from the following.

Proposition 51.5. Let (X , I ,д) be a Kähler manifold. For every primitive α ∈ Ωk (X ), there are
primitive forms δ0 ∈ Ω

k+1(X ) and δ1 ∈ Ω
k−1(X ) such that

dα = δ0 + Lδ1(51.6)

[Λ,d]Ljα = −jLj−1δ0 − (k − n + j − 1)Ljδ1, and(51.7)

−(dc )∗Ljα = −jLj−1δ0 − (k − n + j − 1)Ljδ1.(51.8)

Proof. Decompose dα according to Theorem 50.13 as

dα =

bk/2c∑̀
=0

L`δ` .

Since α is primitive, Ln−k+1α = 0 and thus

bk/2c∑̀
=0

Ln−k+1+`δ` = 0.

Lj is injective on Ωk (X ) for j 6 n − k . Therefore, for ` > 2, δ` = 0. This proves (51.6).
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By Proposition 50.11,

−dΛLjα = d[Lj ,Λ]α

= j(k − n + j − 1)Lj−1
dα

= j(k − n + j − 1)Lj−1δ0 + j(k − n + j − 1)Ljδ1

and

ΛdLjα = ΛLjδ0 + ΛL
j+1δ1

= −[Lj ,Λ]δ0 − [L
j+1,Λ]δ1

= −j(k − n + j)Lj−1δ0 − (j + 1)(k − n + j − 1)Ljδ1.

This implies (51.7).

By Theorem 50.15,

−(dc )∗α = ∗I−1
dI ∗ Ljα

= (−1)(
k+1

2
) j!

(n − k − j)!
∗ I−1

dILn−k−j Iα

= (−1)(
k+1

2
)+k j!

(n − k − j)!
I−1 ∗ Ln−k−jdα

= (−1)(
k+1

2
)+k j!

(n − k − j)!
I−1 ∗ Ln−k−jδ0 + (−1)(

k+1

2
)+k j!

(n − k − j)!
I−1 ∗ Ln−k−j+1δ1

= (−1)(
k+1

2
)+k+(k+2

2
) j!

(n − k − j)!

(n − k − j)!

(j − 1)!
Lj−1δ0

+ (−1)(
k+1

2
)+k+(k

2
) j!

(n − k − j)!

(n − k − j + 1)!

j!
Ljδ1

= −jLj−1δ0 − (k − n + j − 1)Ljδ1. �

52 The Chern connection

Proposition 52.1. Let (X , I ) be a complex manifold andE = (E, ¯∂) be a holomorphic vector bundle
overX . For every Hermitian metricH onE, there exists a unique connectionA ¯∂,H on E which satis�es

∇A ¯∂,H
H = 0 and ∇

0,1
A ¯∂,H

= ¯∂.

De�nition 52.2. The connection ∇H is called the Chern connection of E. Set

∂H B ∇1,0
H and FH B FA ¯∂,H

.
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Proof of Proposition 52.1. It su�ces to prove this statement for an open subset U ⊂ Cn
and the

trivial holomorphic vector bundle. The metric on this bundle is equivalent to a map h : U → iu(r ).
If the desired A ¯∂,H exists, then we can write it as

∇A ¯∂,H
= ∂H + ¯∂

with

∂H : C∞(U ,Cr ) → Ω1,0(U ,Cr ).

For every s, t ∈ C∞(U ,Cr ),

0 = ∂〈hs, t〉 − 〈∂hs, t〉 −
〈
hs, ¯∂t

〉
= ∂〈hs, t〉 −

〈
h(∂s + (h−1∂h)s), t

〉
−

〈
hs, ¯∂t

〉
.

This proves that

∂Hs = ∂s + (h
−1∂h)s . �

The proof also shows the following.

Proposition 52.3. Let (X , I ) be a complex manifold andE = (E, ¯∂) be a holomorphic vector bundle
over X . Let H0 be a Hermitian metric onE. Let h is a positive de�nite H0–selfadjoint endomorphism
of H0. Set H B H0h. The Chern connection associated with H0 and H are related by

∂H = ∂H0
+ h−1∂H0

h.

Moreover,
FH = FH0

+ ¯∂(h−1∂H0
h).

In particular: if E is a line bundle, then

FH = FH0
+ ¯∂∂H0

logh.

Example 52.4. Let n ∈ N and k ∈ Z. De�ne a Hermitian metric Hk on OCPn (k) by

Hk ([z0 : · · · , zn : s], [z0 : · · · , zn : t]) B

(
n∑
a=0

|za |
2

)−k
· st̄ .

Over Ua = {[z0 · · · , zn] : za , 0}, the section [z0 · · · : zn] 7→ [z0 : · · · : zn : zka ] trivializes OCPn (k).
Pushing forward via ϕa : Ua → Cn

we obtain the metric on the trivial bundle over Cn
induced by

the function

hk (w1, . . . ,wn) B
(
1 + |w |2

)−k
.

This shows that

(ϕa)∗FHk = −k
¯∂∂ log

(
1 + |w |2

)
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Therefore,

FHk =
2π

i
kωFS .

This implies, in particular, that

c1(OCPn (k)) = k[ωFS ].

53 The canonical bundle and Ricci curvature

De�nition 53.1. Let (X , I ) be a complex manifold of complex dimension n. The canonical bundle
of X is

KX B Λn
CT
∗X 1,0.

The anti-canonical bundle of X is

K−1

X = Λn
CTX

1,0.

Proposition 53.2. Let n ∈ N.

1. For every a,b = 0, . . . ,n, the holomorphic vector �eld za∂zb on Cn+1 is the lift of a holomorphic
vector �eld on CPn .

2. The Euler sequence

0→ OCPn

©«
z0

...

zn

ª®®®®¬
−−−−→ OCPn (1)

⊕(n+1)

(
∂z0

· · · ∂zn
)

−−−−−−−−−−−−−−−→ TCPn → 0

is exact.

Proposition 53.3. For every n ∈ N,

KCPn � OCPn (−n − 1)

Proof. By Proposition 53.2,

K−1

X � ΛnTCPn

� ΛnTCPn ⊗ OCPn

� Λn+1OCPn (1)
⊕(n+1)

� OCPn (n + 1). �

Proposition 53.4 (Adjunction formula). Let (X , I ) be a complex manifold, Let E be a holomorphic
vector bundle over X and let f ∈ H 0(N ) be a holomorphic section of E which is transverse to the zero
section. The canonical bundle of Z = Z (f ) is

KZ � KX |Z ⊗ det(E)|Z .

105



Proof. Since f is transverse to the zero section, d f induces an isomorphism

NZ
df
� E.

Therefore, the short exact sequence

0→ TZ → TX |Z → NZ → 0

induces the desired isomorphism. �

Example 53.5. Let k > 0. Let f ∈ H 0(OCPn (k)) be a generic homogeneous degree k polynomial in

n + 1 variables. By Bertini’s theorem,

X = Z (f )

B {[z0 : · · · : zn] ∈ CPn : f (z0, · · · , zn) = 0}

is a smooth hypersurface. By Proposition 53.4,

KX = OCPn (−n − 1) ⊗ OCPn (k)

= OCPn (k − n − 1).

Exercise 53.6. Let f ∈ H 0(CPn,OCPn (2k)). Set

X B {([z],v) ∈ OCPn (k) : v ⊗ v = f ([z])}.

This is a cover of CPn branched over Z (f ). Prove that

KX � KCPn ⊗ OCPn (2k)

� OCPn (2k − n − 1).

Proposition 53.7. Let (X , I ,д) be a Kähler manifold.

1. The formula
h = д − iω

de�nes a Hermitian metric on TX .

2. The Hermitian metric h induces a Hermitian metric H on KX .

3. The connection ∇KX on KX induced by the Levi-Civita connection is the Chern connection of
H ; that is: it is unitary and induces the holomorpic structure.

4. The curvature of ∇KX satis�es

F∇KX = trC F∇T ∗X

= iRicω .
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Proof. The only non-trivial statement is the last. To prove it �x x ∈ X and let e1, . . . , en be a

unitary basis of TxM . Set fa B Iea . Then

Ric(Iv,w) =
n∑
a=1

〈R(ea,w)Iv, ea〉 + 〈R(fa,w)Iv, fa〉

=

n∑
a=1

−〈R(ea,w)v, fa〉 + 〈R(fa,w)v, ea〉

=

n∑
a=1

−〈R(v, fa)ea,w〉 + 〈R(fa,w)v, ea〉

=

n∑
a=1

〈R(v, fa)w, ea〉 + 〈R(fa,w)v, ea〉

= −

n∑
a=1

〈R(v,w)ea, fa〉.

Also,

trC F∇T ∗X (v,w) = − trC R(v,w)

= −

n∑
a=1

〈R(v,w)ea, ea〉 − i〈IR(v,w)ea, ea〉

= i〈R(v,w)fa, ea〉. �

Proposition 53.8. For every Kähler manifold (X , I ,д,ω),

c1(X ) =
1

2π
[Ricω ].

Proof. This follows from the above and Chern–Weil theory. �

Proposition 53.9. For every closed Kähler manifold (X , I ,д,ω) of complex dimension n, then
ˆ
X

scalд ω
n = 4πn

〈
c1(X ) ∪ [ω]

n−1, [X ]
〉
.

Proof. On Cn
,

dza ∧ dz̄b ∧ ω
n−1

0
=

(
i

2

)n−1

dza ∧ dz̄b ∧

(
n∑
c=1

dzc ∧ dz̄c

)n−1

=

(
i

2

)n−1

(n − 1)!δabdz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n

=
2

ni
δabω

n
0
.
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Hence, if α ∈ Λ2T ∗xX , then, for e1, . . . , en a unitary basis of TxX ,

α ∧ ωn−1

ωn =
2

ni

n∑
a=1

α
(

1

2
(ea − iIea),

1

2
(ea + iIea)

)
=

1

n

n∑
a=1

α(ea, Iea).

Since

Ricд(Iea, Iea) = Ricд(ea, ea),

it follows that

Ricω ∧ ω
n−1

ωn =
1

n

n∑
a=1

Ricω (ea, Iea)

=
1

2n
scalд .

Therefore,

ˆ
X

scalд ω
n = 2n

ˆ
X

Ricω ∧ ω
n−1

= 4πn
〈
c1(X ) ∪ [ω]

n−1, [X ]
〉
. �

Example 53.10. The round metric on S2
has constant scalar curvature 2, volume 4π , and〈

c1(S
2), [S2]

〉
=

〈
e(S2), [S2]

〉
= 2.

Proposition 53.11. If (X , I ,ω) is a Kähler–Einstein manifold with

Ricω = λω,

then
c1(X ) =

λ

2π
[ω].

Therefore,

λ =
2πn!

vol(X )

〈
c1(X ) ∪ [ω]

n−1, [X ]
〉

Proof. The Einstein equation implies

c1(X ) = −c1(KX ) =

[
F∇Kx

2πi

]
=

[
Ricд(I ·, ·)

2π

]
=

λ

2π
[ω].

�
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Proof of Proposition 49.2. We need to compare H−n−1 and the Hermitian metric induced by the

Fubini–Study metric. We work in the trivialization employed in Example 52.4. The Fubini–Study

metric induces the Hermitian metric H

H (s, t) B
1

2π

[ (
1 + |w |2

)−1

t∗s −
(
1 + |w |2

)−2

t∗ww∗s
]
.

The metric on ΛnTCPn induced by this is

Λn
CH = detCH .

This is a nuisance to compute directly; fortunately, we don’t need to. By U(n + 1)–invariance, H
and H−n−1 agree up to a constant. Another way to �gure out what detH is to observe that minus

its imaginary part must be

ω̂n
FS ,

which, on Ua , is[
i

2π

(
n∑

b=1

dwb ∧ dw̄b

1 + |w |2
−

n∑
b ,c=1

w̄cdwc ∧wbdw̄b

(1 + |w |2)2

)]n
= c(n)

dw1 ∧ . . . ∧ dwn ∧ dw̄1 ∧ . . . ∧ dw̄n

(1 + |w |2)n+1

Therefore,

iRicдFS (I ·, ·) = F∇KX

= FH−n−1

= 2πi(n + 1)ωFS .

This completes the proof. �

Example 53.12. The following generalized the Poincaré metric on the unit disk in C. Denote by

Dn
the unit disc in Cn

. De�ne a Kähler form on D by

ω = i ¯∂∂
|z |2 − 1

2

=
i

2

∑n
a=1

dza ∧ dz̄a

1 − |z |2
.

Up to a constant this induces the metric (
1 + |z |2

)−2

on KDn and thus

Ricω = i∂ ¯∂
(
1 + |z |2

)−2

= −2i
(
1 + |z |2

)−3

n∑
a=1

zadz̄a .
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54 The existence of Kähler–Einstein metrics

De�nition 54.1. Let (X , I ) be a complex manifold. A cohomology class α ∈ H 2

dR
(X ) is called

positive (negative) if is represented by (minus) a Kähler form on X .

It follows from our earlier discussion that if (X , I ) admits a Kähler–Einstein metric, then one

of the following holds: c1(X ) is negative, c1(X ) = 0, or c1(X ) is positive. It is a reasonable question

to ask whether the converse holds. These results answer the question if c1(X ) 6 0. If c1(X ) > 0,

then it depends on a subtle stability condition.

Theorem 54.2 (Aubin [Aub76, Théorème 2]). If (X , I ) is a closed, connected complex manifold with
negative �rst Chern class c1(X ), then it admits a Kähler–Einstein metric; moreover, this metric is
unique up to a constant.

Theorem 54.3 (Yau [Yau78]). If (X , I ) is a closed, connected complex manifold with vanishing �rst
Chern class c1(X ), then every Kähler class [ω] contains a unique Ricci �at Kähler metric.

Proposition 54.4. Let (X , I ) be a complex manifold. Letω0 andω be Kähler forms and let f ∈ C∞(X ).
If

ωn = e f · ωn
0
,

then
Ricω = Ricω0

+ i∂ ¯∂ f .

Proof. By hypothesis the Hermitian metrics on KX are related by

H = e−f H0.

Therefore,

Ricω = −iFH

= −i(FH0
+ ¯∂∂ log e−f )

= Ricω0
+ i ¯∂∂ f . �

Corollary 54.5. Let (X , I ,ω0) be a Kähler manifold of complex dimension n. Let f ∈ C∞(X ) be such
that

ω = ω0 + i ¯∂∂ f

is a Kähler class. Then

Ricω = Ricω0
+ i ¯∂∂ log

[
(ω0 + i ¯∂∂ f )n

ωn
0

]
.
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Lemma 54.6 (
¯∂∂ lemma). Let (X , I ,ω) be a closed Kähler manifold. Let α ∈ Ωp,q(X ,C). The following

are equivalent:

1. There is a β ∈ Ωp+q−1(X ,C) such that α = dβ .

2. There is a γ ∈ Ωp−1,q−1(X ,C) such that α = ¯∂∂γ .

Proof. Suppose that α = dβ . Decomposing β = βp−1,q + βp,q−1
,

α = ∂βp−1,q + ¯∂βp,q−1, ¯∂βp−1,q = 0, and ∂βp,q−1 = 0.

By Hodge theory,

βp−1,q = ∂γ p−2,q + ¯∂γ p−1,q−1

− + β
p−1,q
0

and βp,q−1 = ∂γ
p−1,q−1

+ + ¯∂γ p,q−2 + β
p,q−1

0
.

Therefore,

α = ∂ ¯∂γ p−1,q−1

− + ¯∂∂γ
p−1,q−1

+ = ¯∂∂
(
γ
p−1,q−1

+ − γ p−1,q−1

−

)
. �

Let λ ∈ R. Suppose [Ricω0
] = λ[ω0]. Then for some ρ ∈ C∞(X ,R)

Ricω0
= λω0 − i ¯∂∂ρ.

We call ρ a Ricci potential. Since ρ is only unique up to a constant, we impose the normalization

ˆ
X
eρωn

0
=

ˆ
X
ωn

0
.

Thus the condition for ω = ω0 + i ¯∂∂ f to satisfy

Ricω = λω

becomes

0 = Ricω0
+ i ¯∂∂ log

[
(ω0 + i ¯∂∂ f )n

ωn
0

]
− λ(ω0 + i ¯∂∂ f )

= i ¯∂∂

[
log

[
(ω0 + i ¯∂∂ f )n

ωn
0

]
− λ f − ρ

]
.

This equation is equivalent to

log

[
(ω0 + i ¯∂∂ f )n

ωn
0

]
− λ f − ρ = constant.

Let us write this as

(ω0 + i ¯∂∂ f )n

ωn
0

= eλf eρec .
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The constant c is determined by

c = − log

´
eλf eρωn

0´
X ω

n
0

.

If λ = 0, then, by our normalization of ρ, c = 0. If λ , 0, then f solves the above equation if and

only if f − c
λ satis�es

(54.7)

(ω0 + i ¯∂∂ f )n

ωn
0

= eλf eρ

and both de�ne the same 2–form ω = ω0 + i ¯∂∂ f . Therefore, in all cases, we are lead to (54.7)—a

complex Monge–Ampère equation. The solution theory for these equation heavily depends on

the sign of λ: the di�culty increases drastically as λ goes from negative to zero to positive. The

theory for λ < 0 is due to Aubin [Aub76, Théorème 1]. The theory for λ = 0 is due to Yau [Yau78]

and also proves the following.

Theorem 54.8 (Yau [Yau78]; Calabi’s conjecture). Let (X , I ) be a closed complex manifold. If
ρ ∈ Ω1,1(M,R) represents c1(X ), then in every Kähler class [ω] there exists a unique Kähler form ω
satisfying

Ricω = ρ.

A clear exposition of the proofs of Theorem 54.2, Theorem 54.3, and Theorem 54.8 can be

found in Błocki [Bło12].

The case λ > 0 is extremely delicate and tied up with an algebro-geometric stability condition;

but it has now been solved by Chen, Donaldson, and Sun [CDS15a; CDS15b; CDS15c].

55 Bisectional curvature and complex space forms

De�nition 55.1 (Goldberg and Kobayashi [GK67, Equation (2)]). Let (X , I ,д) be a Kähler manifold.

The bisectional curvature sec : TX ×TX → R is de�ned by

sec
C(v,w) =

〈R(v, Iv)Iw,w〉

|v |2 |w |2
.

Remark 55.2. It is easy to see that sec
C(v,w) does only depend on the 2–planes 〈v, Iv〉 and 〈w, Iw〉.

Proposition 55.3. If v,w are unit-vectors, then

sec
C(v,w) = sec(v ∧w) + sec(v ∧ Jv).

Theorem 55.4. If (X , I ,д) is a simply-connected Kähler manifold with constant bisectional curvature,
then its (up to a constant scalar factor) it is isometric to CPn , Cn , or Dn .

Proof. The proof is similar to that of Theorem 6.5. See [Tia00, Theorem 1.12] for details. �
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56 The Miyaoka–Yau inequality

Theorem 56.1 (Guggenheimer [Gug52] and Chen and Ogiue [CO75, Theorem 2]). If (X , I ,ω) is a
closed Kähler–Einstein manifold of complex dimension n, then〈(

2(n+1)

n c2(X ) − c1(X )
2

)
∪ [ω]n−2, [X ]

〉
> 0.

Moreover, equality holds if only if X has constant bisectional curvature.

Theorem 56.2 (Yau [Yau77, Remark (iii)]). If (X , I ,ω) is a closed Kähler manifold with c1(X ) 6 0,
then 〈(

2(n+1)

n c2(X ) − c1(X )
2

)
∪ [ω]n−2, [X ]

〉
> 0.

Moreover, equality holds if and only if the universal cover X̃ is biholomorphic to CPn , Cn , or Dn .

This relies on a computation similar to the one that proves Proposition 57.4.

Theorem 56.3 (Miyaoka–Yau inequality [Miy77, Theorem 4; Yau77, Theorem 4]). If (X , I ,ω) is a
closed Kähler surface with c1(X ) 6 0, then

c1(X )
2 6 3c2(X ).

Moreover, equality holds if and only if the universal cover X̃ is biholomorphic to CP2, C2, or D2.

Remark 56.4. Miyaoka [Miy77, Theorem 4] proved this inequality for complex surfaces of general

type. Miyaoka [Miy77, Section 6.A] gives a construction by A. Borel and Hirzebruch of in�nitely

many ball quotients realizing in�nitely many values of c2

1
= 3c2.

Remark 56.5. The rigidity statement is due to Yau [Yau77, Theorem 4].

As a consequence of Theorem 56.3 and a number of results in algebraic geometry, Yau also

proved the following result conjectured by Severi [Sev54].

Theorem 56.6 (Yau [Yau77, Theorem 5]). Every complex surface that is homotopy equivalent to CP2

is biholomorphic to CP2.

The key point is that it was already known by algebro-geometric methods that such surfaces

saturate the Miyaoka–Yau inequality.

57 Hermitian–Einstein metrics

Proposition 57.1. Let (X , I ,ω) be a Kähler manifold. For every f ∈ C∞(X ),

∆f = 2∂∗∂ f ,

∆ = 2
¯∂∗ ¯∂ f , and

∆f = 2iΛ ¯∂∂ f
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Proof. By Theorem 51.3,

∂∗∂ f = iΛ ¯∂∂ f = −iΛ∂ ¯∂ f = ¯∂∗ ¯∂ f . �

De�nition 57.2. Let (X , I ,ω) be Kähler manifold and letE be a holomorphic vector bundle of rank

r over X . A Hermitian metric H on E is projectively Hermitian Yang–Mills if

iΛFH −
1

r
tr(iΛFH ) · idE = 0.

A Hermitian metric H on E is Hermitian Einstein if it is projectively Yang–Mills and tr(iΛFH ) is

locally constant.

Proposition 57.3. Let (X , I ,ω) be closed Kähler manifold and letE be a holomorphic vector bundle
of rank r over X . If H is a projectively Hermitian Yang–Mills metric onE, then there exists a function
f ∈ C∞(X ,R) such that He f is Hermitian Einstein; moreover, f is unique up to an additive constant.

Proof. For every f ∈ C∞(X ,R),

iΛFHe f = iΛFH + iΛ
¯∂∂ f · idE = iΛFH +

1

2

∆f · idE

Therefore,H is projectively Hermitian Yang–Mills if and only ifHe f is. Moreover,He f is Hermitian

Einstein if and only if

r

2

∆f = tr(iΛFH ) −

 
X

tr(iΛFH ). �

Proposition 57.4. LetE be a holomorphic bundle of rank r and let H be a Hermitian metric onE.
ˆ
X
|FH −

1

r tr(FH ) · idE |
2 =

ˆ
X
|iΛFH −

1

r iΛ tr(FH ) · idE )|
2

+ 4π
〈(

2c2(E) −
r−1

r c1(E)
2
)
∪
[ω]n−2

(n−2)!
, [X ]

〉
.

Here we use the inner product − tr on u(E,H ).

The proof relies on the following.

Proposition 57.5. Let (X , I ,ω) be a Kähler manifold. For every α ∈ Ω1,1(X ),

α ∧ α ∧ ωn−2 = (n − 2)!
(
|Λα |2 − |α |2

)
volд

Proof. For α = ω, the left-hand side of the desired identity is n!volд and the right-hand side is

(n−2)!(n2−n)volд . Thus it remains to prove the assertion for α ∈ Λ1,1
0
T ∗X = kerΛ. Since Λ1,1

0
T ∗xX
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irreducible representation of U(TxX ) and the identity is invariant under this group, it su�ces to

verify the identity in one case. To this end we compute.

i

2

dza ∧ dz̄a ∧ ω
n−2

0
=

(
i

2

)n−1

(n − 2)!
∑
b,a

dz1 ∧ dz̄1 ∧ . . . ∧ �
dzb ∧ dz̄b ∧ . . . dzn ∧ dz̄n

=
i

2

(n − 2)!
∑
b,a

∗(dzb ∧ dz̄b ).

This implies

(dz1 ∧ dz̄1 − dz2 ∧ dz̄2) ∧
ωn−2

0

(n − 2)!
=

∑
a,1

∗(dza ∧ dz̄a) −
∑
b,2

∗(dzb ∧ dz̄b )

= − ∗ (dz1 ∧ dz̄1 − dz2 ∧ dz̄2). �

Proof of Proposition 57.4. By Chern–Weil theory

c(X ) = 1 + c1(X ) + c2(X ) + · · · =

[
det

(
1 +

i

2π
FH

)]
.

In particular,

c1(X ) =
i

2π
[tr(FH )] and 2c2(X ) − c1(X )

2 =
1

4π 2
[tr(FH ∧ FH )].

Therefore,

2rc2(E) − (r − 1)c1(E)
2 =

r

4π 2
[tr(FH ∧ FH )] −

1

4π 2
[tr(FH )]

∪2.

A short computation shows that

r

4π 2
tr

(
(FH −

1

r tr(FH )idE ) ∧ (FH −
1

r tr(FH )idE )
)
=

r

4π 2
tr(FH ∧ FH ) −

1

4π 2
tr(FH )

∧2.

Therefore and by Proposition 57.5,〈(
2rc2(E) − (r − 1)c1(E)

2
)
∪ [ω]n−2, [X ]

〉
=
(n − 2)!r

4π

ˆ
X
|FH −

1

r tr(FH ) · idE |
2

−
(n − 2)!r

4π

ˆ
X
|iΛFH −

1

r iΛ tr(FH ) · idE )|
2. �
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De�nition 57.6. Let (X , I ,д) be a closed Kähler manifold of complex dimension n with Kähler form

ω. Let E be a coherent sheaf on X . The degree of E is

degω (E) B
〈
c1(E) ∪ [ω]

n−1, [X ]
〉

and its slope is

µ(E) B
degω (E)

rkE
.

E is called µ–stable if, for every proper torsion-free subsheaf F ⊂ E,

µ(F) < µ(E).

E is called µ–polystable if

E �
K⊕
k=1

Ek

with Ek µ–stable and µ(Ek ) = µ(E).

Theorem 57.7 (Donaldson [Don85; Don87] and Uhlenbeck and Yau [UY86]). Let (X , I ,д) be a closed,
connected Kähler manifold. LetE be a holomorphic vector bundle over X . E admits a Hermitian–
Einstein metric if and only if it is µ–polystable. Furthermore, the Hermitian–Einstein metric is unique
up to multiplication with a positive constant.

Remark 57.8. If X is a Riemann surface, then a torsion-free subsheaf is nothing but a subbundle.

Furthermore, in this case, H induces a projectively �at connection on E. This is essentially

Narasimhan–Seshadri’s theorem [NS65], which they initially proved using algebraic geometry.

Donaldson [Don83] reproved this result using analytical techniques.

58 Hyperkähler manifolds

De�nition 58.1. A hyperkähler manifold is a Riemannian manifold (X ,д) together with a triple

of complex structures I , J ,K with respect to which д is a Kähler metric and which satisfy the

relations

(58.2) I J = K = −I J .

Proposition 58.3. If (X ,д, I , J ,K) is a hyperkähler manifold, then д is Ricci �at.

Proof. Set n B dimX/2 and de�ne

(58.4) θI B (ω J + iωK )
n/2.

A computation shows that θI ∈ Ω
n,0(X ) and is nowhere vanishing. Moreover, it is parallel. This

shows that the Levi-Civita connection induces a �at connection on KX . Therefore, Ricд = 0. �
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Proposition 58.5 (Hitchin [Hit92, Theorem 2]). Let (X ,д) be a Riemannian manifold together with
a triple of almost complex structures I , J ,K which are compatible with д and which satisfy (58.2). If
the 2–forms

(58.6) ωI B д(I ·, ·), ω J B д(J ·, ·), and ωK B д(K ·, ·)

are closed, then (X ,д, I , J ,K) is a hyperkähler manifold.

Proof. We need to prove that I , J , and K are integrable. Again, set n B dimX/2 and de�ne

(58.7) θI B (ω J + iωK )
n/2.

We have

(58.8) TM0,1
I = ker

(
i(·)θI : TM ⊗ C→ Λn−1

C TM1,0
I

)
.

Therefore, for v,w ∈ Γ(T 0,1
I M),

(58.9) i([u,v])θI = i(u)i(v)dθI = 0.

This shows that [v,w] ∈ Γ(T 0,1
I M). By the Newlander–Nirenberg Theorem, I is integrable. The

same argument proves that J and K are integrable as well. �

59 The Gibbons–Hawking ansatz

LetU be an open subset of R3
. Denote by дR3 the restriction of the standard metric on R3

toU . Let

π : X → U be a principal U(1)–bundle. Denote by ∂α ∈ Vect(X ) the generator of the U(1)–action.

Let iθ ∈ Ω1(X , iR) be a U(1)–connection 1–form and let f ∈ C∞(U , (0,∞)) be a positive smooth

function such that

(59.1) dθ = − ∗3 df .

Set

(59.2) д B f π ∗дR3 +
1

f
θ ⊗ θ

and de�ne complex structures I1, I2, I3 by

(59.3) Ii∂α = f −1∂xi and Ii∂x j =
3∑

k=1

εi jk∂xk .

The corresponding Hermitian forms are

(59.4) ωi B dθ ∧ dxi +
1

2

3∑
j ,k=1

εi jk f dx j ∧ dxk .
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Writing (59.1) as

dθ = −
1

2

3∑
`, j ,k=1

ε`jk∂x` f dx j ∧ dxk ,

we see that

(59.5) dωi = dθ ∧ dxi +
1

2

3∑
j ,k=1

εi jkdf ∧ dx j ∧ dxk = 0.

Therefore, we have proved the following.

Proposition 59.6. (X ,д, I1, I2, I3) is hyperkähler manifold.

This construction is called the Gibbons–Hawking ansatz.

Remark 59.7. By construction, the length of the U(1)–orbit over x ∈ U is f (x)−1/2
.

Remark 59.8. The fact that

(59.9) i(∂α )ωi = −dxi

means that the map π : X → U ⊂ R3
is a hyperkähler moment map for the action of U(1) on X

(with R3
and (u(1) ⊗ ImH)∗ identi�ed suitably.

Remark 59.10. By (59.1),

(59.11) ∆f = 0.

Conversely, suppose that f : U → R is harmonic and the cohomology class of ∗3df lies in

im(H 2(U , 2πZ) → H 2(U ,R)), then there is a U(1)–bundle X over U together a connection iθ
satisfying

(59.12) dθ = − ∗3 df .

Example 59.13 (R4
). Let U = R3\{0} and de�ne f : U → R by

(59.14) f (x) =
1

2|x |
.

This function is harmonic and satis�es

(59.15) − ∗3df =
1

2

volS2 .

Since vol(S2) = 4π , there is a U(1)–bundle X over U together with a connection iθ such that (59.1).

Therefore, the Gibbins–Hawking ansatz yields a hyperkähler metric on X .
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By Chern–Weil theory the �rst Chern number of the restriction of X to S2
is

(59.16)

ˆ
S2

i
i

4π
volS2 = −1.

Up to is isomorphism, there is only one principal U(1)–bundle over S2
: the Hopf bundle π : S3 → S2

and the U(1)–action given by eiα · (z0, z1) = (e
iαz0, e

iαz1). If дS3 denotes the standard metric on

S3
, then

(59.17) θ = дS3(∂α , ·)

satis�es

(59.18) dθ = π ∗volS2 .

It follows that

(59.19) X = S3 × (0,∞) = R4\{0}

and the Gibbons–Hawking ansatz gives the metric

(59.20) д = 2r θ ⊗ θ +
1

2r
(dr ⊗ dr + r 2дS2).

The change of coordinates ρ =
√

2r rewrites this metric as

д = dρ ⊗ dρ + ρ2(θ ⊗ θ +
1

4

дS2) = dρ ⊗ dρ + ρ2дS3 .

This means that the Gibbons–Hawking ansatz yield the standard metric on R4
.

Example 59.21 (Taub–NUT). Let U = R3\{0}, let c > 0, and de�ne fc : U → R by

(59.22) fc (x) =
1

2|x |
+ c .

This function is harmonic and we have

(59.23) dfc = df .

By the preceding discussion, X = S3 × (0,∞) and the Gibbons–Hawking ansatz gives the metric

(59.24) д =

(
1

2r
+ c

)−1

θ ⊗ θ +

(
1

2r
+ c

)
(dr ⊗ dr + r 2дS2).

As r tends to zero this metric is asymptotic to

(59.25) c−1θ ⊗ θ + дR3 .
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Although, the metric appears singular at r = 0, the coordinate change ρ =
√

2r rewrites it as

(59.26) (1 + cρ2)dρ ⊗ dρ + ρ2

(
(1 + cρ2)−1θ ⊗ θ + (1 + cρ2)

1

4

дS2

)
which is smooth.

This metric is called the Taub–NUT metric. It is non-�at hyperkähler metric on R4
. It was

�rst discovered by Taub [Tau51] and Newman, Tamburino, and Unti [NTU63]. The Taub–NUT

space is the archetype of an ALF space.

Remark 59.27. It was observed by LeBrun [LeB91] that the Taub–NUT metric is in fact Kähler for

the standard complex structure on C2
. Thus it yields a non-�at Ricci-�at Kähler metric on C2

.

Example 59.28 ((R4\{0})/Zk ). Let k ∈ {1, 2, 3, . . .} Let U = R3\{0} and de�ne f : U → R by

(59.29) f (x) B
k

2|x |
.

This function is harmonic and it satis�es

(59.30) − ∗3df = kvolS2 .

Thus, the Gibbons–Hawking ansatz applies. Denote by (Xk ,дk ) the Riemannian manifold obtained

in this way. If k = 1, then this R4
with its standard metric. Let us understand the cases k > 2.

The restriction of Xk to S2
has Chern number −k . This U(1)–bundle is S3/Zk → S2

. Conse-

quently,

Xk = S3/Zk × (0,∞) = R4/Zk .

We can choose the connection 1-form iθk on Xk such that its pullback to X1 is ikθ1. It follows that

the pullback of дk to X1 can be written as

(59.31) 2kr θ ⊗ θ +
k

2r
(dr ⊗ dr + r 2дS2).

Up to a coordinate change r 7→ kr this is the standard metric on R4
. It follows that дk is the metric

induced by the standard metric on R4
.

Example 59.32 (Eguchi–Hanson and multi-center Gibbons–Hawking). Let x1, . . . , xk be k distinct

points in R3
. Set U B R3\{x1, . . . , xk } and de�ne f : U → R by

(59.33) f (x) =
k∑
i=1

1

2|x − xi |
.

From the in discussion Example 59.13 it is clear that the Gibbons–Hawking ansatz for f produces

a Riemannian manifold whose apparent singularities over x1, . . . , xk can be removed. Denote the

resulting manifold by (X ,д).
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Since

f (x) =
k

2|x |
+O(|x |−2) as |x | → ∞,

(X ,д) is asymptotic at in�nity to R4/Zk . These spaces are called ALE spaces of type Ak−1. For

k = 2, this metric was discovered by Eguchi and Hanson [EH79]. The metrics for k > 3 were

discovered by Gibbons and Hawking [GH78].

Let us understand the geometry and topology of these spaces somewhat more. Suppose γ is an

arc in R3
from xi to x j avoiding all the other points xk . The pre-image in X of any interior point

of γ is an S1
while the pre-images of the end points are points. Therefore,

(59.34) π−1(γ ) ⊂ X

is di�eomorphic to S2
. Suppose γ is straight line segment in R3

with unit tangent vector

(59.35) v =
3∑
i=1

ai∂xi

with a2

1
+ a2

2
+ a2

3
= 1. The tangent spaces to π−1(γ ) are spanned by ∂α and v . In particular, they

are invariant with respect to the complex structure

(59.36) Iv B a1I1 + a2I2 + a3I3.

Its volume is given by

(59.37)

ˆ
π−1(γ )

a1ω1 + a2ω2 + a3ω3.

Therefore,

(59.38) [π−1(γ )] , 0 ∈ H2(X ,Z).

If necessary we can reorder the points xi so that for i = 1, . . . ,k −1, there is a straight-line segment

γi joining xi and xi+1. Set

(59.39) Σi B π−1(γi ).

It is not di�cult to see that [Σ1], . . . , [Σk−1] generate H2(M ;Z). It is an exercise to show that

(59.40) [Σi ] · [Σj ] =

{
−2 if i = j,

1 if i , j .

Remark 59.41. Kronheimer [Kro89b] gave an alternative construction of the ALE spaces of type

Ak−1 (in fact, all ALE spaces) as hyperkähler quotients. He also classi�ed these spaces completely

[Kro89a].
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Example 59.42. Let x1, . . . , xk be k distinct points in R3
and let c > 0. Set U B R3\{x1, . . . , xk }

and de�ne f : U → R by

(59.43) f (x) =
k∑
i=1

1

2|x − xi |
+ c .

The Gibbons–Hawking ansatz for f gives rise to the so-called multi-center Taub–NUT metric.

Example 59.44. The following is due to Anderson, Kronheimer, and LeBrun [AKL89]. Let x1, x2, . . .

be an in�nite sequence of distinct points in R3
and denote byU the complement of these points. If

(59.45)

∞∑
j=2

1

x1 − x j
< ∞,

then

(59.46) f (x) B
∞∑
j=1

1

2|x − x j |

de�nes a harmonic function on U . The Gibbons–Hawking ansatz gives rise to a hyperkähler

manifold X whose second homology H2(X ,Z) is in�nitely generated. Anderson, Kronheimer, and

LeBrun prove that the metric д is complete.

This is not a complete list of interesting examples of hyperkähler manifold which can be

produced using the Gibbons–Hawking ansatz. The most egregious omission is that of the Ooguri–

Vafa metric.

60 The Euclidean Schwarzschild metric

Example 60.1. Denote polar coordinates on R2\{(0, 0)} by α and r de�ne the Riemannian metric

дM by

(60.2) дES B
4r

r + 1

dα ⊗ dα +
r + 1

r
dr ⊗ dr + (r + 1)2дS2 .

The apparent singularity at r = 0 is resolved by the change of variables r = ρ2
. This metric is

called the Euclidean Schwarzschild metric. It is Ricci-�at. The expression (60.2) shows that дM is

asymptotic to the �at metric on S1 × R3
. Therefore, дES has volume growth r 3

.

61 Unique continuation and the frequency function

De�nition 61.1. LetM be a connected manifold, let E, F be vector bundle overM and letD : Γ(E) →
Γ(F ) be a di�erential operator. We say thatD has the unique continuation property if the following

holds: if s ∈ kerD and s vanishes on an open subset, then s vanishes on all of M .
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Theorem 61.2. Let (M,д) be a connected Riemannian manifold, let E be a Euclidean vector bundle,
and let A be a connection on E, and let R ∈ Γ(End(E)). The di�erential operator

∇∗A∇A + R

has the unique continuation property.

Corollary 61.3. Let (M,д) be a connected Riemannian manifold, If α is a harmonic form which
vanishes on an open subset, then α vanishes on all ofM .

Throughout the remainder of this section assume the hypotheses of Theorem 61.2 and �x

s ∈ kerD. Furthermore, denote by r0 > 0 a small constant. Since s ∈ kerD,

(61.4) ∆|s |2 + 2|∇As |
2 = −〈Rs, s〉.

61.1 The frequency function

The proof relies on Almgren’s frequency function.

De�nition 61.5. For every x ∈ M , de�nemx ,Dx : (0, r0] → [0,∞) by

mx (r ) B
1

rn−1

ˆ
∂Br (x )

|s |2 and

Dx (r ) B
1

rn−2

ˆ
Br (x )
|∇As |

2
;

and, furthermore, set r−1,x B sup{r ∈ (0,∞) : mx (r ) = 0} and de�ne the frequency function
nx : (r−1,x , r0] → [0,∞) by

nx (r ) B
Dx (r )

mx (r )
.

The key property of the frequency function is the following.

Proposition 61.6. For every r ∈ (r−1,x , r0],

(61.7) n
′
x (r ) > −cr (1 + nx (r )).

Before embarking on the proof of Proposition 61.6, let us record the following consequence.

Proposition 61.8. For every r−1,x < s 6 r 6 r0,

nx (s) 6
(
1 + cr 2

)
nx (r ) + cr

2.
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Proof. By Proposition 61.6,

d

dr
e

1

2
cr 2

(nx (r ) + 1) > 0.

This implies

nx (s) 6 e
1

2
c(r 2−s2)

nx (r ) + e
1

2
c(r 2−s2) − 1. �

The proof of of Proposition 61.6 relies on the following propositions.

Proposition 61.9. For every x ∈ M and r ∈ (0, r0],
ˆ
Br (x )
|s |2 6 cr

ˆ
∂Br (x )

|s |2.

Proof. Denote by Hx ,r the mean curvature of ∂Br (x). We have

d

dr

ˆ
∂Br (x )

|s |2 =

ˆ
∂Br (x )

Hx ,r |s |
2 +

ˆ
∂Br (x )

∂r |s |
2

=

ˆ
∂Br (x )

Hx ,r |s |
2 −

ˆ
∂Br (x )

∆|s |2

=

ˆ
∂Br (x )

Hx ,r |s |
2 +

ˆ
Br (x )
|∇As |

2 + 〈Rs, s〉.

Since Hx ,r = 1/r + O(r ) and r0 � 1, this term is non-negative. Therefore,

´
∂Br (x )

|s |2 is non-

decreasing and this proves the statement. �

Proposition 61.10. For every r ∈ (0, r0],

D ′x (r ) =
2

rn−1

ˆ
∂Br (x )

|∇A,∂r s |
2 + rD′

with
|rD′ | 6 cr (Dx (r ) +mx (r )).

Proof. De�ne the tensor �eld T ∈ Γ(S2T ∗M) by

T (v,w) B
〈
∇A,vs,∇A,ws

〉
−

1

2

〈v,w〉|∇As |
2.

By a straight-forward computation,

(61.11) trT =
(
1 − n

2

)
|∇As |

2.
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Let y ∈ M be an arbitrary point of M and let e1, . . . , en be a local orthonormal frame such that

(∇eiej )(y) = 0. All of the following computations take place at the point y. By direct computation

(∇∗T )(ei ) = −
n∑
j=1

〈
∇A,ej∇A,ej s,∇A,ei s

〉
+

〈
∇A,ej∇A,ei s,∇A,ej s

〉
−

〈
∇A,ei∇A,ej s,∇A,ej s

〉
=

〈
∇∗A∇As,∇A,ei s

〉
+

3∑
j=1

〈
FA(ei , ej )s,∇A,ej s

〉
= −

〈
Rs,∇A,ei s

〉
+

3∑
j=1

〈
FA(ei , ej )s,∇A,ej s

〉
.

Therefore,

(61.12) |∇∗T | 6 c(|R| + |FA |)|s | |∇As |.

By (61.11), the identity

ˆ
Br (x )

〈
∇∗T , dr 2

x
〉
= −2r

ˆ
∂Br (x )

T (∂r , ∂r ) +

ˆ
Br (x )

〈
T ,Hess(r 2

x )
〉

can be rewritten asˆ
Br (x )

2rx∇
∗T (∂r ) = −2r

ˆ
∂Br (x )

|∇A,∂r s |
2 + r

ˆ
∂Br (x )

|∇As |
2

+ (n − 2)

ˆ
Br (x )
|∇As |

2 +

ˆ
Br (x )
〈T , rII〉

with

rII B Hess(r 2

x ) − 2д.

Since

D ′x (r ) = −
1

rn−1

ˆ
Br (x )
|∇As |

2 +
n − 2

rn−2

ˆ
∂Br (x )

|∇As |
2 + 2ε−2 |µ(Φ)|2,

the inequality (61.12) implies the assertion. �

Proposition 61.13. For every r ∈ (0, r0],

Dx (r ) =
1

rn−2

ˆ
∂Br (x )

〈
∇A,∂r s, s

〉
+ rD

with
|rD | 6 cr 2mx (r ).
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Proof. By (61.4),

ˆ
Bx (r )

2|∇As |
2 = −

ˆ
Bx (r )
〈Rs, s〉 −

ˆ
Bx (r )

∆|s |2

= −

ˆ
Bx (r )
〈Rs, s〉 +

ˆ
∂Bx (r )

∂r |s |
2.

This implies the assertion. �

Proposition 61.14. For every r ∈ (0, r0],

m′x (r ) =
2Dx (r )

r
+ rm′

with
|rm′ | 6 crmx (r ).

Proof. Denote by Hx ,r the mean curvature of ∂Br (x). Be the above computation

mx (r )
′ =

2

rn−1

ˆ
∂Br (x )

(
Hx ,r −

1

r

)
|s |2 +

1

rn−1

ˆ
∂Br (x )

∂r |s |
2

=
2Dx (r )

r
+

2

rn−1

ˆ
∂Br (x )

(
Hx ,r −

1

r

)
|s |2 −

2rD

r
.

The assertion follows since

��Hx ,r −
1

r

�� 6 cr . �

Proof of Proposition 61.6. By the above

n
′
x (r ) =

D ′x (r )

mx (r )
−
Dx (r )m

′
x (r )

mx (r )2

=
2

mx (r )

ˆ
∂Br (x )

|∇A,∂r s |
2 −

2Dx (r )
2

rmx (r )2
+
rD′

mx (r )
−
rm′

mx (r )
nx (r )

> −cr (1 + nx (r )) +
2

mx (r )rn−1

[ˆ
∂Br (x )

|s |2
ˆ
∂Br (x )

|∇A,∂r s |
2 −

(ˆ
∂Br (x )

〈
∇A,∂r s, s

〉)2

]
.

By Cauchy–Schwarz, the term in square brackets vanishes. �

61.2 Proof of Theorem 61.2
Proposition 61.15. For every x ∈ M and 0 < s < r 6 r0,(r

s

) (2−cr 2)nx (r )−cr 2

mx (s) 6 mx (r ) 6
(r
s

) (2+cr 2)nx (r )+cr 2

mx (s).
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Proof. By Proposition 61.8 and Proposition 61.14, for t ∈ [s, r ],

d

dt
logmx (t) 6

2nx (t)

t
+ ct

6
2(1 + cr 2)

t
nx (r ) +

cr 2

t

as well as

d

dt
logmx (t) >

2(1 − cr 2)

t
nx (r ) −

cr 2

t
.

These integrate to the asserted inequalities. �

Proposition 61.16. If s , 0, then, for every x ∈ M and r ∈ (0, r0],

mx (r ) > 0;

in particular, r−1,x = 0.

Proof. If mx (r ) = 0, for some r ∈ (0, r0], then it follows from Proposition 61.15 that mx = 0.

Therefore, Φ vanishes on Br0
(x). This in turn implies that my (r0/2) vanishes for all y ∈ Br0/2(x).

Hence, Φ vanishes on B 3

2
r0

(x). Repeating this argument shows that s vanishes. �

This proves Theorem 61.2. �
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