MTU BE 4775 / BE 5775

 Medical Devices10 September 2014 - Lecture \# 03

Diagnostic Devices - Imaging Systems (MRI and CT)

Medical Imaging Technologies

- Radiography (X-Ray flouroscopy)
- Magnetic Resonance Imaging (MRI)
- Functional Imaging (PET)
- Ultrasound (Static / 3D)
- Thermography (IR)
- Tomography (CT)
- Doppler (US)
- Microscopy (Pathology)

Medical Imaging

- Diagnostic tool
- First rule of diagnosis: Look at patient
- Internal as well as external views
- Two and three-dimensional views
- Involves radiation
- Ionizing vs. Nonionizing
- Sound
- Light - visible and infrared
- X-ray
- Gamma rays
- Particles
- Thermal
- Image processing

10 SEP 2014

Medical Illustration

10 SEP 2014

Medical Photography

From: www.history.navy.mil/ ac/medica/88159a.jpg 5

Early Biomechanics: Eadweard Muybridge

-4	-4	-4	$-\frac{4}{4}$
x^{4}	x^{4}	x^{4}	$-x^{4}$
$-x$	$-x$	-4	+4

Horse Movie - 1887

Early Form of Ambulatory Recording Eadweard Muybridge

A More Scientific Approach Taken by Étienne-Jules Marey

A More Scientific Approach Taken by Étienne-Jules Marey

Photography can be used for quantitative visual measurements

Light Microscopy

Ultrasound

- High-frequency sound waves - 20 KHz to 20 MHz
- Reflections from tissue interfaces
- Web tutorial at:
http://www.qub.ac.uk/edu/niesu/physics/medical/usfolder/us-set.html
- Used in soft tissue imaging
- Fetal examinations
- Heart studies
- Tumor detection and sizing
- Cyst detection and sizing

Ultrasound Examination

www.hophoto.com/images/medicallrg.jpg

Ultrasound Principle

B-Scan

Velocity of ultrasound in soft biologic tissue is $1,500 \mathrm{~m} / \mathrm{s}$

$$
d=c(\Delta t)
$$

Where d is the distance traveled
c is the velocity of sound in the material and Δt is the time it takes to travel d

Basic Ultrasound Properties

Velocity

- $1,500 \mathrm{~m} / \mathrm{s}$ in water (biologic soft tissue)
- $330 \mathrm{~m} / \mathrm{s}$ in air (STP)
- 2,400-4,200 m/s in bone
- 5,800-6,000 m/s in steel

Absorption

- Much greater in air and bone than in water

Ultrasound A-Scan

Note: the ultrasound pulse travels twice the distance to the falx.

Ultrasound B-Scan

Fetal head in uetro

Ultrasonic B-Scan

Color Doppler Image of the Umbilical Cord in Utero

3-Dimensional Ultrasound Images

www.fetalfotosusa.com/ Slides/SamplesM.html

Question

Which type of ultrasound B-scan is least likely to provide a good image?
A.Lateral view of the brain
B.Eyes
C.Lungs
D.Kidney cysts
E. Pregnant uterus

Question

Which type of ultrasound B-scan is least likely to provide a good image?
A.Lateral view of the brain
B.Eyes
C. Lungs
D.Kidney cysts
E. Pregnant uterus

X- Rays

Wilhelm Conrad Röntgen

First x-ray: Frau Röntgen's Hand

Electromagnetic Spectrum

X-Ray Tube

Clinical X-Ray Machine

X-Ray Imaging

Planar Film

Computed Tomography (CT Scan)

Normal Chest X-Ray

Computer Tomography (CT) Scanner

10 SEP 2014

Internal View of CT Scanner

T- X-ray tube
D - X-ray detectors
X - X-ray beam
R-Gantry rotation
http://en.wikipedia.org/wiki/File:Ct-
internals.jpg

Back Projection

Start with a Cross Section of the Body

Back Projection Break into Pixels

Back Projection
 Pass Multiple X-ray Beams

Computer Tomography (CT)

CT: Obtain multiple projections from different angles

Solve for the object geometry and the

Parallel Projections in CT

Fourier Slice Theorem for CT

Non-Uniformity of Representation

In the frequency domain, sample density is very high around the origin ($\mathrm{U}=\mathrm{V}=0$), but the density decreases as one moves away from the origin.
$\mathrm{U}=\mathrm{V}=0$ corresponds to the image segments where there is no change (not very interesting).

We can emphasize the variations in the image by adding a weighing function that DE-emphasizes the origin.

Image Reconstruction

A Simplified Example

Assume that the object to be imaged can be represented by a 2 $x 2$ matrix.

We do not know the values in the 2×2 object, but we know the values resulting from the projections.

Can we find the values of the object (i.e. numbers in the $2 x 2$ matrix) using the values of the projections?

Solution to the Example

Homework

How many projections would you need if the original object was represented by an $\mathrm{n} \times \mathrm{n}$ matrix? Justify your answer by showing an algebraic solution to the problem.

Due on Monday, 15 September 2014 at noon Eastern Time.

Back Projection

Solve Multiple Simultaneous Equations

CT Images

CT Images

3-D Reconstruction from CT Scans

Magnetic and Non-magnetic Nuclei

- Protons and neutrons make up a nucleus.
- Both have an intrinsic angular momentum or spin. Frequenly
- Pairs of protons and neutrons align to cancel spin.

$$
\omega=\gamma \underset{\uparrow}{\mathrm{B}}
$$

Magnetic
Field

- Spin of charged particle \rightarrow magnetic moment. magnetic properties of nuclei

Odd Mass Numbers Even Mass Numbers
Hydrogen-1 Carbon-12
Oxygen-16

Matter in Magnetic Field

No external magnetic field present
Net magnetization is zero
$M \mathrm{x}=\mathrm{My}=\mathrm{Mz}=0$

10 SEP 2014 NOSSEP 2014

External magnetic field present TEM P/
$\mathrm{Mx}=\mathrm{My}=0, \quad \mathrm{Mz}=\mathrm{Mg}{ }^{-\alpha}\left(\mathbf{N} \boldsymbol{\gamma}^{2}\right.$
$\left.\mathrm{B}_{0}\right) / \mathrm{T}$ Number of Nuclei
MTU - BE 4775 / 5775

Gyrometri
c ratio
48

Generation of the MRI Signal

FID: Free induction decay
Received signal $=A_{0} \sin (\omega t) e\left(-t / T_{2}\right)$
RF pulse is applied to "tip" the spinning nucleus.

Once the RF pulse ends, the nucleus will wobble (precess) until it aligns back with the Z-axis.

Slice Selection in MRI

Strength of the magnetic field at point $[x, y, z]$:

Frequency of RF excitation for the selection of the slice at a given $\underline{\underline{z}}$.

Rows \& Columns within a Slice

Magnitude of the magnetic field at point $[x, y, z]$:

$$
M(x, y, z, t)=M_{0}+x G_{x}(t)+y G_{y}(t)+z G_{z}(t)
$$

FID: Free induction decay

FREQUENCY ENCODING TECHNIQUE:

Turn off the original Z gradient while receiving FID

Overall MRI Process

Summary: Three Options for Imaging

- Reflection
- Photography
- Ultrasound

- Transmission
- X-ray
- CT-Scan

- Emission
- PET
- MRI

