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Reinforcement Learning

• Learning from interaction 
with the environment

• The agent 
• senses the observations 

from environment
• takes actions to deliver to 

the environment
• gets reward signal from 

the environment

• Normally, the 
environment is stationary

Agent

Environment



Multi-Agent Reinforcement Learning

• Learning from interaction 
with the environment

• The environment contains 
other agents that are 
learning and updating

• Non-stationary 
environment

Agent

Environment



Case 1: Battle Game

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



Case 2: Army Align
• Let an army of agents align a particular pattern

Lianmin Zheng, Weinan Zhang et al. Magent: a many-agent reinforcement learning platform for artificial collective intelligence. NIPS17 & AAAI18.



Case 3: Decentralized Game AI
• Designing multi-agent 

communications and 
co-learning algorithms 
for elaborate collective 
game intelligence

RTS Games MOBA Games

Peng, Peng, et al. "Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games." NIPS workshop 2017.



Case 4: City Brain Simulation
• Designing 

• Car routing 
policy

• Traffic light 
controller

• Fleet 
management 
& texi dispatch



Case 5: Storage Sorting Robots



Difficulty in Multi-Agent Learning
• MAL is fundamentally more difficult 

• since agents not only interact with the environment but 
also with each other 

• If use single-agent Q learning by considering other 
agents as a part of the environment 

• Such a setting breaks the theoretical convergence 
guarantees and makes the learning unstable 

• i.e., the changes in strategy of one agent would affect 
the strategies of other agents and vice versa



Sequential Decision Making
• 3 types of setting

• Markov decision processes
• one decision maker
• multiple states

• Repeated games
• multiple decision makers
• one state (e.g., one normal form game)

• Stochastic games (Markov games) 
• multiple decision makers
• multiple states (e.g., multiple normal form games)



Stochastic Games
• A stochastic game has multiple states and multiple agents

• Each state corresponds to a normal-form game
• After a round, the game randomly transits to another state
• Transition probabilities depend on state and joint actions taken by 

all agents

• Typically rewards are discounted over time

Shapley, Lloyd S. "Stochastic games." Proceedings of the national academy of sciences 39.10 (1953): 1095-1100.
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Definition of Stochastic Games
• A stochastic game is defined by 

(S;A1; : : : ;AN ; r1; : : : ; rN ; p; °)(S;A1; : : : ;AN ; r1; : : : ; rN ; p; °)

• State space:  SS
• Action space of agent j: Aj ; j 2 f1; : : : ; NgAj ; j 2 f1; : : : ; Ng
• Reward function of agent rj : S £ A1 £ ¢ ¢ ¢ £ AN ! Rrj : S £ A1 £ ¢ ¢ ¢ £ AN ! R

• Transition probability p : S £ A1 £ ¢ ¢ ¢ £ AN ! Ð(S)p : S £ A1 £ ¢ ¢ ¢ £ AN ! Ð(S)

The collection of probability 
distributions over S

• Discount factor across time ° 2 [0; 1)° 2 [0; 1)



Policies in Stochastic Games
• For agent j, the corresponding policy is

¼j : S ! Ð(Aj)¼j : S ! Ð(Aj) The collection of probability 
distributions over Aj

• The joint policy of all agents is ¼ , [¼1; : : : ; ¼N ]¼ , [¼1; : : : ; ¼N ]

• State value function of agent j

vj (s) = vj(s;¼) =

1X
t=0

°tE ;p

£
rj
t js0 = s;¼

¤
:vj (s) = vj(s;¼) =

1X
t=0

°tE ;p

£
rj
t js0 = s;¼

¤
:

• Action value function of agent j Qj : S £A1 £ ¢ ¢ ¢ £ AN ! RQj : S £A1 £ ¢ ¢ ¢ £ AN ! R

Qj (s;a) = rj(s;a) + °Es0»p[v
j (s0)]Qj (s;a) = rj(s;a) + °Es0»p[v
j (s0)]

[a1; : : : ; aN ][a1; : : : ; aN ]



Independent Learning in SG
• For each agent j, assume the other agents’ policies 

are stationary, thus the environment for j is 
stationary to perform Q-learning

Q(s; aj ; a¡j) Ã Q(s; aj ; a¡j)+

®(r + ° max
aj 0

Q(s0; aj 0; a¡j 0)¡Q(s; aj ; a¡j))

Q(s; aj ; a¡j) Ã Q(s; aj ; a¡j)+

®(r + ° max
aj 0

Q(s0; aj 0; a¡j 0)¡Q(s; aj ; a¡j))

• Unfortunately, in SG with MARL, every agent is 
learning and updating its policy, making the 
environment non-stationary



Nash Equilibrium in SG

• Optimizing            for agent j depends on the joint policy π

vj (s) = vj(s;¼) =

1X
t=0

°tE ;p

£
rj
t js0 = s;¼

¤
vj (s) = vj(s;¼) =

1X
t=0

°tE ;p

£
rj
t js0 = s;¼

¤
vj (s)vj (s)

• Nash equilibrium in SG is represented by a particular joint 
policy

¼ , [¼1
¤; : : : ; ¼

N
¤ ]¼ , [¼1

¤; : : : ; ¼
N
¤ ]

such that nobody would like to change his policy given the 
others’

vj(s; ¼¤) = vj(s; ¼j
¤;¼

¡j
¤ ) ¸ vj(s; ¼j ; ¼¡j

¤ )vj(s; ¼¤) = vj(s; ¼j
¤;¼

¡j
¤ ) ¸ vj(s; ¼j ; ¼¡j

¤ )

¼¡j
¤ , [¼1

¤ ; : : : ; ¼
j¡1
¤ ; ¼j+1

¤ ; : : : ; ¼N
¤ ]¼¡j

¤ , [¼1
¤ ; : : : ; ¼

j¡1
¤ ; ¼j+1

¤ ; : : : ; ¼N
¤ ]



Nash Q-learning
• Given a Nash policy π*, the Nash value function

vNash(s) , [v1
¤(s); : : : ; v

N
¤(s)]vNash(s) , [v1

¤(s); : : : ; v
N
¤(s)]

• Nash Q-learning defines an iterative procedure
1. Solving the Nash equilibrium π* of the current stage 

defined by {Qt}
2. Improving the estimation of the Q-function with the 

new Nash value vNash

• But Nash Q-learning suffers from
• Very high computational complexity
• May not work when other agents’ policy is unavailable



From Multi- to Many-Agent RL
• What will happen when agent number grows?

• Reward function of agent rj : S £ A1 £ ¢ ¢ ¢ £ AN ! Rrj : S £ A1 £ ¢ ¢ ¢ £ AN ! R

• Transition probability p : S £ A1 £ ¢ ¢ ¢ £ AN ! Ð(S)p : S £ A1 £ ¢ ¢ ¢ £ AN ! Ð(S)

• Both reward function and state transition 
probability get exponentially larger

• More difficult to model
• The environment is more dynamic and sensitive
• Need more exploration data
• More computational resources



Idea: Taking Other Agents as A Whole

• In some many-body systems, the interaction 
between an agent and others can be approximated 
as that between the agent and the “mean agent” of 
others



Mean Field Multi-Agent RL
• Mean field approximation

• Approximate the joint 
action value by factorizing 
the Q-function into 
pairwise interactions

Yaodong Yang, Weinan Zhang et al. Mean Field Multi-Agent Reinforcement Learning. ICML 2018.

Qj(s; a) =
1

N j

X
k2N (j)

Qj(s; aj ; ak)Qj(s; a) =
1

N j

X
k2N (j)

Qj(s; aj ; ak)

Neighboring agent set of j

• Significantly reduces the global interactions among agents
• Still preserves global interactions of any agent pair



Action Representation

• Consider discrete action space
• Action aj of agent j is one-hot encoded as

Qj(s; a) =
1

N j

X
k2N (j)

Qj(s; aj ; ak)Qj(s; a) =
1

N j

X
k2N (j)

Qj(s; aj ; ak)

aj , [aj
1; : : : ; a

j
D]aj , [aj

1; : : : ; a
j
D] Only one element is 1

• The mean action based on the neighborhood of j is

¹aj =
1

N j

X
k

ak¹aj =
1

N j

X
k

ak

• Thus the action ak of each neighbor k can be represented as

ak = ¹aj + ±aj;kak = ¹aj + ±aj;k

mean
action

residual

1

N j

X
k

aj;k = 0
1

N j

X
k

aj;k = 0

Residual sum is 0



Mean Field Approximation

• A 2-order Taylor expansion on Q-function

Qj(s; a) =
1

N j

X
k

Qj(s; aj ; ak)

=
1

N j

X
k

·
Qj(s; aj ; ¹aj) +r¹ajQj(s; aj ; ¹aj) ¢ ±aj;k +

1

2
±aj;k ¢ r2

~aj;kQj(s; aj ; ~aj;k) ¢ ±aj;k

¸
= Qj(s; aj ; ¹aj) +r¹ajQj(s; aj ; ¹aj) ¢ 1
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~aj;kQ
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j(s; aj ; ~aj;k) ¢ ±aj;k
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1

2N j

X
k

Rj
s;aj (a

k)

¼ Qj(s; aj ; ¹aj)

Rj
s;aj (a

k) , ±aj;k ¢ r2
~aj;kQj(s; aj ; ~aj;k) ¢ ±aj;kRj

s;aj (a
k) , ±aj;k ¢ r2

~aj;kQj(s; aj ; ~aj;k) ¢ ±aj;k

~aj;k = ¹aj + ²j;k±aj;k~aj;k = ¹aj + ²j;k±aj;k

Q-function model 
the interaction 
between the 
agent’s action and 
the mean action

External random signal for agent j

ak = ¹aj + ±aj;kak = ¹aj + ±aj;k



Mean Field Q-Learning

• Given an experience                         sampled from 
replay buffer

• Sample the next action        from  

• Set 

• Update Q function with the loss function

hs; a; r; s0; ¹aihs; a; r; s0; ¹ai

aj
¡a
j
¡ Q

Áj
¡

Q
Áj
¡

yj = rj + ° Q
Áj
¡
(s0; aj

¡; ¹aj)yj = rj + ° Q
Áj
¡
(s0; aj

¡; ¹aj)

L(Áj) =
¡
yj ¡QÁj (sj ; aj ; ¹aj)

¢2L(Áj) =
¡
yj ¡QÁj (sj ; aj ; ¹aj)

¢2

• A softmax MF-Q policy
¼j

t (a
j js; ¹aj) =

exp
¡
¯Qj

t (s; a
j ; ¹aj)

¢P
aj02Aj exp

¡
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t (a
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¡
¯Qj

t (s; a
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¢P
aj02Aj exp

¡
¯Qj

t (s; a
j0 ; ¹aj)

¢



MF-Q Convergence

• Theorem: In a finite-state stochastic game, the Q 
values computed by the update rule of MF-Q 
converges to the Nash Q-value

• under certain assumptions of reward function, policy 
form and game equilibrium



Experiment: Ising Model (IM)

• Each spin is an agent to 
decide up or down (action)

• Measure: order parameter

» =
jN" ¡N#j

N
» =

jN" ¡N#j
N

• The closer OP is to 1, the 
more orderly the system is.



Experiment Performance IM
• Ground truth: MCMC 

simulation
• Goal: MF-Q learns 

with the similar 
behavior as MCMC, 
which we observed



Experiment Performance IM



Experiment: Battle

Supported by

Lianmin Zheng, Weinan Zhang et al. "MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence." NIPS 2017.

Action Space

wall
group1
group1’s hp
group1’s minimap
group2
group2’s hp
group2’s minimap
…

ID Embedding Last action/reward Relative pos

move attack turn

Grid World

Observation Space



Experiment Performance Battle

• For 64 vs 64 battle, MF-Q works the best among all 
compared models

• MF-AC may not work that well particularly when 
the agent number is large



Experiment Performance Battle

• MF-Q has a fast convergence property
• MF-AC has a phase changing point



Case Study

• Blue: MF-Q
• Red: IL

• MF-Q presents a 
go-around-and-
besiege strategy

• MF-Q agents are 
more consistent 
with neighbors



Summary of MARL

• Main difficulties for many-agent RL
• Computational complexity
• Complicated agent interactions
• Highly dynamic neighborhood

• Possible solutions
• Mean field approximation
• MAgent platform



• Traditional machine 
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from a machine and the 
training data and to 
optimize the objective

model

data
objective

• Two-agent machine 
learning is to build

• a loss function
• a likelihood estimation
• an expectation of value

from the two machines and 
the training data and to 
optimize the objective

model

data

objectives

model

Summary from Machine Learning Perspective



Prediction
& detection

Decision Making

Give more access to machines

Towards a more 
decentralized service 

Many-agent

Multi-agent

Single-agent

Generation

LR/SVM Language model Atari AI

Ensemble GANs/CoT MARL

IoT AI / City AI / Market AICrowding sourcing

This area gets more and more attention!

Summary Machine Learning Paradigm Extension


