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Abstract

Chemical batch processes are typically used for the production of speciality chemicals and pharmaceuticals. Due to the still growing
importance of this type of processing, design methods are required that take into account the special requirements and constraints in the
corresponding production facilities. We developed a method that optimizes the design of a single chemical process to be implemented in an
existing multi-purpose batch plant, in which a well-defined set of equipment units is available for realizing this process. In the optimization,
three objectives with different priorities are considered. A flexible metaheuristic algorithm, Tabu Search (TS), has been implemented to solve
this multi-objective combinatorial non-linear problem. We started from a basic form of TS to determine the effectiveness of this version as well
as establish the relative strengths and weaknesses of first level TS strategies. Our investigation includes a thorough examination of algorithm
parameters and of implementation issues to identify algorithm settings that can handle the whole class of problems considered. Overall, we
concluded that the basic form of TS—using fixed default settings—exhibits highly attractive performance features for solving the problems
at hand. Moreover, comparison with a multi-start steepest descent algorithm shows that a basic TS approach conducts a global search more
effectively. As illustrated by three case studies, the new method is well suited for identifying optimal designs of a chemical process to be
implemented in an existing multi-purpose batch plant. The approach is particularly suited for considering multiple prioritized objectives and
for enabling the use of external (e.g. commercial) batch process simulation software as a black-box model for the process evaluations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Batch process design

Speciality chemicals and pharmaceutical products are typ-
ically produced in batch processes. Corresponding plants
are often classified as multiproduct batch plants, in which
every product follows the same sequence through all the
process steps, or as multi-purpose batch plants, in which
each product follows its own distinct processing sequence
by using the available equipment in a product-specific lay-
out (Rippin, 1983). In practice combinations of these two
limiting scenarios might also arise. Multi-purpose plants
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can be used in two main modes: either only one produc-
tion runs in the plant at a given time or many processes run
concurrently. Some multi-purpose plants consist of discrete
but flexible production lines that are independent from each
other.

Because of the escalating importance of these types of
chemical processes, in recent years increased research ef-
forts have been undertaken to develop design methods for
batch processes. Many methods deal with the grassroot
design of multiproduct or multi-purpose batch plants and in-
clude the equipment sizing problem (Grossmann & Sargent,
1979; Papageorgaki & Reklaitis, 1990; Sparrow, Forder, &
Rippin, 1975; Suhami & Mah, 1982; Voudouris &
Grossmann, 1992). In most cases, the authors only consider
the case where many productions run concurrently.

Relatively few publications have been presented that deal
with the optimum design of a single batch process. For
grassroot design,Loonkar and Robinson (1970)described a
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Nomenclature

B block matrix containing sequences of tasks
to be conducted in the same equipment unit(s)

BR block-to-recipe one-to-many relationship matrix
C connectivity constraints matrix
E equipment matrix
K recipe indexes vector (list of tasks belonging

to one block)
L allocated equipment units matrix,L is a solution

to the design problem
O operation library matrix, reference containing

all possible task classes
P standard operating ranges library matrix
R recipe matrix consisting of a list of tasks

to be conducted
S eligible equipment units vector
T tabu tenure
U eligible equipment classes vector
X secondary recipe matrix, subset matrix

of R for the tasks indicated inK
y temporary binary variable indicating if the

considered task is a transfer (1) or not (0)
Z sequence matrix allowing to handle

branching recipes

Subscripts
i main counter across the block matrixB
j secondary counter across the block matrixB

procedure for the cost optimum design and apparatus sizing
of a single batch process, whileTakamatsu, Hashimoto, and
Hasebe (1982)presented a similar approach that considers
the possibility of intermediate storage.Yeh and Reklaitis
(1987) presented a method for the preliminary grassroot
design of a single batch process including an approximate
sizing procedure.Mauderli and Rippin (1979)developed a
method for planning and scheduling in multi-purpose batch
plants. While they consider many concurrent productions,
their first step consists of the generation of design alter-
natives for the production of single products. To obtain
the different design alternatives they take account of the
plant specifications (number and size of available equip-
ment units) and the process requirements (which equipment
units can be used for the different process tasks). These
alternative designs are not optimized but generated using a
heuristic procedure that allows the selection of promising
designs while ignoring designs with a low performance.
The objective of these researches is to optimizen subse-
quent batches that can follow different paths in the plant.
However, for safety, regulatory and controlling reasons, it
is often preferred to have all batches using the same path.
Under this perspective, the objective changes from theopti-
mum schedule of n subsequent batchesto thedesign of the

single most efficient batch. To our knowledge no method to
date has focused on this particular design problem.

In order to identify an optimal solution for this prob-
lem it is important to consider in the design procedure all
details and existing constraints such as equipment specifi-
cations (e.g. range of operating temperature and pressure,
lining material, special supply pipes, the floor at which
each equipment is located), design constraints (e.g. feasible
and infeasible connection of equipment units), and process
requirements (e.g. reaction mixture that cannot be safely
transferred, thus forcing several operations to be conducted
in the same equipment unit). This is the approach taken
in the method presented here. Based on pre-defined rules
(representing heuristics) and options selected by the user,
specified operating instructions for a chemical process to be
designed are automatically analyzed with regard to design
requirements and constraints: suitable equipment units are
assigned to each operation, feasible and infeasible transfers
are identified, and operation blocks are determined that will
be conducted in the same equipment unit. This results in a su-
perstructure for which the optimum design can be identified.

1.2. Integer non-linear optimization

The problem that has to be solved is one of combinatorial
optimization, a pure integer problem: the optimization in-
volves decision variables that take only integer values, with-
out any continuous variables. Even when the user selects to
use short-cut models to adapt operation durations, non-linear
(e.g. stepwise) functions are evaluated to compute the ob-
jective function, rendering this problem a non-linear integer
system. Such systems are known to be NP-Complete and
cannot be solved in polynomial time. Various algorithms
and methods have been developed to tackle similar problems
that can be classified in three main categories: heuristics,
mathematical programming and metaheuristic algorithms.

Heuristics (of the classical kind) do not actually solve the
optimization problem, but aim at finding “good” solutions
by following a set of rules. In the chemical process design
field, Douglas (1985)has developed a method for hierarchi-
cal process synthesis that relies on sets of rules at different
stages during process development (see alsoSiirola, 1996).
The computer-oriented implementation of such systems
usually takes the form of an Expert System, as for example
presented byKirkwood, Locke, and Douglas (1988). Such
methods are good in finding quickly and reliably a good
solution that can be used for example as starting point for
more advanced metaheuristic algorithms.

The mathematical programming methods (sometimes
called “exact methods”) are rigorous optimization tech-
niques aimed at solving the Mixed Integer Non-Linear
Problem (MINLP) formulation of the design problem
(Grossmann, 1985). These techniques use usually algo-
rithms derived from Branch and Bound or Outer Approx-
imation, as discussed byGrossmann and Kravanja (1995)
andSkrifvars, Harjunkoski, Westerlund, Kravanja, and Porn
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(1996). They have been used extensively in process design
(see e.g.Ciric & Floudas, 1990; Hostrup, Gani, Kravanja,
Sorsak, & Grossmann, 2001; Papalexandri & Pistikopoulos,
1996). A recent review of these methods has been pub-
lished byGrossmann, Caballero, and Yeomans (1999)and
their applicability, limitations and potentials are discussed
by Grossmann and Daichendt (1996), Gruhn and Noronha
(1998), andKallrath (2000).

The last category, the metaheuristic algorithms, are based
on one (or several) initial solution(s) and a progressive
(though not necessarily uniform) improvement of their
quality. A popular example of a metaheuristic is the genetic
algorithm (GA) approach. This scheme is characteristically
based on a population of solutions that are combined (us-
ing a crossover operation) and randomly modified (using
a mutation operation) according to their fitness (objective
function value), leading to a “natural” selection and a dis-
crimination in favor of solutions with a good fitness. In the
process design field,Fraga and Matias (1996)for exam-
ple used a genetic algorithm to optimize the design of a
distillation system.

Another metaheuristic method is simulated annealing
(SA) developed byKirkpatrick, Gelatt, and Vecchi (1983).
SA randomly modifies an initial solution, and always ac-
cepts downhill (improving) moves when encountered. Other
moves are accepted if they satisfy a condition that de-
pends on the advancement of the algorithm (the Metropolis
criterion, expressed as “temperature”), which endows the
method with an ability to accept moves that can escape from
a local optimum. In the process design field, SA has been
used to design separation systems byFloquet, Pibouleau,
and Domenech (1994)and to handle overall process design
by Chaudhuri and Diwekar (1996).

A third metaheuristic method is the Tabu Search (TS),
developed byGlover (1977). TS makes use of adaptive
memory to escape local minima. TS has had numerous
successful applications in recent years (for example, the
website http://www.tabusearch.netlists over a thousand
presentations and articles on the method), but to our knowl-
edge it has been used only once in the field of batch process
design byWang, Quan, and Xu (1999)for the problem of
the grassroot design of multiproduct batch processes.

Within the present project the goal was to enable the use
of external batch simulation programs (black-box optimiza-
tion). Black-box models are exceedingly difficult to handle
in conjunction with mathematical programming approaches,
therefore making it attractive to employ a metaheuristic
algorithm. Gross and Roosen (1998)have tackled a sim-
ilar problem (continuous process design with a black-box
external simulation package) and have chosen a genetic
algorithm. However, GA approaches have encountered sig-
nificant difficulties when confronted with problems that
contain complex constraints, which are a predominant fea-
ture in the problems we face. The limitation of GAs in these
settings arises from the inability to implement crossover
operations that generate valid designs. Recourse to penalty

approaches and ad hoc “repair operators” as an attempted
remedy entails a risk of spending most of the computational
effort in handling invalid solutions, making GAs unsuitable
for our present application. Another evolutionary approach,
path relinking, offers a greater capability for handling con-
straints. This approach is often coupled with Tabu Search
(and in fact, emerged from the same origins as Tabu Search),
thereby motivating us to look at an implementation of TS
in this study. Additional reasons for choosing Tabu Search,
and for choosing a multi-start descent procedure to compare
it against (in contrast to simulated annealing, for example),
are indicated in the next section.

1.3. Objectives of this research

Since very limited experience is available with regard
to using Tabu Search in chemical process design, we de-
cided to conduct a “grass roots” investigation of the algo-
rithm to determine its performance characteristics in this
setting.

The objectives of the research presented here were to:

• Investigate the suitability of TS for the chemical process
design problem discussed above, and to determine param-
eters and settings that have the greatest relevance for a
basic TS implementation.
• Establish the relative strengths and weaknesses of first

level TS strategies for solving this class of problem.
• Examine the suitability of TS to handle multiple priori-

tized objectives.
• Determine default parameter settings that can handle the

whole class of problems with the highest probability of
finding the global optimum while using a modest amount
of computational effort.

Our major aim being to study the suitability of TS for solv-
ing a new class of problems, we concentrated on examining a
basic form of Tabu Search exclusive of deeper TS strategies
that comprise an integral part of more advanced versions.
Additionally, we want to establish how a simple TS imple-
mentation compares with a principal alternative approach
(multi-start descent) that has been documented to have good
performance characteristics and strong convergence proper-
ties. As previously noted, we have not undertaken to create
a computational comparison of our TS approach with simu-
lated annealing. The reason for instead choosing multi-start
descent (sometimes called “iterated descent” or “generalized
hill climbing”) is the demonstration by recent studies that
this approach may dominate simulated annealing both theo-
retically and empirically (see e.g.Jacobson, 2002; Lourenco,
Martin, & Stutzle, 2002).

Finally, we intend to provide insight into the choice of
higher level strategies that are likely to produce the greatest
improvements.

Against this backdrop, we investigate the effectiveness of
our Tabu Search approach by using three real world case
studies.

http://www.tabusearch.net
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2. Batch process design method

The problem covered in this paper can be defined as fol-
lows:

• Given:
(a) Recipe

a. Recipe of the product expressed as a series of
chemical/physical tasks.

b. Capacity requirements for each task per unit of
final product.

c. Base duration of each task at the input scale.
d. Recipe constraints (specific rules about how tasks

can be combined).
(b) Equipment

a. Available equipment units and their detailed spec-
ifications.

b. Connectivity constraints (governing links between
equipment).

(c) General heuristics
a. Equipment classes suited for processing each task

class.
b. Design heuristics (built-in and user options).
c. Relationships between task processing time and the

batch size.
(d) One or more objective functions
• Determine:

An optimal layout for the process—allocating equip-
ment units to tasks and decide on the design options
(in parallel, in series).

A general overview of the method is presented inFig. 1.
The routines for recipe analysis, superstructure generation,
process simulation, and optimization have been imple-
mented in a MATLAB® program. The process simulations
can also be conducted in an external (e.g. commercial) batch
process simulator. The different input and methodological
steps are summarized below using a relational data struc-
ture formulation, the tuple calculus (Date, 1995). Table 1
provides a list of the symbols used in the mathematical
formulation.

The first input is the base recipeR. The recipe is given
as a table (which is converted to a matrix in MATLAB®)

Table 1
Tuple calculus symbols and operators used in the mathematical formula-
tion

Symbol Meaning

a.b Column b of matrix a
(a|a.c = 1) Take rows ofa where columnc = 1
(a.b|a.c = 1) Take only columnb (same rows as above)
∈ Is contained in (single element)
⊃ Contains (multiple elements)
∪ Union
∩ Intersection
← Assign a subset of a matrix to itself (filtering)
∅ Empty (no elements)

containing vertically the physico-chemical tasks to be con-
ducted; the vertical position, also called theindex, repre-
sents the position of the given task in the task sequence.
Branched recipes are handled by including an additional
matrix Z (not included in the equations below) to de-
scribe the sequence of the rows in the recipe (Eq. (11)
(see below) would be modified to take matrixZ into
consideration).

Each row of R first indicates the nature of the task
(R.OperationClassID), the base volume (R.Volume) and
the estimated base duration (R.Duration) required for
the task. All column names ending inID are relations
to lists of available options stored in library matrices.
For instance,R.OperationClassIDrefers to the operation
class matrixO containing all supported types of tasks
(e.g. reaction, distillation. . . ). Operating temperature
(R.Temperature), pressure (R.Pressure) and required lin-
ing materials (R.LiningID) are then given, and the matrix
is completed by flags (R.Flag) indicating constraints on
possible designs, duration adaptation rules and algorithm
options.

Based onR.Flag, the recipe is condensed in a block matrix
B (step “Recipe Analysis” inFig. 1). Each row ofB (i.e.
each operation block) contains a list of tasks thatmustbe
conducted in the same equipment unit(s). The matrix stores
the largest volume attained during the block, as well as the
highest pressure and temperature reached.

According to the duration adaptation rules inR.Flag, B
also contains two duration components:B.ConstantDuration
contains the volume independent part of the aggregated du-
ration of the block, whileB.LinearDuration contains the
volume dependant part. If the time adaptation rules are nei-
ther linear nor constant for one task, as identified byR.Flag,
this indication is propagated toB.Flag. Finally, the flags
and the lining material requirements are summarized in each
row.

A block-to-recipe one-to-many relationship matrixBR is
also set up in order to keep track of which tasks are contained
in which block.

An illustrative example of the recipe matrices is given
in Fig. 2. The matrixR is a transposition of the text recipe
given and also includes heuristics which are summarized as
flags. For instance, due to the presence of the flag “Do not
transfer after operation” (flag 2) in theChargeoperation,
the two first operations are grouped in the block matrix
B. The flag “Cannot be conducted in series” (flag 8) is
not propagated to the whole group, as the group may be
conducted in series as long as the transfer happens dur-
ing the reaction. On the other hand, the flags “Cannot be
conducted in parallel” (flag 4), or “Special Scale-up rules”
(flag 32—in use, e.g. for multi-drop centrifuges) would for
instance have been propagated. The operation indexes given
in the BR matrix are the row numbers of the operations in
matrix R.

The equipment list is similarly represented by a matrixE.
Each row ofE represents a single equipment unit, defined
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Fig. 1. Overview of the method; gray boxes indicate optional usage of external software.

by a unique numberE.EquipmentID. If multiple equipment
units belong together (for example, a condenser on the top
of a reactor), an internal link to the masterEquipmentID
(e.g. the reactor) is given in the slave equipment (e.g. the
condenser) record. Each equipment unit is defined by a class
defining the type of equipment (e.g. reactor, centrifuge, con-
denser. . . ), the volume, the lining material (E.LiningID,
pointing to the same library matrix asR.LiningID) the op-
erating range being indicated by a pointerE.TP rangeID to
the standard operating ranges matrixP that contains max-
ima and minima for both pressure and temperature. Finally,
the physical location in the plant is defined by the floor.

Feasible equipment interconnections are summarized
in the connectivity matrixC that contains many-to-many

relationships based on theEquipmentID. The equipment
class allocation to each block of tasks (third step in
Fig. 1) is based on the allocation matrixA. It contains
many-to-many relationships indicating which task class(es)
can be conducted in which equipment class(es). The equip-
ment class allocation proceeds according toEqs. (1)–(4)
(the subscript i is the main counter across the block
matrix B).

recipe indexes:= Ki = (BR.RecipeIndex|BR.BlockID= i)

(1)

recipe operations:= Xi = (R|R.index∈ Ki) (2)
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Fig. 2. Illustrative example of the recipe matrixR and the resulting block matricesB and BR, based on a fragment of a text recipe (see text for further
explanations).

equipment classes:=
Ui =

(
A.EquipmentClassID|A.OperationClassID⊃

⋃
Xi.OperationClassID

)
(3)

eligible equipment units:=
Si = (E|E.EquipmentClassID∈ Ui) (4)

In the next step, the eligible equipment unitsSi are filtered
according to the lining material and operating conditions
requirements, as shown inEqs. (5)–(9).

Si← (Si|(P.Pmin|P.TPrangeID

= Si.TP range) ≤ min(Xi.Pressure)) (5)

Si← (Si|(P.Pmax|P.TPrangeID

= Si.TP range) ≥ max(Xi.Pressure)) (6)

Si← (Si|(P.Tmin|P.TPrangeID

= Si.TP range) ≤ min(Xi.Temperature)) (7)

Si← (Si|(P.Tmax|P.TPrangeID

= Si.TP range) ≥ max(Xi.Temperature)) (8)

Si←
(
Si|Si.LiningID ∈

⋂
Xi.LiningID

)
(9)

The superstructure is defined by combining these eligible
equipment units for each task block with design rules and
constraints. The first constraint is that no equipment unit
can be used twice for the same batch, as shown inEqs. (10)
and (11)(the subscriptj is a secondary counter on the block
matrix B).

Allocated equipment units:= L, L0 = ∅,
Li=transfer= ∅ (10)

Si← Si −
∑

j=1→i−1

(Lj)+ Li−1 (11)

The connectivity constraints given in matrixC are taken
into consideration inEqs. (12) and (13)(y is a temporary
binary variable indicating a transfer (1) or not (0)).

y = (Xi−1|Xi−1.Class∈ TransferClasses) (12)

Si←




(Si|Si.EquipmentID∈
(C.ToEquipmentID|C.FromEquipmentID∈ Li−2))

if y �= ∅
(Si|Si.EquipmentID∈
(C.ToEquipmentID|C.FromEquipmentID∈ Li−1))

if y = ∅
(13)

Finally, the remaining recipe constraints given in (R.Flag),
that indicate which design can be used to implement each
task, are taken into consideration in addition to those de-
sign constraints given by the user, as shown inEqs. (14)
and (15). (An example of such a design constraint is to indi-
cate whether the reaction mixture can be properly separated
into two equal volumes with the same concentration of all
components, allowing the task to be conducted in parallel
on multiple equipment units. A user design constraint might
further indicate, for instance, that at most two equipment
units can be used in parallel.)

Li = one single element ofSi (14)
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Li=one of




Li + one additional element ofSi

only available if 4 /∈ Bi.Flag;
Li.DesignType= parallel

Li + one or several additional elements ofSi

only available if 8 /∈ Bi.Flag;
Li.DesignType= series

Li

always available;
Li.DesignType= single

(15)

In Eqs. (14) and (15), choices are left open in formulations
like “one single element of”. All possible decisions for mak-
ing such choices determine a valid process. As represented
by the last step inFig. 1, these decisions must be optimized
in order to obtain the optimum design. This optimization is
investigated in detail in the following sections.

The optimization involves three objective functions:

• Maximize the throughput, i.e. the batch size divided by
the batch cycle time.
• Optimize the quality of the design, as evaluated by two

indicators:
◦ minimize the number of equipment units used, to dis-

criminate in favor of simple designs;
◦ minimize the number of floors the reaction mixture has

to be pumped up, to discriminate in favor of top–down
designs.

These objective functions are prioritized: a larger through-
put is always preferred to a simpler design. Similarly, a
simpler design is always preferred to one that is more
“top–down.” This means that the secondary objective func-
tion will only be evaluated when an equal throughput is
produced by two designs, and similarly the third objec-
tive function is only evaluated if two designs produce the
same throughputand use the same number of equipment
units.

The primary objective function evaluation requires a
process simulation of the recipe. This evaluation can be
conducted in an external batch process simulation program.
Alternatively, it can be conducted in MATLAB® using the
constant duration (e.g. duration of a reaction is volume in-
dependent) or a linear time adaptation according to the vol-
ume, for instance for transfers or distillations. (Additionally,
some specific rules called byB.Flaghave been implemented
for special adaptations of durations, like in a multiple-drop
centrifuge where first the number of drops needed is calcu-
lated and then multiplied by the drop duration.)

3. Tabu Search

3.1. Introduction

Tabu Search is a metaheuristic method using a set of
coordinated strategies for introducing and exploiting adap-

tive memory, in order to generate a sequence of solutions
that contains a subsequence of progressively improving
“best solutions found.” Repetitively, modifications of the
current solution are examined, and the one resulting in the
best solution is chosen for the next iteration, even if this
successor is worse than the present solution. The special
memory processes continue to drive the method forward to
discover regions that harbor one or more solutions better
than the current best, if such solutions exist. Some forms
of TS have a proof of finite convergence to optimality
(Glover & Hanafi, 2002), but the most effective forms
generally do not. A comprehensive description of TS with
examples of applications is given inGlover and Laguna
(1997).

The fundamental version of Tabu Search used in this study
is depicted in the schematic flowchart ofFig. 3. In the fol-
lowing, the different rules and options for the algorithm will
be discussed.

3.1.1. Initial solution
First an initial solution has to be provided. Usually there

are advantages to starting from an initial solution that is of
high quality, such as one proposed by experts or generated
by preliminary heuristics.

A method providing multiple initial solutions can how-
ever be preferable: the constraints may make the solution
space non-convex, and hence a “good” initial solution may
be computationally very far (i.e. numerous moves) from the
optimum. An efficient way of exploring the whole solution
space is to restart with different initial solutions. They can
be strategically generated to be diverse, or be generated by a
randomization component. For instance, a strategy used by
Wang et al. (1999)applies a random selection of the initial
solution that is biased to cover previously unvisited regions
of the optimization space as a means of providing a targeted
diversification of the search (other more sophisticated di-
versification strategies are discussed byGlover and Laguna
(1997)).

3.1.2. Move definition—neighborhood generation
The definition of the moves, i.e. the definition of the mod-

ifications of the current solution that can be done at each
iteration, is highly problem-specific. The current solution
combined with the moves defines a neighborhood of possible
“next solutions.” In general terms, larger neighborhoods af-
ford an opportunity to encounter shorter paths (fewer moves)
to reach an optimal solution. However, large neighborhoods
require special candidate list strategies to isolate a subset
of the neighborhood to be tested (see below), and unless
the candidate lists are chosen effectively, the path actually
selected may be quite long, requiring a large number of
steps to reach an optimum (or perhaps never reaching an
optimum at all). This is the first trade-off addressed in the
parameterization of our TS approach. As explained in the
following, such trade-offs also arise for other components
of TS.
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Fig. 3. Tabu Search algorithm. Boxes with gray background signify op-
tions. Parallelograms represent the rules and the objective functions.

3.1.3. Neighborhood—candidate list selection
If the moves defined produce a large neighborhood, and if

at each iteration every neighbor is evaluated, the algorithm
will become quite slow. Therefore, usually only a subset
of the neighborhood is considered, produced by examining
a candidate list of moves. A straightforward method is to
randomly select a fixed number of neighbors for considera-
tion. The trade-off is then: the larger the subset, the slower
the algorithm; but the smaller the subset, the higher the risk
of requiring many moves to reach an optimum. Relevant
considerations for candidate list construction are likewise
discussed in the primary TS reference previously indicated
(Glover & Laguna, 1997).

3.1.4. Tabu list
The simplest form of adaptive memory used by Tabu

Search consists of creating a tabu list of solution attributes
that are changed as a result of making recent moves. An
attribute on the list can either be aFromAttribute, meaning
that it belonged to a solution that was left behind as a re-
sult of making a move, or aToAttribute, meaning that it be-
longed to a new solution created by the move. Attributes of
either kind that may appear on the tabu list identify moves
that aretabu, i.e., that are forbidden to be made. If a Fro-
mAttribute is on the list, a move is tabu if it would create
a solution containing that attribute, while if a ToAttribute is
on the list, a move is tabu if it would drop that attribute from
the current solution. In either case, the avoidance of a tabu
move will prevent the method from re-visiting an associated
solution previously encountered. More generally, the tabu
classification will also prevent the method from visiting so-
lutions “related to” solutions previously encountered, due to
the fact that different solutions can share certain attributes
in common. Thus, the mechanism of defining certain moves
to be tabu introduces a certain “vigorous diversity” into the
sequence of moves generated.

To avoid eliminating moves that can be beneficial to the
search, additional mechanisms are employed. The first is
simply to limit the size of the tabu list, or stated differently,
to limit the tabu tenureof any given attribute, i.e., to limit
the number of iterations the attribute is permitted to affect
the tabu status of potential moves. (Attributes as well as
moves are often called tabu. To be precise, the tabu status
of a move depends on rules that may specify that it contains
some combination of tabu attributes.)

Consequently, the size of the tabu list (the value of tabu
tenure) is an important parameter in Tabu Search. Different
lists can be created for different types of attributes, thereby
affording the possibility for different tenures for these at-
tributes (see belowAsymmetric Tabu Listin Section 5.4).
When tabu lists are used as data structures, they operate as
First-In First-Out (FIFO) stacks. This is the approach used
in our current implementation. As an alternative, when the
number of solution attributes is not too large, it can be con-
venient to use a data structure that records for each attribute
the iteration when its tabu tenure will end. Once the current
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iteration is larger than this recorded value, the attribute is no
longer tabu (see belowOscillating Tabu Listsin Section 5.4).

Regardless of the data structure employed, the greater
the tabu tenure, the smaller are the chances that the algo-
rithm will loop around to re-visit a previously generated
solution. But the greater the tenure, the more limited the
search becomes. (Good solutions may be missed because a
move leading to them remained tabu for a long time.) This
fact motivates a second commonly used mechanism to avoid
eliminating a potentially beneficial move—aspiration crite-
ria that can allow a move to be accepted in spite of being
tabu. An aspiration criterion used in most TS implementa-
tions is to allow a tabu move to be accepted if it leads to a
solution that is better than any solution found so far.

3.1.5. Objective function—best candidate selection
After the neighborhood has been filtered to eliminate tabu

moves and a subset of candidate moves has been selected,
each neighbor in the subset is evaluated. The best neighbor
(having the highest evaluation) is selected, and becomes the
“initial” solution for the next iteration. Often the objective
function(s) give the basis for the evaluation, although other
considerations can also enter. The objective function value
itself can be manipulated before the selection. In highly
constrained problems for instance, some constraints can be
handled by penalty functions.

More advanced forms of TS also use frequency based
memory in order to favor (or penalize) a “direction”, for
example to favor exploring unvisited areas of the solu-
tion space (e.g., moves can be encouraged or discouraged
according to whether they introduce attributes that were
infrequently or very frequently encountered in previous
solutions). These designs provide diversification strategies
that allow a better covering of the overall solution space.
As previously indicated, diversification can also be pursued
with multiple restarts in different regions of the solution
space (frequency-based memory can also be useful in such
restarting strategies).

3.1.6. Stopping criteria
Since the algorithm does not know when the optimum

has been found, an externalstopping criterionmust be set.
The simplest form of stopping criterion is a fixed number
of iterations or a given computational effort. Obviously, the
trade-off is: if the algorithm stops too early, the optimum so-
lution may not be found yet. If the algorithm stops too late,
computational time can be wasted. A maximum allowable
computational time may be useful for problems where the
quality of the solution is secondary to the time needed to find
it, but a dynamic stopping criterion is more suitable in most
cases: if the algorithm does not succeed in improving the
existing solution in a given number of iterations, this gives
a strong indication that either the optimum has been found,
or that the region of the solution space being explored is not
interesting—hence that the algorithm should stop or a di-
versification process (such as a restarting process) should be

initiated. When multiple restarts with different initial solu-
tions are used for diversification, a second stopping criterion
can be set that limits the number of times the algorithm can
restart. This criterion can be either a fixed number of restarts,
or a rule according to the history of the optimization.

3.2. Tabu Search implementation

To solve the optimization problem defined inSection 2,
our Tabu Search is implemented as follows: a design solu-
tion is an assignment of equipment units to each operation
block, with design specifications if needed (i.e. use units in
parallel or in series); such a solution is represented by the
matrix L in Eqs. (14) and (15). Each block has one or sev-
eral equipment unit(s) allocated, except the transfer blocks
(transfers are explicitly listed in the recipeRand in the block
matrix B only if they are mandatory; other transfers may be
automatically added in the recipe if imposed by the design).
The initial solution is randomly generated from the super-
structure presented above.

Fig. 4demonstrates how the different types of moves grad-
ually alter a design during the Tabu Search optimization. To
the left, the normalized throughput is displayed for each de-
sign. In the middle column, each row represents a part of
the current design, the equipment units assigned to opera-
tion blocks 1, 2, 3 and 7, at a given iteration (when multi-
ple units are pictured, the operation is conducted in parallel
in these units). The complete designs #1 and #9 are shown
schematically to the right; the numbers indicate operation
blocks being conducted in the equipment pictured (missing
blocks are mandatory transfer blocks). The moves are:

(1) Adding an unused equipment unit to a block, leading
to designs “in parallel” (as inFig. 4, seventh row) or to
designs “in series”.

(2) Removing an equipment unit from the block (as in
Fig. 4, second row).

(3) (Optionally) replacing an assigned equipment unit with
an unused equipment unit (as inFig. 4, third row).

The moves may not lead to solutions that violate any con-
straints. For instance, the move “Add” can only be applied
if the operation may have multiple assignments.

The move “replace” is a composition of the two other
moves, e.g. add a free piece of equipment, and remove an-
other allocated piece. This move can favor loops, as even
if the addition and the removal are tabu, a replacement can
have the same effect and is still allowed (the initial tabu
list implemented is move-based rather than attribute-based,
seeSection 5.4). However, the absence of replacement can
lead to locking a particular equipment unit in a particular
block. In a block that cannot have multiple equipment units
allocated (neither in parallel nor in series), the replacement
will be difficult: before “adding” a new equipment unit, the
previous one must be “removed”. But a block with zero
equipment units will produce a process design with zero
production. Hence such moves will be only selected when
all other moves are tabu.
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Fig. 4. Demonstration of the different types of moves implemented in the Tabu Search optimization and of the corresponding designs and resulting
throughput. The shaded reactor has a volume of 16 m3, while all the others have 10 m3 (see text for further information).

Regarding the options exposed in the introduction above,
we chose not to implement any intensification processes,
as we focus on a simple type of TS design (as explained
earlier). Diversification is achieved solely by means of
multiple-restarts, and the stopping criteria consist of (1) a
dynamic ending for each restart and (2) a fixed number of
restarts.

To determine the parameters that control our implementa-
tion, appropriate attention must be given to trade-offs since
parameter values that are too high or too low can have a neg-
ative impact on the efficiency of the optimization.Section 5
addresses these issues of parameters determination and ex-
amines their effect on the performance of the algorithm for
the particular class of problems presented here. Different
implementations of the tabu list are also investigated in this
section.

4. The case studies

Each case study consists of a recipe to be realized and
an available plant comprising a set of equipment units. The

size of the problem for a particular case study depends on
the number of tasks in the recipe as well as on the number
of equipment units in the plant. The difficulty of solving
a problem depends on its size, and on how constrained it
is. If the problem is highly constrained, there will be only
few valid designs, hence making the search easier, but the
solution space may not be connected, making it impossible
to go sequentially from any initial point to the optimum with
only valid moves (hence the necessity to have a large number
of restarts). If however there are only a few constraints, there
will generally be a large number of valid designs and this
makes it quite difficult to obtain the global optimum.

Three case studies have been used to illustrate and eval-
uate the algorithm.

• The first case study involves a rather small and highly
constrained problem.
• The second case study involves a rather large, weakly

constrained, problem used to demonstrate the scalability
of the method.
• The third case study involves a medium size prob-

lem, but without any physico-chemical or connectivity
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Table 2
Characteristics of the case studies; in the first section, characteristics of the recipe and in the second section, the ones of the production line

Case Study #1 Case Study #2 Case Study #3

Number of tasks (operations) in recipe 16 93 37
Resulting number of operation blocks 7 33 13
Reaction steps 3 7 2
Number of “transfer” blocks 1 10 4
Maximum number of transfers 5 22 8

Number of equipment units in plant 22 43 31
Number of reactors in plant 7 11 8
Average number of feasible interconnection per equipment unit 9 16 13

constraints. As equipment units are typically standard-
ized in multi-purpose batch plants, this means that many
equipment units can be allocated to many blocks and
hence that many designs will be equivalent, at least in
terms of primary and secondary objective functions. This
renders the solution space quite flat and makes it difficult
to identify a direction in which the designs improve.

The characteristics of the three case studies are summa-
rized inTable 2. The number of “transfer” blocks indicates
how many transfers are required. The maximum number of
transfers possible is reached when each equipment unit is al-
located to only one block. The number of reactors in a plant
is given because reactors are quite versatile and can be used
for many classes of operations, in particular when they are
equipped with additional equipment (e.g. a distillation can
be run in a reactor equipped with a condenser).

In the following, we will compare the results of optimiza-
tion with the “global optimum”. In the rather small Case
Study #1, the global optimum is known by proving that no
improvements are possible (seeCavin, 2002). In Case Stud-
ies #2 and #3, the global optimum is not known. However,
thousands of optimization campaigns have been conducted
for each case study in the process of setting algorithm pa-
rameters, and a high confidence has been reached that the
best design found is indeed the global optimum.

5. Results and discussion

5.1. Optimizing the TS parameter settings

We have implemented a Monte Carlo analysis (Vose,
1996) of the algorithm parameters and of some options us-
ing the three case studies. The tabu parameters discussed in
Section 3.2(including the decision parameters like “include
replacement move”) have been randomly set and the prob-
lems have been repeatedly optimized using the resulting
tabu algorithm. The parameter values have been varied in
the following ranges: replacement move and aspiration on
or off; tabu list length from 0 to 300; neighbor sample size
from 1 to 100; number of process simulations without im-
provement before restart from 10 to 100; number of restarts
from 0 to 20.

This discloses the impact of the different parameters on
the efficiency of the algorithm, taking into consideration
potential parameter interactions. However, the overall effi-
ciency is much smaller than when only “good” values are
used for all parameters at the same time. In a first approxi-
mation, only the primary objective function (throughput) is
considered. In the next section, all three objectives are in-
cluded and some differences are highlighted.

5.1.1. Move definition—replacement move
Fig. 5shows the cumulative distribution functions for runs

with and without replacement moves for Case Study #1.
The distributions display the probability (vertical axis) that
the optimization results in a solution with at least the nor-
malized throughput (i.e. divided by the globally optimum
throughput) given on the horizontal axis. The inclusion of
the replacement move is clearly favorable: the dotted line is
always below the solid line; hence the probability of obtain-
ing a higher production is always larger with the replace-
ment move included. The two other case studies confirm this
result, and hence the runs without replacement moves have
been excluded from all the following investigations.

5.1.2. Tabu list length and aspiration
The tabu list is managed as a FIFO stack. The size of

the tabu list represents therefore how many moves are tabu
at a given time and how long a move remains tabu. On
Fig. 6, the effect of the tabu list length on the probabil-
ity to find the optimum throughput is displayed for Case
Study #1. We used the “improved best solution” aspiration
criterion. The comparison of the probabilities obtained with
this aspiration criterion and those without clearly suggests
that the inclusion of the criterion is favorable for finding
the optimum throughput. As expected, without using an as-
piration criterion, the probability decreases with increasing
list length. This is due to the “blocking effect” explained
above, which is partly countered by the presence of aspi-
ration: the probability rises for small sizes, reaches a sum-
mit for sizes around 100 and drops drastically for higher
values.

From the outcomes shown inFig. 6and similar outcomes
obtained in the other case studies, we concluded that aspira-
tion should be enabled and have done this in the following
investigations. In view of the sudden drop in probability for
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Fig. 5. Cumulative distribution functions for runs with and without the replacement move. The results where obtained for Case Study #1.

list sizes around 100 as displayed inFig. 6 for Case Study
#1, as well as similar findings obtained for the other two
case studies, we chose to use a default value of 80 for the
tabu list length.

Fig. 6. Probability to obtain the optimum throughput as function of the tabu list length and the inclusion of aspiration for Case Study #1.

5.1.3. Candidate list strategy and neighbor sample size
We elected to use a straightforward candidate list strategy

that randomly samples the neighbors of a given solution. The
sample size parameter indicates how many neighbors will be
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investigated per iteration (i.e. the size of the neighborhood’s
subset as defined above). The investigation of Case Study
#1 showed a quite low probability of finding the optimum
throughput for small (<5) or large (>25) neighbor sample
sizes. For neighbor sample sizes of about 16 the highest
probability was found.

The third case study—whose dimensions are slightly
larger than Case Study #1—shows a similar trend, with the
highest probability at sample sizes of about 20. The sec-
ond case study—the largest—displays a different trend: the
probability rises and stays high for a wide range of neigh-
borhood sizes and decreases for neighborhood sample sizes
higher than 45. The fact that Case Study #2 is a large prob-
lem is likely the reason that more neighbors are required:
the neighborhood sample size should probably be propor-
tional to the size of the problem (as defined by the number
of equipment units and the number of blocks), as shown
in Fig. 7. Further research would be needed to confirm the
relationship indicated inFig. 7. (The use of more strategic
types of candidate list strategies can of course affect this
relationship.)

A value of 20 for the sample size was selected as a default
for subsequent investigation. This value seems to be a good
compromise for the three case studies because the probabil-
ity to find the optimum is already quite high for this value
in Case Study #2.

5.1.4. Stopping strategy
We have found it useful to introduce a measure of com-

putational efficiency in order to investigate the stopping
strategy. The probability of finding an optimal solution will
always rise (or at least remain constant) when longer runs

Fig. 7. Optimum neighborhood sample size as a function of problem size and corresponding tentative linear regression; the numbers indicate the
corresponding case studies.

are conducted—hence to optimize this probability, infinite
runs should be conducted. Obviously, the computational ef-
fort (represented for instance by the number of process sim-
ulations to be conducted) will rise as well with longer runs,
hence resulting in a trade-off between probability and com-
putational effort. Therefore, we have defined theefficiency
of the algorithm as the probability of reaching the optimum
throughput, divided by the computational effort invested.

The stopping strategy implemented here is two-fold: first
the algorithm stops after a given number of iterations where
the solution has not been improved. Then the algorithm
restarts with another initial solution. The number of restarts
is the second parameter studied.

The investigation of the first parameter shows that what-
ever its value, the probability of obtaining the optimum
throughput is more or less constant; however, the efficiency
decreases as the algorithm waits longer. This makes sense as
the algorithm will continue the search even in unpromising
regions of the solution space.

The investigation of the second parameter, the number
of restarts, shows that the probability to find the optimum
throughput initially rises sharply with the number of restarts,
then rises only slowly for a number of restarts higher than
8. In all three case studies, the efficiency peaks with five
to six restarts. This type of behavior again seems reason-
able: the more restarts, the more computational effort must
be invested, and this occurs even if the global optimum has
already been found. But not to restart implies no diversifi-
cation is employed, and hence there is a great dependency
on the initial solution.

Both stopping criteria values may be different if the three
objective functions are considered, as subsequent moves may
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be used to optimize the lower priority objective functions.
Hence before definitive conclusions on these parameter set-
tings are drawn, the multi-objective optimization problem is
investigated.

5.2. Multi-objective optimization

The behavior described thus far arises for the situation
where only the main objective function (throughput) is opti-
mized. However, the complete form of the problem has three
objective functions: throughput, number of equipment units
used (simplicity), and number of floors to pump the reac-
tion mixture up (top–down indicator). When tests are per-
formed by considering all three objective functions together,
the conclusions for the parameters do not change noticeably,
except for the stopping criteria.

In Fig. 8, for a typical run, the values of the three ob-
jective functions are displayed at several iterations after
encountering the optimum throughput. The optimization
procedure, including some uphill moves, e.g. at point (1),
to escape local minima, is still going on in order to improve
the secondary and tertiary objective function values. Since
the algorithm has no proof of optimality, and continues
to seek improvement of all three objectives, uphill moves
with regard to the first objective are still possible. Between
points (2) and (3) inFig. 8 no local optimum is found: the
algorithm needed to run 25 iterations without improvement
to find the global optimum—the optimum with regard to all
three objective functions, point (3).

Due to the priority of keeping good higher ranked objec-
tive functions values, the secondary and tertiary objective
functions are somewhat harder to optimize than the primary.
Hence longer runs are needed. This can be seen inFig. 9,

Fig. 8. Values of the arbitrary normalized objective functions during the optimization for Case Study #3.

where the stopping criteria have been investigated consider-
ing one or all objective functions.

In Case Study #1, no difference was found between taking
into consideration only the throughput and taking also into
consideration the secondary objective function, indicating
that in no runs the optimum throughput has been found with-
out also finding the optimum number of equipment units.

For higher values of the number of iterations without im-
provement, the efficiency decreases (seeFig. 9a). The high-
est efficiency occurs for the lowest values when only the
throughput is considered. However, when all three objec-
tive functions are considered, the greatest efficiency occurs
for intermediate parameter values of about 30–40. In addi-
tion, the efficiency decreases for a large number of restarts
when only throughput is considered (seeFig. 9b), but the
efficiency remains high when all three objectives are con-
sidered, indicating in this case that the probability of finding
the optimum rises in parallel with the computational effort.
In sum, about six restarts is a good default value to achieve
high efficiencies, although longer runs can be conducted by
stipulating a higher number of restarts to augment the prob-
ability of finding the global optimum.

5.3. Final parameter settings and efficiency

Table 3gives the parameter values identified as optimal
in the investigations described above for the different case
studies, as well as the values that have been chosen as de-
faults. In the following, we discuss the efficiency of the al-
gorithm in relation to these values.

Table 4gives a summary of the efficiency of the Tabu
Search algorithm determined by the parameter settings as
defined inTable 3for the three case studies.
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Fig. 9. Algorithm efficiency (see text for definition) as a function of stopping criteria for Case Study #1: (a) number of iterations without improvement
before a restart and (b) number of restarts, considering either only throughput or all three objective functions.

Table 3
Optimum parameter values identified for the three case studies (CS) and
default values selected

CS#1 CS#2 CS#3 Default

Aspiration ON ON ON ON
Replacement move

(extended move set)
ON ON ON ON

Tabu list length 95 80 80 80
Neighborhood sample size 15 42 18 20
Iterations without

ameliorations before
restarting

35 45 40 40

Number of restarts 5 5 6 6

Table 4
Probabilities to find optimum throughput, optimum throughputand min-
imum number of equipment units, and global optimum as obtained for
the three case studies (CS) and the parameter settings defined inTable 3

CS#1 (%) CS#2 (%) CS#3 (%)

Probability to find optimum
throughput

61.1 97.3 61.8

Probability to find optimum
throughputand minimum
number of equipment units

61.1 90.9 59.5

Probability to find global
optimum (according to all
three objective functions)

25.2 0.7 11.8
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Table 5
Success probability as function of the computational effort for Case
Study #1

Computational effort (number of process
simulations)

1500 7500 45000

Approximate computational time (min)a 2 10 60
Probability of finding optimum throughput (%) 56 98 100b

Probability of finding global optimum (with
regards to the three objective functions) (%)

25 76 100b

a Runs conducted on a 1.7 GHz PC with 256 MB RAM, Windows
XP®, MATLAB ® 6.1.0; no external simulation software has been used,
time adaptations have been conducted in MATLAB®.

b The probabilities are based on 100 runs. A probability of 100%
indicates that all runs found the optimum. The probabilitiesnot to find
the optimum, as extrapolated from the first two columns are 2×10−11 for
the optimum throughput, and 2× 10−4 for the three objective functions.

Due to its constrained nature CS#1 is the most difficult
to optimize with regard to the higher ranked objective func-
tions. However CS#2 is quite hard to optimize with regard
to the third objective. In this instance many designs have
the same throughput and use the same number of equip-
ment units, and hence the optimization of the third objective
still takes place over a relatively large part of the solution
space.

As mentioned inSection 5.2, to increase the probability of
finding optimal designs the number of restarts can be raised.
The computational effort will obviously augment in parallel.
In Table 5the performance of the algorithm as a function
of the computational effort is given in number of process
simulations per run and also in CPU-time for Case Study
#1. The probability of finding the optimum throughput and
of obtaining a global optimum both rise drastically when
longer runs are conducted, reaching a quasi certainty for 1 h
CPU.

Similarly, the probability of finding the optimum through-
put for Case Studies #2 and #3 rises to at least 99% in 10 min
CPU. The probability of finding the global optimum design
for Case Study #2—the hardest optimization investigated in
this paper—rises from 0.7 to 19% when making 1 h runs,
and to about 90% for 10 h runs.

5.4. Tabu list variants

One recurrent problem in the optimization is that the
replace operation—while necessary to reach the global
optimum—may lock the algorithm into a region around
a particular local optimum. If one operation can indiffer-
ently usen equivalent equipment units,n(n − 1) replace-
ment moves can take place (with any of thesen units the
throughput and the number of equipment units used remain
constant, and only the third objective may vary). If the tabu
list is shorter thann(n − 1), the algorithm will stay in the
same region of space and only a random chance (if the
number of available neighbors is significantly higher than
n(n − 1)) will allow to break the pseudo loops by happen-
ing not to select a replacement move in the current random
neighborhood sample.

This is the reason why the tabu list length (i.e., the tabu
tenure) must be so large. As discussed above, a larger tenure
removes flexibility and hence makes it hard to find good
solutions. To address this problem, some modifications of
the tabu lists have been assessed.

5.4.1. Oscillating list length
Large tabu tenures are required to effectively escape a

local optimum. However, large tenures hinder the efficient
search for a new optimum when the escape has been suc-
cessful. An interesting option (Glover & Laguna, 1997) con-
sists in activating the tabu classification only upon reaching
a local optimum, at which point a large tabu tenureT is en-
forced. The method continues forT iterations (during which
each attribute that becomes tabu remains tabu) or until no
non-tabu moves exist. At such a point, the tabu list is emp-
tied and the process once again proceeds freely to a new
local optimum.

5.4.2. Strict and asymmetric tabu list
The standard tabu list as implemented in the preceding

tests is move-based rather than attribute-based, and forbids
the exact opposite of the move accepted. For instance, if in
the operationOp1the equipment unitEq1 is replaced by the
unit Eq2, the replacement ofEq2by Eq1in Op1will be tabu.
As noted inGlover (1990)such move-based approaches en-
tail some risks (including the possibility of being unable to
avoid cycling). From an attribute-based perspective, a re-
lated option is to specify a move that replacesEq2 by Eq1
in Op1 to be tabu if the attributesEq2 andEq1 are them-
selves both tabu. Still stronger is to make the move tabu if
either of its attributes is tabu, hence excluding the removal
of Eq1 from Op1 and the addition ofEq2 to Op1. (This is
clearly more restrictive since, for example, the subsequent
replacement ofEq2 with Eq3 in Op1 would now also be
forbidden.)

Moreover different types of tabu attributes can be given
different tabu tenures, as (for example) by including them
on separate lists of differing length. If a list for ‘equipment
added’ is longer than a list for ‘equipment removed’, this
would block the addition of a previously removed equip-
ment unit longer than the removal of an added one, hence
allowing the assessment of new units for the given operation
while restricting efficiently the replacement loops described
above. If, on the other hand, the removal tabu list is longer,
this would still restrict the replacement loops, but favor the
emergence of more complex designs with many equipment
units per operation (in series or in parallel).

We have tested these options (which can also be com-
bined) on the three case studies. The alternatives that proved
interesting are: (a) base case (single tabu list with aspira-
tion), (b) oscillating single tabu list with aspiration, and (c)
double asymmetric tabu list, oscillating and with aspiration.
The length of the tabu list(s) has been optimized similarly to
the other parameters above, and the resulting performances
are given inTable 6—similarly as for the results presented
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Table 6
Performance of the algorithm for the different tabu list options (based on
1000 runs)

Case study, objective Base case
(%)

Oscillating
(%)

Asymmetric and
oscillating (%)

CS#1, throughput 61.1 63.4 70.3
CS#1, all objectives 25.2 27.9 12.8
CS#2, throughput 97.3 98.0 98.6
CS#2, all objectives 0.7 0.1 0.6
CS#3, throughput 61.8 63.2 57.1
CS#3, all objectives 11.8 12.7 10.4

in Table 4, the runs have stopping criteria and need about
2 min CPU.

With the exception of CS#2 while considering all three
objective functions—whose small success rate makes
the 1000 runs sample statistically insufficient to extract
conclusions—the oscillating tabu list is slightly better. The
runs with asymmetric oscillating tabu lists are significantly
better as compared to the base case for CS#1 (optimized for
throughput), while being less good for CS#2 and for CS#1
(with all three objectives) and about equivalent for CS#3.

This behavior can be explained by the nature of the case
studies: in highly constrained cases (CS#1), complex de-
signs with multiple units in series or parallel are difficult
to obtain, and hence the effect given above (with a longer
“removal” list) plays a positive role. However the third ob-
jective is mainly optimized through replacements (which al-
low the throughput and number of equipment units to re-
main constant) and the presence of the strict tabu lists hinder
these moves, hence the lower performances with regard to all
three objective functions. Similarly, in less constrained cases
(CS#3), complex designs do not need to be “encouraged”,
and the “blocking effect” is too strong.

These results suggest that the well-tuned algorithm might
be slightly improved by further refinements. However, sim-
ilarly to the third tabu list definition (asymmetric double
lists), further refinements risk to jeopardize the overall
broad applicability of the method: options implemented
to tackle-specific problems (like encouraging complex de-
signs) may have a positive effect on some problems but are
expected to have a negative effect on others.

5.5. Tabu Search versus multi-start steepest descent

One of the simplest forms of local search is steepest de-
scent, which can also be adapted to our problem. As noted
earlier, multi-start (or iterated) steepest descent (mSD) has
been recently demonstrated to have appealing theoretical
and empirical performance properties, and consequently we
have undertaken a comparison with this approach to assess
the performance of our basic TS implementation.

As the problem considered is an assignment problem
with integer variables and an implicit objective function
(black-box), derivatives can not be computed. Therefore, the
mSD will simply evaluate all the neighbors, and will select

the best one. When all neighbors are worse than the cur-
rent solution, the descent stops, and a new starting point is
randomly chosen.

The comparison is conducted on the basis of the proba-
bility to find the optimum throughput for a given compu-
tational effort. Obviously, a given application of mSD is
much quicker than Tabu Search since it stops upon reach-
ing a first local optimum, and hence many more restarts are
possible with this method in the same computational time
(factor of 10–20). We based our computation on the Tabu
Search approach characterized above inTable 3, with the
standard tabu list definition (however, the stopping criterion
“number of restarts” was replaced by a maximum number
of process simulations, which is roughly equivalent to the
computational effort).

In Case Study #1, the mSD finds the optimum throughput
in only about 10% of the runs, as compared with the 56%
success rate of the Tabu Search as shown inFig. 10a. These
results can be explained by two reasons:

1. The class of problem studied has many local optima and
the definition of the moves make uphill moves necessary
to strongly modify a solution: for instance to go from a
parallel design to a series design, the algorithm must go
through a single-unit design, which will in most cases
be less efficient; inFig. 4 the path from the second best
design to the optimum also needs uphill moves in order
to “exchange” an equipment unit from one block (1) to
another (7), as can be seen with the throughput shown
on the left side.

2. The constraints forbid some parts of the space, and going
“around” the forbidden areas requires most often uphill
moves as well.

The second case study, with its only weak constraints, is
more suited for the mSD descent as can be seen inFig. 10b.
The TS is still dominant in having a higher probability
of finding the optimum throughput (57% against 42% for
multi-start steepest descent). However, due to the short du-
ration of the selected runs (cut-off when 2000 process sim-
ulations have been computed, about 2 min), the TS profits
only from a limited diversification by restarts (4.8 times on
average). In contrast, the numerous restarts (more than 80)
allowed in the mSD application made it possible to reduce
the probability of obtaining bad results (i.e., of obtaining so-
lutions that are not within 90% of the optimum) thanks to
the much higher diversification.

If longer runs are selected (e.g. 10 min), many more
restarts will be completed by the TS as competitive designs
will be memorized, allowing a quicker stopping in unin-
teresting regions of the search space, resulting in about 46
restarts for the TS versus about 400 for the mSD (a dif-
ference of factor 8.8 as compared to 17 in the 2 min runs).
The diversification becomes sufficient to avoid completely
bad results in the TS as well as in the mSD and results in
a complete dominance of TS over mSD similar to the one
displayed inFig. 10a(with much higher performances for
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Fig. 10. Comparison of our basic Tabu Search and a multi-start steepest descent for fixed computational effort in: (a) Case Study #1 and (b) Case Study
#2, where the top-left shows a detail of the plot for high production rates.

both algorithms). A similar effect is also obtained for the
third case study.

6. Conclusions

Our study has focused on a new method for optimizing
the implementation of a new single chemical process in
a multi-purpose batch plant, in which a well-defined set
of equipment units is available. The optimization consid-
ers three objectives with different priorities. Our approach
embodies a specialized version of Tabu Search, a flexible
metaheuristic algorithm, to solve this multi-objective op-

timization problem. A thorough investigation of algorithm
parameters and variants has been conducted to identify com-
binations that insure a high probability of finding a global
optimum while using a minimum of computational effort.

The results obtained for three case studies show that the
algorithm is well suited for solving the problems at hand:
the resulting probability of obtaining the best throughput
within 10 min CPU was higher than 98% for typical prob-
lems. When 1 h of CPU-time was allotted, the probabil-
ity of obtaining the optimum throughput exceeded 99% for
all three case studies. Moreover, upon addressing the more
challenging multi-objective model, the probability of find-
ing a global optimum within 1 h remained above 97% for
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typical problem instances. Computational comparisons with
a multi-start steepest descent method, which represents a
solution approach recently documented to have desirable
performance characteristics, discloses that our Tabu Search
method yields superior outcomes in all cases.

The version of TS that has produced these results has been
restricted to incorporate only a set of first level elements.
Even at this level we have been able to identify robust pa-
rameter values, so that the user will not need to modify in-
ternal parameters of the optimization algorithm.

We single out several specific components of Tabu Search
that we anticipate will provide a useful focus for future in-
vestigation:

• An extension of the move set (e.g. inclusion of a move
that “exchange” equipment units of two operations) might
be profitable in regard of the performance of the “replace”
move; it may be useful to implement advanced candidate
list strategies to manage the increased neighborhood size.
In addition, a strategic oscillation coordinated with alter-
native neighborhood structures might be interesting.
• Seeing the effectiveness of the simple diversification im-

plemented here (multiple restarts), a promising feature is
certainly the integration of intensification and diversifica-
tion strategies, e.g. with frequency-based memory.

Each of these TS components can be implemented by di-
rect extension of our basic design, utilizing considerations
of the type described byGlover and Laguna (1997). These
components will have to be tested while focusing on keep-
ing the broad scope of the method. The modification of the
tabu list definition has shown that some improvements may
jeopardize this, having a positive effect on some case studies
but being expected to have a negative impact on others.

The successes obtained by our fundamental TS imple-
mentation support an expectation that such an extended ap-
proach will nevertheless provide still better results, and make
it possible to efficiently solve multiple objective chemical
process design problems of still larger dimensions.
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