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Abstract

Many real-world problems involve the optimization of multiple, possibly conflicting ob-
jectives. Multi-objective reinforcement learning (MORL) is a generalization of standard
reinforcement learning where the scalar reward signal is extended to multiple feedback
signals, in essence, one for each objective. MORL is the process of learning policies that
optimize multiple criteria simultaneously. In this paper, we present a novel temporal differ-
ence learning algorithm that integrates the Pareto dominance relation into a reinforcement
learning approach. This algorithm is a multi-policy algorithm that learns a set of Pareto
dominating policies in a single run. We name this algorithm Pareto Q-learning and it is
applicable in episodic environments with deterministic as well as stochastic transition func-
tions. A crucial aspect of Pareto Q-learning is the updating mechanism that bootstraps
sets of Q-vectors. One of our main contributions in this paper is a mechanism that sep-
arates the expected immediate reward vector from the set of expected future discounted
reward vectors. This decomposition allows us to update the sets and to exploit the learned
policies consistently throughout the state space. To balance exploration and exploitation
during learning, we also propose three set evaluation mechanisms. These three mechanisms
evaluate the sets of vectors to accommodate for standard action selection strategies, such as
ε-greedy. More precisely, these mechanisms use multi-objective evaluation principles such
as the hypervolume measure, the cardinality indicator and the Pareto dominance relation
to select the most promising actions. We experimentally validate the algorithm on multiple
environments with two and three objectives and we demonstrate that Pareto Q-learning
outperforms current state-of-the-art MORL algorithms with respect to the hypervolume of
the obtained policies. We note that (1) Pareto Q-learning is able to learn the entire Pareto
front under the usual assumption that each state-action pair is sufficiently sampled, while
(2) not being biased by the shape of the Pareto front. Furthermore, (3) the set evalua-
tion mechanisms provide indicative measures for local action selection and (4) the learned
policies can be retrieved throughout the state and action space.

Keywords: multiple criteria analysis, multi-objective, reinforcement learning, Pareto
sets, hypervolume

1. Introduction

Many real-life problems involve dealing with multiple objectives (Coello et al., 2006; Tesauro
et al., 2008; Hernandez-del Olmo et al., 2012). For example, in a wireless sensor network the
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criteria consist of energy consumption and latency, which are conflicting objectives (Gorce
et al., 2010). When the system engineer wants to optimize more than one objective, it is
not always clear a priori which objectives might be correlated and how they influence each
other. As the objectives are conflicting, there usually exists no single optimal solution. In
those cases, we are interested in a set of trade-off solutions that balance the objectives.
More precisely, we want to obtain the set of best trade-off solutions, i.e., the set of solutions
that Pareto dominate all the other solutions but are mutually incomparable.

There are two main approaches when dealing with multi-objective problems. The sim-
plest way is to use a scalarization function (Miettinen and Mäkelä, 2002) which transforms
the multi-objective problem into a standard single-objective problem. However, this trans-
formation may not be valid when the scalarization function is non-linear. This approach is
called a single-policy algorithm, as each run converges to a single solution. In order to find
a variety of trade-off solutions, several parameterized scalarization functions are employed
and their results are combined. However, the mapping from weight space to objective space
is not guaranteed to be isomorphic (Das and Dennis, 1997). This means that it is not
obvious how to define the weights in order to get a good coverage of the Pareto front of
policies.

Another class of algorithms are multi-policy algorithms. In contrast to focusing only on
a single solution at a time, a multi-policy algorithm searches for a set of optimal solutions
in a single run. Well-known examples of this class are evolutionary multi-objective algo-
rithms, such as SPEA2 (Zitzler et al., 2002) and NSGA-II (Deb et al., 2002), which evolve a
population of multi-objective solutions. These evolutionary multi-objective algorithms are
amongst the most powerful techniques for solving multi-objective optimization problems.

In our work, we focus on reinforcement learning for multi-objective problems. Rein-
forcement learning (Sutton and Barto, 1998) is a machine learning technique that involves
an agent operating in an environment and receiving a scalar feedback signal for its behavior.
By sampling actions and observing the feedback signal, the agent adjusts its estimate of the
quality of its actions. So far, multi-objective reinforcement learning (MORL) has particu-
larly been focusing on single-policy algorithms (Gabor et al., 1998; Mannor and Shimkin,
2004; Van Moffaert et al., 2013b), while only a restricted number of multi-policy MORL
algorithms have been proposed so far. For instance, Barrett and Narayanan (2008) propose
the Convex Hull Value Iteration (CHVI) algorithm. From batch data, CHVI extracts and
computes every linear combination of the objectives in order to obtain all deterministic
optimal policies. As the algorithm relies on linear combinations, only policies on the convex
hull, a subset of the Pareto front, are learned. The most computationally expensive operator
is the procedure to compute and combine the convex hulls in the convex-hull version of the
Bellman equation. Lizotte et al. (2010) reduce the asymptotic space and time complexity of
the bootstrapping rule by learning several value functions corresponding to different weight
vectors using a piecewise linear spline representation. Wang and Sebag (2013) propose a
multi-objective Monte Carlo Tree Search (MO-MCTS) method to learn a set of solutions.
The algorithm performs tree traversals by selecting the most promising actions. The upper
confidence bounds of these actions are scalarized by applying the hypervolume indicator on
the combination of their estimates and the set of Pareto optimal policies computed so far.
Hence, a scalarized multi-objective value function is constructed that eases the process of
selecting an action with vectorial estimates.
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In this paper, we propose a novel MORL algorithm, named Pareto Q-learning (PQL).
To the best of our knowledge, this is the first temporal difference-based multi-policy MORL
algorithm that does not use the linear scalarization function. Thus, Pareto Q-learning is
not limited to the convex hull, but it can learn the entire Pareto front of deterministic non-
stationary policies, if enough exploration is provided. In contrast to single-policy approaches
that only add a scalarization layer on top of single-objective algorithms, we extend the
core principles of the learning algorithm to learn a set of non-dominated policies. Our
PQL algorithm is particularly suited for on-line use, in other words, when the sampling
cost of selecting appropriate actions is important and the performance should gradually
increase over time. We also propose three evaluation mechanisms for the sets that provide
a basis for on-line action selection strategies. These evaluation mechanisms use multi-
objective indicators such as the hypervolume metric, the cardinality indicator and the Pareto
dominance relation in order to select the best possible actions throughout the learning
process based on the contents of the sets. The Pareto Q-learning algorithm is evaluated on
multiple environments with two and three objectives and its performance is compared w.r.t.
several single-policy MORL algorithms that use either the linear or Chebyshev scalarization
function or the hypervolume indicator.

In Section 2, we introduce notations and concepts of reinforcement learning and current
advances in multi-objective reinforcement learning. In Section 3, we present our novel Pareto
Q-learning algorithm and discuss its design specifications. Subsequently, in Section 4, we
conduct an empirical comparison of our algorithm to other state-of-the-art MORL algo-
rithms. Finally, in Section 5, we draw our conclusions.

2. Background

In this section, we present related work and background concepts such as reinforcement
learning and multi-objective reinforcement learning.

2.1 Reinforcement Learning

A reinforcement learning (Sutton and Barto, 1998) environment is typically formalized by
means of a Markov decision process (MDP). An MDP can be described as follows. Let
S = {s1, . . . , sN} be the state space and A = {a1, . . . , ar} the action set available to the
learning agent. Each combination of current state s, action choice a ∈ A and next state s′

has an associated transition probability T (s′|s, a) and expected immediate reward R(s, a).
The goal is to learn a deterministic stationary policy π, which maps each state to an action,
such that the value function of a state s, i.e., its expected return received from time step t
and onwards, is maximized. The state-dependent value function of a policy π in a state s
is then

V π(s) = Eπ

{ ∞∑
k=0

γ krt+k+1 | st = s

}
, (1)

where γ ∈ [0, 1] is the discount factor. The value of taking an action in a state under policy
π is represented by a Qπ(s, a)-value which stores the expected return starting from state s,
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taking action a, and thereafter following π again. The optimal Q∗-values are defined as

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a) max
a′

Q∗(s′, a′). (2)

Watkins introduced an algorithm to iteratively approximateQ∗. In theQ-learning algorithm
(Watkins, 1989), a Q-table consisting of state-action pairs is stored. Each entry contains a
value for Q̂(s, a) which is the learner’s current estimate about the actual value of Q∗(s, a).
The Q̂-values are updated according to the update rule

Q̂(s, a)← (1− αt)Q̂(s, a) + αt(r + γmax
a′

Q̂(s′, a′)), (3)

where αt is the learning rate at time step t and r is the reward received for performing
action a in state s. Provided that all state-action pairs are visited infinitely often and a
suitable evolution for the learning rate is chosen, the estimates, Q̂, will converge to the
optimal values, Q∗ (Tsitsiklis, 1994).

The Q-learning algorithm is listed below in Algorithm 1. In each episode, actions are
selected based on a particular action selection strategy, for example ε-greedy where a random
action is selected with a probability of ε, while the greedy action is selected with a probability
of (1− ε). Upon applying the action, the environment transitions to a new state s′ and the
agent receives the corresponding reward r (line 6). At line 7, the Q̂-value of the previous
state-action pair (s, a) is updated towards the reward r and the maximum Q̂-value of the
next state s′. This process is repeated until the Q̂-values converge or after a predefined
number of episodes.

Algorithm 1 Single-objective Q-learning algorithm

1: Initialize Q̂(s, a) arbitrarily
2: for each episode t do
3: Initialize s
4: repeat
5: Choose a from s using a policy derived from the Q̂-values, e.g., ε-greedy
6: Take action a and observe s′ ∈ S, r ∈ R
7: Q̂(s, a)← Q̂(s, a) + αt(r + γ max

a′
Q̂(s′, a′)− Q̂(s, a))

8: s← s′

9: until s is terminal
10: end for

2.2 Multi-Objective Reinforcement Learning

In multi-objective optimization, the objective space consists of two or more dimensions (Roi-
jers et al., 2013). Therefore, regular MDPs are generalized to multi-objective MDPs or
MOMDPs. MOMDPs are MDPs that provide a vector of rewards instead of a scalar re-
ward, i.e.,

R(s, a) = (R1(s, a), . . . Rm(s, a)), (4)
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where m represents the number of objectives. In the case of MORL, the state-dependent
value function of a state s is vectorial:

Vπ(s) = Eπ

{ ∞∑
k=0

γ krt+k+1 | st = s

}
. (5)

Since the environment now consists of multiple objectives, different policies can be optimal
w.r.t. different objectives. In MORL different optimality criteria are used. For instance,
Gabor et al. (1998) employ a lexicographical ordering of the objectives, while Barrett and
Narayanan (2008) define linear preferences on the different objectives. Although, in gen-
eral, the Pareto dominance relation is used as an optimality criterion in multi-objective
optimization.

Definition 1 A policy π1 is said to strictly dominate another solution π2, that is π2 ≺ π1,
if each objective in Vπ1 is not strictly less than the corresponding objective of Vπ2 and at
least one objective is strictly greater. In the case where Vπ1 strictly improves Vπ2 on at
least one objective and Vπ2 also strictly improves Vπ1 on at least one, the two solutions
are said to be incomparable. A policy π is Pareto optimal if Vπ either strictly dominates
or is incomparable with the value functions of the other policies. The set of Pareto optimal
policies is referred to as the Pareto front.

2.2.1 Single-Policy MORL

Most approaches of reinforcement learning on multi-objective tasks rely on single-policy
algorithms (Gabor et al., 1998; Mannor and Shimkin, 2004) in order to learn Pareto optimal
solutions. Single-policy MORL algorithms employ scalarization functions (Vamplew et al.,
2008) to define a utility over a vector-valued policy and thereby reducing the dimensionality
of the underlying multi-objective environment to a single, scalar dimension:

Definition 2 A scalarization function f is a function that projects a vector v to a scalar:

vw = f(v,w), (6)

where w is a weight vector parameterizing f .

Recently, a general framework for scalarized single-policy MORL algorithms is pro-
posed (Van Moffaert et al., 2013b). In the framework, scalar Q̂-values are extended to
Q̂-vectors that store a Q̂-value for each objective, i.e.,

Q̂(s, a) = (Q̂1(s, a), . . . , Q̂m(s, a)). (7)

When selecting an action in a certain state of the environment, a scalarization function f
is applied to the Q̂-vector of each action in order to obtain a single, scalar ŜQ(s, a) estimate
(Algorithm 2, line 4). In the following subsection, we will discuss possible instantiations of

the scalarization function f. At line 5, we store the ŜQ(s, a) estimates in a list in order to
apply traditional action selection strategies, such as, for example, the ε-greedy strategy.
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Algorithm 2 Scalarized ε-greedy strategy, scal-ε-greedy()

1: SQList← {}
2: for each action a ∈ A do
3: v← {Q̂1(s, a), . . . , Q̂m(s, a)}
4: ŜQ(s, a)← f(v,w) . Scalarize Q̂-vectors

5: Append ŜQ(s, a) to SQList
6: end for
7: return ε-greedy(SQList)

The scalarized multi-objective Q-learning algorithm is presented in Algorithm 3. At line
1, the Q̂-values for each triplet of states, actions and objectives are initialized. The agent
starts each episode in state s (line 3) and chooses an action based on the multi-objective
action selection strategy at line 5, e.g, scal-ε-greedy. Upon taking action a, the environment
transitions the agent into the new state s′ and provides the vector of sampled rewards r.
As the Q-table has been extended to incorporate a separate value for each objective, these
values are updated for each objective individually and the single-objectiveQ-learning update
rule is extended for a multi-objective environment at line 9. More precisely, the Q̂-values
for each triplet of state s, action a and objective o are updated using the corresponding
reward for each objective, r, into the direction of the best scalarized action of the next state
s′. It is important to note that this framework only adds a scalarization layer on top of the
action selection mechanisms of standard reinforcement learning algorithms.

Algorithm 3 Scalarized multi-objective Q-learning algorithm

1: Initialize Q̂o(s, a) arbitrarily
2: for each episode t do
3: Initialize state s
4: repeat
5: Choose action a from s using the policy derived from ŜQ-values, e.g., scal-ε-

greedy
6: Take action a and observe state s′ ∈ S and reward vector r ∈ Rm
7: a′ ← greedy(s′) . Call scal. greedy action selection
8: for each objective o do
9: Q̂o(s, a)← Q̂o(s, a) + αt(ro + γ Q̂o(s

′, a′)− Q̂o(s, a))
10: end for
11:

12: s← s′ . Proceed to next state
13: until s is terminal
14: end for

A scalarization function can come in many forms and flavors, but the most common
function is the linear scalarization function. As depicted in Eq. 8, the linear scalarization
function calculates a weighted-sum of the Q̂-vector and a non-negative weight vector

ŜQlinear(s, a) =

m∑
o=1

wo · Q̂o(s, a). (8)
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The weight vector itself should satisfy the equation

m∑
o=1

wo = 1. (9)

Given these ŜQ-values, the standard action selection strategies can decide on the appropri-
ate action to select. For example, in the greedy case in Eq. 10, the action with the largest
ŜQ-value is selected:

greedylinear(s) = arg max
a′

ŜQlinear(s, a
′). (10)

Because the linear scalarization function computes a convex combination, it has the fun-
damental limitation that it can only find policies that lie in convex regions of the Pareto
front (Vamplew et al., 2008).

An alternative scalarization function is based on the Lp metrics (Dunford et al., 1988).
These metrics measure the distance between a point x in the multi-objective space and a
utopian point z∗. This point z∗ serves as a point of attraction to steer the search process
to high-quality solutions. The utopian point z∗ is a parameter that is being constantly
adjusted during the learning process by recording the best value so far for each objective
o, plus a small negative or positive constant τ , depending whether the problem is to be
minimized or maximized, respectively. In our setting, we measure the distance between
each objective of x to z∗ with 1 ≤ p ≤ ∞:

Lp(x) =
( m∑
o=1

wo|xo − z∗o|p
)1/p

. (11)

In the case of p = ∞, the metric results in the weighted L∞ or the Chebyshev metric and
is of the form

L∞(x) = max
o=1...m

wo|xo − z∗o|. (12)

In the case of single-policy MORL, a ŜQL∞-value is obtained by substituting x for the

Q̂-vector of a state-action pair (s, a):

ŜQL∞(s, a) = max
o=1...m

wo · |Q̂o(s, a)− z∗o|. (13)

Lp metrics entail that the action corresponding to the minimal ŜQLp
-value is considered

the greedy action in state s. Hence, for the Chebyshev metric that is greedyL∞(s):

greedyL∞(s) = arg min
a′

ŜQL∞(s, a′). (14)

Although the Chebyshev metric is a common and established function in evolutionary
algorithms, its application in reinforcement learning lacks theoretical guarantees. More
precisely, there exist examples which indicate that the Chebyshev metric, being a non-
linear function, does not guarantee the scalarized returns to be additive. As a result, the
Bellman equation no longer holds and the learning algorithm is not proven to converge to
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the optimal policy (Perny and Weng, 2010; Roijers et al., 2013). Nevertheless, even without
this theoretical guarantee, a Chebyshev scalarized MORL algorithm can obtain high-quality
solutions (Van Moffaert et al., 2013b).

Quality indicators are functions that assign a real value to a set of vectors and are
usually employed to evaluate the results of multi-objective algorithms. Yet, particular
multi-objective algorithms also use indicators in their internal workings to steer the search
process (Beume et al., 2007; Igel et al., 2007). This class of algorithms are called indicator-
based algorithms. Many quality indicators exist, but the one that is the most interesting for
our context is the hypervolume (Zitzler et al., 2003) indicator. The hypervolume measure
is a quality indicator that evaluates a particular set of vectorial solutions by calculating
the volume with respect to its elements and a reference point (Figure 1). As the goal is to
maximize the hypervolume, this reference point is usually defined by determining the lower
limit of each objective in the environment.

ref
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objective 1
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Figure 1: Illustration of the hypervolume calculator. It calculates the area of a set of
non-dominated policies, i.e., S1, S2 and S3, in the objective space with a given
reference point ref.

The hypervolume indicator is of particular interest in multi-objective optimization as it
is the only quality measure known to be strictly increasing with regard to Pareto dominance.
Recently, the hypervolume-based MORL algorithm (HB-MORL) is proposed (Van Moffaert
et al., 2013a). HB-MORL is a specific multi-objective algorithm that uses an archive of
Q̂-vectors of previously visited states and actions. The innovative part of HB-MORL lies
in the action selection mechanism, i.e., the action that maximizes its contribution to the
archive in terms of the hypervolume measure is selected.

2.2.2 Multi-Policy MORL

In contrast to single-policy MORL, multi-policy algorithms do not reduce the dimensionality
of the objective space but aim to learn a set of optimal solutions at once. White (1982)
proposed a dynamic programming (DP) algorithm that computes a set of Pareto dominating
policies. Dynamic programming differs from reinforcement learning in the fact that it
assumes a model of the environment while reinforcement learning does not need any a
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priori knowledge about the environment but is able to work model-free. The DP function is

Q̂set(s, a) = R(s, a)⊕ γ
∑
s′∈S

T (s′|s, a) V ND(s′), (15)

where R(s, a) is the expected reward vector observed after taking action a in state s and
T (s′|s, a) is the corresponding transition probability of reaching state s′ from (s, a). We
refer to V ND(s′) as the set of non-dominated vectors of the Q̂set’s of each action in s′,
as denoted in Eq. 16. The ND operator is a function that removes all Pareto dominated
elements of the input set and returns the set of non-dominated elements:

V ND(s′) = ND(∪a′Q̂set(s′, a′)). (16)

The ⊕ operator performs a vector-sum between a vector v and a set of vectors V . Summing
two vectors can be performed simply by adding the corresponding components of the vectors:

v ⊕ V =
⋃

v′∈V
(v + v′). (17)

The idea is that, after the discounted Pareto dominating rewards are propagated and
the Q̂set’s converge to a set of Pareto dominating policies, the user can traverse the tree
of Q̂set’s by applying a preference function. As highlighted in Section 2.1, a deterministic
stationary policy suffices for single-objective reinforcement learning. In the case of MORL,
White (1982) showed that deterministic non-stationary policies, i.e., policies that do not
only condition on the current state but usually also on the time step t, can Pareto dominate
the best deterministic stationary policies. As a result, in infinite horizon problems with large
values for the discount factor, the number of non-stationary policies increases exponentially
and therefore it can lead to an explosion of the sets. In order to make the algorithm
practically applicable, Wiering and de Jong (2007) proposed the CON-MODP algorithm
which solves the problem of non-stationary policies by introducing a consistency operator,
but their work is limited to deterministic transition functions.

Several multi-policy algorithms were inspired by the work of White. For instance, Bar-
rett and Narayanan (2008) proposed the convex hull value-iteration (CHVI) algorithm which
computes the deterministic stationary policies that are on the convex hull of the Pareto
front. The convex hull is a set of policies for which the linear combination of the value of
policy π, Vπ, and some weight vector w is maximal (Roijers et al., 2013). In Figure 2 (a),
white dots denote the Pareto front of a bi-objective problem and in Figure 2 (b) the red
line represents the corresponding convex hull. The 4 deterministic policies denoted by red
dots are the ones that CHVI would learn. CHVI bootstraps by calculating the convex hull
of the union over all actions in s′, that is

⋃
a′ Q(s′, a′). The most computationally expen-

sive operator is the procedure of combining convex hulls in the bootstrapping rule. Lizotte
et al. (2010) reduce the asymptotic space and time complexity of the bootstrapping rule
by simultaneously learning several value functions corresponding to different weights and
by calculating their piecewise linear spline representation. Recently, they validated their
work on clinical trial data for three objectives, although the practical possibilities for higher
dimensional spaces are not straightforward (Lizotte et al., 2012).
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To conclude, it is important to note that (1) these methods are batch algorithms that
assume a model of the environment is known and that (2), in general, only policies that lie
on a subset of the Pareto front, i.e., the convex hull, are obtained.

While the aforementioned multi-policy algorithms learn only a finite set of deterministic
policies, it might be interesting to employ probabilistic combinations of these policies. Such
a stochastic combination of two policies is called a mixture policy (Vamplew et al., 2009)
and can be explained with the following example. Take for instance a very easy multi-

objective 1

o
b
je

c
ti
v
e

 2

objective 1

o
b
je

c
ti
v
e

 2
(a) (b)

Figure 2: (a) A Pareto front of bi-objective policies represented by white dots. (b) The
convex hull of the same Pareto front is represented by a red line. The 4 red dots
denote policies that CHVI and Lizotte’s method would learn.

objective problem where the agent can only follow two deterministic policies π1 and π2 with
Vπ1(s0) = (1, 0) and Vπ2(s0) = (0, 1), where s0 denotes the start state. If one would follow
policy π1 with probability p and policy π2 with probability (1 − p), the average reward
vector would be (p, 1− p). Thus, although there are only two deterministic policies for the
original problem, a mixture policy implicates that we can sample the entire convex hull of
policies by combining the deterministic policies with a certain probability. Hence, stochastic
combinations of the policies of the Pareto front in Figure 2 (a) can represent every solution
on the red line in Figure 2 (b).

However, mixture policies might not be appropriate in all situations, as highlighted
by Roijers et al. (2013). For instance, in the setting of Lizotte et al. (2010), clinical data is
analyzed to propose a treatment to patients based on a trade-off between the effectiveness
of the drugs and severity of the side effects. Consider the case where only two policies exist
that either maximize the effectiveness and the severity of the side effects and vice versa.
While the average performance of the mixture policy of these two basic policies might yield
good performance across a number of episodes, the policy itself might be unacceptable in
each episode individually, i.e., for each patient independently.

3. Pareto Q-learning

In this section, we will propose a novel on-line TD-based multi-objective learning algorithm,
named Pareto Q-learning or PQL, which uses the algorithm of White (1982) as a starting
point. As a result, PQL also learns deterministic non-stationary policies. Before we present
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the details of our algorithm, we first describe the assumption that we make. We currently
only focus on episodic problems, i.e., environments with terminal states that end the episode.
In Section 5, we analyze the challenges to extend PQL to ergodic environments.

The Pareto Q-learning algorithm does not assume a given model, i.e., it works model-
free. Therefore, we present three mechanisms that allow action selection based on the
content of the sets of Q̂-vectors. We name them set evaluation mechanisms as they provide
a scalar evaluation of the sets. These scalar evaluations can then be used to guide the
standard exploration strategies, such as ε-greedy. The details of the evaluation mechanisms
are presented in Section 3.2. First, we elaborate on how we can learn and update sets of
vectors in Section 3.1.

3.1 Set-Based Bootstrapping

The single-objective Q-learning bootstrapping rule updates an estimate of an (s, a)-pair
based on the reward and an estimate of the next state (Watkins, 1989). The update rule
guarantees that the Q̂-values converge to their expected future discounted reward, even
when the environment has a stochastic transition function. In this section, we analyze the
problem of bootstrapping sets of vectors. We first present a naive approach whereupon we
present our novel Pareto Q-learning algorithm.

3.1.1 Naive Approach

The set-based bootstrapping problem boils down to the general problem of updating the set
of vectors of the current state-action (s, a)-pair with an observed reward vector r and a set
of non-dominated vectors of the next state, ND(∪a′Q̂set(s′, a′)) over time. The difficulty
in this process arises from the lack of correspondence between the vectors in the two sets,
i.e., it is not clear which vector of the set of the current (s, a)-pair to update with which
vector in s′. This correspondence is needed to perform a pairwise update of each vector in
Q̂set(s, a) with the corresponding vector (if any) in the other set (see Figure 3).

[0.9, 0.1]

[0, 1]

[0.3, 0.7]

[0, 0]

[0.5, 0]

[0.15, 0.3]

[0, 0.5]

[0.3, 0.15]

[0.1, 0.9]

? [1, 0]

[0.2, 0.8]

[0.4, 0.6]

[0.6, 0.4]

[0.8, 0.2]

ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)

[0.7, 0.3]

[0.5, 0.5]

r

Figure 3: Set-based bootstrapping: the problem of updating over time the set of vectors
of the current state-action pair with the observed reward vector and the opti-
mal vectors of the next state. There is no explicit correspondence between the
elements in both sets, so as to perform a pairwise update.
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A possible solution is to make this correspondence explicit by labelling or tagging the
vectors in the two sets. When vectors in the sets of (s, a) and s′ are tagged with the same
label or color, the bootstrapping process knows that these vectors can be updated in a
pairwise manner. More precisely, the process would be as follows: when sampling an action
a in s for the first time, the vectors in the set of the next state ND(∪a′Q̂set(s′, a′)) are
labeled with a unique tag. Next, the bootstrapping process can continue for each vector
in s′ individually and the tag is copied to the set of (s, a). This process is illustrated in
Figure 4 (a) for a bi-objective environment. Subsequently, when action a is sampled in
future time steps, we actually have a correspondence between the vectors in the two sets
and we can perform a pairwise update for each objective of each vector with the same label
(Figure 4 (b)). However, the main problem with this naive solution is that these sets are not
stable but can change over time. We highlight two main cases that can occur in a temporal
difference setting:

• It is possible that the set of (s, a) was updated with vectors from s′ at time step t,
while actions in s′ were sampled at time step t+ 1, that were previously unexplored.
Possibly, new non-dominated vectors then appear in ND(∪a′Q̂set(s′, a′)). When, in
future episodes, the set of (s, a) is to be updated again, there are elements in s′ that
were not bootstrapped before and the correspondence between the sets is incomplete
(Figure 4 (c)).

• As estimates are being updated over time, it is very likely that vectors in s′ that
were non-dominated at time step t, become dominated by other vectors at time step
t+1. In Figure 4 (d), we see that in that case the correspondence no longer holds, i.e.,
different labels appear in the two sets. As a consequence, learning would have to begin
from scratch again for those vectors. Especially in early learning cycles, the vectorial
estimates can repeatedly switch between being non-dominated and dominated. Hence,
this naive updating process would waste a lot of samples before the vectors mature.

It is clear that such a naive updating procedure would become even more cumbersome
and complex in environments with stochastic transitions. As a result, it would not be
generally applicable to a wide range of problem domains.

3.1.2 Our Approach: Learning Immediate And Future Reward Separately

In the presentation of our updating principle, we first limit ourselves to environments with
deterministic transition functions. We then proceed to highlight the minimal extensions to
the algorithm to also cover stochastic transitions.

In standard, single-objective Q-learning (Eq. 3), Q̂-values store the sum of the estimated
value of the immediate reward and the future discounted reward. Our idea consists of storing
this information separately. We use R(s, a) to denote the average observed immediate
reward vector of (s, a) and NDt(s, a) the set of non-dominated vectors in the next state
of s that is reached through action a at time step t. The next state of s is determined by
observing the transitions during learning. By storing R(s, a) and NDt(s, a) separately, we
allow them to converge separately as well. This way, no explicit correspondence between the
two sets is required and the current set of non-dominating policies at time step t, NDt(s, a)
is allowed to evolve over time. The Q̂set of (s, a) can be calculated at run time by performing

3674



Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies

ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)

[0, 1]

[0.7, 0.2]

[0, 0]

r

ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)

[0, 1]

[0.7, 0.2]

[0, 0.5]

[0.35, 0.1]

[0, 0]

r

(a) (b)

[1, 0]

[0, 1]
[0.2, 0.7]

[0.7, 0.2]

[0, 0.5]

[0.3, 0.1]

?

?

[0, 0]

ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)

r

[1, 0]

[0.2, 0.7]

[0, 0.5]

[0.3, 0.1]

[0, 0]

?

ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)

r

(c) (d)

Figure 4: Several situations can occur when updating a set with another set over time. In
(a), we would naively label the vectors of s′ with a certain color when sampling
action a in s for the first time. In (b), we note that the labeled and colored
vectors of s′ are now bootstrapped and present in (s, a). As the colors are also
copied in (s, a), the correspondence between the vectors in (s, a) and s′ is explicit
and in future time steps the vectors can be updated in a pairwise manner. (c)
and (d) highlight the different situations one should account for as the sets are
not stable but can change over time. For instance, new vectors can appear in s′

(c) or estimates that were non-dominated can become dominated (d). We refer
to Section 3.1 for more details.

a vector-sum over the average immediate reward vector and the set of discounted Pareto
dominating future rewards:

Q̂set(s, a)← R(s, a)⊕ γNDt(s, a). (18)

Whenever the action a in s is selected, the average immediate reward vector R(s, a) is
updated and the NDt(s, a) list is updated using the non-dominated Q̂-vectors in the Q̂set
of every action a′ in s′, i.e., ND(∪a′Q̂set(s′, a′)).

We present an algorithmic outline of the Pareto Q-learning algorithm in Algorithm 4.
The algorithm starts by initializing the Q̂set’s as empty sets. In each episode, an action is
selected using a particular action selection strategy (line 5). How we actually perform the
action selection based on the Q̂set’s will be presented in the subsequent section. Afterwards,
the environment transfers the agent to state s′ and provides the reward vector r. In state
s′, the non-dominated Q̂-vectors for each action are retrieved at line 8 and are discounted.
At line 9, the average immediate reward for each objective, R(s, a), is iteratively updated
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given the new reward r and the number of times that action a was sampled, denoted by
n(s, a). The algorithm proceeds until the Q̂set’s converge or after a predefined number of
episodes.

Algorithm 4 Pareto Q-learning algorithm

1: Initialize Q̂set(s, a)’s as empty sets
2: for each episode t do
3: Initialize state s
4: repeat
5: Choose action a from s using a policy derived from the Q̂set’s
6: Take action a and observe state s′ ∈ S and reward vector r ∈ Rm
7:

8: NDt(s, a)← ND(∪a′Q̂set(s′, a′)) . Update ND policies of s′ in s

9: R(s, a)← R(s, a) + r−R(s,a)
n(s,a) . Update average immediate rewards

10: s← s′ . Proceed to next state
11: until s is terminal
12: end for

Although we do not provide a formal proof on the convergence of PQL, its convergence
can be argued by the observation that the procedure of repeatedly calculating the set of
non-dominated vectors, as was applied in White’s algorithm, is guaranteed to converge and
the fact that the convergence of the R(s, a) is trivial.

The updating principle can also be extended to stochastic environments, where the
transition probability T (s′|s, a) 6= 1 for some next state s′, given state s and action a. In
the case of stochastic transition functions, we store the expected immediate and future non-
dominated rewards per (s, a, s′)-tuple that was observed during sampling, i.e., R(s, a, s′) and
NDt(s, a, s

′), respectively. By also considering the observed frequencies of the occurrence of
next state s′ per (s, a)-pair, i.e., F s

′
s,a, we estimate T (s′|s, a) for each (s, a). Hence, we learn

a small model of the transition probabilities in the environment, similar to Dyna-Q (Sutton
and Barto, 1998), which we use to calculate a weighted pairwise combination between the
sets. To combine a vector from one set with a vector from the other set, we propose the
C-operator, which simply weighs them according to the observed transition frequencies:

C(Q̂(s, a, s′), Q̂(s, a, s′′)) =
F s

′
s,a∑

s′′′∈S F
s′′′
s,a

Q̂(s, a, s′) +
F s

′′
s,a∑

s′′′∈S F
s′′′
s,a

Q̂(s, a, s′′). (19)

3.2 Set Evaluation Mechanisms

In reinforcement learning, the on-line performance is crucial. Therefore, it is interesting to
see how the standard exploration strategies, such as ε-greedy, can be applied on the Q̂set’s
during learning. In this section, we propose three evaluation mechanisms that obtain a
scalar indication of the quality of a Q̂set. These scalar evaluations are used in action selection
strategies to balance the exploration and the exploitation. We name these techniques set
evaluation mechanisms.

3676



Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies

3.2.1 Hypervolume Set Evaluation

The first set evaluation mechanism we propose uses the hypervolume measure to evaluate
the Q̂set’s. The hypervolume indicator is well-suited for two reasons: (1) it is the only
quality indicator to be strictly monotonic with the Pareto dominance relation and (2) it
provides a scalar measure of the quality of a set of vectors. An outline of the algorithm
is given in Algorithm 5. First, we initialize the list where the evaluations of each action
of s will be stored. At line 4, we calculate the Q̂set for each action and we compute its
hypervolume which we append to the list. The list of evaluations can then be used in an
action selection strategy, similar to the single-objective case. For instance, when selecting
an action greedily, the action corresponding to the Q̂set with the largest hypervolume is
selected. When the Q̂set’s are empty, the hypervolume of each action is 0 and an action is
selected uniformly at random.1 This set evaluation mechanism, in combination with Pareto
Q-learning, is referred to as HV-PQL. A crucial parameter of the hypervolume calculation

Algorithm 5 Hypervolume Qset evaluation

1: Retrieve current state s
2: evaluations = {}
3: for each action a do
4: hva ← HV (Q̂set(s, a))
5: Append hva to evaluations . Store hypervolume of the Q̂set(s, a)
6: end for
7: return evaluations

is the reference point. This parameter is problem-specific and should be chosen with great
care. A good practice is to define it pessimistically by considering the worst possible value
for each objective of every possible policy in the environment.

3.2.2 Cardinality Set Evaluation

An alternative to the previous evaluation mechanism is to consider the number of Pareto
dominating Q̂-vectors of the Q̂set of each action. This evaluation mechanism closely relates
to the cardinality indicator in multi-objective optimization, hence the abbreviation C-PQL.

The rationale behind this evaluation mechanism is that it can heuristically guide the
search process by providing a degree of domination one action has over other actions, locally
in a state. It is expected that these actions then have a larger probability to lead to global
Pareto dominating solutions. Especially when estimates are not yet mature, it might be
interesting to bias the action selection to actions with a large number of non-dominated
solutions. An outline of the algorithm is given in Algorithm 6. At line 2, we initialize a
list where we store the individual Q̂-vectors of the Q̂set, together with a reference to its
corresponding action a (line 5). At line 8, we remove all dominated Q̂-vectors using the
ND operator, such that only the non-dominated Q̂-vectors remain in the NDQs list. Using
this list, the underlying action selection strategy can simply count the number of times each
action a of s remains in the list of Pareto dominating Q̂-vectors, i.e., the NDQs list, and
eventually perform the action selection. Thus, when selecting an action greedily, the action

1. This is also the case for the other set evaluation mechanisms below.
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that relates to the largest number of Pareto dominating Q̂-vectors over all actions in s is
selected.

Algorithm 6 Cardinality Qset evaluation

1: Retrieve current state s
2: allQs = {}
3: for each action a in s do
4: for each Q̂ in Q̂set(s, a) do
5: Append [a, Q̂] to allQs . Store for each Q̂-vector a reference to a
6: end for
7: end for
8: NDQs← ND(allQs) . Keep only the non-dominating solutions
9: return NDQs

3.2.3 Pareto Set Evaluation

The third evaluation mechanism is a simplified version of the cardinality metric. Instead of
considering the number of non-dominated elements in the Q̂set of each action in s, we simply
consider if action a has a non-dominated vector across every other action a′ or not. The
approach eliminates any actions which are dominated, and then randomly selects amongst
the non-dominated actions. Hence, this mechanism only relies on the Pareto relation and
is therefore called PO-PQL. PO-PQL removes the bias that the cardinality indicator in
C-PQL might have for actions with a large number of non-dominated vectors over actions
with just a few. The rationale behind this mechanism is to have a more relaxed evaluation
of the actions of a particular state and to treat every non-dominated solution equally.

3.3 Consistently Tracking a Policy

The set evaluation mechanisms in Section 3.2 provide the necessary tools to perform action
selection during learning, i.e., balancing the exploration towards uncharted areas of the state
space and the exploitation of non-dominated actions. However, at any moment in time, it
might be necessary to apply the learned policies. In single-objective reinforcement learning,
the learned policy can be easily tracked by applying the arg max-operator over all actions
in each state, i.e., applying greedy action selection. In the case of a multi-policy problem,
we are learning multiple policies at the same time which requires an adapted definition of
a greedy policy in MORL.

Because of the nature of multi-policy setting, one needs to select actions consistently in
order to retrieve a desired policy based on the Q̂-vectors. If one would select actions based
on local information about the ‘local’ Pareto front attainable from each action, then there
is no guarantee that the cumulative reward vectors obtained throughout the episode will be
globally Pareto optimal. This process is highlighted in Figure 5 (a) where the state space is
an 8×8 grid and three global Pareto optimal policies exist, each given a different color. In
Figure 5 (b), we select actions that are locally non-dominated, i.e, non-dominated within
the current state. The black policy is a sequence of locally optimal actions, as it always
overlaps with one of the colored lines, however, the resulting policy is not globally Pareto
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optimal. To conclude, when in a state where multiple actions are considered non-dominated
and therefore are incomparable, one can not randomly select between these actions when
exploiting a chosen balance between criteria but actions need to be selected consistently.

S

G

S

G

(a) (b)

Figure 5: (a) In this environment, there is a green, yellow and red Pareto optimal action
sequence that is globally optimal. (b) Selecting actions that are locally non-
dominated within the current state does not guarantee that the entire policy is
globally Pareto optimal. Hence, the information about the global Pareto front
has been lost in the local Pareto front.

In order to solve the problem of locally optimal actions that are globally dominated,
we define a globally greedy policy as a policy π that consistently follows or tracks a given
expected return vector Vπ(s) from a state s so that its return equals Vπ(s) in expectation.
Therefore, we need to retrieve π, i.e., which actions to select from a start state to a terminal
state. However, due to the stochastic behavior of the environment, it is not trivial to
select the necessary actions so as to track the desired return vectors. Let us consider
the small bi-objective MDP with deterministic transitions in Figure 6. When the agent
reaches a terminal state, denoted by a double circle, the episode is finished. Assume that
the discount factor γ is set to 1 for simplicity reasons. Once the Qset’s have converged
separately, we can identify three Pareto optimal policies in the start state s0. These policies
have corresponding expected reward vectors (1.1, 0.5), (2.2, 0.4) and (0.2, 0.6). When one is
for instance interested in following the policy with an expected reward vector of (2.2, 0.4),
the agent should select action a as the vector (2.2, 0.4) is an element of the Q̂set of action a
(and there is no other option). But, once in the next state, the next action to select is not
clear when one only stores the converged Qset’s. Hence, should the agent select action b, c
or d to acquire a return of (2.2, 0.4) at the end of the episode? The approach we propose
to solve this issue is based on the separation of the average immediate and future rewards,
i.e., we can simply subtract the average immediate reward from the expected return we
are targeting, in order to retrieve the next action to select. This way, we can consistently
follow the expected return from state s, Vπ(s), throughout the entire state space. In the
example, the agent should select the action that contains (2.2, 0.4)− (0.2, 0) = (2.0, 0.4) in
its Qset, i.e., action c. The pseudo-code of the tracking algorithm for environments with
deterministic transitions is listed in Algorithm 7. The agent starts in a starting state s of
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Action R(s, a) NDt(s, a) Q̂set(s, a)

a (0.2, 0.0)
(

(0.9, 0.5), (2.0, 0.4), (0.0, 0.6)
) (

(1.1, 0.5), (2.2, 0.4) , (0.2, 0.6)
)

b (0.9, 0.5) () (0.9, 0.5)

c (2.0, 0.4) () (2.0, 0.4)

d (0.0, 0.6) () (0.0, 0.6)

Figure 6: A small multi-objective MDP and its corresponding Qset’s. As we store the
expected immediate and future non-dominated vectors separately, we can consis-
tently follow expected return vectors from start to end state.

the environment and has to follow a particular policy so as to obtain the expected value
of the policy from that state, i.e., Vπ(s), at the end of the episode. For each action of
the action set A, we retrieve both the averaged immediate reward R(s, a) and NDt(s, a),
which we discount. If the sum of these two components equals the target vector to follow,
we select the corresponding action and proceed to the next state. The return target to
follow in the next state s′ is then assigned to Q and the process continues until a terminal
state is reached. When the vectors have not entirely converged yet or the transition scheme
is stochastic, the equality operator at line 7 should be relaxed. In this case, the action is
to be selected that minimizes the difference between the left and the right term. In our
experiments, we select the action that minimizes the Manhattan distance between these
terms.

4. Results and Discussion

Before we analyze the experiments, we first discuss the general challenges in assessing the
performance of on-line multi-policy MORL algorithms in Section 4.1. In Section 4.2, we
evaluate and discuss the performance of the Pareto Q-learning algorithm in combination
with each of the set evaluation mechanisms on two test problems. In the subsequent section,
we perform an empirical comparison of the Pareto Q-learning algorithm to several single-
policy MORL algorithms that are described in Section 2.2.1, such as the scalarized MORL
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Algorithm 7 Track policy π given the expected reward vector Vπ(s) from state s

1: target← Vπ(s)
2: repeat
3: for each a in A do
4: Retrieve R(s, a)
5: Retrieve NDt(s, a)
6: for each Q in NDt(s, a) do
7: if γQ + R(s, a) = target then
8: s← s′ : T (s′|s, a) = 1
9: target← Q

10: end if
11: end for
12: end for
13: until s is not terminal

framework in combination with the linear and Chebyshev scalarization function and the
HB-MORL algorithm.

4.1 Performance Assessment of Multi-Policy Algorithms

In single-objective reinforcement learning, an algorithm is usually evaluated by its average
reward accumulated over time. The curve of the graph then indicates both the speed of
learning and the final performance of the converged policy. In multi-objective reinforcement
learning, the performance assessment is more complex because of two main reasons: (1) the
reward signal is vectorial and not scalar and (2) there exists no total ordering of the policies
but there is a set of incomparable optimal policies.

For scalarized MORL algorithms that converge to a single policy, Vamplew et al. (2010)
propose to employ the hypervolume indicator on the approximation set of policies, i.e., the
policies that are obtained after applying a greedy policy for a range of experiments with
varying parameters in the scalarization functions. The hypervolume of the approximation
set can then be compared to the hypervolume of the true Pareto front, i.e., the set of
Pareto optimal policies of the environment. Each experiment then represents an individual
run of a scalarized MORL algorithm with a specific weight vector w. In the case of tracking
globally greedy policies, we can adopt the mechanism by Vamplew et al. (2010) and calculate
the hypervolume of the cumulative reward vectors obtained by the tracking algorithm of
Section 3.3 for each of the non-dominated vectors in the ND(∪aQ̂set(s0, a)), where s0 is the
start state. The hypervolume of each of these vectors should then approach the hypervolume
of the Pareto front. It is important to note that in this way, we will evaluate and track as
many policies as there exist non-dominated Q̂-vectors in the start state for all actions.

4.2 Benchmarking Pareto Q-learning

In this section, we analyze the performance of the Pareto Q-learning algorithm for each
of the three set evaluation mechanisms, i.e., with either the hypervolume, cardinality or
Pareto evaluation mechanism. The algorithms are tested on three benchmark environments
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with a linear, convex and non-convex Pareto front. All the experiments are averaged over
50 runs and their 95% confidence interval is depicted at regular intervals.

4.2.1 The Pyramid MDP

The Pyramid MDP is a new and simple multi-objective benchmark, which we introduce
in this paper. A visual representation of the world is depicted in Figure 7 (a). The agent
starts in the down-left position, denoted by a black dot at (0, 0), and it can choose any of
the four cardinal directions (up, down, left and right). The transition function is stochastic
so that with a probability of 0.95 the selected action is performed and with a probability
of 0.05 a random transition is executed to a neighboring state. The red dots represent
terminal states. The reward scheme is bi-objective and returns a reward drawn from a
Normal distribution with µ = −1 and σ = 0.01 for both objectives, unless a terminal state
is reached. In that case, the x and y position of the terminal state is returned for the
first and second objective, respectively. The Pareto front is therefore linear as depicted in
Figure 7 (b).
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Figure 7: The Pyramid MDP: the agent starts in the down-left position and can select
actions until a terminal state is reached, denoted by a red dot. In (b), we represent
the corresponding linear Pareto front.

As we are learning multiple policies simultaneously, which potentially may involve dif-
ferent parts of the state space, we found it beneficial to employ a train and test setting,
where in the train mode, we learn with an ε-greedy action selection strategy with decreas-
ing epsilon.2 In the test mode of the algorithm, we perform multiple greedy policies using
Algorithm 7 for every element in ND(∪aQ̂set(s0, a)) of the start state s0 and we average the
accumulated returns along the paths. Each iteration, these average returns are collected
and the hypervolume is calculated.

In Figure 8, we present the results of learning and sampling Pareto optimal policies in
the Pyramid MDP environment for the train and test phases, respectively. In Figure 8
(a), we depict the hypervolume over time of the estimates in the start state s0.3 Hence,

2. At episode eps, we assigned ε to be 0.997eps to allow for significant amounts of exploration in early runs
while maximizing exploitation in later runs of the experiment.

3. In the Pyramid MDP, the reference point for the hypervolume calculation in both HV-PQL and the
performance assessment was specified to (−20,−20) after observing the reward scheme.
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Figure 8: In (a), we depict the hypervolume of the estimates in the start state of the stochas-
tic Pyramid MDP and we note that the entire Pareto front is learned very quickly
during the learning phase. In (b), we track these estimates through the state space
and denote that the hypervolume of their average returns approaches the Pareto
front as well. In (c), we denote the performance of the tracking algorithm for a
specific estimate. We see that the Manhattan distance of the running average of
the return vector approaches the tracked estimate over time.

for each iteration, we calculate HV (∪aQ̂set(s0, a)). We see that each of the set evaluation
mechanisms guide the Pareto Q-learning algorithm very well as the hypervolume of the
learned estimates approaches the hypervolume of the Pareto front (γ is set to 1). Based on
the graph, we see that each of the set evaluation mechanisms has very similar performance
in early stages of the learning process. After around hundred iterations, however, we note
a small distinction in performance between C-PQL and HV-PQL on the one hand and PO-
PQL on the other hand. Closer investigation of the results taught us that this difference is
caused by the fact that, once the estimates become stable, C-PQL and HV-PQL still create
a total order out of the set of Pareto optimal estimates, even though they are incomparable.
That is why, in later iterations of the learning phase, C-PQL and HV-PQL provide a (too)
large bias towards particular areas of the state and action space and therefore some estimates
are no longer updated. Hence, the very close, but not coinciding curves of their learning
graphs. PO-PQL does not provide a total order, but keeps the partial order that the multi-
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objective nature of the problem entails. Therefore, it treats every Pareto optimal solution
equally and the estimates are updated much more consistently.

In Figure 8 (b), we depict the results of the tracking algorithm of Section 3.3 that globally
follows every element of the start state in Figure 8 (a). We see that the hypervolume of
the average returns of each the estimated Q̂-vectors in ND(∪aQ̂set(s, a)) is very similar to
the learned estimates themselves. We see that tracking the estimates obtained by PO-PQL
allows to sample the entire Pareto front over time.

In Figure 8 (c), we see the tracking algorithm at work to retrieve the policy of a specific
vectorial estimate from the start state. In the figure, we denote the Manhattan distance
of the running average return to the estimate after learning. We see that averaging the
return of the policy obtained by the tracking algorithm over time approaches the estimate
predicted at the start state, i.e., the distance becomes zero in the limit.

4.2.2 The Pressurized Bountiful Sea Treasure Environment

In order to evaluate the Pareto Q-learning algorithm on an environment with a larger num-
ber of objectives, we propose the Pressurized Bountiful Sea Treasure (PBST) environment,
which is inspired by the Deep Sea Treasure (DST) environment (Vamplew et al., 2010). Sim-
ilar to the DST environment, the Pressurized Bountiful Sea Treasure environment concerns
a deterministic episodic task where an agent controls a submarine, searching for undersea
treasures. The world consists of a 10×11 grid where 10 treasures are located, with larger
values as the distance from the starting location increases. A visualization of the envi-
ronment is depicted in Figure 9 (a). At each time step, the agent can move into one of
the cardinal directions. The goal of the agent is to minimize the time needed to reach the
treasure, while maximizing the treasure value and to minimize the water pressure.4 The
pressure objective is a novel objective that was not included in the DST environment. It is
defined as the agent’s y-coordinate. In contrast to the DST, the values of the treasures are
altered to create a convex Pareto front. In the PBST environment, a Pareto optimal policy
is a path to a treasure that minimizes the Manhattan distance while staying at the surface
as long as possible before making the descent to retrieve a treasure. As a result, there are
10 Pareto optimal policies as shown in Figure 9 (b).

The results on the train and test phases are depicted in Figure 10 (a) and (b), respec-
tively.5 In Figure 10 (b), we depict the hypervolume of the tracked policies of the start
state by applying the greedy policies. As the environment has both deterministic reward
and transition schemes, the performance of the different set evaluation mechanisms is al-
most identical. The tracking algorithm performs very well and the graph is almost identical
to Figure 10 (a) as in the previous environment.

4. Traditionally, single-objective reinforcement learning solves a maximization problem. If the problem at
hand concerns a minimization of one of the objectives, negative rewards are used for that objective to
transform it also into a maximization problem.

5. In the PBST environment, the reference point for the hypervolume calculation in both HV-PQL and the
performance assessment was specified to (−25, 0,−120) after observing the reward scheme.
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Figure 9: The Pressurized Bountiful Sea Treasure environment (a) and its Pareto front (b).
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Figure 10: The results on the PBST environment. In (a), we depict the hypervolume over
time of the learned estimates in the start state. In (b), we see that the hyper-
volume of the tracked policies is very similar to the hypervolume of the learned
policies, which means that the learned policies are also retrievable.

4.3 Comparison to Single-Policy MORL Algorithms

In the previous section, we analyzed the performance of Pareto Q-learning in combina-
tion with the three set evaluation mechanisms . In this section, we conduct an empirical
comparison of the algorithms to several single-policy MORL algorithms.

4.3.1 The Deep Sea Treasure Environment

The Deep Sea Treasure (DST) is proposed by Vamplew et al. (2010) and is a standard MORL
benchmark instance. A brief description of the environment can be found in Section 4.2.2.
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−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

20

40

60

80

100

120

140
Pareto front of the Deep Sea Treasure world

Time objective

T
re

a
s
u

re
 o

b
je

c
ti
v
e

(a) (b)

Figure 11: Deep Sea Treasure environment (a) and its Pareto front (b).

The DST environment and its non-convex Pareto front are depicted in Figure 11 (a) and
(b), respectively.

In Figure 12, we denote the hypervolume during the test phase of the algorithm with
Pareto, cardinality and hypervolume set evaluations, i.e., PO-PQL, C-PQL and HV-PQL,
respectively.6 Furthermore, we also evaluate two single-policy algorithms that employ the
linear and Chebyshev scalarization functions and HB-MORL, the indicator-based MORL
algorithm of Section 2.2.1. These single-policy algorithms are evaluated using the config-
uration specified in Section 4.1. Below, we highlight the performance of each algorithm
individually.

The linear scalarized MORL algorithm is run with 10 uniformly distributed weight
vectors, i.e., the continuous range of [0, 1] is uniformly discretized with steps of 1

10−1 while
satisfying

∑m
o=1 wo = 1. Each of these weights is then used in an individual execution of

the scalarization algorithm and its results are collected in order to obtain a set of sampled
policies in the test phase. We note that, although we have a uniform spread of weights, the
algorithm only manages to retrieve a hypervolume of 768. When we take a closer look at
the results obtained, we see that the algorithm learns fast but from iteration 200, only the
optimal policies with return (−1, 1) and (−19, 124) for the time and treasure objectives,
respectively, are sampled. This is shown by the 95% confidence intervals that become zero
after iteration 200. This is to be expected as the Pareto front is non-convex and, hence, a
linear combination of the objectives then can only differentiate between the extreme policies
of the Pareto front. Therefore, the linear scalarized MORL algorithm converges to either
of the optimal policies with return (−1, 1) or (−19, 124).

The Chebyshev scalarized MORL algorithm is equipped with the same set of weight
vectors as the linear scalarization function. While the Chebyshev scalarization function has
proven its effectiveness in multi-objective optimization, it is not guaranteed to converge to a
Pareto optimal policy in a value-iteration approach (Perny and Weng, 2010). Nevertheless,
we see that the algorithm performs acceptably in practice as it learns almost at the same
speed as the linear scalarized MORL algorithm and attains a bigger hypervolume of 957.
Other experiments will have to investigate whether this performance in practice is consistent
over multiple environments, despite the lack of theoretical guarantees. A first initiative has
been given in Van Moffaert et al. (2013b).

6. The reference point for the hypervolume calculation was specified to (−25, 0).
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Although the indicator-based HB-MORL algorithm does not rely on any weighting pa-
rameters, we also run the experiment 10 times in parallel to obtain a set of policies which
we can compare at every time step. As there are no parameters to steer the search process,
each individual experiment is not guaranteed to converge to a particular solution of the
Pareto front. That is why the graph is increasing in the beginning of the learning process
but it is slightly decreasing near the end as there is no mechanism, like for instance weights
in the standard scalarization algorithms, to specify which experiment should focus on which
part of the objective space. In the end, we see that the performance of HB-MORL drops
slightly under the curve of the linear scalarized MORL algorithm.

So far, the single-policy algorithms did not manage to sample the entire Pareto front.
This was a result of either the shape of the Pareto front, i.e., being non-convex, or the
assignment of the weight vectors. Pareto Q-learning is not biased by any of these aspects,
but treats every Pareto optimal solution equally in the bootstrapping process. As the
environment consist of 10 Pareto optimal policies, the set of non-dominated vectors of the
start state, i.e., ND(∪aQ̂set(s0, a)), exactly contains 10 elements. Therefore, we evaluate as
many policies as the scalarization algorithms in this comparison. In early learning phases,
we see that for each of the set evaluation mechanisms, Pareto Q-learning learns slower
than the scalarized MORL algorithms. This is because the weights of the scalarization
algorithms guide each individual experiment to explore specific parts of the objective space,
while the guidance mechanisms of the Pareto Q-learning algorithm, i.e., the set evaluation
mechanisms, are less explicit. In the end, regardless of the set evaluation mechanisms
used, Pareto Q-learning surpasses the performance of the single-policy algorithms. In this
experiment, the Pareto set evaluation mechanism starts out the worst, but, in the end, it
performs a bit better than the other set evaluation mechanisms and samples every element
of the Pareto front.

5. Conclusions

In this paper, we have presented and discussed multi-objective optimization and reinforce-
ment learning approaches for learning policies in multi-objective environments. We have
highlighted that single-policy MORL algorithms rely on scalarization functions and weight
vectors to translate the original multi-objective problem into a single-objective problem.
Although these algorithms are very common in practice, they suffer from two main short-
comings: their performance depends heavily on (1) the shape of the Pareto front and on
(2) an appropriate choice of the weight vectors, which are hard to specify a priori.

The main contribution of this paper is the novel Pareto Q-learner algorithm that learns
deterministic non-stationary non-dominated multi-objective policies for episodic environ-
ments with a deterministic as well as stochastic transition function. To the best of our
knowledge, PQL is the first multi-policy TD algorithm that allows to learn the entire Pareto
front, and not just a subset. The core principle of our work consists of keeping track of the
immediate reward vectors and the future discounted Pareto dominating vectors separately.
This mechanism provides a neat and clean solution to update sets of vectors over time.

In a reinforcement learning algorithm, the exploration and exploitation trade-off is cru-
cial. Therefore, we developed three evaluation mechanisms that use the Q̂set’s as a basis
for action selection purposes during learning. We name them set evaluation mechanisms.
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Figure 12: The results on the Deep Sea Treasure environment. We compare three single-
policy MORL algorithms that use a linear and Chebyshev scalarization function
and HB-MORL to Pareto Q-learning with the three set evaluation mechanisms.
We note that, regardless of the set evaluation mechanisms, PQL obtained better
performance than the single-policy MORL algorithms and in the end PO-PQL
sampled the entire Pareto front. For a more in-depth analysis of the results, we
refer to Section 4.3.1.

The current set evaluation mechanisms rely on basic multi-objective indicators to translate
the quality of a set of vectors into a scalar value. Based on these indications, local action
selection is possible during the learning phase. Currently, we have combined PQL with
a cardinality, hypervolume and Pareto indicator. We have seen that the Pareto indicator
performed the best on average as it treats every Pareto optimal solution equally. The cardi-
nality and hypervolume set evaluation measures rate the actions also on additional criteria
than the Pareto relation to provide a total order. We have seen that in more complex
environments, these set evaluation mechanisms bias the action selection too much in order
to learn the entire Pareto front. Nevertheless, it could be that the user is not interested in
sampling the entire Pareto front but is looking for particular policies that satisfy certain
criteria. For instance, other quality indicators such as the spread indicator (Van Veld-
huizen and Lamont, 1998) could be used to sample policies that are both Pareto optimal
and well-spread in the objective space. This can straightforwardly be incorporated in our
framework.

In our experiments, we have tested the Pareto Q-learning algorithm on environments
with two and three objectives. However, as the algorithm is based on the Pareto relation,
it is without problem applicable to environments with a larger number of objectives. Addi-
tionally, we also conducted empirical evaluations on a benchmark instance and we compared
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Pareto Q-learning’s performance to several single-policy MORL algorithms. We have seen
that selecting actions that are locally dominating does not guarantee that the overall com-
bination of selected actions in each state, i.e., the policy, is globally Pareto optimal. As a
solution, we proposed a mechanism that tracks a given return vector, i.e., we can follow a
selected expected return consistently from the start state to a terminal state in order to
collect the predicted rewards.

In ParetoQ-learning, theQset’s grow according to the size of the Pareto front. Therefore,
PQL is primarily designed for episodic environments with a finite number of Pareto optimal
policies. To make the algorithm practically applicable for infinite horizon problems with
a large value for the discount factor, we have to consider that all states can be revisited
during the execution of an optimal policy. Upon revisiting a state, a different action that
is optimal w.r.t. other criteria can be chosen. As explained by Mannor and Shimkin
(2002), this offers a possibility to steer the average reward vector towards a target set using
approaching policies. Alternatively, we could reduce the number of learned policies by using
a consistency operator to select the same action during each revisit of some state, similar
to the work of Wiering and de Jong (2007) for multi-criteria DP.

Currently, PQL is limited to a tabular representation where each state-action pair stores
a Qset. In order to make PQL applicable to real-life problems or ergodic environments, these
sets should also be represented through function approximation. A possible idea is to fit
the elements in each set through a geometric approach, such as for instance ordinal least-
squares. If the environment would consist of two or three objectives, we would be fitting the
vectors on a curve or a plane, respectively. In that case, we would be learning the shape of
the Pareto front through local interactions that each update parts of this geometric shape.

To summarize, we note that PQL (1) can learn the entire Pareto front under the as-
sumption that each state-action pair is sufficiently sampled, (2) while not being biased by
the shape of the Pareto front or a specific weight vector. Furthermore, we have seen that (3)
the set evaluation mechanisms provide indicative measures to explore the objective space
based on local action selections and (4) the learned policies can be tracked throughout the
state and action space.
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