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ABSTRACT 
In this paper, we explore the use of multi-stage adaptation al- 

gorithms for a variety of adaptive filtering applications where the 
structure of the underlying process to be estimated is unknown. 
These algorithms are “multi-stage” in that they comprise multiple 
adaptive filtering algorithms that operate in parallel on the obser- 
vation sequence, and adaptively combine the outputs of this first 
stage to form an overall signal estimate. Several examples of this 
class of algorithms are demonstrated and analyzed in both a deter- 
ministic and stochastic context with respect to their convergence 
and mean squared error. The first example of this class, a “univer- 
sal” linear predictor, was recently introduced and shown to asymp- 
totically achieve the performance of the best linear predictor for 
each sequence, (up to some maximal order). Two new algorithms 
have been developed that generalize this universal linear predictor, 
and explore the use of the LMS algorithm in each stage of adap- 
tation. Each of these algorithms are compared through theoretical 
analysis of their behavior. 

1. INTRODUCTION 
The idea of multi-stage adaptive filtering is related to a number of 
emerging techniques in robust adaptive control [8], machine learn- 
ing [5] and data compression [7] .  While the optimal filtering struc- 
ture for a wide-sense stationary observation sequence contains a 
single filter, the number of filter parameters and the optimal values 
of these parameters are usually unknown a priori. In fact, for non- 
stationary observation sequences, the number and values of these 
optimal parameters will generally be time varying. Even when 
the number of the parameters is assumed known or estimated be- 
fore an adaptation algorithm is used, the problem of selecting the 
appropriate adaptation algorithm remains significant, since each 
adaptation algorithm has different learning and convergence be- 
havior. While the least mean square (LMS) algorithm has recently 
been shown to be optimum in a certain L ,  sense [6] ,  and can of- 
ten track time variations better than a recursive least squares (RLS) 
algorithm, the RLS algorithm is optimum for a number of statisti- 
cal and deterministic criteria [3]. Thus, fixing a specific filter (or 
adaptation algorithm) has potentially significant drawbacks due to 
the lack of a priori information about the observation sequence. 
A multi-stage algorithm attempts to overcome these problems by 
combining multiple candidate adaptation algorithms, with the goal 
of sequentially achieving the performance of the best algorithm 
among them. 

In this paper, we investigate two-stage adaptation algorithms, 
and note that multi-stage algorithms can be extended in a similar 
way. As shown in Figure 1, the first stage of a multi-stage adap- 
tation algorithm consists of m different adaptation algorithms that 
operate in parallel on the observation sequence. At any time, the 
jth algorithm outputs (ij (n),  which is compared with the observed 

(desired) data d ( n ) ,  and the error, e j ( n ) ,  is fed back to the adap- 
tation algorithm. Each algorithm operates in parallel, with their 
adaptation processes and outputs decoupled from each other. De- 
pending on the application, these algorithms may include a wide 
variety of models. For example, they can be: m different linear 
predictors of order from 1 to m; different algorithms for direc- 
tion of arrival estimation; or different adaptation algorithms (LMS, 
LMF, RLS, ...) for the same filter structure in attempt to exploit the 
different convergence characteristics of each algorithm. 

The second stage of the multi-stage algorithm is the model 
mixture stage. In this stage, the outputs of the first stage algorithms 
are adaptively combined to give the final response. The first stage 
outputs can be combined in terms of their performance on the ob- 
served data so far, or another adaptation algorithm can be run on 
the outputs of the first stage algorithms. When the algorithms are 
adaptively combined according to a performance-weighted com- 
bination, the resulting approach is similar to a Bayesian mixture, 
and closely related to a variety of methods used in machine learn- 
ing and universal data compression, [ 13. In a recent paper [ 11, an 
approach using RLS linear predictors of varying order in the first 
stage, and a Bayesian-type mixture in the second stage is shown to 
be “universal” in a least-squares sense with respect to both model 
orders and model parameters. 

The organization of this paper is as follows. In Section 2, af- 
ter describing the universal linear predictor, we state some prior 
results for the deterministic and stochastic context. The structure 
of the universal linear predictor (ULP) is important, since it pro- 
vides a framework for a large class of multi-stage algorithms. In 
the third section, we introduce a variant of the ULP, the LMS- 
Bayesian multi-stage adaptation algorithm. This algorithm differs 
from the ULP in the first stage, such that the LMS algorithm is used 
instead of the RLS algorithm to update the coefficients of the linear 
predictors. The convergence characteristics of the LMS-Bayesian 
algorithm are then analyzed for Gaussian data. In Section 4, the 
LMS-LMS multi-stage algorithm is defined and analyzed in this 
stochastic context. The LMS-LMS algorithm uses the LMS adap- 
tation algorithm in both the first and second stages. Using inde- 
pendence assumptions, we explore the convergence behavior of 
the LMS-LMS algorithm. 

2. UNIVERSAL LINEAR PREDICTOR 

In this section, we describe the “universal” linear predictor, which 
has recently been introduced [l]. Let * k ( n )  be the output of a 
sequential linear predictor as obtained by the RLS algorithm with 
model order IC. Define a universal linear predictor as a weighted 
sum over linear predictors of order less than or equal to m, 

m 

k = l  
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Figure 1: Multi-stage Adaptation Algorithm 

where c is a positive constant and u k ( n ) ,  the weights in the mix- 
ture, are proportional to the performance of the kth order predic- 
tor on the data observed so far. The performance, l a - - 1 ( z , 3 i ' k )  is 
the accumulated squared prediction error that results from sequen- 
tial application of the time varying set of predictor coefficients, 

. . . , W r , k r  i.e., by using ? k  (n). For each new sample at time 
n, these coefficients are obtained such that the total squared pre- 
diction error, 

n - 1  / k 

is minimized over these coefficients. The accumulated squared 
error is then given by, 

n /  b 

Because these linear prediction coefficients are optimized only over 
the data available (up to but not including the value to be pre- 
dicted), the sequential prediction error is a "fair" measure of per- 
formance of each predictor. 

The accumulated average square error of this algorithm is bet- 
ter, to within a negligible term, than that of an RLS predictor 
whose order is preset to the best order, say p ,  where p 5 m. 
Since the RLS algorithm of order p asymptotically achieves the 
performance of any fixed linear predictor of order p ,  this algo- 
rithm asymptotically attains the performance of the best fixed lin- 
ear predictor of any order less than some m. The only assumption 
needed for this result is that the predicted sequence is bounded, i.e., 
Ilc(n)l 5 A,  but is otherwise an arbitrary real-valued sequence. 
Then, the performance of this predictor can be related to that of 
the best sequential and batch predictors of order less than m, by 

Theorem-1 and Corollary-1 of [I] which is given by, 

1 1 8A2 
-L(z ,&(n))  n 5 min k n  -In(z,2,.(n)) + - n In(m), 

and, corollary 

Thus the average squared prediction error of the universal predic- 
tion algorithm is within O(n-')  of the best sequential linear pre- 
diction algorithm and within O(n-' ln(n)) of the best batch lin- 
ear prediction algorithm, uniformly for every individual sequence. 
The cost terms can be identified as a model redundancy term pro- 
portional to n-l ln(m) due to the lack of knowledge of the best 
model order, plus a parameter redundancy term proportional to 
n-l ln(n) due to the lack of knowledge of the parameters and the 
learning time of RLS. 

In aprobabilistic setting, say for Gaussian data, it can be shown 
[4] that the universal linear predictor is convergent in the mean 
value, with a few plausible assumptions whose affects diminish 
with n. When the best order for prediction is p with p 5 m, we 
have 

and when p > m, 

0 k # m  
1 k = m .  lim E [ p k ( n ) ]  = 

n - w  

It also can be shown that the learning curve of this universal linear 
predictor can be approximated as a weighted sum over the learning 
curves of all predictors used in the algorithm. As n goes to infinity, 
the MSE of the universal linear predictor converges to the MSE of 
the best order linear predictor used in the algorithm, i.e., 

(3) 

Therefore, the universal linear predictor is universal in a stochastic 
sense as well, such that it achieves the MSE performance of the 
best predictor for the observed data up to some order m. 

~ [ ( z ( n )  - ~ ( n ) ) ~ ]  -+ k = l ,  min ..., m ~ [ ( z ( n )  - ~ k ( n ) ) ~ ] ,  

3. LMS-BAYESIAN 
The linear predictors used in first stage of the universal linear pre- 
dictor, defined in Section 2, minimize the total squared prediction 
error, over the previously observed data, i.e. eq. (2). In this sec- 
tion, the weights in the first stage of the algorithm will be updated 
by using the well-known least mean square (LMS) recursion. The 
derivations can be generalized to apply to the least mean fourth 
(LMF) or other gradient decent algorithms in a straightforward 
manner. 

Let fk(n) be the output of a sequential linear predictor as ob- 
tained by the least mean square (LMS) algorithm with model order 
k ,  i.e., 

+ 1) = % k ( n )  + Pek(n)?&(n) ,  (4) 
where, p is a constant to control the stability and the rate of conver- 
gence, e k ( n )  is the sequential error to be minimized in the mean 
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square, g k ( n )  = [w:,;',. ..,w:,;'lT, and gk(n)  = [z(n - 
l ) ,  . . . , o(n - k)IT. Define a new predictor as a weighted sum 
over the linear predictors of order less than or equal to m, as in 
eq. ( l) ,  where c is a positive constant and t+(n), the weights in 
the mixture, are proportional to the performance of the kth order 
predictor on the data observed so far, L - ~ ( o , ? k ) .  

3.1. Convergence of Weight Coefficients in the mean 
Suppose the underlying process to be estimated is a zero mean 
stationary Gaussian random process with unknown covariance. In 
this probabilistic setting, the expected squared prediction error of 
an LMS linear predictor of order p for any n approximately satis- 
fies [31, 

where X k  is the kth eigenvalue of the correlation matrix 
E[gk(n)gr (n ) ] ,  and Jmin,p exists and is the optimal expected 
square error for the pth order linear predictor. The terms, a'k, are 
the eigenvalues of a related matrix [3]. The quantity Jmin+ is a 
non-increasing function of p such that the optimal pth order linear 
predictor asymptotically outperforms (or at least gives the same 
minimum error of) any predictor with order less than p .  For small 
values of p, eq. ( 5 )  can be approximated such that, 

P .  P 

which is equal to (l+ppa:).  When the first stage LMS algorithms 
are convergent, it can be verified that Ia'kl 5 1 [3]. With this 
condition, the accumulated mean-squared prediction error of an 
LMS algorithm of order p will be approximately, 

n 

~ [ l n ( l , 3 i . p ) l =  J~(z) = J m i n , p n ( I  + / I P C ~ )  
1=1 

where p' = maxk D k  and cy* = maxk ( Y k .  Since the sum of the 
geometric terms are o(n) ,  their contributions will be negligible in 
comparison to the terms linear in n. For calculation of the mean 
values of the mixture coefficients, up(n) ,  we make the assumption 
that, asymptotically, 

Then by eq. (6), 

where, 

A k  = Jmin ,k ( l  + pLkU:) - J m i n , p ( l  + PpU:). 

Suppose the underlying process to be estimated, o(n), is a wth 
order Gaussian AR process, 

.(n) = C k Z ( n  - k) + &(n), 
k = l  

where ~ ( n )  is a sequence of i.i.d. Gaussian random variables with 
zero mean and variance U:. When m > w,  the term Jm,n,p is a 
monotonically non-increasing function of p .  For sufficient order 
predictors (p 2 w), we have Jm,n,p = Jmin,w = a:. Then, for 
any predictor with order p > w,  at least one of the exponentials in 
the denominator will diverge due to the positive sign of the term 
p ( p  - w)a:, yielding, 

lim E[u,(n)] = 0 , p  = w + 1 , .  . . ,m. 

For a p = wth order predictor, the contributions '(to the denom- 
inator) of the higher order terms will vanish as n increases, due 
to the negative sign of the linear term p(k  - p)o:. Neverthe- 
less, the contributions of lower order terms are subtle. Although, 
Jmin,k strictly decreases in k < p ,  the linear term pku; in- 
creases in k. Thus, to guarantee convergence in the mean, certain 
conditions must be imposed on p, to balance these counteracting 
terms. From eq. (7), we observe that convergence is achieved 
when Jmin,p( l  + ppu:) < J m i n , k ( l  + pko:) for any k < p .  
Then, we must have 

n-+m 

where p k  = E[z(n)gk(n)]  is the cross correlation vector, and 
Rk = E[gk (n)gz(n)]  is the correlation matrix of the input, which 
is assumed to be positive definite. Because is monotoni- 
cally decreasing in k for k 5 p ,  [3],  the ratio a on the right hand 
side of eq. (9) is always between zero and 1. Since, the left hand 
side of eq. (9) is also monotonically decreasing from 1 to k/p, as 
p increases from 0 to 00, there will always be a nontrivial interval 
such that the condition given in eq. (9) is satisfied. The interval is 
given by, 

1 - a  
paaa - ku: > P L O ,  

which provides, 
lim E[up(n)] = 1.  

n-m 

Since by definition, E[uk(n)] = 1 ,  we conclude that, 

lim E[uk(n)] = 0, k = 1 , .  . . ,w - 1 .  
n-m 

3.2. Mean Squared Error 
It can be verified that the MSE of the LMS-Bayesian algorithm 
approximately satisfies, 

m 

Ju(n) = E[(o(n)  - ~ u k ( n ) ~ k ( n ) ) ' ] ~  
k = l  

m 

(10) 

k = l  k # l = l  

Eq. (10) can be derived using similar assumptions as those taken 
in traditional analysis of the LMS algorithm [3]. Through analysis 
similar to that used for the ULP algorithm [4], and after some al- 
gebra, the MSE of the LMS-Bayesian algorithm can be shown to 
satisfy 

~ [ ( z ( n )  - ?,,(n))'] -+ min ~ [ ( z ( n )  - i k ( n ) ) ' ] .  (11) 
k = l ,  ..., m 
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4. LMS-LMS 
In this section we define the LMS-LMS algorithm. A two-stage 
mth order LMS adaptation algorithm is given by, 

c i r (4  = wT(n)z,(n), eu(n) = d ( n )  - c i r (4 ,  (12) 
(13) g,,(n + 1)  = ul,(n) + ,meu(n)g,,(n), 

whereg,,(n) = [?l(n),?2(n). .. ,?,,,(n)lT,andforeachk,&(n) 
is the output of the lcth order LMS predictor given by, 

i k ( n )  = gT&.(n), ek(n)  = d ( n )  - i k ( n ) j  

- w k ( n  + l )  = %k(n) + plek(n)gk(n), 
(14) 
(15) 

with gk(n) = [z(n) ,  . . . , z (n  - k + l ) ] .  Define a weight matrix 
W(n)  such that, 

where each uT(n) has been padded with enough zeros to make 
their size m x 1, and W(n)  is a lower triangular matrix. With this 
notation, the iterations for the multi-stage algorithm can be given 
in matrix form as, 

(16) w,(n + 1 )  = w,(n) 
T 

+W ( d ( n )  - WU (n)W(n)g-m(n)) W(n):m(n), 

W ( n  + 1) = (W(n)  + ,~l(d(n)L - W(n)g,(n)) 0 L,  (17) 
where 1 = [ I . .  . 1IT with size m x 1, and L is a lower trian- 
gular matrix of ones including the diagonal terms. The opera- 
tor '0' implies term-by-term matrix multiplication operator, i.e. 
( A  0 B ) [ i , j ]  = At,jBt,J.  The application of the L matrix to 
the right hand side of (17) is required so that the recursion will 
generate the lower triangular matrix W ( n  + 1). 

4.1. Convergence of 2, (n)  in the mean value 
In this subsection the convergence characteristics of the LMS-LMS 
algorithms are derived by using the following independence as- 
sumptions 
A l )  z k ( n )  is independent of gk (n)  for any k. 
A2) E,, (n)  is independent of g, (n)  . 
Taking the expectation of eq. (16), and using these assumptions 
yields, 

E[?C,(n + 1)1 

= E [ ( I  - P2W(n)gm(n)gm(n)W'(n)) w,(n) (18) 

+P24n)W(n)gm(n)l 1 

= (1 - P ~ E [ W ( ~ ) R W ' ( ~ ) ] ) E [ W ~ ( ~ ) I  + P ~ W O ( ~ ) P ~ '  

where Wo(n) = E[W(n)] ,  and it is assumed that the limit 
l imn-+m Wo(n) = WO exists and is given by the Wiener so- 
lution. The vector p-, = E[d(n)g,(n)] is the cross correla- 
tion vector for mth order linear predictor. If we define the ma- 
trix K(n)  = E[W(n)RWT(n) ] ,  the weight vector gUo(n) = 

K-'(n)W~(n)p,, and the weight error vector ~ ( n )  = g,(n) - 
- wuo (n) then, the iteration (18) can be given by, 

D a 

a 

E[dn + 1)1 = (1 - pzK(n))E[dn)l .  (19) 

Through analogy to single stage adaptation algorithms, K(n)  can 
be identified as the time dependent correlation matrix for the multi- 
stage algorithm and ~ ( n )  corresponds to the weight error vector 
for g,(n). The time-dependent matrix, K(n) ,  is positive semi- 
definite for all n when R is positive definite. If we impose the 
condition such that for any finite iteration n, W(n)  is a nonsin- 
gular matrix (for example by adding a small diagonal load), then 
K ( n )  is a positive definite matrix. A sufficient condition for this 
time recursion to be convergent in the mean value can be given as, 

n 

When the algorithm is near convergence, it is reasonable to assume 
that, 
A3) The weight vectors in the first stage of the algorithm are inde- 
pendent from each other. 
With this assumption, 

The first quantity in eq. (21) is the time dependent excess mean 
squared error for kth order linear predictor [3]. As n increases, 
K ( n ) ,  the time dependent correlation matrix, converges to 

and J , z , k ( W )  = (Jmim,k)kUlr is the excess mean squared er- 
ror for lcth order predictor where Jmin,k is the minimum mean 
squared error for kth order predictor. T h ~ s  equality can be written 
in compact form as 

a .  K = 1im ~ ( n )  = W~RW? + A,,, 

where A,, is a diagonal matrix, and A,,,[k,k] = J e z , k ( m ) .  Thus, 
we conclude that K ( n )  is convergent. By (19) and E[g(n)] +. 0, 
we can find the vector that E[g,(n)] converges a.!, n increases, to 

n+m 

lim E[g,(n)] = lim tuuo(n), 
n+m n-m 

Since the final output of the multi-stage algorithm is d^f(n) = 
uT(n)W(n)g,(n), the vector wT(n)W(n) is the total coeffi- 
cient vector that the multi-stage algorithm updates in two stages. 
Thus, i t  is instructive to observe E[WT(n)g,(n)] .  Since it is as- 
sumed that u,(n) and W ( n )  are independent, 
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By using eq. (22) and K, If we define R(n) = QT(n)T(n)Q(n). and 
R(n + 1) M QT(n)T(n)Q(n), then 

lim,+,E[W T (n)g,(n>l = wo~-’~op_,. 
R(n + 1) = R(n) - paR(n)A(n) - ~ 2 A ( n ) R ( n )  

+&[Jmin(n) + tr(R(n)A(n))]A(n). If A,, is negligible in comparison to WoRWT then, 

T 

i.e. the overall algorithm converges to the Wiener solution. 

After some algebra, the conditions for this recursion to converge 
can be given in terms of the eigenvalues of K ( n )  as, at each itera- 
tion, 

lim,+,E[W (n)u,(n)] = R-’p-,, 

1 
O I p 2 I ~  

t r (K(n)  1 4.2. Mean Squared Error 
A time recursion for WT(n)g,(n) can be given by using eqs. 
(16) and (17). Expressing the MSE in closed form from these 
equations is complicated. Another approach for solving this prob- 
lem is conditioning the MSE on E,, (i.e. not on W) so that, 

After convergence, the final mean squared error will be dependent 
upon K = lim,+,K(n) = woRW~+A,,, and lim,,,p_m(n) =: 
W o p  --m . The final MSE is given by, 

(23) 

where K(n)  = E[W(n)RWT(n)], = K-’(n)pm(n) and 
pJn) = E[d(n)W:,,(n)] = Wog,. For the last term in eq. 
(231, 

T 
+(E, - u,,o) K(n)(w, - u u , o ) 7  

T 
E[(w,  -w,,o) K(n)(w,  - u,,o)l 

T 
= t r (E[(u ,  - u,,o)(u, - w,,o) lK(n)l. 

This is related to the well-known error covariance recursion for 
an ordinary mth order LMS algorithm. The only difference is the 
time dependence of the correlation matrix K(n) .  We can define 
the weight error vector as ~ ( n )  = u,(n) - ~ , , ~ ( n )  and the error 
of the optimum Wiener filter as e,,o(n) = d(n)  - : : ( n ) ~ ~ , ~ ( n ) .  
Since the correlation matrix is time dependent, the optimal weight 
vector is also time dependent. By the orthogonality principle e,,o(n) 
is orthogonal to gu(n) = W(n)g,(n), the input vector of the 
second stage. Thus after some algebra, the time recursion for the 
weight error covariance matrix T(n)  = E[g(n)sT(n)] is given by, 

a 

T ( n  + 1) = T(n)  - p2T(n)K(n) - p2K(n)T(n) 

+&[J-min(n) + tr(T(n)R(n))]K(n), (24) 

where t r (A)  = trace(A), and 

Jmin(n) = A 2  - 21, T(n)K-’(n)pm(n) is the time dependent 
MMSE for a given K(n) .  Since K ( n )  is Hermitian for all n, it 
can be decomposed as, 

~ ( n )  = Q W ( ~ ) Q ~ ( ~ )  
such that QT(n)Q(n) = I ,  and A(n) is the diagonal matrix of 
time dependent eigenvalues of K ( n ) .  If we make another assump- 
tion such that Q(n) does not change from one iteration to another 
(or at least is slowly varying such that it is effectively constant), 
then we can diagonalize the recursion (24) by applying Q ( n )  from 
both sides, 

QT(n)T(n + l )Q(n)  = 

QT(n)T(n)Q(n) - ~ 2 Q ~ ( n ) T ( n ) Q ( n ) N n )  

+tr(QT(n)T(n)Q(n>A(n))lh(n). 
-p2A(n)QT(n)T(n)Q(n) + &[Jmin(n)  

If A,, is negligible in comparison WoRWF, then Jmin(oo) = 
0: - gmTRgm. the MMSE for mth order optimum linear filter. 

5. CONCLUSION 

In this paper, we investigated a framework for analyzing multi- 
stage adaptation algorithms. Three examples of this class were an- 
alyzed in terms of their MSE and convergence characteristics. The 
MSE of the Universal and LMS-Bayesian algorithms are shown to 
converge to the MSE of the best predictor used. With some condi- 
tions on the adaptation constant, the final MSE of the LMS-LMS 
algorithm is calculated, and can asymptotically outperform any of 
the algorithms used in the first stage. Thus, all of these three algo- 
rithms are shown to be universal in this stochastic context. 
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