

Multi-Touch Table with

Object Recognition
Codename Plank

Group 14:

Pete Oppold

Enrique Roche

Hector E. Rodriguez

Christopher A. Sosa

 Page i

Table of Contents
Table of Contents .. 0

1. Introduction ... 1

1.1 Executive Summary .. 1

1.2 Motiviation .. 2

1.3 Objectives and goals ... 2

1.4 Requirements and Specifications .. 3

2. General Project Research .. 4

2.1 Past Projects .. 4

2.1.1 NUI Groups Project LOCUS ... 4

2.1.2 TACTUS .. 5

2.1.3 Multi-touch Poker Table .. 7

2.2 Prototype ... 7

3. Touch and Fiducial Recognition Software System ... 10

3.1 Fiducials .. 11

3.2 Vision Libraries .. 13

3.2.1 CCV ... 14

3.2.2 reacTIVision .. 16

3.2.3 D-touch .. 17

3.2.4 Bespoke Multi-touch Framework .. 19

3.2.5 Conclusion ... 21

3.3 Communication ... 22

3.4 Touch and Fiducial Recognition Software System ... 23

3.3.1 Top Level Program Flow ... 26

3.4.2 Reading from TUIO ... 26

3.4.3 Implementation .. 29

4. Showcase Program .. 31

4.1 Multi-touch User Interface .. 32

4.2 Graphics API ... 32

4.2.1 OpenGL.. 32

4.2.2 Microsoft XNA Game Studio .. 34

4.3 Design ... 34

4.3.1 Scenarios .. 35

4.4.2 Gestures.. 38

 Page ii

4.4.3 Graphics Structure ... 41

4.4.4 Code Structure ... 43

5. Computational Container System ... 46

5.1 Enclosure... 47

5.2 Image Display ... 48

5.2.1 Short Throw Project ... 48

5.2.2 Long Throw Projectors .. 50

5.2.3 LCD Display .. 51

5.2.4 Comparison .. 53

5.3 Computer... 54

5.4 Enclosure... 55

5.4.1 Component Mounting .. 55

5.4.2 LED Frame... 56

5.4.3 Component Cooling ... 57

6. Control System.. 58

6.1 Power .. 58

6.2 Pulse Width Modulation ... 59

6.3 Temperature Sensing .. 61

7. Image Recognition System ... 62

7.1 Types of Image Recognition ... 63

7.1.1 Frustrated Total Internal Refraction (FTIR) .. 63

7.1.2 Front/Rear Diffused Illumination (DI)... 64

7.1.3 Diffused Surface Illumination (DSI) ... 65

7.1.4 Interpolated Force Sensitive Resistance .. 66

7.1.5 Optical Imaging ... 67

7.1.6 Kinect (3D Imagining) ... 67

7.1.7 Conclusion ... 68

7.2 Active Material ... 68

7.3 Diffuser ... 68

7.4 Abrasion Resistance .. 71

7.5 Camera .. 71

7.6 Optical Low Pass Filter ... 73

7.7 LEDs ... 73

8. Design Summary ... 74

 Page iii

8.1 Touch and Fiducial Recognition Software System ... 75

8.2 Showcase Software (weDefend) ... 78

8.3 Computational Container System ... 84

8.3.1 Image Display .. 85

8.3.2 Computer.. 87

8.3.3 Enclosure.. 88

8.3.4 Enclosure Features ... 90

8.4 Control System.. 93

9. Future Work .. 94

10. Administrative Content .. 96

10.1 Roles and Responsibilities .. 96

10.2 Division of Labor .. 97

10.3 Milestones and Timelines ... 98

10.4 Software Development Model .. 99

10.5 Software Version Control ... 100

10.6 Budget ... 101

11. Owner’s Manual... 102

11.1 Parts List ... 102

11.2 Transportation of Planck ... 103

11.3 Hardware Setup of Planck .. 103

12.3.1 Cleaning of Acrylic .. 106

12.3.2 Mounting of the Acrylic... 106

12.4 Powering-up Planck .. 107

12.5 CCV ... 108

12.6 weDefend Simulation.. 113

12.6.1 Running weDefend .. 113

12.6.1 Using weDefend... 113

Prep Mode ... 114

Action Mode ... 118

Debug Mode.. 119

Works Cited .. 122

 Page 1

1. Introduction

1.1 Executive Summary

Planck is a low cost multi-touch surface that uses diffused surface illumination
technology to detect human touch and fiducials. It represents the next step in intuitive
touch screen technology that expands the user experience and usefulness of multi-user
applications. As large companies such as Microsoft, Samsung, Motorola, RIM, and Apple
gravitate towards creating intuitive touch technologies for personal devices the feasibility
of large multi-user touch surfaces replacing traditional input is becoming less science-
fiction and more reality.

Planck is capable of using both human touch and fiducials to replace traditional forms of
input used for home computers. It can be used in a variety of applications including
entertainment, simulation and modeling, participation learning, teaching, and technical
presentations. With the support of other systems, Planck can be used to create powerful
high throughput multi-user systems that enable users to work together to achieve a
common goal. Planck’s aim was to offer a more intuitive input scheme that allows users
to learn while doing.

Planck is a 40 inch screen that is fitted into a table structure that can be used by the
average size person. Planck used a special mirrored particle acrylic that is illuminated by
infrared light emitting diodes. An infrared camera was used to pick up diffused infrared
light which served as input to the touch recognition system. The application image was
displayed using a short throw projector onto a display mounted below the acrylic. The
computer used to process all the recognition and application software was fast enough to
respond to a touch in less than 10 milliseconds and the power supply was able to provide
sufficient wattage to the whole system.

Planck is made up of four systems, two of them software and two of them hardware. The
two hardware systems are the Computational Container System and the Image
Recognition and Control System. The Computational Container System provides a
structure for all the components of project Planck to rest in, or on. This is much like all
of the computer hardware parts being mounted inside a computer case for structure,
security, damage-control, and heat dissipation. While there is no novel implementation
of the design of the enclosure in project Planck, there is a specific goal in mind. The
enclosure was designed to replicate the surface of a smart-phone. The most important
reason for this is to allow users to seamlessly switch from their smart-phone to
comfortably using Planck. The computer in project Planck was also constructed of
superior commercial grade electronics. This is necessary so that there are no latency
issues in the transfer of the touch and fiducial processes throughout the software levels.
Current multi-touch technology is used in small applications such as cell phones and
tablets. These devices are also limited to touch based events. Plank utilized Diffused
Surface Illumination technology. This technology is designed for large touch surfaces
and has the capability of recognizing objects. Planck used a sheet of edge diffused
acrylic, which when illuminated by infrared LEDs, can be tracked by a cost efficient

 Page 2

webcam. Plank also included a microcontroller, which will allow for the sensitivity and
cooling within the device to be controlled. These technologies encompass the hardware
that was realized in Planck.

The software systems in Planck are comprised of the Touch and Fiducial Recognition
Software System and the Showcase Application weDefend. The Touch and Fiducial
Recognition Software System reads input from the Image Recognition System’s camera.
A vision software library, CCV1.5, was chosen to interpret the images and extract
meaningful touch and fiducial data. The gesture recognition module interprets the
meaningful data extracted and uses algorithms to define gestures that are significant to
the showcase application. The gestures are delivered in a shared data structure and are
updated as they are received from the Image Recognition System. The last system is the
Showcase Application named weDefend. The application is a model of military defense
and personnel escort missions realized through a real time strategy application. It requires
that users work together in order to accomplish military defensive objectives. The
application also shows off the novel input that Planck is capable of and how traditional
input is not required for complex applications.

1.2 Motivation

In recent years large software companies such as Microsoft, Apple, and Google have

been moving toward highly intuitive, easy‐to‐use, touch based interfaces. However

complex applications still require the use of traditional user input like mice and
keyboards. Our goal is to remove the need for traditional input in favor of multi-touch
gestures and real life objects that are in some way relevant to the application.

The aim of Planck was to create a novel tool set that can be integrated into several
software solutions. Planck is a consumer level optical recognition table capable of
controlling complex systems where the end user may use a combination of their hands
and supplementary objects. Planck will be of sufficient size to accommodate multiple
users simultaneously.

Planck provides an intuitive multi user environment via a multi-touch table. It expands
the diversity of applications a touch device is capable of due to its rich set of possible
inputs. The multi-user experience can be used in applications related to entertainment,
simulation, business presentation, and many more. The ability to use fiducials that are
attached to real life objects also adds to the user experience allowing users to make both a
tactile and logical connections to a command.

1.3 Objectives and goals

The primary goal of Plank was to remove the need for traditional input such as mouse
and keyboard. We also wished for the table to accommodate multiple users
simultaneously. To do this, a toolset would need to be created that is a combination of
software and hardware components. The table would need to be of sufficient size to have

 Page 3

multiple people using the table simultaneously. Lastly, another piece of software would
need to be created that would showcase the toolset.

1.4 Requirements and Specifications

The specifications and requirements for Plank were created to fulfill the objectives. A
table would be created. The requirements were that it would be at least 40 inches
diagonally to allow for multiple users and be sturdy enough to support the weight of
several users that may be leaning against it. The table will act as both the input device as
well as the display. It was decided that Diffused Surface Illumination would be used.
This required the inclusion of infrared LEDs as well as certain types of acrylic. A full list
of requirements and specifications are as follows:

Specifications

• System will be comprised of Diffused Surface Illumination technology (DSI).

• A special mirrored particle acrylic.

• IR LED’s to illuminate acrylic.

• IR camera to detect ‘blobs’ on the acrylic surface.

• Image display to transmit desktop image to a display below the mirrored particle
acrylic .

• Table to enclose all hardware.

• System should be able to read fiducials .

• The acrylic screen will have an LED spaced at least every inch encompassing the
border.

• Usable system screen size of 40 diagonal inches.

• The border between the screen and acrylic edge shall be no greater than three
inches.

• The enclosure will be tall enough for an average sized user to use standing up.

• The enclosure’s top will resemble that of an touch screen smart-phone.

• The user will have to wait minimally for the system to cold boot.

• Multi-touch surface will have a design resembling that of a smart-phone. This
includes edge-to-edge acrylic and all borders in the color, black.

Requirements

• Computer
o The projector shall display an image onto the projection surface
o The computer shall be fast enough to display the associated object from

the finger touch in less than 10 ms

• Enclosure
o The internal temperature of the enclosure shall not exceed the highest

operating temperature of any of the enclosed devices
o The enclosure must be able to fit through a standard doorway
o The enclosure must be big enough to house all hardware items

 Page 4

o The enclosure and all hardware (the assembled product) must be lighter
than 100 pounds so two people can carry it.

o The enclosure must have a doorway to access all internal parts
o The enclosure shall not be constructed with a height higher than 4 feet.
o The enclosure shall be able to support up to 400lbs of weight.

• Blob/Object Detection Software
o The system shall detect fiducials.
o The software shall detect a finger touch.
o Fiducial recognition and output should have a latency of at most 0.5

seconds
o System shall recognize fiducials 2x2 inches

• Image Recognition System
o The surface touch system shall detect fingers and fiducials in an indoor,

dimly lit environment
o Power
o The power supply must provide enough wattage to power the system

(LED’s, Computer, camera, projector)

• Showcase Application
o Software application shall be able to drag multiple objects simultaneously
o Application must run on a Windows platform
o The application shall run at a HD resolution of 1280x720.

2. General Project Research

Before choosing our project, and as reference material for our project, we researched
other previous projects and consulted others in the community who had previously built
similar tables. Through this research, we discovered new considerations on how to
implement our project, as well as the need for us to create a prototype.

2.1 Past Projects

Many types of multi-touch surfaces have been made by hobbyists and large companies
alike. Below is a few of the projects more relative to project Plank and Group 14. These
projects were created by hobbyists on NUI Group, a PHD candidate, and a prior UCF
senior design team.

2.1.1 NUI Groups Project LOCUS

Toby’s multi-touch gaming table, Locus, was created for designing multi-touch roll
playing games for his personal use. He works at the University of Boston fulltime and is
an active member on NUIgroups forums. Toby has created several tables and
applications. Of special interest, is his newest 42” DSI Gaming Table, and his role-
playing game.

 Page 5

Locus is a 19” tall ‘coffee’ table. There is an upper ridge around the perimeter of the
display that allows for accessories to be attached. These accessories include cup holders,
craft tables, and dice rollers. Locus uses a hybrid Diffused Surface Illumination(DSI)
technology. 850nm IR RibbonFlex are used to illuminate a 43”x24”, 10mm thick, piece
of ACRYLITE Endlighten XXL. The LED ribbons are bought as a whole unit and
require no work by the designer. They are mounted directly to metal L channels, which
are wrapped in aluminum foil to heighten illumination using reflectivity. These channels
are than secured around all edges of the acrylic waveguide. The edges are polished for
effective illumination. They are wired up in array fashion and powered by a 12v power
supply. Locus uses a Hercules Dualpix HD 720p Webcam to detect blobs off the
illuminated acrylic. The IR filter on the camera was removed to allow the camera to
detect IR light. The Dualpix has a resolution of 1280x720 and runs CCV at 50-60 fps. It
is a CMOS camera that uses USB connection and is outfitted with a distortion free wide
angle lens.

The projector chosen is an InFocus XS1 short-throw projector that produces a 4:3 aspect
ratio. The native resolution is 1024x768 and can produce a 60” display from 32” away
with a vertical offset of 3.6”. A sheet of Evonik 7D006 acrylic is used for the rear-
projection material. Toby was originally using the Evonik 7D512 as the rear-projection
material but had issues with detecting fiducials with that particular model. The projector
is mounted horizontally. Its projected image bounces off one ACRYLITE Reflections
0A000 X1 acrylic mirror and onto the rear-projection material. Lastly, a Toshiba M200
laptop, running Windows 7, is chosen to run the application for Locus.

2.1.2 TACTUS

TACTUS is a multi-touch table designed fully by Dr. Paul Varcholik at UCF’s FIA
institution. TACTUS was designed with the goal to run a wide variety of applications,
whereas Project Planck’s table was designed to run one application in mind, the showcase
simulation. TACTUS has its own custom blob detection software written by Dr. Paul
Varcholik. Several applications were run successfully on TACTUS such as InkDemo,
SurfaceSimon, and the TACTUS mouse emulator. InkDemo is an application that
“allows for single-touch, pen-based/writing-style interaction through a multi-touch
surface.” SurfaceSimon is a multi-touch application that emulates the electronic game by
Milton Bradley, Simon. The mouse emulator allows the user to play applications that
regularly require a mouse with finger touches instead. TACTUS is also unique in that it
supports the use of pen interaction with the display.

TACTUS is a 36” tall table with a 6” border around the display to act as an armrest.
TACTUS uses Frustrated Total Internal Reflection (FTIR) technology. 32 Osram 485
LED’s are used to illuminate a 32”x24”, ½” thick piece of acrylic. The Osram LED’s
emit a wavelength of 880nm. They are mounted directly inside 5mm depressions that are
drilled every 1” around the perimeter of the acrylic waveguide. This prevents the need
for polishing the edges of the acrylic. They are wired up in array fashion and powered by
a 12v power supply. TACTUS uses a Microsoft LifeCam VX-6000 to detect blobs off
the illuminated acrylic. The IR filter on the camera was removed to allow the camera to

 Page 6

detect IR light. The LifeCam has a resolution of 1280x1024 at 30fps. It uses a USB
connection.

The projector chosen is a Mitsubishi XD500U-ST short throw projector that produces a
4:3 aspect ratio. The native resolution is 1024x768 and can produce a 60” display from
33” away. A sheet of Rosco Gray, 7mm thick PVC, rear-projection material is chosen to
diffuse the projector’s image. The diffuser is mounted above the waveguide. The
projector is mounted vertically and projects the image directly upon the diffuser without
the use of any mirrors. A compliant surface was constructed from 1mm thick SORTA-
Clear 40. This is a translucent silicone rubber that acts as a coupling material between
the finger and acrylic. This improves the effectiveness of FTIR. Lastly, a MicroATX
computer was used for operating the multi-touch surface software.

The TACTUS software library, Bespoke, is the core of the blob detection software. The
stages of the software are shown below in Figure 1. The first stage is the input of the raw
camera image from the LifeCam. This image is than rotated or flipped to match the
orientation of the projector’s image. Next, the image has the background filtered out.
The background image was constructed while the system was dormant. The present
image subtracting the background image leaves the blobs that should be tracked. The
next stage converts the 24bpp color image to 8bpp grayscale. The threshold stage further
isolates pixel values to black or white. Following the threshold stage is the blob detection
stage. The Blob detection stage is very important in that it actually groups the white
pixels (ON) and classifies them as blobs. There is a filter that ignores any blobs that
don’t meet a minimum size. Next, scaling crops the image to reflect that of the
projector’s resolution. This deletes the border that might be useless because of extreme
illumination. The Calibration stage adjusts to create a perfect point that is reflected on
the projector, camera, and display surface. Finally, Point Tracking transforms this
heavily modified image into an FtirPoint object that has many attributes associated with it.
This is the final blob that will be sent to end-user application. It contains all the
information an application would require such as a unique identifier, timestamp,
bounding box, speed, direction, and duration.

Figure 1 - TACTUS Image Processing Process

TACTUS incorporates the Bespoke 3DUI XNA Framework and the Open Sound Control
Library (OSC) for use in the creation of multi-touch games and simulations.
Games/simulations were created on this platform such as SurfaceCommand, InkDemo,

 Page 7

Waterfall, and a mouse emulator. The application most related to Planck’s application is
SurfaceCommand. SurfaceCommand presents a 3D map that can be explored with a
group of spaceships. It is a proof-of-concept application that shows the effectiveness
multi-touch can have with a multiple object aerial game. The spaceships can be
controlled using multi-touch commands, such as a finger press. The 3D map view can be
zoomed in or out with a ‘pinch’ command or moved using a finger swipe.

2.1.3 Multi-touch Poker Table

The Multi Touch Poker Table (MTPT) is a multi-touch table designed by previous UCF
students. The table’s main purpose is to run a game of Texas Hold ‘em Poker for up to 4
people that incorporates the use of their iPhones into the game. The Poker table also
showcases the possibility of creating a multi-touch table on a limited budget. The MTPT
project uses much of the same design as TACTUS. As such only the details that are of
interest will be outlined below.

Poker Table is a 39” tall table. MTPT uses FTIR technology. MTPT uses the Playstation
3 Eye camera, a very popular webcam on the NUIgroup community. The group of
MTPT designed their own linear power supply to power the LEDS. The power supply
also includes an intensity adjustment circuit using a 555 timer.

MTPTs showcase application, a game of Texas Hold ‘em, was designed to interface with
both the multi-touch table and each player’s iPhone. The two cards the player’s receive
were sent to the iPhone instead of being shown on the table. This was done because of
the complication that would have arisen if the player had to look at his cards from the
table and risk other user’s seeing his hand. Another application that was also designed to
run in parallel with the game of Texas Hold-em is the Restaurant Menu. Restaurant
Menu allows each player to input their food order and pass the menu on the screen from
player to player with a swipe of a finger.

MTPT uses TouchLib as their blob detection software. TouchLib is used to calibrate
their screen and pass the blob objects detected to their Poker Table application. These
blob objects will be used as the source of user input for the application, just like a mouse.
TouchLib refers to the blob object as TouchData. The attributes of TouchData can be
found in Error! Reference source not found. below. MTPT used the QT C++
framework to create their application. Their application was written in C++ using the
Microsoft Visual Studio IDE. PokerSource, a library that includes a set of rules for the
game itself, is written in the programming language C. The MTPT TCP server is written
in Python.

2.2 Prototype

The decision to create a prototype was to gain the knowledge needed to design our own
multi-touch table and software application. Multi-Touch computing, and its software, is
new to the entire group. It is important to fully understand the object detection software

 Page 8

before designing an application that requires its use. It would also serve a second
purpose to be used as a test bed for future pieces of hardware and software. Many of the
components that would be designed and purchased for Plank cannot be independently
tested without additional components or a full functional board. This has the added
benefit of giving us a reference point to compare our design against.

The prototype was designed in a way that many of the components used in it may also be
used in the final design. An example of this would be the very similar acrylic used, as
well as the use of the same method of detecting touches. With a working prototype we
were able to install, load, and use our object detection software to interact with many of
the open-source applications available today. With a more thorough understanding of the
object detection software, we can effectively brainstorm and design our show-case
application.

One of the main concerns with the prototype was to keep the costs down while not
limiting the functionality of the prototype. First, rather than buy a computer to install
into the device, we used one of the group’s laptops to power the device. Second, we
opted not to build a display screen into the design to keep costs down. A simple
alternative is to use a standard external monitor from the multi-touch device or the
monitor of the laptop. The user was not able to visually see where they are going to press
on the screen until they actually conduct the press and it displays on the external monitor.
This is a minor concern in the overall goals of the prototype. Lastly, the construction of
the enclosure was built using medium-density fiberboard (MDF). While the wood
doesn’t have any visual appeal, it is strong enough and durable enough for the enclosure
as well as being some of the cheapest wood you can buy. For example, a 4’x8’, ¾” thick,
sheet of MDF is about $24 compared to a 4’x8’, 3/4” thick, sheet of Hickory at $100.

The enclosure was designed using MDF. Dado cuts were implemented into the design of
the enclosure to allow the sides to lock into each other. This allows for more stability of
the enclosure, eliminates the hassle of gluing 90 degree angles, and ensures the box is
built with the exact measurements intended. The overall dimensions of the box were 27”
x 18” x 21”. The goal was to allow the LED’s and acrylic to be easily removable for
maintenance and storage. There is a removable frame at the top to house the acrylic and
LED’s. A channel was cut in the frame to house the LED’s. The LED’s will be drilled
into very thin pieces of wood that will rest in the channels. These LED frames will sit
snugly up against the acrylic to effectively shine the IR light directly into the acrylic.

A sheet of EndLighten XL material was used as the active layer for the prototype. An
additional piece of abrasion resistant material was purchased to protect this layer. The
camera that was used was donated by a member of the design team. It was a Logitech
Orbit webcam. This camera already utilizes a manufacturer supplied wide angle lens and
contained an infrared block filter that was removed with minimal difficulty. Additionally
a 3.5” floppy disk was used as a low pass filter. Figure 2 shows the completed prototype.

 Page 9

Figure 2 - Fully Built Prototype Enclosure

OSRAM 485P LEDs were used for the prototype. A number of problems were found
when mounting the LEDs. The method of soldering LED leads directly was found to be
very cumbersome and it was found difficult to keep the LEDs evenly spaced and un-
rotated. 70 LEDs were soldered into 10 chains of 7 LEDs, which were then mounted at 1
inch intervals into the previously mentioned frames. It was found that these frames too
drastically reduced the amount of light. Previous projects had utilized different methods
of mounting which may increase the performance. The LOCUS coffee table surrounded
the LED frame in aluminum foil to reflect stray infrared back into the acrylic. The
TACTUS table drilled directly into the acrylic to mount the LEDs.

Even with the LED frame removed, it was found that the amount of illumination form the
acrylic was unsatisfactory. The prototype did function at this point, but it only functioned
in very low ambient light conditions. The image received from the camera was also
unsatisfactory due to it requiring a significant amount of gain and exposure. This may
not be directly a result of the LEDs. Because we have no way of testing parts
individually, it is possible that this may be due to using an unsatisfactory camera or low
pass filter. It may even be possible that the acrylic is preventing the infrared light from
penetrating deep enough. The LED spacing was reduced to .5 inch, and at this level it
was found that the brightness of the LEDs was sufficient enough to use the board in
normal lighting conditions.

A pulse width modulation circuit was also created to drive the LEDs. This circuit was
made from a 555 timer controlled by a potentiometer, and used a bipolar junction
transistor to amplify the modulated signal across the LEDs. This functioned exactly as
expected, but may not be used in Plank’s final design. Because the brightness of the
LEDs was deemed insufficient, and the spacing between the LEDs was reduced, the
design for Plank changed to reflect that. This required that Plank use many more LEDs

 Page 10

and a much higher current. This current may be too high to use a similar transistor, and
other transistors may not produce a high enough gain to drive the LEDs.

Figure 3 - CCV Output from Prototype

Figure 4 - reacTIVision Output from Prototype

3. Touch and Fiducial Recognition Software System

The Touch and Fiducial Recognition Software System takes the input from the IR camera
and processes it to output position, orientation, speed, and identification information
about finger touches (or blobs), as well as markers (or fiducials), on the surface. Figure 5
illustrates this idea.

 Page 11

Figure 5 - Block Diagram of Touch and Fiducial Recognition Software System

At a high level, the system reads input from the camera as a video stream and converts
each frame to a binary video image. It then runs vision algorithms on the image in order
to find blobs. It finds the blob’s position on the image and lists all blobs in a list. The
software also scans the image frame for fiducials which match the patterns we’re
interested in and will be fully described later.

Planck used a vision library in order to process the incoming video and output it to the
showcase program for display on the surface. Five different libraries were considered and
will be discussed further on in this section. They are: CCV 1.5, OpenCV, D-touch,
reacTIVision, and the Bespoke Multi-Touch Framework. Some of these libraries have
native support for all the features we need and others don’t. Some of them support
touch/blob recognition and can determine position of a finger touch. Some of the vision
libraries considered have support for fiducials, so a combination of libraries was
considered in order to achieve the functionality set forth in the requirements and
specifications. Another possible issue that will be addressed is whether we use one
camera source to track objects on the surface or two. Given the size of the screen being
used and the small size of the fiducials specified, the camera being used in Planck must
have enough pixel density to see the fiducials. In the event the screen size is too large for
the camera, stitching two cameras together may be a possibility we explore.

3.1 Fiducials

In their most basic definition, fiducials are markers located on an image that can be
recognized by vision systems to be used in an application. Images containing fiducials
can be used for various activities. Uses range from aligning objects in a photograph,
using several fiducial markers to visually align a robot so that it may properly

 Page 12

manufacture a PCB board on an assembly line, marking objects in a video so that they
may be tracked visually by software, serving as reference points in a scene so that other
objects in the image may be measured against that reference, as well as many medical
imaging uses (Erickson & Jack Jr).

Planck used fiducials in the form of patterns printed on paper that can be recognized by
the vision library we choose. When an object with a fiducial applied underneath is placed
on the surface, the vision library detected it. Each pattern has its own identifying ID
number. Each unique ID number has a specific meaning to the showcase software. An ID
number meant that a certain fiducial has been placed on screen. The showcase software
then was able to output objects corresponding to that fiducial on the surface that interacts
with the user.

The fiducials position, ID, and orientation were able to be acquired from the input video
stream by the vision library chosen. This information was sent to the showcase software
so that it was able to be used to interact with the user. The ability to capture orientation
information from fiducials extends the capabilities of these markers. In current
mainstream multi-touch technology, such as the iPad, the user only has the ability to
move objects on-screen using gestures and pressing buttons with their fingers. Fiducials
provide the opportunity to link specific objects on the screen with certain actions on the
interactive surface. A fiducial may be placed on the surface prompting a specific output
on the screen. The fiducial can then be rotated about itself in order to generate another
meaning specific to that object or to the program. Specific fiducials prompted different
output from Planck commensurate with the shape they are adhered to, creating a user
experience that reaches beyond that of a simple touch interface.

With the proliferation of tablets and touch-screen phones, multi-touch surfaces are
becoming more and more popular. Planck is essentially a very large touch-screen surface
featuring true multi-touch, where true multi-touch is the act of at least two simultaneous
touches. We’re adding to the user experience by using objects, in the form of fiducials.
The use of fiducials in Planck will further extend these trends in usability and make the
user experience more natural and intuitive to use. The markers will be meaningful to both
the operator of Planck as well as the software so that a seamless experience is created for
the user.

Figure 6 has several instances of fiducials. All of these examples retain the core meaning
of a fiducial, which is to transfer information in a coded format digitally. A common kind
of fiducial seen is QR-codes, which are b in Figure 6. The kinds of fiducials used in
Plank are Amoeba fiducials, which are d. CCV and Reactivision software are capable of
recognizing Amoeba fiducials. These were chosen due to their speed of lookup.

 Page 13

Figure 6 - Example of Different Types of Fiducials

(Reprint pending approval)

3.2 Vision Libraries

Five vision libraries were considered to be implemented in Planck. The decision of which
one was picked hinged on several factors. There are many requirements that must be met
when choosing the vision library. First, the library needed to offer at least the minimum
latency in image processing as set in the requirements of project Planck. Second, it
needed to run on the computer that was chosen, and support the camera chosen in the
Image Recognition System. Third, the library needed to be able to work with Diffused
Surface Illumination (DSI) technology. Fourth, the library needed to be reliably stable.
Fifth, the library needed to support fiducials. Sixth, it needed a strong community would
be beneficial if questions needed to be answered. Finally, the vision library needed to be
versatile enough to communicate with the showcase application that was written.

After research, it was noted that all of the libraries under consideration would work with
DSI. With that requirement checked off, the next two requirements that were focused on
were that the library be able to detect both fiducials and finger touches. Some of the
libraries can do both and some of them can do only one exclusively. Picking a library that
does support both Fiducials and touches should have the added simplicity of our
showcase application only having to interface with one less piece of software. While it
isn’t required that the input video library be able to recognize and transmit information
about both fiducials and finger touches, it was weighted more highly if it did offer both.

Community support of the vision library is also part of the equation in picking our vision
library. Two of the group members had exposure to general vision algorithms, but a
knowledgebase regarding the software would simplify the usage of it in the system. Since

 Page 14

getting the touch and fiducial data isn’t the sole aim of Planck, considerable amounts of
time could not be spent on getting just that one subsystem working.

3.2.1 CCV

CCV is a community developed “open source/cross-platform solution for computer
vision and multi-touch sensing” platform (NUI Group Community). CCV was made by
an entity called Natural User Interface (NUI) Group Community. The group’s interests
lie in making open source user interfaces so that new “interaction techniques and
standards can be developed that would benefit developers and designers throughout the
world” (NUI Group Community).

CCV’s website states that CCV can take a “video input stream and output tracking data
(e.g. coordinates and blob size) and events (e.g. finger down, moved and released) that
are used in building NUI aware applications (NUI Group)”. This software library can
interface with many different cameras and can connect with networking communications
protocols such as TUIO/OSC/XML. The library also supports various lighting
technologies, including DSI, among many others.

The system requirements for CCV as listed on their site are a Pentium 4+ (Recommended
Core 2 Duo), 512MB+ RAM (Recommended 1024+), and a web camera for tracking.
The Windows computer running the software must also have QuickTime and Visual
Studios 2008 Redistributable x86 (Natural User Interface Group ~ X1).

Visually, CCV is dependent on having an infrared-lit surface for it to see touches and
fiducials. These include diffused surface illumination, frustrated total internal refraction,
diffused illumination, or Laser Light Plane.

In order to use this system, the software must be downloaded from NUI Group’s
repository. It is then unzipped and placed in a folder. There is an executable file that can
be run. Once this file is run the program starts and the user is prompted to allow the
program to be able to send/receive information through Windows’ firewall. Since the
program can use TUIO/OSC to communicate movement of objects, blobs, and fiducials,
it must have access to send information through the network, even if it’s using the
network in the computer to communicate with another program on the same machine.
Once the software is allowed access to the network or even without, the user is treated to
CCV’s user interface from which many different parameters can be tweaked.

CCV can communicate touch events in 3 different ways. It can use the TUIO protocol via
port number 3333 to communicate these events, Flash XML to transfer the messages, or a
Binary TCP protocol. TUIO is the same protocol used by both ReacTIVision and D-touch
to perform communication. TUIO was created by the team that made ReacTIVision and
was built upon the OSC protocol. OSC was originally created to transfer MIDI data from
musical keyboards and other musical devices that can use the MIDI standard. It’s a
network protocol that stores the data in a packaging scheme and transmits it via

 Page 15

UDP/TCP. There are several data checks in place in the protocol to ensure that the data
delivered does not become corrupted in transport.

Figure 7 - Example of CCV Configuration Screen

This interface allows for the configuration of several different options. First, different
input devices can be selected. Second, various filters can be applied to the incoming
image. Also, the size of blobs/finger touches can be configured. Third, fiducial and object
tracking can be turned on or off. Fourth, robust output can be generated for debugging
purposes. Fifth, the vision software can be calibrated and settings loaded or saved. Lastly,
image flipping horizontally and vertically can be configured, and various other software
settings can be tweaked. The online manual states that we should use the following
settings with this software and a DSI lighting technique:

1. Turn off the smooth and amplify filters.
2. Turn on the high-pass filter.
3. Adjust the high-pass blur and noise sliders until fingers are clear and distinct.
4. If blobs are weak, turn on the amplify filter to brighten them

Next, calibration must be run. Calibration will allow CCV to align touches detected by
the camera in relation to where they are on on-screen. This allows the system to be more
accurate in terms of aligning a touch to the screen from the user and the location in
software that the touch is recognized. The next step of the setup process is to alter
the .xml file that contains CCV’s configuration data about camera “input resolution,
frame rate, communication, video, and blob settings.” The ports used for communication
can be changed in this file. The maximum number of fingers to be tracked can also be set
in this file. Once these configurations are completed, the manual suggests user run
through a series of flash demos to test the communication (Natural User Interface Group
~ X1).

 Page 16

In the sparse documentation found for CCV regarding fiducials, it states that the tracking
of Fiducials has been a supported capability since version 1.4. As of the writing of this
paper, version 1.5 has been released with “optimized fiducial tracking (NUIGroup).”
There are a number of forums that state that their tracking isn’t as optimized as the
reacTIVision library. Very terse testing was performed with a simple camera and no DSI
surface and it was found that fiducial tracking of reacTIVision fiducials (printed on a
sheet of paper) were detected by the system. It was noted in one of the forums regarding
CCV, that fiducials should be printed with a laser printer as the ink doesn’t reflect IR
light. The terse testing on the camera showed that fiducials were being tracked on screen
and their orientation was being detected.

3.2.2 reacTIVision

reacTIVision is an open source, multi-platform computer vision framework that was
created for the fast and accurate capturing of fiducial markers and multi-touch finger
tracking. It was developed at the University of Pompeu Fabra in Barcelona, Spain. Its
primary purpose is to assist in the rapid prototyping of the music creation table,
ReacTable. It serves as the primary sensor in this table.

No specific information regarding the computer requirements could be found on
reacTIVision’s website. ReacTable’s website contains requirements for the table. Since
the performance needed out of Planck is similar to that of the ReacTable, these system
specs should suffice for the purposes of project Planck. They are: Intel processor 2GHz
or higher; 1GB free HD space; and 1 free USB 2.0 port.

Similar to CCV, the system requires an infrared-lit surface for the software to be able to
get input from. Such include diffused surface illumination, frustrated total internal
refraction, diffused illumination, or laser light plane. The software can be configured
using a file entitled “reacTIVision.xml” under the windows environment. A different
name is given to the file in a Macintosh environment.

The fiducials used in reacTIVision were their own field of study. The creation of these
was based on the work by Costanza and Robison. They created the D-touch library which
included a set of fiducials that could be optically recognized using common vision
algorithms. The creators of reacTIVision wanted to create a faster fiducial recognition
scheme in order to incorporate it in their music table, reacTable. This requirement led
them to consider new ways of tracking fiducials on infrared touch tables.

The team set about creating a new set of fiducials using genetic algorithms by altering the
angles between concentric circles. They used graph techniques just as the D-touch library
had incorporated, except their look-up dictionary could outperform the current D-touch
library since they had created their own shapes using a genetic algorithm. Faster fiducial
performance led to the required recognition speed. As stated in the setup section,
reactTIVision has the ability to read both the library of fiducials created for D-touch as
well as the fiducials optimized for speed created for reacTIVision.

Figure 8 - Examples of reacTIVision Fiducials

Reactivision sends touch events through port 3333 and uses the TUIO protocol, created
specifically for Reactivision, to send the touch events.
Reactivision and the ReacTable. Reactivision completely uses all of the parameters T
can contain. Other libraries may not capitalize completely on all of the robust features
TUIO can handle since they were not designed with the use of TUIO specifically in mind.

3.2.3 D-touch

The D-touch visual marker recognition library, or libdtouch
recognition library that enables the construction of applications that can detect fiducials
from a video stream. Any shape can be made into a fiducial. It just has to follow certain
parameters necessary to the program in order to
Orientation and position information is calculated relative to a grid that is placed in the
background of the fiducial markers placed on

D-touch is the name of an umbrella project that encompasses libdtouch; the library that
can read fiducials. D-touch server, DTServer, is a standalone application that uses the
libdtouch library to read fiducials and delivers the results through an output socket. Audio
d-touch and a mobile version of d
to be used in any type of camera system. It is not specific to infrared lit
such as project Planck. It can be used with a regular camera on a table top with am
lighting so long as the software can see the fiducials placed on

There are two ways of using the fiducial recognition abilities of d
be used, or the source code can be
user. The source code is available for download upon contacting the authors.

The system requirements for the use of DTServer require that the computer on which
DTServer is run have a web camera and that it h
operating system. On the receiving end, the software written to listen to the library must
be able to listen to socket ports in order to receive data from DTServer.

Examples of reacTIVision Fiducials (Reprint pending approval)

Reactivision sends touch events through port 3333 and uses the TUIO protocol, created
specifically for Reactivision, to send the touch events. TUIO was created for use in
Reactivision and the ReacTable. Reactivision completely uses all of the parameters T
can contain. Other libraries may not capitalize completely on all of the robust features
TUIO can handle since they were not designed with the use of TUIO specifically in mind.

touch visual marker recognition library, or libdtouch, is an open source marker
recognition library that enables the construction of applications that can detect fiducials
from a video stream. Any shape can be made into a fiducial. It just has to follow certain
parameters necessary to the program in order to be recognized by the software.
Orientation and position information is calculated relative to a grid that is placed in the
background of the fiducial markers placed on-screen. (Costanza, Home Page, 2011)

f an umbrella project that encompasses libdtouch; the library that
touch server, DTServer, is a standalone application that uses the

libdtouch library to read fiducials and delivers the results through an output socket. Audio
and a mobile version of d-touch are also part of the project. D-touch was created

to be used in any type of camera system. It is not specific to infrared lit
such as project Planck. It can be used with a regular camera on a table top with am
lighting so long as the software can see the fiducials placed on-screen.

There are two ways of using the fiducial recognition abilities of d-touch. DTServer can
be used, or the source code can be imported directly into a C++ program

. The source code is available for download upon contacting the authors.

The system requirements for the use of DTServer require that the computer on which
DTServer is run have a web camera and that it have either Macintosh or Windows

n the receiving end, the software written to listen to the library must
be able to listen to socket ports in order to receive data from DTServer.

Page 17

(Reprint pending approval)

Reactivision sends touch events through port 3333 and uses the TUIO protocol, created
TUIO was created for use in

Reactivision and the ReacTable. Reactivision completely uses all of the parameters TUIO
can contain. Other libraries may not capitalize completely on all of the robust features
TUIO can handle since they were not designed with the use of TUIO specifically in mind.

, is an open source marker
recognition library that enables the construction of applications that can detect fiducials
from a video stream. Any shape can be made into a fiducial. It just has to follow certain

be recognized by the software.
Orientation and position information is calculated relative to a grid that is placed in the

(Costanza, Home Page, 2011)

f an umbrella project that encompasses libdtouch; the library that
touch server, DTServer, is a standalone application that uses the

libdtouch library to read fiducials and delivers the results through an output socket. Audio
touch was created

to be used in any type of camera system. It is not specific to infrared lit-type surfaces,
such as project Planck. It can be used with a regular camera on a table top with ample

touch. DTServer can
directly into a C++ program written by the

. The source code is available for download upon contacting the authors.

The system requirements for the use of DTServer require that the computer on which
ave either Macintosh or Windows

n the receiving end, the software written to listen to the library must

 Page 18

DTServer refers to a file of marker ID’s called “seq.txt”. This file contains the objects
that can be tracked by the software. The order of their appearance in the file determines
the ID number that is returned by the software defining the object. The first marker listed
in the seq.txt file is used as a calibration marker. Four of these markers are expected to be
found on the four corners of the usable area. The position of all other markers will be
calculated relative to these four first markers.

D-touch was created for the specific purpose of recognizing shapes and interacting with
those. As such, its fiducial support is very comprehensive. The most distinctive feature of
d-touch is that the markers can be shapes and figures that are meaningful to humans as
well as the computer. The other fiducial recognition systems featured in this paper all
contain symbols that aren’t immediately meaningful to humans as can be seen in the
figures below. D-touch allows for people to generate markers freehand whereas the other
methods generate their markers algorithmically. Some examples of D-touch fiducials are
included in Figure 9.

Figure 9 - Examples of D-Touch Fiducials (Reprint pending approval)

In order to create fiducials in d-touch, some simple rules must be observed:
1. A valid marker can be composed of a black region containing 3 or more white

regions
2. At least half of these white regions must contain one or more black regions

(Costanza, Home Page, 2011)
Since d-touch allows the creation of markers that can be meaningful to humans, different
types of markers can be readily understood by users for different functions on their first
use of the system. This can be quite handy when there are several inputs being perceived
on one surface. Markers that belong to an individual or markers that carry a certain type
of function can quickly be deciphered by novice users when the markers themselves
resemble their function.

D-touch fiducials are recognized using topological features, not the ge
object: “Marker recognition is not based on shape, but on the relationship of dark and
light regions (Costanza & Huang, Designing Visual Markers, 2009)
allows the time spent recognizing markers to remain constant so performance doesn’t
suffer the more markers are placed on the input video stream. The markers are decoded
and stored into region adjacency trees. First the image is converted
white. From there, all adjacent pixels in an image are considered one region. The
adjoining regions within these joined regions also get the same treatment and are
considered their own region. The process continues on into the further e
not to exceed 3, until done. This process allows for any marker to be stored as a tree of
adjacent regions.

The process of looking for fiducials at this point in the algorithm has been reduced to
searching for trees that represent the ma
isomorphism” and can be solved in O(n×m1.5/log(m))
nodes in the target tree and n the number of nodes in the scene tree
Designing Visual Markers, 2009)
with the image it is comprised of. Region A contains regions e, f, and b. Region b
contains regions c and d.

Figure 10 - D-touch Process for Determining F

Communication in libdtouch happens through a socket server. Any program that can
handle sockets can implement a way of reading information from Libdtouch. On the d
touch.org website there are several examples in several
of reading information from the library. Any one of these can be used as a basis for how
the showcase application

3.2.4 Bespoke Multi-touch Framework

The Bespoke multi-touch framework
in C# that is available for use. Bespoke was created by Dr. Paul Varcholik, a faculty
member at Florida Interactive Entertainment Academy (FIEA). He created it for work on

touch fiducials are recognized using topological features, not the ge
object: “Marker recognition is not based on shape, but on the relationship of dark and

(Costanza & Huang, Designing Visual Markers, 2009).” This approach
allows the time spent recognizing markers to remain constant so performance doesn’t
suffer the more markers are placed on the input video stream. The markers are decoded
and stored into region adjacency trees. First the image is converted to binary black and
white. From there, all adjacent pixels in an image are considered one region. The
adjoining regions within these joined regions also get the same treatment and are
considered their own region. The process continues on into the further embedded regions,
not to exceed 3, until done. This process allows for any marker to be stored as a tree of

The process of looking for fiducials at this point in the algorithm has been reduced to
searching for trees that represent the marker. This type of problem is called “subtree
isomorphism” and can be solved in O(n×m1.5/log(m))-time, “where m is the number of
nodes in the target tree and n the number of nodes in the scene tree (Costanza & Huang,

l Markers, 2009).” The image below contains the adjacency tree along
with the image it is comprised of. Region A contains regions e, f, and b. Region b

touch Process for Determining Fiducials (Reprint pending approval)

Communication in libdtouch happens through a socket server. Any program that can
handle sockets can implement a way of reading information from Libdtouch. On the d
touch.org website there are several examples in several languages that implement a way
of reading information from the library. Any one of these can be used as a basis for how
the showcase application can receive information from Libdtouch.

touch Framework

touch framework is another multi-touch software framework written
in C# that is available for use. Bespoke was created by Dr. Paul Varcholik, a faculty
member at Florida Interactive Entertainment Academy (FIEA). He created it for work on

Page 19

touch fiducials are recognized using topological features, not the geometry of the
object: “Marker recognition is not based on shape, but on the relationship of dark and

.” This approach
allows the time spent recognizing markers to remain constant so performance doesn’t
suffer the more markers are placed on the input video stream. The markers are decoded

to binary black and
white. From there, all adjacent pixels in an image are considered one region. The
adjoining regions within these joined regions also get the same treatment and are

mbedded regions,
not to exceed 3, until done. This process allows for any marker to be stored as a tree of

The process of looking for fiducials at this point in the algorithm has been reduced to
rker. This type of problem is called “subtree

time, “where m is the number of
(Costanza & Huang,

.” The image below contains the adjacency tree along
with the image it is comprised of. Region A contains regions e, f, and b. Region b

(Reprint pending approval)

Communication in libdtouch happens through a socket server. Any program that can
handle sockets can implement a way of reading information from Libdtouch. On the d-

languages that implement a way
of reading information from the library. Any one of these can be used as a basis for how

touch software framework written
in C# that is available for use. Bespoke was created by Dr. Paul Varcholik, a faculty
member at Florida Interactive Entertainment Academy (FIEA). He created it for work on

 Page 20

his doctoral thesis entitled, ‘Multi-Touch for General-Purpose Computing: An
Examination of Text Entry’. Dr. Varcholik has built several multi-touch surfaces and has
written many applications for them. Bespoke is BSD licensed, open-source and
compatible with a wide range of multi-touch hardware including FTIR, DSI, and DI. A
number of applications written by Dr. Varcholik come equipped with the Bespoke
framework, such as a Windows mouse emulator and a 2D Ink/symbol recognition.
Finally, an independent presentation layer and OSC network support for communication
using unicast, multi-cast, and broadcast UDP/IP come packaged with Bespoke.

Bespoke has no formal requirements for minimum hardware to be used in conjunction
with the framework. Dr. Varcholik used a small-footprint MicroATX computer for
operating his multi-touch surface, TACTUS. Bespoke requires the installation of .NET
2.0 Framework prior to use. Visual Studio 2005 or 2008 is also required to compile the
software. Finally, XNA Game Studio 2.0 is required to utilize the XNA presentation
layer.

The Bespoke Multi-Touch Framework can be downloaded from Dr. Varcholik’s
Software Development repository. This is an executable file that will prompt the user to
input the location for the framework to be installed. Upon completion of the installation,
the user is recommended to run the 4-point calibration. The calibration will allow
Bespoke to align the surface, camera, and projector so blobs detected are in correct
relation to where they are on screen. After calibration, the multi-touch running Bespoke
is ready for use. The user can choose to view the source code or run the applications
using Visual Studio. The user can also run the applications mentioned earlier from an
executable file that is located in the install folder of the Bespoke framework.

ReacTIVision wrote the protocol, TUIO, that sits on-top of Open Sound Control (OSC).
Dr. Varcholik wrote his own TUIO-like protocol for transmitting the Touch objects. The
multi-touch Network Gateway uses a C# Open Sound Control implementation to
efficiently transmit multi-touch points. This is the same method that the multi-touch
framework, libdtouch, uses. Dr. Varcholik includes a XML configuration file that allows
for customization of several options. These options are the port, IP address, and a choice
between unicast or multicast.

The gateway’s application-level protocol transmits two types of messages, Point
messages and Alive messages. Point messages relay the values associated with a single
multi-touch interaction point. Alive messages contain the ID’s of the set of active points.
‘Point’ messages are sent packed in the OSC bundle but ‘Alive’ messages are sent over a
period of time and require no interaction from the surface. The details of the messages
are shown in Figure 11 below. In the left table, the size (bytes) of both messages is
shown. In the right table, we can see the information that the ‘Point’ message contains
for each touch object.

The underlying protocol that the Network Gateway uses is UDP. Because of this, packets
may arrive out of order and others may get lost. To deal with this issue, the protocol
checks the time-stamp within the Point message.

 Page 21

Figure 11 - Message Format of Bespoke Communication Layer (Reprint with permission from Paul

Varcholik)

3.2.5 Conclusion

All of the libraries discussed prior can be used in Planck. Some of them such as
reacTIVision and CCV 1.5 come with fiducial support built in. D-touch only serves as a
fiducial tracking library so it was not one of the optimal choices considered in this project.
The Bespoke Multi-Touch Framework also does not support fiducials. In order to use it, a
fiducial framework would have needed to be incorporated into the source code or a vision
library that focuses solely on fiducials would need to be run simultaneously. There are
software programs that allow for a camera resource to be used by these types of programs
simultaneously in windows. This option would have added unnecessary overhead to the
system and would have been inefficient given the substantial amount of processing
Planck will be doing in order to capture touch events and gestures. The NUI user group
stated that the fiducial tracking algorithm of reacTIVision had very recently been ported
directly into version 1.5 of CCV. This user forum also serves as a place where the authors
of the open source CCV can announce their latest releases and news.

CCV contains a myriad of settings and configurations that can be changed. The filters
included in the software, and the multitudes of software adjustments that can be made,
make it a strong candidate to be the vision library chosen. ReacTIVision tracks fiducials
very well. In fact, it was built specifically to track fiducials. Finger tracking was
implemented in hindsight. Since our system incorporates fiducials and is mostly
controlled by fingers touches we need a vision library that can do both of these things.

This research concluded that CCV was the most applicable vision library to use in project
Planck. It offered very versatile filters that will work with Diffused Surface Illumination
technology. It offered input from any webcam that can be used with windows. It also

 Page 22

offered the ability to track fiducials using reacTIVision’s fiducial tracking code and their
physical fiducial objects. It offered quick and easy configuration and calibration on the
surface of Planck. Finally, it offered a large support community with vast experience
making multi-touch surfaces that can be consulted in the event of a major issue.

3.3 Communication

Once the vision library detects touches and fiducials, it must communicate this
information to the showcase software. Research had shown that most vision libraries use
the TUIO specification to transfer the information detected to external pieces of software.
“TUIO is an open framework that defines a common protocol and API for tangible multi-
touch surfaces.” (Kaltenbrunner) The standard defines how touch events and objects
placed on the surface are encoded so they can be sent as control data to the client
application. The client application would then be responsible for decoding this
information and using it. The TUIO.org website has a number of enabled tracker
applications as well as client libraries that can be used in many programming
environments. Example client programs can also be found in the Reactivision library
documentation website.

TUIO came about as part of the creation of the ReacTable synthesizer, an optical fiducial
tracking table that could be used to create music. This table is also responsible for the
creation of the Reactivision library which will be discussed more in depth later. TUIO is
based on Open Sound Control, a network communications protocol originally designed
for communications between computers and midi instruments.

TUIO tracks three types of objects. The first, fiducials, can be uniquely identified and
their position and orientation can be determined on the surface. The second type of object
is finger touches. These do not get specific orientation data. The third type of object is
any untagged object on the surface whose shape is tracked by an ellipse with a bounding
box so that orientation and area information may be calculated. As stated earlier, TUIO is
encoded using OSC so that the information may be transmitted more efficiently. TUIO
can be used with any UDP implementation and sends packets on the default port, 3333.
As of TUIO 1.1, TUIO can also be transmitted through TCP and FLC (Flash Local
Connection) in order to support communication with Adobe Flash applications. UDP
implementation is the default to keep the latency of communications down.

TUIO contains two different types of messages: SET and ALIVE. SET messages transmit
information about an object’s position and orientation. ALIVE messages state which
objects currently reside on the surface. In order to distinguish one segment in time on the
surface from another, a time stamp is also delivered with each set of SET and ALIVE
messages. This is called the FSEQ message. In the event multiple sources are being used
with one client, a SOURCE message can also be sent to identify one TUIO source from
another. In order to mitigate packet loss in this communication scheme, redundancy
optimizations have been built. This ensures the system is still reliable. Since TUIO
doesn’t send a message when objects are added or removed, the client side application is
responsible for tracking this.

 Page 23

A typical TUIO bundle will consist of the optional source message, an initial ALIVE
message, a number of SET messages indicative of all objects on the surface, and lastly an
FSEQ message that contains the ID number of the frame we’re on. Every object on the
surface has a unique identifying number called a Session ID that it keeps until it is
removed from the surface. This allows for the ability to track many fiducials with the
same symbol ID. Any new blob or cursor that appears on-screen also gets its own unique
ID.

Different attributes are tracked for different objects placed on the surface. These include
X and Y coordinates as well as vectors for velocity. Fiducial objects contain additional
information such as their object id, angle, and rotation values.

The attributes are normalized for each axis and are represented by floating point numbers.
The TUIO tracker implementation takes the sensor data and divides by the sensor
dimension. Position values are expressed as follows:

Velocity is measured by calculating the movement over a distance in one axis in one
second of time. Normalization also occurs in in these values. The box below contains a
sample calculation:

Rotation velocity is measured by calculating how many rotations have occurred in a time-
span of one second. A rotation velocity of (1.0) would mean that one rotation happened
in one second. Rotation values are also normalized and the change in angle is calculated
by subtracting the current angle of the object from the angle held previously by the object
divided by the time difference between the two samples. The rotation acceleration, r, is
calculated by taking this change in angle and dividing it by the change in time between
the two frames.

3.4 Touch and Fiducial Recognition Software System

The recognition software was responsible for receiving input from the vision library,
interpreting the input as one of the specific gestures we’re looking for, packaging them
into the objects that we need for our showcase program, and then packaging these objects
into a shared data structure that the Showcase Application System will peek into to find
the current list of touches and fiducials.

x = sensor_x / sensor_width
y = sensor_y / sensor_height

X = (sensor_dx / sensor_width) / dt

Y = (sensor_dy / sensor_height) / dt

m = (speed - last_speed) / dt

(Equation 1)

(Equation 2)

 Page 24

There are two ways of implementing the recognition software. The first way involves
using a network port as a communications tunnel to feed the information to the showcase
software. The other approach was to use a shared data structure and the recognition
module embedded inside the showcase software as a thread. It was chosen to use a
shared data structure, with the recognition module embedded.

The first way of implementing the recognition software would be to have the recognition
software running separately and then sharing its touch and fiducial data through a
network socket. Some issues arise from the network socket configuration. A protocol
would have needed to be used in order for the showcase application and the recognition
software to communicate via a network. In this type of system the recognition software
would have a socket listener that would be receiving input information from the vision
library via TUIO. Once the touches and fiducials are recognized and packaged, the
recognition software would need to use a socket on a port different than the one used to
receive the input data to package the touch and fiducial information using a protocol,
potentially TUIO as well, and use the new socket as a server to send this information to
the showcase application. Our own protocol could also be developed if we found that
TUIO didn’t work for our intended application. To summarize, the recognition software
would need to act as a client to the vision library, run it’s algorithms to make the gestures
with this data, package this data into a protocol built for network communication, and
then use a socket server from within to send this data to the showcase application. The
showcase software would need to have a socket listener that would receive these
communications.

There are some advantages and disadvantages to this approach. The advantages are that
the recognition software wouldn’t need to be built in the same language as the showcase
software. Since the recognition software uses a standardized protocol to send the
information, both applications speak the same language. The main disadvantage with this
approach is that the recognition software needs to have a server built into it. Not only
will it act as a client to the vision library, it will also serve content to the showcase
software via a network. This would have generated an unnecessary middle man in our
infrastructure that could be avoided by creating the program within the showcase
software and simply sharing a data structure. The added complexity of having to write a
server service within the gesture library also adds an additional level of complexity that
can be mitigated by not creating the recognition software in this way. The recognition
software would be in charge of three things: 1-receive TUIO information via a network
socket, 2-recognize and package the touch and fiducial information into a protocol ready
to send to the showcase software, 3-establish a network connection with the showcase
software and send the data over the shared socket. As more touch inputs are received
from the input vision library, they are parsed and sent through the network in real time.

The entire process of receiving input from the surface, parsing it into gestures, and then
displaying the output to the screen needed to happen within a latency of at most 0.5
seconds. The smaller the latency the more enjoyable the user experience would have
been. In this scenario the gesture recognizer would be communicating with the showcase

 Page 25

software via a network. The additional overhead of creating a server and having to
transmit this data via a network may induce latency. This should be avoided at all costs.

The alternative approach to creating the software independently and using a network
socket to communicate was to create the recognition software within the showcase
application as a threaded class. This simplifies the design process since the only
networking aspects involved in this approach would be to instantiate a client socket to
read the information received via TUIO from the vision library. The process of parsing
the input to find and create gestures still needs to happen. Instead of packaging the newly
found gestures into a network protocol so that it can be sent through the network socket,
the gestures are placed into a shared data structure such as a linked list. The showcase
software can then ‘peek’ into the shared data structure and begin reading the gestures
directly. As input information is received from the vision library, the gestures are
recognized algorithmically and are added to the shared data structure for reading. Every
gesture will have a timestamp associated with it as part of the identifier used by the
showcase software. The gesture recognizer needs to be able to receive input from the
vision library with very little latency. In fact, this piece of software needs to be able to
receive input from the vision library all the time. The showcase software also needs to be
able to draw to the screen on the time. The only way to achieve both programs running
concurrently, particularly with the gesture recognizer being nested within the showcase
software, is to write the gesture recognizer as a threaded class of the showcase software.
Such a design ensures concurrency of the two applications. At the application layer, the
operating system will handle the multithreaded aspects of both programs and will handle
any collisions that may arise. One of the major disadvantages associated with including
the gesture recognizer within the showcase program is that it must be written in the same
language as the showcase software. This language needs to support the ability to
communicate over a network and the ability to use threads. C# is planned to be the
language we will be writing the showcase software in. No members of the group have
worked specifically with C#, but since it’s an object oriented language and all of the team
members are well versed in Java it shouldn’t be difficult to pick it up quickly. C# also
has the ability to run threads and the ability to communicate over networks. Also, there
are some example implementations of the TUIO protocol in C# that can be used as a
good starting point when writing the gesture recognizer/vision library client.

In summary, there are benefits and drawbacks to designing the gesture recognizer within
the showcase application versus designing the gesture recognizer outside of the showcase
application. While they are both viable options, designing the gesture recognizer within
the showcase application will be the choice of implementation. This is because of the
reduced latency on system communication and the simplification of communication
between the two pieces of software, as there is no need to write a network protocol to
communicate with the showcase application.

 Page 26

3.3.1 Top Level Program Flow

The gesture recognition software received TUIO messages. Each object on the screen
was represented with its own unique ID number. Each fiducial also had a unique ID
number. This list of on-screen objects was received through a socket and read first by the
gesture recognition system. The list of received objects was stored in the program
temporarily. When an object first came into the gesture recognition system, it was
checked against all the current elements in the shared structure to see if they already exist.
If it does exist, the object was updated with whatever the newly received information is.
If the object was not in the list, a new container for it was created and the object entered a
function that will determine if it is a touch or a fiducial. If the function determines that
the object was a fiducial, the fiducial ID’s are determined, and the object and its
corresponding information were packaged to be placed in the shared data structure. If the
object was not a fiducial, then it must be a touch. Once all of the new touches have been
saved into the gesture data structure, the socket was checked once more for new data
from the vision library and the process begins again. When an object was removed from
the surface it was searched for in the list of gestures and was removed.

Figure 12 - Top Level Program Flow

3.4.2 Reading from TUIO

Messages were received from CCV 1.5 vision library over TUIO. These were read in by
the gesture recognizer program using a TUIOListener class. Messages were received by
the gesture recognition program whenever objects on the surface were added, removed,
or moved. Messages were sent to any program that is registered with the TuioListener

 Page 27

interface. This interface was provided as part of the many examples in the TUIO and
Reactivision website. TUIO can convey information about fiducials (TUIO refers to
these as objects) and touches (or cursors, as the protocol calls them). Each of these types
of objects has the events discussed attached. The events are listed in Table 1.

Table 1

Message Name Purpose

addTuioObject(TuioObject tobj) this is called when an object becomes visible

removeTuioObject(TuioObject tobj) an object was removed from the table

updateTuioObject(TuioObject tobj) an object was moved on the table surface

addTuioCursor(TuioCursor tcur) this is called when a new cursor is detected

removeTuioCursor(TuioCursor tcur) a cursor was removed from the table

updateTuioCursor(TuioCursor tcur) a cursor was moving on the table surface

In addition to these messages TUIO also sent a message entitled “refresh”. The purpose
of this message was to indicate the end of a packet of information from TUIO. In our
application it served as the end of one frame received from the screen. Once this
message is received, the gesture recognizer can surmise that the next input received
corresponds to a new session of touches on-screen. Every time an object was seen on the
screen, messages were received into the gesture recognition application and these objects
could be queried based on their type for the information we need about the gesture. The
two types of objects that TUIO sent inside the touch events are objects and cursors. Table
2 shows the fields associated with a fiducial object (Kaltenbrunner).

The TuioPoint class is extended by the TuioCursor and TuioObject classes. Both of these
serve as a container for the TUIO positions. TuioPoint is also comprised of a timestamp
to indicate the last time this object was updated since the session start, the time this object
first appeared on the screen since the session start and its x and y coordinates.

The TuioTime class that is referenced in currentTime and startTime is a structure made to
keep track of how much time has elapsed since the beginning of a session. The time is
initially set by the instantiation of the TuioClient class and can be retrieved anytime
thereafter.

 Page 28

Table 2

Class TuioCursor

Variable Name Variable Type Variable Description

Cursor id Protected int
The individual cursor ID number that

is assigned to each TuioCursor.

Motion accel Protected float The motion acceleration value

Motion speed Protected float The motion speed value

Path

Protected

vector

<TuioPoint>

A Vector of TuioPoints containing all

the previous positions of the TUIO

component.

Session id Protected long

The unique session ID number that is

assigned to each TUIO object or

cursor.

State Protected int
Reflects the current state of the

TuioComponent

TUIO

ACCELERATING
Static int Defines the ACCELERATING state

TUIO ADDED Static int Defines the ADDED state

TUIO

DECELERATING
Static int Defines the DECELERATING state

TUIO REMOVED Static int Defines the REMOVED state

TUIO

ROTATING
Static int Defines the ROTATING state

TUIO STOPPED Static int Defines the STOPPED state

X speed Protected float The X-axis velocity value

Y speed Protected float The Y-axis velocity value

As each touch was received from TUIO it was added to a linked list array that contains
all of the touch objects. In the event a fiducial was received on the surface, the object
added to the linked list was the object type defined earlier. Since each fiducial object had
a unique symbol ID, each fiducial was able to be differentiated from another.
Additionally, each cursor and fiducial object had a unique session ID. In the event more
than one instance of the same fiducial was found on-screen, the session ID could be used
to distinguish the two. The fiducial, once added to the linked list, could be updated as
needed based on the information received from the vision library through TUIO.

A few other methods that came with the TUIO standard involve the ability to write the
gesture recognizer so that it could poll the vision library for new touches or fiducials.
There were four methods provided by the creators of TUIO for these purposes. They
were getTuioObjects(), getTuioCursors, getTuioObject(long s_id), and

 Page 29

getTuioCursor(long s_id). A table summarizing their attributes can be found below in
Table 3. The first two methods return a list of all active objects and touches on the screen.
The latter two return specific attributes of each object referenced using the session ID
(s_id). In this paradigm the program isn’t event driven and is instead driven by how fast
the software polls the vision library to update the information on-screen.

Table 3

Method Name Input Type Return Type Method Purpose

getTuioObjects() None Vector

returns a Vector of

all currently present

TuioObjects

getTuioCursors() None Vector

returns a Vector of

all currently present

TuioCursors

getTuioObject(long

s_id)

Long | number

specifying

object we want

info about

TuioObject

or NULL

Returns a

TuioObject or NULL

depending on its

presence

getTuioCursor(long

s_id)

Long | number

specifying

cursor we want

info about

TuioCursor

or NULL

Returns a

TuioCursor or NULL

depending on its

presence

3.4.3 Implementation

The TFRSS software was implemented as a thread of the main showcase software. This
class was called “GestureTracker”. In order for it to listen to the vision library and TUIO,
it implemented an instance of TuioClient. It also implemented the TuioListener class. A
code snippet found below from the TUIO documentation is included to illustrate how the
GestureTracker class instantiates the TuioListener, and how an object of the TuioClient
class is handed the GestureTracker class so that it can respond to the events handed to it
by TUIO. The code snippet below creates an instance of the GestureTracker called
application. A new TuioClient is created and is set to begin listening on the default port
(3333). In the third line, a new client, the GestureTracker object “application”, is added
to the list of listeners associated with the “client”. In the final line, the client’s connect
method is executed which starts the TuioTime and allows the client application to
connect and start listening to the vision library.

Planck used two C# ‘List’ objects that respectively hold cursors and fiducials from CCV.
They were cursorList and fiducialList. The lists were private objects that were peeked
into by the showcase application. They were accessed by two public getter methods that
create duplicate objects of the lists and return those to the calling function. It returned a

 Page 30

duplicate of the list so that atomicity of the shared data structure was not violated.
During the creation of the duplicate lists, the original lists were locked for writing,
updating, and deletion of a touch or fiducial object by using a lock object. Any of the
touch or fiducial update methods could override this lock to perform its desired function.
The lock took care of ensuring no data was lost or overwritten so that the showcase
software would not crash by implementing multiple read and exclusive writing access.
The type of lock implemented in our software was a C# ReaderWriterLockSlim object.

Gestures in the showcase application were handled by linking individual touches to
individual graphics objects using the individual ID number of each touch. The field of
view (to be more clearly defined later on in this paper) on the soldier could only be
altered if the soldier had been selected by a touch previously. This inherently means that
two touches were necessary in order to activate changes in the field of view. In order to
implement this gesture, one touch was linked to the soldier object and another was linked
to the field of view object. The field of view object could only be selected by a touch
once another touch had first selected the individual soldier in question. Using this linking
paradigm allowed multiple touches to be linked to multiple objects on screen and
ownership of objects on the screen based on touches was preserved. This in turn
preserved our multi-user directive. An image two soldiers with blue field of views can be
seen directly below.

Lassos were created on-screen whenever a touch is detected on the surface that wasn’t
located above any graphical object. Lassos were drawn as rectangles that extend from
the touch’s original position to the current location of the touch. Figure 14 shows a lasso
object selecting many four circle soldier objects.

Figure 13 – Field of view example

4. Showcase Program

The showcase program was
table was capable of. To show off this innovative interface a human
simulator could offer an interesting environment to implement multi
battlefield simulator was
fall under the real time strategy
user controlled actions using traditional mouse and keyboard inputs which make it a
desirable test bed for a multi
volume of actions to be performed quickly in order for the user to accomplish their
objectives; this demonstrate
applications. In addition to simply using touch instead of a traditional mouse input
keyboard commands and shortcuts
imprinted on the underside. I
relevance to what was happening in the application, making it easier to memorize what
object performs what function rather than memorizing a key whose alpha numeric
character loosely defines the function.

Showcase Program

The showcase program was needed to demonstrate the user interface that the multi
capable of. To show off this innovative interface a human

offer an interesting environment to implement multi-touch inputs.
 similar to many existing pieces of entertainment software which

l under the real time strategy genre. This type of application is highly dependent on
user controlled actions using traditional mouse and keyboard inputs which make it a

t bed for a multi-touch system. This type of software also requires
volume of actions to be performed quickly in order for the user to accomplish their
objectives; this demonstrated that multi-touch surfaces could be used in time sensitive

ons. In addition to simply using touch instead of a traditional mouse input
keyboard commands and shortcuts were replaced by real life objects with fiducials
imprinted on the underside. In this way real life objects could be selected based on their

happening in the application, making it easier to memorize what
object performs what function rather than memorizing a key whose alpha numeric
character loosely defines the function.

Figure 14 – Lasso object example

Page 31

ce that the multi-touch
 controlled battle

touch inputs. This
similar to many existing pieces of entertainment software which

genre. This type of application is highly dependent on
user controlled actions using traditional mouse and keyboard inputs which make it a

s type of software also requires a high
volume of actions to be performed quickly in order for the user to accomplish their

be used in time sensitive
ons. In addition to simply using touch instead of a traditional mouse input, the

al life objects with fiducials
be selected based on their

happening in the application, making it easier to memorize what
object performs what function rather than memorizing a key whose alpha numeric

 Page 32

4.1 Multi-touch User Interface

The types of applications described above have a plethora of commands needed to
successfully accomplish the objectives in the scenario that is presented to the user. A
good example would be Starcraft, which, in addition to mouse clicks that select and move
units and buildings, incorporates two menus for constructing units and structures. These
menus are bound to two different keys that when pressed expand a larger menu. Within
that menu six more choices are presented and must be selected using one of the six keys
that is bound to that choice. On top of that, selecting different units and buildings may
change the function of each key since certain buildings and units have their own abilities
which can be activated using the keyboard.

Using multi-touch technology, Planck created a new paradigm for RTS input. The inputs
still accomplished the same tasks as they always have in a RTS scenario; however the
physical input from the user was dramatically different and arguably easier to learn and
master. All traditional inputs were accomplished using two different methods; physical
touching of the screen and using fiducial imprinted objects. All the inputs that previously
required a mouse were handled by single or multiple finger touches. Any kind of
selection of a unit or building as well as giving units commands could be handled through
single finger touches. Unit abilities and special functions could be handled by using
multiple fingers, double tapping the screen, or creating finger gestures that were linked to
the command being given. Having the option of using multiple fingers to select units and
give commands facilitates users who need to give commands very quickly, because they
are no longer limited by the mouse cursor which can only exist in one window coordinate
at a time.

4.2 Graphics API

For the user to be able to take advantage of the multi touch features that Planck will offer,
some kind of graphic display was needed. The RTS battle simulator needed to have a
graphics application to show the user the results of his or her input. Since very few RTS
entries support any kind of touch interface, Planck would require a novel piece of
software that exhibits the unique interface. For this to be accomplished, a graphics API
was needed to render the elements of the simulator onto the screen. The following section
will present some of the more popular APIs while paying close attention to the different
ways that they handle input events to the program.

4.2.1 OpenGL

OpenGL is a library of two-hundred and fifty functions and methods as of version 4.2.
These methods allow the programmer to manipulate graphics hardware to draw complex
two-dimensional and three-dimensional computer graphics. It is platform independent as
well as language independent. It is available on UNIX, Mac OS X, Windows, and
embedded systems and can be written in C, C++, C#, Delphi, Java, PERL, FORTRAN,
and many other languages. Access is provided to a particular system through drivers
written by the manufacturers of the graphics processing units.

 Page 33

It takes primitives such as points, lines, and polygons and converts them into pixels by
sending them down a pipeline called the OpenGL state machine. Before OpenGL 2.0 this
pipeline was fixed. However, the newer versions support a fully programmable pipeline
via GLSL. GLSL is the OpenGL shading language, it provides the programmer with the
ability to modify the pipeline at the vertex and fragment level. This flexibility allows the
programmer to implement physical models that approximate reality such as lighting
models, shadow projections, Environment mapping, bump mapping, and per-pixel
lighting to name a few.

Since OpenGL is platform independent it does not have any capability of creating a
window in which the graphics can be rendered. All graphics applications must have a
window in which they run on modern operating systems. Since OpenGL does not support
this within its own libraries a separate API is needed to interface OpenGL function calls
to the window and event handling systems that exist on modern operating systems. The
tool created by Silicon Graphics in order to achieve this on windows is called GLUT or
OpenGL Utility Toolkit. GLUT is organized into several sub-APIs which include
window system initialization, entering the GLUT event processing loop, window
management, overlay management, menu management, and callback registration. Events
in a graphics application include things like a mouse moving, a keyboard stroke, or most
importantly a call to the rendering function. The main function of a simple OpenGL
program consists of a series of GLUT function calls which establishes the event callback
loop, initializes the window, and calls the OpenGL drawing function.

On most operating systems the only version of OpenGL that is available is 1.0. In order
to access the OpenGL functions the GLUT context initialized extensions are required.
OpenGL extensions are useful additions to the API. These have been approved by the
Architecture Review Board or ARB (Segal & Akeley, August 8, 2011). These extensions
can include anything from the new functions that take advantage of the latest graphics
hardware to the OpenGL shading language specification, which is now integral to high
level OpenGL applications. In order to take advantage of these extensions the ARB
created GLEW or OpenGL Extension Wrangler. A simple GLEW initialization call, as
well as having the proper drivers installed, will allow the programmer to access these
extra functions and accelerated graphics processors.

Two other libraries allow OpenGL to render models and create textures from images. In
order to create textures from images OpenGL is compatible with a library called devIL or
developer’s image loader. It is a simple open source library with many supported digital
picture formats working across all major operating systems and languages that are
supported by OpenGL. In order to load large models that have been created by artists
using drawing software another library is required due to OpenGL only being a drawing
API. ASSIMP or Open Asset Import Library is one such library that OpenGL
programmers can use to load large models and assets. Using ASSIMP, OpenGL can
quickly and easily load Collada, blender3D, AutoCAD, LightWave, 3dsMax, and many
other file types that artists use to create models. This library not only imports the vertices
for drawing, it also imports all the normals and material properties of the model. This

 Page 34

allows programmers to create elaborate approximations of real life that include lighting,
realistic shadows, texture mapping, bump mapping, and animation to name only few
features.

The OpenGL API is a powerful, well documented system for creating high end computer
graphics. It is cross platform and cross language and has a lot of support in the open
source community. Because of this support many libraries have been and continue to be
written to support the OpenGL API. It has been used for well over a decade in many
industries. It boasts being the core of hit titles in the gaming industry such as Half-Life
and Quake and continues to be the API of choice when it comes to writing professional
CAD and simulation software. OpenGL makes available to the programmer a rich set of
tools to manipulate powerful graphics processors to create realistic and useful
applications that require graphics.

4.2.2 Microsoft XNA Game Studio

Microsoft XNA is a set of tools and libraries that attempts to free game developers from
getting bogged down in complicated graphics processing code. It removes the need to
code the setting up of pipeline states and complex texture loading code. It was intended to
allow students, hobbyists, and independent game developers to make simple games that
could be distributed through the Xbox Live network or published as open source game on
the internet (Microsoft, 2011). It is based on the .NET framework and while it is a .NET
compliant language, it is currently only supported in C# and C++ on Visual Studio 2008
or higher. It has similar capabilities to the DirectX SDK but it abstracts much of the setup
code that is needed for creating win32 graphics applications. Using this abstraction,
developers are able to focus on game development rather than creating windows handles
and canvases to draw on.

XNA supports both two-dimensional as well as three-dimensional graphics rendering. It
also comes with tools that allow the developer to port the application to various platforms
including the Xbox 360. It has classes built in to aid the user with texture loading, input,
2D and 3D drawing, sound, and even model loading using the XNA Build tool. XNA also
provides many starter kits for multiple genres of games. These include real-time strategy,
first-person shooter, platform games, and many others. XNA is an easy to use platform
with many object-oriented elements which makes it a good candidate for small teams that
want to create aesthetically pleasing and interactive applications. However, XNA is not
as powerful as dedicated GPU access SDKs which limits to some extent the possibilities
graphically. It also has no support for touch surfaces, similar to the other graphics SDKs.
XNA will still have to be integrated with the gesture recognition library in order to get
input from the user and update the application logic.

4.3 Design

WeDefend would be a showcase application that demonstrates the versatility of touch and
fiducial input on a multi-touch surface. Based on the many types of military model

 Page 35

applications that have been made in the past, a real time strategy application was the best
choice. However weDefend was a sub-genre of real time strategy which has become
popular in the video game industry called tower defense. A traditional tower defense
game has the user defend an area or asset located behind the military units. The user must
strategically place military units to bar the enemy from either reaching a certain area or
destroying the asset being protected. If the user fails to protect an asset or allows too
many enemies into the restricted area then the scenario is failed. We defend was not a
full-fledged RTS due to the lack of manpower and experienced game producers needed
for a RTS application. An RTS application also traditionally requires the selection of
units which has many input collision and verification problems for a multi user touch
environment. Therefore similar concepts from the research will be extended to work in a
tower defense scenario.

Tower defense games have many benefits in both development and training for the user.
It has become exceedingly more common for the military to use games as virtual training
simulations for officers and enlisted soldiers (Macedonia, 2002). A tower defense
scenario is inherently military in its nature and can be used to train military personnel in
how to effectively set up blockades, whether they are naval, urban, or rural in nature.
This type of model also has the added benefit of flexibility in the types of scenarios
personnel can be trained on. Not every scenario must involve setting up a restricted area
and keeping the enemy from reaching that area. Tower defense models can also be used
to create virtual models of VIP (very important person) defense situations. These
scenarios are more dynamic because they involve a moving asset rather than a fixed point
that must be defended.

The tower defense model can be expanded to train personnel on many types of defense
scenarios relevant to any modern military or police force. This model has added benefits
of being more slowly paced than traditional real time strategy models allowing multiple
users to work together in real time to both prepare and direct a defense scenario.
Traditional real time strategy models rely heavily on what is called actions per minute.
This requires the user to perform various tasks very quickly and make split second
decisions. This type of model is more suited to a single trainee. In weDefend the trainees
are required to work together and come up with a strategy in order to accomplish goals of
the scenario presented before them.

This is a perfect showcase. Not only will it show off the intuitive user interface of a
multi-touch surface, it also encourages team work and demonstrates that applications that
can be used by multiple people are powerful tools that should be considered for training
purposes.

4.3.1 Scenarios

WeDefend presents a common defense scenario that arises in both war-time and peace.
The situation presented is the most basic defense scenario that usually arises at war time.
Friendly military units must defend an important structure or area that is imperative for
the enemy not to reach. In weDefend, the application boots up into title screen similar to

 Page 36

vintage arcade games where the user must place down the preparation mode fiducial in
order to proceed. Once the fiducial has been put down, the user will be in the preparation
phase. In the preparation phase an area or structure will be highlighted in green to
indicate that this is the asset that must be defended. The user will then be instructed to use
the fiducials at his or her disposal to create soldiers to defend the area. In this phase the
user was able to place soldiers in any configuration they see fit to defend the highlighted
area. The user could able drag a unit that he or she placed by mistake to a different
location by dragging the unit to the new location. Setting up units and creating new units
could only be done in the preparation phase.

Once the units have been set up the user can then adjust the field of view of each unit.
Each unit’s field of view will be a light blue cone that extends outward from the center of
each unit. Anything that enters the field of view of a unit was fired at and destroyed in
two shots. By using this feature the user sets up zones which his or her units will defend.
The insurgents had a certain number of hit points; these points represented the unit’s life.
Additionally soldier units had an attack power attribute representing the amount of
damage they are capable of inflicting on an enemy; this quantity was never shown to the
user and no units attack power will be greater than or equal to any other units maximum
hit points. In order for a unit to be destroyed, that unit’s hit points must be reduced to
zero. Once this is accomplished that unit was no longer be visible on the screen and was
no longer be able to inflict any damage. In order to ensure that enemies do not reach the
area being protected, it was allowed to have two units fields’ of view overlap so that they
will both fire upon a single enemy, granted that enemy was in the overlapping field of
view area. Figure 15 demonstrates what a field of view looks like and what overlapping
fields of view look like.

The user was allowed to augment the field of view of any soldier both in the preparation
and action phase. The users were able to set-up patrol routes and create squads in the
preparation phase only. In order to make the scenario more realistic and versatile the
trainee may send a unit on a patrol route. A patrol route is a set path that is outlined by
the user using waypoints or delineating a path for the unit to follow with a drag gesture.
Patrol routes can be used to make units more effective by being able to cover areas that
may contain enemies dynamically. Once a unit is set on a patrol route, his field of view
was always along the line they are walking along. The field of view could also be

Figure 15 - Overlapping Field of Views

 Page 37

adjusted as the unit is patrolling in the action mode. Units followed their designated
patrol routes until they reach the end of their route. At this time the unit performed an
about face and continue patrolling back along the route. Units could have intersecting
patrol routes allowing them to cover areas that another unit may not be covering. Should
two units run into each other, one will be arbitrarily given a higher depth value and they
will pass right over each other. This was a crude way of showing that they avoid
collisions in real life.

The other option available was to put units into player groups. Since weDefend was
meant to be played by multiple people, player groups allow for a player to colorize his or
her soldiers to a random color. Although it did not stop anyone from grabbing another
user’s soldier it acted as a visual marker to let other players know that you were
controlling a set of units. To create a player group the user highlighted the area that
contains all the soldiers that were to be put into a particular group. Any units outside the
selection area were not put in the group. The color they were assigned was random.

Once the user was finished adjusting his or her units, they will move into the action phase
by placing the action fiducial anywhere on the screen. Once a user entered the action
phase they could not return to the preparation phase without restarting the entire
application. In the action phase enemies began to appear from many places and attempt to
get to the highlighted zone. If an enemy reached the zone, an enemy entered counter will
was incremented. In the scenario of defending a certain location the objective was to
allow less than one-hundred enemies to reach the defense zone and survive until forever
or until the users became bored. Should the enemy entered counter reach one-hundred,
the user would have failed the scenario and a game over screen was presented, at which
time the reset fiducial had to be placed in order to reset the application. In order to not
fail the scenario, the user was able to issue only a few commands to his or her defense
team. The user was still able to adjust the field of view of all his or her units. The only
other thing the user could do in this phase was stop a patrolling unit. If a patrolling unit
was stopped in the action phase, they will remain in the location where they were stopped.

All of these actions and automated systems were implemented by using a C# program
with supporting classes. The automated logic for action phase state resides in the
game1.cs update function, it continually checks for new user input, instantiates soldier
objects in the preparation phase, instantiates enemy objects during the action phase,
destroys unit objects during the action phase, and updates the fields of all objects. The
visual rendering was accomplished by using XNA Game studio 4.0 by: creating a
window to draw on, initializing the display data, and finally calling a display function
that uses the user input and object states to render what should be on the screen. The
game changed to the game over state when 100 insurgents reached the protected zone.

 Page 38

4.4.2 Gestures

In order to carry out the actions described in the above scenarios a set of touch and
fiducial gestures was required to provide user input to the application. There are only
three types of basic inputs that make up the many gestures that controlled the application.
The three inputs are a fiducial being placed on the table, a single finger touch and drag,
and a two finger pin and drag. Fiducials are pieces of paper with special patterns printed
on them. These patterns can be read by the touch and fiducial recognition system and be
given unique identification numbers which can represent different actions in the
application. Fiducials can be used in place of menus to create a seamless, immersive, and
intuitive feel to an application that would otherwise require menus. In weDefend,
fiducials will be used to initiate the action phase, initiate the prep pahse, place soldiers,
activate debug modes, and reset the application . Fiducials do not need to necessarily
exist as a piece of paper. They can be customized to be imprinted on some kind of
physical token which can represent whatever action that particular fiducial stands for. By
doing this a developer can create an even more immersive and believable model or
simulation.

Once all users had finished in the preparation phase it was necessary to activate the action
phase to initiate the defense scenario. To do this, the action fiducial needed to be placed
on the surface. Once the touch and fiducial recognition system had recognized the action
fiducial, it switched the game state to the action state via a finite state machine, which
allowed the main action mode game loop to begin running. Once the action phase was in
progress, the action fiducial, prep fiducial, and soldier stamp fiducial were totally inert
and were ignored by weDefend. The stamp soldier fiducials only worked during the
preparation phase and was used to “stamp” units onto the battlefield. When any of the
fiducials for unit creation were placed on Plank the touch and fiducial recognition system
reported a screen coordinate relating where that fiducial was placed. With that
information, weDefend instantiated the object type and fill in the coordinate location field
with an X and Y coordinate where the unit should be drawn by the graphics application.
In this way, users were able to easily place units onto the battlefield without having to
access any kind of menu. Multiple copies of the soldier fiducial existed so that each
trainee will be able to place units where they see fit. Having multiple instances of these
fiducials being placed at the same time was not be a problem because each fiducial had a
unique identification number to differentiate it from the others. This allows weDefend to
only be concerned with the data the touch and fiducial recognition system reports to it
about a fiducial. These fiducials also became inert once the action phase had begun
because placement of units was not allowed in the action phase.

The waypoint puck was used to create a patrol route in the preparation phase for a soldier.
Creating waypoints via pucks was one of the only gestures that required both a finger
touch and a finger drag. In order to create a patrol using pucks a user must place a finger
on the unit that he or she wants to send on a patrol. Then, while still holding one finger
on the unit, the user must then use the waypoint puck to drag out waypoints similar to
how he or she would drag around units. In order to make clear to the user that waypoints
are being created, fuchscia dots were drawn to give a visual cue of the path the soldier

 Page 39

will patrol. Creating patrol routes using pucks was a quick and easy way for a user to
create a non-loop patrol. Similar to the other actions discussed thus far, the waypoint
puck became useless once the action phase has started.

The remaining gestures used touch events to both setup and command units in both
phases. The two gestures were a drag, which will be used for moving units in the
preparation phase and creating user group lassos, and a pin-drag used to adjust the field
of view and create patrol routes. A drag was defined as putting one finger on Planck and
physically gliding the finger over the acrylic surface then finally lifting it off of Planck.
The first action a user can accomplish with this type of gesture was moving an existing
unit to a new location. In order to do this, the user must place a finger on a unit. The unit
was then highlighted in green as a cue that the unit is active. Once a unit is active, the
unit could be dragged across the battlefield and then dropped into place by removing the
finger. This command was only valid in the preparation phase and was carried out by
matching a touch event’s screen coordinates to the screen coordinates of a movable
object, then carrying out the necessary graphics translations to show the movement. The
drag could also be used to group soldiers into groups. To group soldiers into a user group,
a finger must be placed outside the coordinates of any movable or selectable object. After
the finger is down it should be dragged around the units that are to be grouped creating a
box or around them. Once the finger is lifted off the surface, all the units that were within
the “lasso” were grouped and they were highlighted with a squad color to show that they
were all now part of the same squad. The figure below illustrates how units can be
grouped into squads.

Figure 16 - Example of Lasso Select Gesture

 Page 40

The commands that involved pin-drags are adjusting a unit’s field of view and creating a
patrol route. A pin-drag requires two separate fingers to execute. It was defined as
placing a finger on a selectable object, like a soldier, then placing the second finger down
near the vicinity of the first finger and then dragging the second finger in any direction
away from the first finger. In the case of adjusting the field of view of a unit this action is
quite intuitive. To adjust a field of view the user should place a finger on a unit. Once this
is done, the unit’s field of view will change to a dark blue color indicating it is ready to
be adjusted. The user can then proceed to place his or her finger on the field of view and
then drag in any direction to extend and adjust the field of view of that unit. Once the
user was finished he or she should lift the fingers off of Planck to confirm the new field
of view. To achieve a believable balance, a ratio was established using the distance in
pixels from the unit as the denominator of the ratio which will affect how the angle was
calculated. The field of view angle was inversely proportional to the field of view
distance. If the distance of the field of view was large, then the field of view in degrees
will be smaller limiting the probability an enemy will enter the field of view however it
increases the range that a soldier could engage an enemy.

The last command, creating a patrol, also used a pin-drag and was similar to adjusting
field of view but was slightly different in how the user must execute the gesture. In order
for a user to set a soldier’s patrol route, the user must first put a finger on a unit. Then
place a second finger a smaller circle called a puck. The active radius of a unit was
denoted by a green circle that surrounds the unit when a finger has been placed. Once
both fingers were placed, the finger on the puck should be dragged away from the unit in
order to specify the route which the soldier should patrol along. The route was denoted by
fuchsia dots that were drawn as the user drags their finger. Once the fingers were lifted
off of Planck, the patrol route was created and the unit began patrolling. The last and final
command that a user could give was to stop a unit from patrolling. To do this the user
need only tap on a unit that is patrolling and the unit would immediately stop patrolling
and hold the position and field of view that they were in when they were tapped. The
figures on the following page illustrate how to adjust a field of view as well as create a
patrol route.

Figure 17 - Example of Pinch Gesture for adjusting Field of View

 Page 41

Figure 18 - Example of Patrol Gesture

4.4.3 Graphics Structure

XNA Game Studio was responsible for rendering the required graphics, executing and
processing scenario logic, and recognizing user input. XNA is a powerful tool created by
Microsoft to aid low budget and hobbyist developers to make games. It abstracts much of
the initialization and setup that is required for other graphics APIs like DirectX and
OpenGL. One of the most useful things that XNA does automatically is setup a window
as soon as the project is created. This window already has a bound win32 handle enabling
that window to handle input events as well as being able to receive rendered images. This
makes XNA the prime candidate for developing weDefend because of how rapidly small
development teams can create publishable software. XNA also makes loading textures,
sprites, and models as easy as including a header file in a C++ project. XNA can use a
wide variety of the most common image formats and use them as textures; the user can
render multiple images onto the screen and have that image be hardware accelerated.
XNA also allows the user to extract color data from an image if he or she wants to use the
image as a height or bump map, to name a few. All of these texture accesses can be done
by including the image file into the project binding it to a C# texture2D variable and then
using four to five function calls to initialize and render the image. Models are just as easy
to use as textures as long as the three-dimensional model file type is of .x or .fbx format.

Although XNA abstracts away a good deal of graphics setup and data initialization it
retains the power of other graphics APIs which provide libraries for matrix and vector
manipulations as well as providing functions for rotations, translations, scaling,
perspective, and camera operations. Because of this the user must still have some
expertise in three-dimensional graphics programming in order to create aesthetically
pleasing and logical three-dimensional environments. A basic XNA application starts
with two files program.cs and game1.cs. The program.cs handles creating the entry point

 Page 42

or window that the application will use. The game1.cs file will be the main class from
which the application will run. All other classes in the application will act as supporting
classes that contain all the data and methods needed to create the different elements of
weDefend. The game1.cs contains the bulk of the logic and all of the graphics rendering
functions. This file contains seven different parts: use statements, class and instance
variable declaration, the constructor, an initialize method, a load and unload content
method, an update method, and finally a draw method. These parts make up an XNA
game and certain parts will be modified heavily in order to achieve user input from the
Touch and Fiducial Recognition System.

Use statements are similar to includes in C programming in that they tell the compiler
where to find all the pre-existing resources that XNA and weDefend require. The class
and instance variable declaration section is where the main weDefend class is instantiated
and all the variables necessary are defined. The constructor is where the graphics device
and content pipeline are initialized. The graphics device set-up is very simple and only
requires that the user create a graphicdevicemanager object and then initializes that object
in the constructor. The content pipeline is how XNA is able to easily use textures, images,
sprites, sound effects, and models by simply including the resources in the project. The
initialize method is where all non-graphics related components such as soldier and
insurgent classes are setup. The initialize method is traditionally reserved for settings like
screen height and width, full screen mode, and vertex and index buffer setup for primitive
drawing to name only a few. The load and unload content methods are used to create or
destroy sprite batches which are in charge of holding all the images that will be used as
sprites as well as loading all other content such as models, sound files, and graphics
effects that contribute to weDefend.

The update method is reserved to run the scenario logic. This method is integral to
weDefend because it is where supporting class objects will be updated, created, or
destroyed. It will also be in charge of interfacing with the gesture tracker class. The
update method should first access the touch and fiducial lists and associate gestures in the
list with the proper soldier, field of view, and puck objects. A separate algorithm inside
interactive objects will read through the list of active gestures and use their coordinate
data to link gesture identification numbers with each object’s gesture link ID. Then the
update unit state method will update the fields in each object. Only units whose gesture
existence Boolean is true will be affected by the update unit state method; this allows the
update unit state method to loop through the gestures that are active for that object. This
is also where new objects will be created or destroyed depending on what is happening in
the scenario. After these methods are done the update function will proceed to update the
game state and execute the logic within the active state of the finite state machine. The
lose condition is continually checked to see if one-hundred or more enemies have slipped
through the defensive line in the action state. Update will also be in charge of switching
between the preparation and action phases. This means that all the logic described above
will be repeated in a two argument switch case. Update also provides a system timer
called game timer so that the developer does not have to deal with that minor aspect of
the scenario.

 Page 43

Finally the Draw method is where all the rendering takes place. No updating or
manipulation of data other than graphical rotation, scaling, translation, perspective, and
camera manipulation should take place in the draw method. This method begins and ends
when sprite batches are rendered allowing the user to change textures on the fly or
animate sprites by quickly rendering a series of images in a sprite batch. The render
function is also in charge of rendering geometric primitives such as terrains and other
non-model non-sprite assets. This function will also be in charge of rendering the soldier,
wall, field of view, puck, debug, and insurgent objects. In order to do this each object
type will have a render method built into to the class which prepares all model assets,
textures, and sprites as well as initializes all the data necessary to render all the objects. In
this way one render method can be called for each object that exists and will be updated
continuously since the method will exist inside each instance of soldier or insurgent. This
does break the convention of doing all rendering inside the draw method however; since
the method is still only called inside of draw it does not totally disregard tradition. This
methodology allows the programmer to simply loop through the soldier array and for
each soldier that exists call that particular render function and all the objects should be
rendered based on the data that is contained in each instance of that particular object.

4.4.4 Code Structure

WeDefend was made up of seventeen classes. Four of these classes are objects which
have a role in the scenario, while the others are support classes of the main four classes.
The main game1.cs has all the instantiation of our four main classes as well as the finite
state machine and the instance of gesture tracker which updates the shared input lists.
This class was responsible for holding the majority of the logic and running the scenario
in weDefend. The five protected methods are standard methods in any XNA Game Studio
application. These five methods are in charge of running the application and are
explained in greater detail in the section preceding this one. Initialize is the first of the
protected XNA methods. It is in charge of setting up all non-graphic related components
like vertex and index buffers, which contain data for drawing primitives, and other
parameters that affect the screen. The load and unload content methods are also protected
by default and are in charge of binding and sending all textures, images, sprites, models,
sound clips, and other assets to XNA’s content pipeline. The update function traditionally
changes things like position and game data based on mouse and keyboard input. This
method was severely overhauled to incorporate Plank’s novel input. The update method
ran a finite state machine which uses bit flags to check for the state this FSM decides
which state weDefend is in. It then updated all the interactive objects if weDefend was in
the preparation or action state, by calling the interactive objects respective update
methods to link gestures to soldiers. Then the unit specific update methods adjusted all
the fields of the existing objects given they have an input gesture linked to them. Once
these two methods are done isOld method runs to make sure that touches that are linked
to objects can not affect other interactive objects as well as check whether the stamp
fiducial has been placed to create a new soldier. The draw method will take care of all
rendering and is explained in greater detail in the section above.

 Page 44

The other five methods are used to assist the update method in interfacing with, and
assuring the state machine is reset when the reset fiducial is placed. The update methods
of each interactive object were passed the two shared input lists that gesture tracker adds
touches and fiducials to. With these lists they were able to run the linking algorithm as
well as update the fields that are being affected by input that is linked. In order to link an
input to an interactive object, first it is checked whether or not the linked Boolean of that
object is set. If it is, then it was proceed to search for the touch that is linked and update
the object based on the updated information of the touch position being a simple example
of such. If the linked Boolean is not set then we proceed to search through the list and see
if it is inside the bounding radius of the object, if it is we make the link ID of the object
equal to the touches ID and set the linked Boolean. When the method is finished each
instance of a soldier will have corresponding gestures that are related to them if any input
occurred near the object and would have been updated appropriately. The update method
would also update the debug status of all debug objects of the debug state is toggled. The
debug state is necessary when testing the software on a prototype that does not have a
rear projection acrylic so that touches can be seen. It is also a useful tool for assuring that
units are behaving as they should.

The two types of fields in the weDefend class are graphics related fields and scenario
logic related fields. The graphics related fields define things like the screen width and
height as well as scaling factors for sprites, textures, and models. The scenario logic
related fields are the bit flags which run the FSM. The other two fields are linked lists
called soldiers and insurgents. These two linked lists contain each instance of soldiers and
insurgents. It was used to loop through all the instances of soldiers and insurgents so that
they can be updated every time update unit state is called and every time they need to be
rendered.

The other classes in weDefend are a plethora of support classes necessary to execute all
manner of things from debugging to fields of view. Some of the more important classes
are the debug Item, FOV, patrol route, polygon drawer, lasso, gesture tracker, and
particle. The debug item class is responsible for creating a series of rectangles which
contain text that gives information about each interactive object such as position, angle of
the field of view, and whether or not the linked bool set. It also is integral in testing
weDefend on a prototype with no rear projection acrylic since it places small black
diamonds that denote touches. FOV is a class which contains many of the same
functionality as an interactive soldier, however it differs in that it draws a field of view
and detects whether or not a touch is inside it with a more complicated geometrical
intersection algorithm. Every soldier owns an instance of FOV. Patrol route is similar to
FOV because it is an interactive object however its algorithms are almost identical to
soldier except for the algorithms that drop waypoints as it is being dragged and then
makes the soldier follow those waypoints. Again each soldier owns an instance of patrol
route.

The polygon drawer class is a helper class which uses primitive batch to draw things like
circles, diamonds, cones, boxes, and other manner of geometrical objects that make up
the units, walls and interactive objects in weDefend. Lasso makes use of polygon drawer

 Page 45

in order to draw selection squares on the surface of weDefend. Lasso is used to create
player groups. Any soldiers that are inside a lasso when a user releases a lasso receive a
random color to denote that those soldiers belong to that user. The particle class is in
charge of making soldiers shoot bullets at insurgents. It uses simple physics to calculate
where an insurgent is going to be in order to collide with him after a set amount of time.
Some variability is also thrown in so that soldiers sometimes miss. Finally the gesture
tracker class is a thread that is instantiated in weDefend so that it can write to the shared
data structures, more information on this class can be found in part three of this paper.

The soldier class contained many important methods and fields. The soldier class has
fields which allow all game logic and graphics to be updated. An integer will represent
the attack power constant that never changes for any soldier. The field of view distance
defines how far from the unit the field of view must be drawn. The field of view angles
theta and phi are used to orient the field of view. Theta is the angle relative to the center
of the soldier while phi denotes the angle of the actual field of vie which changes based
on distance. The screen coordinate point object is two integers x and y which defines
where the soldier should be drawn on the screen and where he exists in screen
coordinates. The unit ID is an integer which counts up from one and is assigned to every
instance of soldier that is created. The patrol route object as described above was owned
by the soldier to give the soldier class the capability of being put on patrol routes. This
data structure had a start point and endpoint to denote the beginning and end of a patrol
route. The gesture link ID is an integer which denotes which touch the soldier is currently
linked to. A soldier would fire at the first enemy that enters his field of view and would
not stop firing at that enemy until the enemy is either eliminated or exits the field of view
at which time the soldier will then choose the next enemy in his field of view to attack.
The linked Boolean will be used by the update unit state function to tell if any input
needs to be resolved for a particular soldier instance.

The methods for the soldier class are a series of overloaded update and draw functions
that update or draw based on what state the game is in and what parameters are needed I
each state. The soldier also has a follow patrol route method which it uses to move along
patrol routes autonomously based on the list that is returned by the patrol route puck. The
update debug method continually sends the debug information from fields of the soldier
to the debug item that has been assigned to that soldier. The update cursor method is used
to assist in updating the soldier’s position fluidly instead of snapping the soldiers position
directly to the location of the linked touch.

Insurgents are created by using two classes. The insurgent generator class uses a random
number generator to spawn insurgents at a set number of hard coded spawn points all
around the map. The percent per update chance of spawning an insurgent is .003 if the
random number generator creates a number greater than this values then it will create an
insurgent at one of the hard coded routes.

The insurgent class is responsible for handling the logic once an insurgent has been
spawned. Insurgents update methods are continually moving them along their patrol route
every tick of the clock towards the protected zone. Once they reach the zone they

 Page 46

disappear. This movement as well as whether they have been shot, explained below, is
calculated in the insurgent update method. The draw method displays the changes on the
screen. The test hit and collision method use simple object collision in order to calculate
whether or not an insurgent has been hit by a bullet. If they have then a hit point is
subtracted from the hit points field and if the insurgent has run out of hit points the
insurgent is killed and removed from the insurgent list.

5. Computational Container System

The Enclosure/Computer System is the brains of project Planck. The computer powers
the entire system. The Enclosure provides protection, support, and cooling to all of the
components of the multi-touch system. The Computational Container System outputs
power to the Control System. It also outputs power to both the IR camera and the IR
LED’s in the Image Recognition System. The Computational Container System inputs
the raw IR image from the camera in the Image Recognition System and delivers these
multiple images, frames, to the Vision Detection application that is running on the Event
Detection System. Finally the Showcase Application will deliver the final graphical
output to the video card in the Computer System to output to the screen for the user to
view.

The multiple components that make up the Computational Container System are the
enclosure, computer mount, projector mount, acrylic frame, cooling, computer, image
display, and a physical fiducial object container. The components can be viewed in
Figure 19. The Enclosure provides support and a location for all the components of
project Planck. The computer mount provides a mounting location and hardware for the
computer to rest on in the enclosure. The projector mount provides a mounting location
and hardware for the projector to rest on in the enclosure. The acrylic frame provides a
secure mounting position for the LED’s to rest in around the acrylic. It also provides a
secure location for the acrylic to rest on within the enclosure. The cooling of the
enclosure provides stable temperatures for all components mounted inside the enclosure.
It is important that no hardware component goes above safe operating temperatures. The
computer shall have the latest desktop computer hardware available at the time. The
computer needs to be fast enough to run the vision framework and Touch and Fiducial
Software Recognition System as well as the showcase software without ever
bottlenecking the entire system. The image display provides the output image to the user.
The image shall be large enough for multiple users to view and interact with objects on
the screen. Finally, the fiducial objects and object container combine the fiducial tag
with a real-life object. This not only adds aesthetic appeal to project Planck, but is also
easier for the user to grab hold of the fiducials.

During the research and design of the Computer system, it’s important to remember the
goals, objectives, and specifications and requirements at hand. The goals and objectives
for the computer system are: To facilitate collaborative work from simultaneous users;
and to remove the need for traditional input in favor of multi-touch gestures that real live
objects that are in some way relevant to the application. The specifications/requirements

 Page 47

for the Computer System are: A usable system screen size of 40 diagonal inches; and the
enclosure shall be tall enough for an average sized user to user standing up (minimum
height 30”, maximum height 38”). What will follow are the research and then the design
of each component of the Computational Container System.

IR
 Im

ag
e (r

aw
)

Figure 19 – Top Level Diagram of Computational Container System

5.1 Enclosure

The enclosure is what gives shape to project Planck. The enclosure provides support
around all edges of the acrylic and limits the acrylic to an exact location so the user can
interact with it. The enclosure houses the image device, computer, and all electronics in
our system. The enclosure should be strong enough to support the acrylic and the
bodyweight of 4 grown adults leaning over and resting their arms on it. Most wood can
achieve this goal, as long as the enclosure is designed properly. The basic design of
Planck will be repeated from the lessons learned in the design of the prototype. Other
features will be added, but the main concept will stay the same.

The use of a dado blade allows for the wood to interlock with every other piece creating a
very strong joint. This takes the guess work out of trying to glue a perfect 90 degree joint.
It also prevents the need to reinforce the joint with anything else such as a wooden block
or angle iron. This in turn maximizes the space available inside the enclosure. This was
beneficial when mounting the projector and other computer components.

 Page 48

Because Planck needs to present a first-rate appearance, the use of a visually appealing
wood was implemented into the design of Planck. A high grade veneer hardwood was
chosen. It also has the added benefit of being very strong. A high grade veneer
hardwood is important so the dado blade does not create divots and imperfections in the
edge when being cut.

5.2 Image Display

The purpose of the projection device is to display the images created by the showcase
application. This image should be layered underneath the mirror particle acrylic so the
user can comprehend the exact spot that he is pressing on the main application. There are
two main types of devices available on the market for our application, LCD televisions
and Projectors. The benefits and drawbacks of both will be discussed further.

5.2.1 Short Throw Project

A projector projects an image signal provided by the computer onto a screen for viewing.
A projector’s throw distance refers to the length between the projector’s lens and the
projection screen. There are two categories of projectors in regards to throw distance,
short throw and long throw. Short throw projectors can display the same size image that
a long throw projector can, in a shorter distance. This works very well in rooms with
limited space. This is great for a multi-touch application due to the limited distance
between the screen and the projector inside the enclosure. If the distance is too great, then
a user will not be able to use the device comfortably from a standing position.

There are limiting factors associated with short throw projectors however. First, true HD
short-throw projectors with resolutions of 1950x1080 do not exist to the mainstream
consumer. The two native resolutions within the budget of this project are
1280x800(16:10) and 1024x768(4:3). This means that a very large screen with a
resolution of 1280x800 could potentially start to look pixilated and blurry. 1280x800 can
achieve the HD resolution of 1280x720, and considering how 1080p was originally
created as a cinema format, 1080p may simply be overkill for Planck and its simulation
application. Second, the vertical offset of the projector is on average greater than the
vertical offset of long-throw projectors. The vertical offset is the vertical distance
between the lens and where the projected image starts to be displayed. Short-throw
projectors can have a vertical offset of greater than 100%, meaning the projected image
does not even begin to be displayed until above the lens. This is because the projector is
so close to the screen that it needs to be able to project an image that is out of the viewing
angle of the projector itself. This creates complications as the projector would have to be
mounted offset of the screen, inside the enclosure. This would increase the overall
footprint of the enclosure. An example is shown in Figure 20. Corrections can also be
made by tilting the projector or through the use of mirrors. Mirrors will be discussed in
more detail later.

 Page 49

Figure 20 - Mounting option of Short Throw Projector with Offset greater than 100%

These two alternatives, however, can produce Keystone Effect. The Keystone Effect is a
product of projecting an image onto a surface at an angle causing distortion, as seen in
Figure 21. This distortion is best approximated by the function:

cos �� − ��2
�
cos �� + ��2
�

ε is the angle between the screen axis and the central ray from the projector, and α is the
width of the focus (Martin). There is software to correct for the Keystone effect but this
is only achievable to a certain extent. Plus or minus 30% is a common figure. This is
completely dependent on each manufacturer’s model. Lastly, short-throw projectors are
comparably more expensive. This could be a deciding factor if the budget is smaller than
expected.

Figure 21 - Keystoning effect (Reprinted under Creative Commons Attribution-ShareAlike 3.0

License)

There are important factors to consider when searching for a short-throw projector that
meets the criteria of project Planck best. Dimensions are important because this is the
physical footprint in the enclosure. The bigger the footprint, the shorter the distance is
between the lens and the screen. The vertical offset is important to note when designing
the enclosure. The light output is important so the brightest screen possible for viewing

(Equation 1)

 Page 50

in all environments can be achieved. Most importantly is the throw distance. Generally
speaking, the projector with the shortest throw distance for achieving the desired screen
size should be chosen. Lastly, if the projector is to be mounted vertically, it’s important
to purchase a projector that is designed to do so. Not all projectors have this capability.
Disobeying a manufacturer’s warning could result in decrease in lamp life of up to 50%.
For example, the cost of a replacement lamp for a Hitachi CP-AW250N is $175. The
Hitachi lamp is rated for 5000 hours in economic mode. Mounted vertically, the lamp
could be reduced to 2500 hours. There are many variables that lead to reduced lamp life;
one is an issue of heat. The projectors were not designed to dissipate the heat mounted in
a vertical position and this can cause the projector to get too hot and burn up the lamp.

5.2.2 Long Throw Projectors

Hot mirrors are implemented into the design of multi-touch displays to eliminate the IR
light emitted from the projector. A hot mirror is a mirror that reflects IR light while
allowing visible light to pass. The hot mirror will be replaced directly in front of the
projector’s lens to filter out any IR light that is emitted and would cause interference with
the object/blob detection from the camera. Thankfully, most projectors on the market
today don’t emit IR light.

The second option is to find a projector that provides the desired 1080p resolution with
the shortest throw possible. At the minimal required display of 46”, the projector that
required the least throw distance was the Vivitek H1082 at 64”. With 5’4” inches of
required distance between the lens and the projection surface, a mirror would be required
to achieve this distance within the enclosure. Also, the brightness of many long-throw
1080p projectors with the throw-distance requirements tends to be on the lower end of the
scale. It’s rare to see a long-throw projector with greater than 1800 lumens in the budget.
Visibility of the screen will be a concern when the multi-touch display is in well-lit areas.

Mirrors can be implemented into the design to fold light from the projector so a long-
throw projector can still be possible in a small enclosure. The concept is to bounce the
video light output from the projector off one mirror, or several, to ultimately reach the
display at the top of the enclosure. Bouncing the projected image around the box creates
the distance needed for a longer-throw projector to project the screen size needed to meet
the requirements of Planck. This can create the keystone effect as was mentioned earlier.
Exact mirror size, placement, and angling needs to be taken into account in order to
achieve the desired result. One typical setup, found on Fig. 6, is to lay the projector flat
on the bottom of the enclosure and shine the image into a mirror. The light will bounce
off the mirror and, if angled properly, will project onto the display acrylic in the desired
location. In order to prevent the Keystone effect, the ratio of a given length of a beam of
light to all other beams of light should stay equal, with or without mirrors. This can be
shown in Figure 22. If A/B = (A1+A2)/ (B1+B2), then the keystone effect should be
minimalized.

 Page 51

Figure 22 - Minimalizing Single Mirror Keystoning Effect

First surface mirrors should be used to prevent ghosting. A First surface mirror is a
mirror that does not contain any transparent layers above the reflective mirror, such as
acrylic or glass. These upper layers found on Second Surface mirrors are what promote
ghosting of the display image. Most mirrors found in the typical shopping center for
cheap prices are all of second surface mirrors. Unfortunately, first surface mirrors are
quite expensive. A 20”x30” piece of first surface mirror found online can be as
expensive as $190. Due to the high cost, many experiments have been done to use a form
of stripper to remove the backside of the cheaper second surface mirrors. The back-side,
usually coated in a paper backing, can be removed with the right stripper. The key
ingredient is Methylene Chloride. Once the backing is removed, a First Surface mirror is
exposed. This is because, typically, the manufacturer does not coat the backside of the
mirror with the protective upper transparent layer. This procedure has been
accomplished with mixed results, however. The results are dependent upon the mirror
bought, the stripper used, and the quality of the job conducted. Once the backing exposes
the First Surface mirror, extra care needs to be given as there is no protective layer and
the mirror can be scratched easily. Another mirror that might have to be implemented
into Planck is a hot mirror.

5.2.3 LCD Display

The third, and last, option is to use a LED-LCD television. The benefits of using an LCD
are that the height of the multi-touch table is completely dependent on the camera’s
needed viewing distance. The camera has a throw requirement to view a certain size
image just as the projector does. Minimizing the throw distance on the projector is only
one of two parts in regards to minimizing the enclosure height. Wide angle lenses can be
used to shorten the camera’s distance requirement. No longer is the projector the
deciding factor in the enclosure size. This will be discussed more in the Image
Recognition System. The image also has a much higher contrast ratio to that of
projectors. Comparatively, 3,000,000:1 in an LCD vs. 3000:1 found in projectors. This
results in a much sharper image for LCD’s. This is a nice benefit to project Planck as a
sharper image can mean the ability for Planck to be capable of being used in well-lit areas.
A high resolution of 1080p is easily achieved in today’s market. This is a higher

 Page 52

resolution than short-throw projectors can achieve. This would allow a larger viewing
screen for the showcase application, weDefend. Lastly, LCD’s provide a very bright
picture and this would be the best approach in achieving a multi-touch display that is
effective during all light operations.

The internals of the LCD would have to be removed from the case and broken down for
proper layering. This would involve prying off the outer plastic case. Sometimes hidden
screws must be found as well. This is so the camera can see the touch and fiducial
detection through the LCD layers. This requires the removal of the case, and complete
separation of each component inside the LCD television. Each television is different and
can be individually challenging. Tutorials for the separation process are not readily
available online either. There are two approaches to effectively layering the LCD
television for multi-touch use, mounting the backlight behind the camera, or above the
camera. The two layering approaches can be found in Figure 21. The benefits and
drawbacks to both approaches are discussed further.

Figure 23 - LCD Layering

The first approach is to mount the backlight behind the camera. This would eliminate
any trouble the camera might have when trying to view the touch and fiducials through
the backlight. There would be no issue with the opaqueness of the backlight using this
method. A cheaper LCD television could also be purchased as LED-LCD would not be
of an importance. One drawback is that the backlight is further away from the LCD
matrix and may not brighten the LCD matrix correctly, due to loss of light. It would be
important to have a completely sealed box and implement a design to minimalize the loss
of light before reaching the LCD screen. Adding more light sources to effectively
brighten the LCD matrix might also be necessary. A second drawback is that the light

 Page 53

source might emit light in the IR wavelength frequency and may distort the image seen
by the camera. In this case, the lights would have to be swapped out for non IR emitting
lights.

The second approach mounts the backlight above the camera. The benefit to this
approach is that backlight rests directly behind the LCD matrix and no issues of
illumination should arise. One drawback is that the backlight could provide interference
between the camera and the objects/blobs. This could because of the backlight being too
opaque, or the light source transmitting an IR wavelength. A second drawback in using
an LCD that allows mounting the backlight in front of the camera is finding an LCD
television uses LED edge-lit technology. Both RGB dynamic and full-array LED
technologies block the camera’s view of the object/blob detection, as it is mounted
directly below the backlight. Edge-lit technology staggers white LED’s around a special
acrylic backlight to evenly illuminate it. This is much like mounting the IR LED’s
around the EndLighten acrylic. This method would not block the camera’s view. IR
radiation can emit from the stock white LED lighting but a simple solution would be to
swap out the LED’s for a new non-emitting IR strip. The backlight acrylic has also been
known to have a coating on the back-side of the acrylic that promotes reflection and
further illuminates the matrix screen. This however blocks the camera’s view.
Sometimes this screen can be removed, but not all of the time. If the backlight cannot be
re-used, EndLighten acrylic can be substituted.

A drawback for both approaches is finding an LCD with long enough ribbon cables to
extend the PCB boards out of the camera’s view. The Flat Flexible Cable (FFC) has been
implemented into some the LCD’s and is notorious for breaking with even the slightest
touch. These cables should be avoided when shopping for a LCD suitable for the project.
If at any point a part is damaged on the PCB board, the expense will be high to fix, if
possible. And that is a risk that would need to be taken if this method was used.

5.2.4 Comparison

A table combining all three categories was created to aid in finding the best choice for
project Planck. What’s important to note from the table is that a comparable size LCD is
about the same cost as a short-throw or long-throw projector. The cost ranges from
approximately $1,000 to $1,400 for either solution; short throw, long throw, or LED-
LCD. The benefits of a short-throw projector can easily be seen by noting the throw
distance ranges from virtually 0” to 20” for a screen size of 46”. This is a very short
distance when compared with a 62” throw from the long-throw projectors, over 3 times
as much. Two issues not to forget about when choosing a projector is the vertical offset
of the projected image and if the projector can be mounted vertically or not. Surprisingly,
there was no direct correlation found with a short-throw projector and having a longer
vertical offset. It seems to be dependent upon the design of the individual projector by
the company. This is also true regarding the projector being mounted vertically. No one
recommends this mounting position, as it shortens the life of the lamp. Some
manufacturers give the warning and allow it; other manufacturers prevent the projector
from turning on if mounted in this position. One promising candidate is the Hitachi CP-

 Page 54

AW250N. This short-throw projector has gotten great reviews from users over on
NUIgroup forums. It offers native resolution of 1280x800, an excellent throw ratio, and
is fairly bright. It is, however, a little on the pricier side and has a large vertical offset.
Luckily, it’s still within the budget and the enclosure can be designed to accommodate
the large offset.

5.3 Computer

The computer is the brains of the operation. The computer runs the object detection
software, the main application, and the camera that sees the blobs/objects. The computer
should never be the source of the bottleneck in Planck. Not a single piece of hardware in
the computer should ever reach full utilization when running the showcase program.
Because of this goal, the recommended requirements of the most intense
software/hardware piece of the system should be well exceeded. The items that could
potentially use the most resources are the object detection software, the main application,
and the camera. The recommended system requirements of each software component
will be checked to find the greatest minimum requirements.

There are no limits to the operating system of the Vision framework chosen. Linux,
Windows, and Mac OS X are all supported. The design team of project Planck is most
experienced with Windows so it’s important to pick out hardware that will run at least on
Windows with no driver issues. Since Windows 7 is the newest version out, it’s
important to meet the minimum requirements of this. This can be found in Table 4.

The XNA API library has a minimum requirement of a video card that’s capable of
DirectX 10.0 or later. XNA has the same minimum requirements for CPU, memory, and
storage space as Windows. The 2x camera has a recommend CPU clockrate of 2Ghz,
CPU core count of 2, 2GB of main memory, and no storage space or graphics API
requirements. Windows 7 32bit has a recommended CPU clockrate of 1Ghz, 1 CPU core,
1GB of main memory, 16GB of storage space, and DirectX 9 graphics API. Windows 7
64bit has a CPU clockrate of 1Ghz, 1 CPU core count, 2GB of main memory, 20GB of
storage space, and DirectX 9 graphics API. CCV 1.4 has a recommended CPU clockrate
of 2Ghz, 2 CPU core, 2GB of main memory, no requirement on storage space, and a
minimum of DirectX 9 graphics API. ReacTIVision has a recommended CPU clockrate
of 1.4Ghz, 1 CPU core, 1GB of main memory, 1GB of storage space, and a minimum of
DirectX 9 graphics API, and XNA library only has a requirement of DirectX 10 for the
graphics API. This is can be viewed in Table 4 below. Another factor to be considered is
the resolution that the showcase application will run in. 1920x1080 is extremely
graphically intense on the GPU. If the application is to run at this resolution, a high-end
video card needs to be purchased. Comparatively, if the application is to run in 1280x720,
than a cheaper video card can be purchased

The total minimum requirements can be found at the end of the chart in Table 4. This is
the bare minimum system that should be purchased for Planck. It’s important to calculate
in a big buffer to ensure that the computer will never be the bottleneck in the system. An
approximation of at least a 25% performance increase across the board is recommended

 Page 55

for Planck. A quad-core is recommended due to ReacTIVision’s use of multi-threads. A
gaming video card capable of at least DirectX 10 is also recommended to handle the main
application designed in XNA. DirectX 11 video cards have been on the market so long,
however, the cost of upgrading to DirectX 11 is marginal and well worth the price
increase. A minimum of 4 gigabytes of memory is recommended for a quad-core CPU
due to their demanding prefetching scheme.

Table 4

Minimum System Requirements

CPU

clockrate

CPU core

count
Memory

Storage

Space

Graphics

API

2x cameras 2 Ghz 2 2 Gb N/A N/A

Windows 7 32bit 1 Ghz 1 1 gb 16 gb DirectX 9

Windows 7 64bit 1 Ghz 1 2 gb 20 Gb DirectX 9

CCV 2Ghz 2 2Gb N/A DirectX9

ReacTIVision 1.4 Ghz 1 1gb 1 Gb DirectX 9

XNA Library N/A N/A N/A N/A DirectX 10

Total requirements 2 Ghz 2 2 Gb 20 Gb DirectX 10

5.4 Enclosure

There are many components that will need to be mounted inside the enclosure. Details
that need to be taken into consideration are as follows: The method that the components
will be mounted; how the components will be cooled; and the location in the enclosure
the components will be mounted. Hardware will have to be installed for methods of
installing the components. Fans will have to be installed to provide adequate cooling to
the components. Finally, diagrams will have to be made to map out the location of all
components in the system.

5.4.1 Component Mounting

The computer will be mounted inside the enclosure of the system. The computer
hardware will be screwed down directly to the inside floor or the wall of the enclosure.
Since it is already protected from outside elements, there is no benefit to mounting the
computer hardware inside a typical computer case. To reduce the contact between the
PCB board and the wood, small wooden or acrylic pegs will be mounted to the inside
floor of the enclosure. The motherboard will be directly screwed down on-top of these
pegs. There are no detrimental reasons to mount the computer hardware in a certain spot
of the enclosure, as there are no requirements associated with this. It’s important to give
other devices priority on location. The computer could be mounted on the floor of a

 Page 56

corner of the enclosure, but it could not interfere with the location of the camera or
projector. The hardware could also be mounted directly on an inside wall, but a potential
issue arises when inserting dedicated cards into the motherboard, such as the video card.
Cards that insert into the PCI bus are designed to be supported at multiple points. This
would not be a possibility if mounted on the inside wall. The PCI port would support the
entire weight of the card and could be a risk concern.

The projector will need to be mounted on a platform that swivels on the vertical axis.
This allows the projector to tilt for precise calibration of the image being projected.
Figure 24 shows how the platform will be designed. The projector could be mounted on
a slate of wood which has hinges attached. The hinges attach to the floor of the enclosure
and allow the platform to swivel 180 degrees on the vertical axis.

Figure 24 - Projector Swivel Platform (Reprint pending approval)

5.4.2 LED Frame

The enclosure also needs to house the IR LED’s that will illuminate the acrylic. In the
prototype Phloe, a frame was fabricated with thin pieces of wood encompassing the cut-
out opening for the acrylic display. Evenly spaced holes on the frame would house
LED’s. The end result is a rectangular wooden frame, resembling something much like a
picture frame, with LED’s mounted inside evenly spaced holes along the entire perimeter
of the wooden frame. This finished frame would fit snugly between the acrylic and the
enclosure. An example of the wooden frame used in the prototype can be viewed in
Figure below.

 Page 57

Figure 25 - LED Frames

Another method is to mount all LED’s to a PCB board that is mounted inside a channel
around the acrylic. The LED’s would be soldered to even intervals on the PCB board.
The PCB board would be the exact dimensions as the wooden frame, just large enough to
fit inside the wooden channel of the enclosure. The PCB would add needed structure to
the LED’s so the position and the angle, relative to the acrylic’s side, is held. Another
benefit is the vastly reduced exposed wiring. In the creation of the prototype, there were
many exposed wiring. Exposed wiring promotes accidental breakage, makes it harder to
conduct maintenance inside the enclosure, and adds unneeded complexity when
conducting maintenance on the LED’s.

5.4.3 Component Cooling

The hardware components inside the enclosure will be cooled by fans. There are many
different fans of sizes and type out on the market today. Computer fans that run on 12v
are the most reasonable choice as a computer power supply will be our main source of
power. The fan chosen must have the fourth wire, Power Width Modulation (PWM).
There needs to be at least 2 fans in the system, an intake and exhaust. The fans will be
mounted on the side of the enclosure where an opening will be drilled. Since heat rises, it
makes the most sense to put the exhaust fan higher than the intake. 120mm fans will be
chosen because of the lower frequency of sound they produce as well as the higher
amount of air they can push. There is a direct correlation between bearing choice and
noise output. There are four main types of bearings here; Sleeve, Rifle, ball, fluid, and
magnetic. These are compared in Table 5 below.

 Page 58

Table 5

Fan Comparisons

Bearings Cost Lifetime Noise Total

Sleeve 5 2 4 11

Rifle 4 6 4 14

Ball 3 8 3 14

Fluid 2 10 5 17

Magnetic 1 8 4 13

Cost and noise are given a score 1-5, 1 being the lowest. Lifetime is given a score out of
10, 1 being the lowest, based on its high priority. The goal is to prevent frequent
maintenance of the system. Noise is second most important as, ideally, the system should
be as quiet as possible to prevent distractions. In reference to Table 5, it is shown that
sleeve and rifle bearing fans both have the least life. These are eliminated for that reason
alone. Ball, fluid, and magnetic bearing fans would all probably be acceptable in meeting
the requirements of the system. Fluid bearings are the highest scoring fan however. This
will be of the highest demand when searching for a fan for the enclosure of the system.

6. Control System

The purpose of the control system will be to regulate the power to other devices. The
benefits of this are twofold. First, this allows for greater control of the sensitivity of the
device through the hardware, so the software calibration will not be completely necessary
when the device changes lighting conditions. Second, this allows for control over the fan
speeds, which can reduce the ambient noise and power consumption when the device is
not being fully taxed.

The control system as a whole, is not a required system in the project, but supplementary.
The touch screen could function with this system entirely removed. Because of this fact,
most of the components within this system were chosen to be able to be designed and
implemented without exhausting exorbitant amounts of resources.

6.1 Power

Power for the device can come from multiple sources. The computer and projector
within the device will have their power provided by their own power sources. Without
modifying the underlying hardware within those devices, the power sources cannot be
changed, and that is not within the scope of the project to do. It is possible that a system
can be built that combines all of these internal power sources into a single external power
source. This can be as simple as adding a surge protector within the enclosure. A surge
protector would not only combine all of the separate cables into a single cable leaving the

 Page 59

system, but it would also add a layer of protection to the system. But, if the end user
connects the final project to a surge protector, creating a daisy chain, this could
potentially create a fire hazard.

The LEDs and fans on the other hand can be powered from multiple sources. It is
possible that they can be powered using their own power source. The simplest way to do
this would be to use a linear power supply. This would require minimal additional
hardware and would give great control over the voltage that was being fed into the
system. Alternatively, a power regulator could be partially or entirely built to the
specifications we desire. Both of these options do require additional hardware to be
purchased, as well as having the disadvantage of being a 3rd power cord going through,
and possibly out of the device.

The final option, which is what is used in Plank, is to use what is already available. The
computer will have a power supply and additional rails that can be used to power
additional components within the device. These rails function on 12 volts. Depending on
the wattage of the power supply selected, the amperage that each rail can output will vary,
but multiple rails could be used to supplement. Many of the power supplies considered
have the capability of outputting their entire amperage over a single 12 vole rail.

6.2 Pulse Width Modulation

Control over the speed of the LEDs and fans can be accomplished through analog means
or digital means. Using analog means has several disadvantages. Because the LEDs
function as diodes, they have a minimum, non-zero voltage which is required to turn
them on. This would have to be adjusted for within the circuit. Also, the voltage through
the LEDs is depending on the current. This means that adjustment of the LEDs would be
non-linear when using a potentiometer alone to control the voltage. Analog signals are
more susceptible to noise than equivalent digital / pulse width modulated signals. Last,
this has been known to cause excessive wear on the LEDs due to creation of heat.

The speed of the fans should also be dynamic. Under varying loads, or when the device
is in an idle state, it will produce noticeably less heat than in a state of heavy usage. By
varying the speed of the fans, the resulting noise output can be significantly decreased.
Fans come in varieties with 2 pins, 3 pins, and 4 pins. The optional 3rd pin adds feedback
based on the speed the fans are currently running. This feedback can be interpreted by a
computer or another device to vary the speed by varying the voltage over the first two
pins. The optional 4th pin allows for low current pulse width modulation to act as a
control signal for the fan (Burke, 2004).

A simple way to achieve pulse width modulation is through a 555 timer. The circuit to
use a 555 timer as pulse width modulator is a well-known design, which would not
require any additional design for the project. It could just be implemented according to
the specifications required. This is the route that other projects, such as the Poker Table,
went with. There are disadvantages to the use of the 555 timer though. Most notably is
the fact that it is manually controlled. The device would be controlled by the difference

 Page 60

in resistance over a potentiometer, but that potentiometer would have to be controlled by
the user of the device. In the case of the fans, the speed of the fans may need to be
controlled automatically based on the temperature within the device. Even if this
temperature is displayed, controlling the speed of the fans may be cumbersome and
inefficient for the user of the device. There would also need to be a separate 555 timer
circuit controlling each component that needs to be regulated. This can have a significant
increase on the number of components within the device.

In order to get automation of the control, a processor is going to be required. In this case,
a microcontroller would be sufficient. But, the specifications of the project do not require
very high requirements of the microcontroller, so there are several available options.
There are several different brands and types of microcontrollers out on the market that
would be more than sufficient for these relatively low specifications. For the purposes of
this project, familiarity and simplicity are two major factors in the design of the control
system. Spending time learning a new language or programming with an unfamiliar
device for purposes of supplementary systems would have inhibited work on other
systems. Because of these factors, an MSP430 will be used for the project.

In order to control the LEDs, a potentiometer would need to be hooked up to an analog to
digital controller within the microcontroller. For the fans, a temperature sensor may be
added to automate the speed. If the temperature sensor is not used, then a potentiometer
would also need to be used to control the fans. In both cases, another analog to digital
controller would be required. To add a degree of expandability within the project, it
would be beneficial for there to be at least 4 channels on the analog to digital converter.
There are also several types of analog to digital converters that come on the MSP430
chips.

The cheapest method is to use onboard comparators. These comparators can tell the
difference between the input voltage and a set voltage. This can then be used to infer the
voltage. But they can only tell if the voltage has increased or decreased. SAR analog to
digital conversion functions in a similar fashion. Every time a sample is taken, the
current voltage is held. The new voltage is then compared against the previous voltage.
The final method is Sigma-Delta analog to digital conversion. These use additional
digital components to reduce the effects of noise.

The pulse width modulation would be handled through the general purpose output pins.
There would need to be one of these one of these for the LEDs and one for the fans. As
with the analog to digital converters, it would be beneficial to leave some room for
expandability within the project, so at least 4 general purpose output pins would be
required.

An MSP430G2231 fit our specifications. It comes with a 10-bit SAR analog to digital
converter, comes in an easy to use, DIP packaging, and has 10 pins which can be used as
either analog to digital inputs or general purpose outputs (Texas Instruments, 2011).

 Page 61

Figure 26 - Functional Block Diagram of MSP430G2231 (Reprint pending approval)

6.3 Temperature Sensing

The amount of heat that must be dissipated from the device varies based on how much
the current workload of the device is, as well as conditions of the room in which the
device is operating in. All of the internal components may have their lifetimes noticeably
decreased by the temperature within the device. Because of this, there needs to be a
significant amount of heat dissipation.

Increasing the amount of heat dissipation also increase the ambient noise that the device
is producing, so it is important that the speed of the fans be adjusted based on the
temperature within the device at a given time. In order to do this, we will need at least
one temperature sensor.

There are two major producers of heat within the device. They are the projector and the
computer. If a single temperature sensor is used, it would need to be positioned between
the two devices, so that it could accurately measure the temperature between the two. A
more ideal setup would be to have two temperature sensors, one on or near each device.
If either of the devices increases passed a specified safe temperature, then heat dissipation
could be increased.

Temperature sensors also come in several types. The primary variants are local
temperature sensors and passive infrared temperature sensors. Local temperature sensors
measure the temperature locally. Whatever the sensor is placed on is the temperature that
they measure. Passive infrared temperature sensors measure the temperature of a surface
remotely, using infrared. Since the temperature being measured is local to the two main
heat sources, a local temperature sensor would give the most accurate reading.

 Page 62

The MSP430 microcontrollers also optionally come with built in temperature sensors.
But the locations that are being measured are not going to be the location that the chip is
actually going to be in. This means that the built in temperature sensors would not be
ideal for our implementation. There are also digital temperature sensors with built in
analog to digital converters or other components which output the temperature in a digital
fashion. Since the plan is to utilize the built in analog to digital conversion on a
microcontroller, an analog temperature sensor was sufficient.

The maximum temperature that the temperature sensor should be able to read should be
at least 20% higher than the maximum operating temperature of the components within
the device. The maximum operating temperature is expected to be lower than 70°C, so
the maximum temperature must be at least 85°C. The device is not expected to be
operating in conditions below freezing, so the minimum temperature can be at or above
0°C.

It is also important that the output voltage scaling is high. With a low output scaling
voltage, there is an additional source of error caused by the accuracy of the analog to
digital converter. Because of this, an LM37 type temperature sensor was more ideal than
a LM35 or LM36. The LM37 has a scaling of 20 mV/°C, compared to 10mV/°C of the
LM35 and LM36. The LM37 also has an offset of 0 mV at 0°C (Analog Devices, 2010).

Table 6

Comparison of Temperature Sensors

Scale

(mV/°C)

Output at

25°C (mV)

Output at

50°C (mV)

Output at

75°C (mV)

LM35 10 250 500 750

LM36 10 750 1000 1250

LM37 20 500 1000 1500

7. Image Recognition System

The purpose of the Image Recognition System is to collect the image data from the user
and output it in a format that is efficient for the computer to use. The data that is
collected needs to be filtered of any erroneous information so that the relevant
information can be obtained accurately and efficiently by the Object Detection System.

A common method for filtering out erroneous information is to work within the infrared
domain. This is done by removing visible light, and increasing the contrast of the objects
you wish to view. There are 3 primary components to achieve this. The first is infrared
LEDs. These act as the source of the infrared light. The second is an acrylic surface
which refracts, reflects, or diffuses the infrared. The final piece is an image sensor,
which actually receives the image and sends it to be analyzed by the Object Detection
Software.

 Page 63

7.1 Types of Image Recognition

Multi-touch systems have been around for decades. The earliest ones were being made in
1980s. The currently exist on many laptops, tablets, and phones. But not all of the
technologies are scalable to a large table. Also, not all of the technologies would allow
for the feature set required for this device. So, the type of image recognition that is used
will have a significant impact on the capabilities of the device.

Capacitive touch, Resistive touch, and Electromagnetic Resonance (EMR, Wacom) are
technologies that are used in smaller devices like laptop computers and cell phones, but
require very specific technologies which are expensive to scale up to large tables.

7.1.1 Frustrated Total Internal Refraction (FTIR)

The type of image recognition that originally started the research and development of
these technologies for large screens was called Frustrated Total Internal Refraction
(FTIR). The theory behind this is that infrared entirely refract within the acrylic layer.
When an object applies pressure to the acrylic surface, the infrared can no longer refract
completely and instead exits the surface out the bottom. These disturbances are then
caught by a camera below.

The setup of this type of system usually involves an active layer of acrylic. This acrylic
is not any special type of acrylic and most acrylic will work. The infrared LEDs are
housed in or around the acrylic. A compliant surface is made above the acrylic. This
consists of a material used as a diffuser being attached to top surface of the acrylic by a
very think rubbery layer. A projector or LCD is then placed below the acrylic to project
an image, along with a camera that reads the touch events (NUIGroup).

 Page 64

Figure 27 - Illustration of Frustrated Total Internal Reflection (Reprint pending approval)

The advantage of this method is that it delivers a very high contrast ratio for touches on
the surface. It also is relatively unaffected by outside disturbances. This makes it a very
reliable system for interpreting touch events. But it is not without its disadvantages.
Because FTIR relies on pressure being applied to the surface to cause a disturbance,
fiducials and other objects cannot be recognized. Also, the surface does not properly pick
up dragging. This requires that there is another layer on top. This layer must be free of
air bubbles, thin, and made of a malleable material. This layer can be difficult to
properly place down and an unsatisfactory layer can have significant effects on the output
image.

7.1.2 Front/Rear Diffused Illumination (DI)

A second method was developed that could see objects more distinctly on the surface.
This was called DI (Diffused Illumination). The theory behind DI is rather simple.
Infrared light would be shined directly at the surface. The light would travel through the
acrylic. Any object above the surface would then reflect the light back down at the
camera.

There are actual several different setups that work for DI and the design for DI tables is
not concrete. Depending on the size and shape of the surface you are using, different
numbers and types of infrared lights can be used. The lights also do not need to
illuminate the surface from below. They can illuminate the surface from above and the
resulting image would be inverted. Acrylic is also not a requirement. Because the
surface only needs to have infrared light travel through it, any surface that is clear will
work. A normal DI setup utilizes a layer of clear acrylic as the active layer that reflects
the infrared light. A diffusion layer is then placed on top of this surface. Multiple high
powered infrared light sources illuminate the bottom of the surface attempting to create

 Page 65

an even covering of light. It’s critical that the diffusion layer still lets a significant
amount of the infrared light through the surface. Light from fingers and objects are
reflected more when they are close to the surface than they are when they are far away
(NUIGroup).

Figure 28 - Illustration of Diffused Surface Illumination (Reprint pending approval)

The primary advantage over FTIR is that objects can be recognized on the surface. The
device is not limited to only touch. The lenient materials in the design also mean that the
device can be designed to be more functional. Materials that may be easier to drag your
finger across, or may be more resilient can be used. It does have several notable
disadvantages. Because it relies on simple reflection, anything near the surface could
potentially give off infrared and cause a disturbance. The Object Detection Software also
needs to be calibrated to detect objects at the correct distance and there is not a high
contrast between objects on the surface and objects near the surface. Because of the
setup of infrared lights, these devices are also known to have an uneven distribution of
infrared light which must be calibrated for as well.

7.1.3 Diffused Surface Illumination (DSI)

Rather than directing the infrared light directly at the surface, it would be more effective
if you could evenly disperse the light over the entire surface. Using a special type of
acrylic called edge diffused acrylic, DSI (Diffused Surface Illumination) creates an
evenly dispersed layer of infrared, which can then be read back by a camera.

A typical DSI setup would include an active layer of edge diffusing acrylic such as
EndLigthen or ELiT. Infrared LEDs are housed around the acrylic. Its important that no
extra infrared light escapes from the LEDs without passing through the acrylic first, or it
can create hot spots around the edges of the device. A diffusion layer is placed over the

 Page 66

top of the surface. A projector and camera are placed below the surface and the camera
reads the touch events. If the acrylic of an FTIR table is replaced with the edge diffused
acrylic necessary for DSI, then a FTIR table can be converted to DSI. Similarly, a DI
table is easily converted into a DSI due to the edge illuminating acrylic not interacting
severely with the method DI uses to view touch events (NUIGroup).

Figure 29 - Illustration of Diffused Surface Illumination (Reprint pending approval)

Edge diffused acrylic has metallic dust mixed into it which reflects the infrared light
coming in through the edges. This light then creates an even layer illuminating the
bottom and top of the acrylic. Like DI devices, DSI devices allow for object detection.
But, because the source of the light is centered directly around the acrylic surface, the
contrast of objects near the surface is increased. And because the light is evenly
distributed, you do not need to worry about the uneven distribution seen in DI devices.
Like DI, the surface is still susceptible to outside interference. It also requires a specific
type of material to function which is more expensive than the alternatives offered by
FTIR and DI.

7.1.4 Interpolated Force Sensitive Resistance

Some methods do not utilize infrared light at all. A newer technology that has been
introduced uses glass or acrylic that has been coated in a material that has force sensitive
resistance. The two layers of materials are also configured with a set of parallel
electrodes, with each layer's electrodes being perpendicular to each other. The higher the
pressure on the surface, the more current can travel through the electrodes near the source
of the pressure. This information can then be gathered to pinpoint the location of the
touch as well as the amount of pressure used (Edwards, 2010).

 Page 67

This has an advantage of being thinner than the infrared technologies. It also gives
another degree of information that can be used to create new and intuitive gestures and
inputs. The disadvantage of this is that it relies on pressure, so object recognition may be
out of the question, unless the objects are of suitable weight. It also requires material that
has been covered in parallel lines of electrodes, which does not come pre-manufactured.
These restrictions make IFSR less than ideal for applications within this project. But, the
technology may have usefulness in other applications where the ability to read pressure
may be a valuable research. An example of this would be in art, where the pressure of a
brush stroke will affect the expected result. Currently, only Wacom devices offer this
sort of functionality with their use of Electromagnetic Resonance (EMR).

7.1.5 Optical Imaging

Optical imaging has been a popular technology on large scale multi-touch projects for a
long period of time. It utilizes a small number of cameras at the corners, just above the
surface to be touched. By using simple optical algorithms, the location and size of an
object touching the surface can be triangulated.

As the size of the screen increases or decreases, the cost of Optical Imaging remains
relatively constant. On very large scale applications, it requires cameras with higher
resolution imaging, but a high level of accuracy can be achieved even at currently large
screen sizes. This makes it an ideal solution for most of today's current market. But, it is
also still limited only to touch. Although it can tell the size of the object touching the
surface and does not require any pressure, it cannot tell the shape of the object. Because
of this, the size of the object has minimal usefulness.

7.1.6 Kinect (3D Imagining)

For Microsoft's gaming system, the Xbox 360, they created a specialized array of
cameras that can create a true 3d image. The hardware within the Kinect can also
estimate the position of the user using skeleton when human shapes are being recognized.
This allows for interaction with a device without touch it at all. Gestures instead can be
made using all or part of the body, as well as relative distance to the screen.

The Kinect technology isn't truly a multi-touch technology. But, there are many
applications where it can give an intuitive user experience that allows for interaction by
multiple users. These are many of the features that this project aims to do. The software
algorithms for use with Kinect have not yet been fully realized and may require
knowledge of complex 3d imaging that may be outside of the scope of the project.

 Page 68

7.1.7 Conclusion

For the purposes of this project, the primary concerns are the accuracy of the device and
the ability to do multiple types of interactions. Because of this, Diffused Surface
Illumination was chosen. It offers the ability to do object recognition through the use of
fiducials as well as offering the ability to read touches and common touch gestures such
as dragging, pinning, and pinching.

7.2 Active Material

Because DSI requires very specific acrylic material, there are not very many options for
the acrylic that actually facilitates the touch sensing. The layer needs to be an edge
illuminated acrylic. This acrylic has metal dust mixed in which disperses the light that
enters from the side over the entire surface. The amount that the light is dispersed is
effective by the amount of metal added. This means that a material that disperses better
will also cost more.

Other projects have had significant success with the EndLighten material, which is
manufactured by Evonik. Evonik makes several types of all of the acrylic that will be
required for the project at competitive prices, so it is an ideal supplier. The EndLighten
material comes in several thicknesses and grades.

The thickness of the material does not have significant effect on the the performance of
the acrylic according to manufacturer specifications. It will affect the surface area that
can be illuminated and the sturdiness of the acrylic. The size of the LEDs, with their
mounting, is expected to be in the range of 6 to 8 mm. The Acrylic comes in 6mm, 8mm,
and 10mm. To allow for maximum absorbence from the LEDs, a material thicker than
the size of the LEDs is ideal. The size of the table is also exceptionally large. To ensure
that there is no bending over the material, due to the weight of all of the layers of the
acrylic as well as people possibly putting large amounts of force on the table, the
maximum thickness of EndLighten will be used.

The grade of the material effects how much light is dispersed through the surface. A
higher grade of material will allow for light to penetrate deeper, but may also require
brighter infrared LEDs. Tests from other projects have shown that XL, which is normally
rated for up to 24” may only obtain up to 17” usable for DSI applications. Due to the size
of the table, XXL will be required.

7.3 Diffuser

The projection layer is the layer you actually see the projected image on. Although this
may not seem like it is directly related to the touch system, it actually has a significant
impact on the performance of the touch system.

 Page 69

By necessity, the projection layer disperses light so that an image can be displayed on the
surface. The more light that is being dispersed; the better the image quality can be
viewed. This has the negative effect of dispersing input touches and objects. This
creates a need for balance between picture quality and touch sensitivity. Although the
dispersion of light is in most situations bad, it can also be good for touch sensitivity.
Objects that are further away from the surface will be dispersed more, so this creates
better differentiation on an objects distance from the surface. The way that the material
disperses light may also have an effect. Many rear projection materials do not evenly
disperse the light. This creates hotspots around the outside of the projection which may
interfere with the ability to read inputs at those locations.

Rear projection material can be broken up into two primary types: film and acrylic. The
film materials can be rolled out over a surface and cut with simple tools. They have the
advantage of being very thin, cheap, and flexible. These also tend to have a adhesive side
that can be adhered to the acrylic touch service. Because of how thin they are, these are
known to have hot spot around the outside from the projector and obtain less ideal blobs
than the acrylic materials. Acrylic rear projection materials are thicker and more
expensive. These tend to come in the range of 5mm or more in thickness. They are
sturdier, though they are also known to be soft and scratch easily. These have the
advantage of being less susceptible to hotspots from the projector. Tests from other
projects have also shown that they produce better quality object detection that the film
materials.

The specifications for rear projection acrylic are given in the form of transmission rate,
gain, and half-gain. The transmission rate is the amount of light that passes through the
material. A high transmission rate means that very little light is dispersed, and the image
quality will suffer. A very low transmission rate can also cause its own problems. It may
darken the image, as well as obscuring objects and touch events. The gain is the amount
of the dispersed light when compared to light reflected off of a Lambertian surface. The
half-gain is the angle where the luminance reaches fifty percent of what a Lambertian
surface would produce. A Lambertian surface is a surface that follows Lambert's cosine
law. This is a surface, that when light reflects off of it, it is dispersed in a fashion that
when viewed from an angle, the cosine of the luminance changes at the same speed as the
cosine of the area of the surface. This gives the effect that the surface is illuminated
equally from any viewing angle. A surface with a higher gain will have a lower viewing
angle. But, a surface with a lower gain will not necessarily have a high viewing angle.
This is why the half-gain is also important (Salmon).

The Evonik 7D006 material was chosen as the rear projection material for this project. It
gives a very clear projected image as well as still supplying the accurate blob detection
required. It is also not as expensive as the 7D512 and 7D513 alternatives. It was also
chosen because it has been highly tested and other projects have shown to get the quality
of object detail that required. This is the same material that was used in the Microsoft
Surface, which is the only mass produced multi-touch screen of equivalent scale.

 Page 70

Figure 30 - Inclusion of Various Diffuser Materials on DSI Table. From top to bottom, 0D002

Colorless, 7D512 Light Grey, 7D006 Grey, 7D513 Dark Grey (Ramseyer) (Reprint pending

approval)

 Page 71

7.4 Abrasion Resistance

The rear projection material, as well as the active layer, is known to be soft and scratch
easily. Due to the nature of the device, it will have constant interaction which could
damage the relatively expensive surfaces. This required that there is a third layer of
material on top to protect the other two.

Evonik 0A000 MR2 material will be used for this purpose. This is clear acrylic which
has a special abrasion resistant coating. Because it is clear, it will have no effect on the
projected image or the image detection. It also is shown to have a significantly better
resistance to wear as well as being only a third of the cost to replace compared to the
EndLighten material.

Evonik also produces EndLighten which has been coated with the same abrasion resistant
coating. But, due to the rear projection material being on top of the EndLighten, this
layer should not be in contact with the users of the device. For this reason, it is not
necessary or optimal to use the EndLighten with this coating.

7.5 Camera

The camera will actually take the picture and transfer that to the computer to be
interpreted by software. It is imperative that the frame rate remains high. The goal
would be to be as close to 30fps as possible. In order to this, the camera needs to have an
efficient sensor that can receive a quality picture in low light conditions. If the sensor is
not satisfactory, this can be compensated by raising the exposure on the camera, but this
will lower the frame rate. The exposure on many of these cameras can go as high as 1/5
second, but that would lower the maximum frame rate of the camera to 5 frames per
second. The other option is to increase the gain on the camera. Raising the gain on the
camera is lowering the amount of light that needs to be collected. Lowering the amount
of light also means increasing the susceptibility to interference. The resulting picture can
come off as “grainy”. This graininess may result in static and artifacts in the picture.
The large majority of these artifacts are very small that they can be reliably be removed
by software, but only to a certain extent. The issue comes not with the artifacts resulting
in unwanted touch events, but rather in the removal of the artifacts resulting in the wanted
touch events to be obscured.

There are two major types of cameras that can be used for this application. The first of
which is FireWire cameras. The name FireWire specifically refers to the interface in
which these cameras interface with the computer, but the majority of these cameras are
used for specialty applications. The majority of these cameras are built to be parts of
system, similar to how it would be used for this project, rather than as a separate device.
Because of this, they tend to be very simple and industrial in design. They also offer
significant amounts of control over the type of sensor, lens, and format. This, in theory,
could result in better performance. These devices are not designed to be looked at by a
user, but rather to give data that can be processed by a computer. Because of this, they

 Page 72

tend to be lower frame rate and resolution than other consumer level cameras. But this
also means that they tend to output to the computer raw images as the censor season them,
with all the processing able to be done by the software. The difference in processing
power of the computer would allow for much better processing to be completed.

The second option is to modify a traditional webcam. Webcams are, by design,
marketable to the average consumer. This means that the features they focus on are
maintaining a frame rate over 30 frames per second, higher resolutions, and convenience.
Many of the features on these cameras would have to be disabled since they are
counterproductive to receiving quality images. Of primary concern is the automatic
focusing and automatic gain control. Once the settings in the device are calibrated to get
the optimal picture, every change in the focus and gain could obscure touch events.
Many of these webcams also may not have access to manually change these settings,
which would make them unusable for the project. Another problem introduced in these
cameras is the fact that they are shipped with infrared cutoff filter. Since the cameras are
built for visible light and to display as a human eye would see, not as the device itself
sees. Depending on the camera, this may be an easily removable filter that can be
screwed on and off, or it may be glued or cemented in place, which may require that it is
broken off, which may potentially damage the image censor. The output format of these
cameras also tends to be a processed video format. This presents three problems. First,
the image may be processed with filters that affect the quality of the image for the
purposes of sensing infrared. Second, the video format would be compressed and “loss-
y”. This means that quality would be lost between what the camera's censor is capable of,
and what the actual camera is outputting. Third, the video format would require decoding
and additional computer resources to process.

Of major concern with the camera is that barely any of the datasheets for these cameras
lists how these cameras will behave in the conditions needed for this project. Even for
the FireWire cameras, this project will be utilizing them in a way that they were not
originally intended to be used. Decisions on the camera will be made largely from
interpolated data and experiences of other users. It will also likely be the first time the
camera chosen will be used for this kind of purpose. Many of these factors will be
compensated for with the LEDs. By producing more infrared light, the gain on the
camera can be much lower. By using a wavelength closer to visible light, it is more
likely that the camera chosen will be able to see the infrared light.

Logitech offers several cameras which use the Universal Video Class specification for
their drivers. This specification does not require drivers on most systems. It also offers
the ability to change several of the cameras features in a standard way. They allow for all
of the auto adjustment features to be turned off and allow for the resolution, exposure,
and aperture to be adjusted manually. Many of the cameras also allow for output to be
given in YUYV or Bayer raw formats. They also come equipped with wide angle lenses
which will allow for a very shallow placement within the enclosure without distortion.

 Page 73

7.6 Optical Low Pass Filter

While cameras are capable of gathering useful information, they also gather significant
amounts of erroneous information. Due to this reason, it is necessary to filter out as
much of this information as possible. The camera is already incapable of seeing infrared
light below a certain frequency; this makes the camera high pass by design. An
additional filter can be placed on top of the camera that acts as a low pass filter, filtering
out higher frequencies.

There are two cheap and economical ways of doing this, both of which utilize materials
that may be able to be readily available or cheap to purchase. The first is to utilize a
floppy disk. The magnetic coated plastic that is used to store information has the side
effect of being a low pass filter. This material can be cut and placed over the camera's
lens. The second is to use developed photonegative. The photonegative must be
developed in order to properly function as a low pass filter. But, if the photonegative has
an image on it, or was used to take a picture, then that resulting picture will prevent the
filter from being an even low pass filter. The actual specifications on these homemade
filters will very and are not firmly known. The cutoff frequency may vary from one disk
to another or depend on the development process of the film.

A more reliable method of filtering would be to purchase an optical low pass filter. A
cold mirror was chosen for this application. The cold mirror acts as an optical low pass
filter by reflecting cold light (less than 750nm) and allowing warm light (greater than
750nm) to pass.

7.7 LEDs

LEDs have many features which will affect not only the performance of the device, but
also the effect how complicated the design will be. The main issues effecting
performance are the wavelength of the LEDs and the brightness of the LEDs. Most
cameras that were considered are designed for the consumer and not specialized
applications. Because of this, they are designed to see visible light and may not be able
to see the entire infrared spectrum. This means that it is safer to use a wavelength of
LED that is closer to visible light rather than being deep into the infrared spectrum.
According to the CIE, visible light is in the range of 380nm to 780nm in wavelength.
Mid infrared, which is normally thought of with thermal imagery, starts at 1400nm
(Schulmeister).

The brightness of the LEDs effects how deep the infrared light can travel into the acrylic.
This is affected not only by the actual brightness of the LEDs, but also by the spacing of
the LEDs. The brighter the LEDs are, the more outside interference can be reduced.
This effects whether or not the table can be used in daylight or well-lit rooms. If too
much infrared light is produced, this can cause blowout on the camera, which is where
things are too bright for the camera to properly recognize them. Also, the more closely

 Page 74

spaced the LEDs are, the higher the cost and the higher the power usage, which could
affect the marketability of the device.

The factors that affect the design specifically are the physical characteristics of the LED.
The voltage being applied to the LED chains from the power supply is 12v. This requires
that the LEDs be placed in chains, which a certain number of them in series with a
resistor to apply the correct current through the LEDs. The voltage required for each
LED will affect the number of LEDs which can be placed in each chain. The current
going through the LEDs will be constant, with the voltage being modulated. Due to the
number of LEDs, this power consumption can also get quite high.

The LEDs are also rated for a half-angle that they illuminate. It is important for the
device that the illumination is kept within the acrylic as much as possible. If infrared is
able to travel directly towards the objects touching the device and not travel through the
acrylic, this can create hot spots around the edge of the surface. But, if the illumination is
too narrow, then it will not disperse properly through the acrylic. This can be
counteracted by creating a cover over the top of the LEDs that an overlap onto the acrylic
so that any excess infrared light is reflected back towards the acrylic. The way the LEDs
are mounted may also have an effect on the dispersing of light. An efficient way to mount
the LEDs must be made so that they are perpendicular to the acrylic edge so the
maximum amount of light enters the acrylic. Because of this, surface mount LEDs on
PCBs may be the most reliable format. The area housing the LEDs will also be covered
in a reflective or metallic material in order to reflect as much light as possible back into
the acrylic.

8. Design Summary

Five systems are in the design of project Planck. These five systems include: the Touch
and Fiducial Recognition Software System, the Computational Container System, the
Showcase Software System, the Control System, and the Image Recognition System.
Figure 31 illustrates the composition of these systems as seen below.

The Image Recognition System gets input from the user and delivers this raw image
information to the Computation Container System which contains the computer. This
system delivers frames to the Touch and Fiducial Recognition Software System. These
are interpreted within software and the gesture object data is delivered to Showcase
Software System. From here, the gesture information is used to influence the game logic
and this in turn is shown on-screen. The system that displays the information back on the
screen is the Computational Container System. Specifically, it uses a short throw
projector to do this. The images on-screen are then used by the user to help them decide
what they would like to do next.

 Page 75

Figure 31 - Top level block diagram

8.1 Touch and Fiducial Recognition Software System

Figure 32 illustrates how the TFRSS system interfaces touches and fiducials with the
showcase application. GestureTracker is instantiated as a thread of the showcase
application, weDefend. Once GestureTracker is instantiated it begins listening to port
3333 for communications from CCV. The communications received from CCV will
come as either touch objects or fiducial objects. If a touch object is received and it isn’t
in the shared data structure, it is considered a new touch and is added to the shared data
structure. If the newly received touch from CCV is found in the shared data structure, its
position and other identifying information are updated in the shared data structure with
the new properties of that object. If GestureTracker receives notification from CCV that
a touch has been removed from the surface, the corresponding object in the shared data
structure is removed.

Similarly for fiducials, as CCV notifies the GestureTracker instance that fiducials are
removed, moved, or added, those objects are removed, updated, or added respectively to
the shared data structure.

 Page 76

Figure 32 – High Level Block Diagram of Touch and Fiducial Recognition Software

The showcase application has two methods show in the class diagram figure below that
allow it to pull the list of touches and fiducials from the GestureTracker thread. The
WeDefend showcase application uses the data in these two lists as input to the graphical
application. WeDefend constantly pulls this list in order to update the graphical objects
based on the touch and fiducial data that GestureTracker updates in the shared data
structure. The two methods used by weDefend to acquire the shared data structure lists
are getCursorList() and getObjectList() and can be seen in the Figure 33. Since adding,
updating, and removing touch and fiducial objects from a shared list violates the
atomicity of the GestureTracker thread, locks were implemented to give priority to
writing into the shared data structure. GetCursorList() and getObjectList() can acquire
the lock when they are run in order to read the list but updating the shared list takes
priority over them delivering new data to weDefend. The latency assumed by this
process is minimal and has been mitigated by including a very fast processor/memory
structure in hardware. The typical number of objects being handled by Planck in general
is only in the 30’s so performance bottlenecks really aren’t an issue. Latency on the
device given this input paradigm is minimal and doesn’t affect usability.

GestureTracker thread Showcase (weDefend)

Listen to CCV

on Port 3333

CursorList

Updated Cursor

New Cursor

New Touch Event

Initialize

variables
Start

Read in lists

Update()

Update each

object on

screen

Initialize

simulation

variables and

load content.

Start

Draw()

Draw each

object on

screen

Create GestureTracker thread

Does cursor

already exist in shared

data structure?

Yes

No

Remove Touch Event

 Page 77

Figure 33 - Touch and Fiducial Recognition Software System Class Diagram

Figure 34 - Sequence Diagram of Touch and Fiducial Recognition Software

The UML Sequence Diagram in Figure 34 shows the life of every process in the
application and how they interact with one another and objects in the application. It also

 Page 78

shows how they interact with other processes. The UML sequence diagram is useful to
project Planck as it helps understand the flow how Cursor and Object processes travel
through the Vision framework, gesture framework, and the showcase application. This is
useful when the developers of project Planck begin writing the gesture framework and
the showcase application, weDefend. The process of how a user touches a screen to the
touch being added to the shared data structure will be illustrated in Figure 34.

8.2 Showcase Software (weDefend)

Figure 35 gives a brief introduction to the layout of the Showcase Software System. The
Gesture Recognition Module is a threaded class that will receive TUIO messages and
parses them into gestures. The Application included the game logic function and called
the drawing function. It also contained many support classes needed for the game to run.
The support classes help apply logic to all of the objects on screen. Window Creation,
Graphics Processing, Shaders, and Model/Texture Processing are all graphics related
tasks and will be used in the drawing of 3 dimensional objects on-screen.

The Use-case UML diagram shows the interaction the user has with the interface of
weDefend. The goal of the use-case diagram, from a developer standpoint, is to realize
the graphical overview of the functionality that weDefend provides to the users. The
diagram illustrates not only where the user is forced to start in the system, but his
available options at each step in the showcase application. The game initially starts at a
title screen asking the user to place down a preparation mode fiducial. This triggers a
state change to the Preparation mode in Planck. Once inside the preparation mode, the
user has a wide variety of different options available to him. Initially, the user only has
two options the user can take. One option the user can stamp his first unit anywhere on
the surface using the Stamp Unit Fiducial object. The other option is to stamp the Action
Mode fiducial object anywhere on the surface and the simulation will begin. This is
where the objectives of the scenario can be achieved or failed.

Now that the first two possible steps have been illustrated, the continuation of each of the
previous steps will be expanded. If the user decided to place the Stamp Unit fiducial, the
user then has three new options available to him. The first, he can execute the Field of
View (FOV) gesture on the unit. The second, he can execute the Patrol gesture on the
unit. Third, he can execute the Lasso Group Pin gesture on the unit. If the user decided
to stamp the Action Mode fiducial and enter the start of the simulation, then the user
would only be able to execute a FOV gesture or stop a patrol. The user cannot go back to
Preparation Mode. Once one hundred insurgents reach the protection zone the user will
be presented with the game over screen at which time he or she must place down the reset
fiducial to be brought back to title screen or if they become bored they can reset to the
title screen using the reset fiducial in the action mode.

 Page 79

Figure 35 - Block Diagram for weDefend

The UML State Diagram shows all the different states of an application. This can be
used to realize flow of the application and show how the different states affect both the
user and objects in the application. Four states were realized in the writing of
diagram. When weDefend is booted up it is in the title screen or main menu state. This
is the initial state of weDefend. From here the user can put down the preparation mode
fiducial which will send weDefend into the preparation state. Once the
Preparation mode, he has a wide variety of options available to him. This can be viewed
in the Use Case diagram. At any time the user can return to the start of the application by
using the reset fiducial. The user must stamp the Action Mode
mode to enter Action mode and execute the start of the simulation. Once he enters the
Action mode, he cannot return to the Preparation mode. Inside the Action Mode, the user
has a few options that are available to him. This ca

Figure 36 - weDefend Use Case

The UML State Diagram shows all the different states of an application. This can be
used to realize flow of the application and show how the different states affect both the
user and objects in the application. Four states were realized in the writing of
diagram. When weDefend is booted up it is in the title screen or main menu state. This
is the initial state of weDefend. From here the user can put down the preparation mode
fiducial which will send weDefend into the preparation state. Once the
Preparation mode, he has a wide variety of options available to him. This can be viewed
in the Use Case diagram. At any time the user can return to the start of the application by
using the reset fiducial. The user must stamp the Action Mode fiducial from preparation
mode to enter Action mode and execute the start of the simulation. Once he enters the
Action mode, he cannot return to the Preparation mode. Inside the Action Mode, the user
has a few options that are available to him. This can be viewed inside the Use Case

Page 80

The UML State Diagram shows all the different states of an application. This can be
used to realize flow of the application and show how the different states affect both the
user and objects in the application. Four states were realized in the writing of the State
diagram. When weDefend is booted up it is in the title screen or main menu state. This
is the initial state of weDefend. From here the user can put down the preparation mode
fiducial which will send weDefend into the preparation state. Once the user enters
Preparation mode, he has a wide variety of options available to him. This can be viewed
in the Use Case diagram. At any time the user can return to the start of the application by

fiducial from preparation
mode to enter Action mode and execute the start of the simulation. Once he enters the
Action mode, he cannot return to the Preparation mode. Inside the Action Mode, the user

n be viewed inside the Use Case

diagram as well. Finally, when the simulation has ended, whether the user won or lost,
the application will enter its final state, game over.

weDefend is made up of seventeen classes. Four of these classes are objects which have a
role in the scenario, while the others are support classes of the main four classes. The
main game1.cs has all the instantiation of our four main classes as well as the finite state
machine and the instance of gesture tracker which updates the shared input lists. This
class is responsible for holding the majority of the logic and running the scenario in
weDefend. The five protected methods are standard methods in any XNA Game Studio
application. These five methods are in charge of running the application and are
explained in greater detail in the section preceding this one. Initialize is the first of the
protected XNA methods. It is in charge of setting up all non
like vertex and index buffers, which contain data for drawing primitives, and other
parameters that affect the screen. The load and unload content methods are also protected
by default and are in charge of binding and sending all textures, images, sp
sound clips, and other assets to XNA’s content pipeline. The update function traditionally
changes things like position and game data based on mouse and keyboard input. This

diagram as well. Finally, when the simulation has ended, whether the user won or lost,
the application will enter its final state, game over.

Figure 37 - weDefend State Diagram

e up of seventeen classes. Four of these classes are objects which have a
role in the scenario, while the others are support classes of the main four classes. The
main game1.cs has all the instantiation of our four main classes as well as the finite state
machine and the instance of gesture tracker which updates the shared input lists. This
class is responsible for holding the majority of the logic and running the scenario in
weDefend. The five protected methods are standard methods in any XNA Game Studio
pplication. These five methods are in charge of running the application and are

explained in greater detail in the section preceding this one. Initialize is the first of the
protected XNA methods. It is in charge of setting up all non-graphic related compo
like vertex and index buffers, which contain data for drawing primitives, and other
parameters that affect the screen. The load and unload content methods are also protected
by default and are in charge of binding and sending all textures, images, sp
sound clips, and other assets to XNA’s content pipeline. The update function traditionally
changes things like position and game data based on mouse and keyboard input. This

Page 81

diagram as well. Finally, when the simulation has ended, whether the user won or lost,

e up of seventeen classes. Four of these classes are objects which have a
role in the scenario, while the others are support classes of the main four classes. The
main game1.cs has all the instantiation of our four main classes as well as the finite state
machine and the instance of gesture tracker which updates the shared input lists. This
class is responsible for holding the majority of the logic and running the scenario in
weDefend. The five protected methods are standard methods in any XNA Game Studio
pplication. These five methods are in charge of running the application and are

explained in greater detail in the section preceding this one. Initialize is the first of the
graphic related components

like vertex and index buffers, which contain data for drawing primitives, and other
parameters that affect the screen. The load and unload content methods are also protected
by default and are in charge of binding and sending all textures, images, sprites, models,
sound clips, and other assets to XNA’s content pipeline. The update function traditionally
changes things like position and game data based on mouse and keyboard input. This

 Page 82

method was severely overhauled to incorporate Plank’s novel input. The update method
was run a finite state machine which uses hexadecimal codes and logical and operations
to check for the state this FSM decides whether weDefend is in the preparation phase or
the action phase. It would then update all the interactive objects if Plank was in the
preparation or action state by calling the interactive objects respective update methods to
link gestures to soldiers. Then the unit specific update methods would adjust all the fields
of the existing objects given they have an input gesture linked to them. Once these two
methods are done isOld method runs to make sure that touches that are linked to objects
can not affect other interactive objects as well as check whether the stamp fiducial has
been placed to create a new soldier. The draw method will take care of all rendering and
is explained in greater detail in the section above.

The other five methods are used to assist the update method in interfacing with, and
assuring the state machine is reset when the reset fiducial is placed. The update methods
of each interactive object were passed the two shared input lists that gesture tracker adds
touches and fiducials to. With these lists they were able to run the linking algorithm as
well as update the fields that are being affected by input that is linked. In order to link an
input to an interactive object, first it is checked whether or not the linked Boolean of that
object is set. If it is, then it was proceed to search for the touch that is linked and update
the object based on the updated information of the touch position being a simple example
of such. If the linked Boolean is not set then we proceed to search through the list and see
if it is inside the bounding radius of the object, if it is we make the link ID of the object
equal to the touches ID and set the linked Boolean. When the method is finished each
instance of a soldier will have corresponding gestures that are related to them if any input
occurred near the object and would have been updated appropriately. The update method
would also update the debug status of all debug objects of the debug state is toggled. The
debug state is necessary when testing the software on a prototype that does not have a
rear projection acrylic so that touches can be seen. It is also a useful tool for assuring that
units are behaving as they should.

The two types of fields in the weDefend class are graphics related fields and scenario
logic related fields. The graphics related fields define things like the screen width and
height as well as scaling factors for sprites, textures, and models. The scenario logic
related fields are the bit flags which run the FSM. The other two fields are linked lists
called soldiers and insurgents. These two linked lists contain each instance of soldiers and
insurgents. It was used to loop through all the instances of soldiers and insurgents so that
they can be updated every time update unit state is called and every time they need to be
rendered.

The other classes in weDefend are a plethora of support classes necessary to execute all
manner of things from debugging to fields of view. Some of the more important classes
are the debug Item, FOV, patrol route, polygon drawer, lasso, gesture tracker, and
particle. The debug item class is responsible for creating a series of rectangles which
contain text that gives information about each interactive object such as position, angle of
the field of view, and whether or not the linked bool set. It also is integral in testing
weDefend on a prototype with no rear projection acrylic since it places small black

 Page 83

diamonds that denote touches. FOV is a class which contains many of the same
functionality as an interactive soldier, however it differs in that it draws a field of view
and detects whether or not a touch is inside it with a more complicated geometrical
intersection algorithm. Every soldier owns an instance of FOV. Patrol route is similar to
FOV because it is an interactive object however its algorithms are almost identical to
soldier except for the algorithms that drop waypoints as it is being dragged and then
makes the soldier follow those waypoints. Again each soldier owns an instance of patrol
route.

The polygon drawer class is a helper class which uses primitive batch to draw things like
circles, diamonds, cones, boxes, and other manner of geometrical objects that make up
the units, walls and interactive objects in weDefend. Lasso makes use of polygon drawer
in order to draw selection squares on the surface of weDefend. Lasso is used to create
player groups. Any soldiers that are inside a lasso when a user releases a lasso receive a
random color to denote that those soldiers belong to that user. The particle class is in
charge of making soldiers shoot bullets at insurgents. It uses simple physics to calculate
where an insurgent is going to be in order to collide with him after a set amount of time.
Some variability is also thrown in so that soldiers sometimes miss. Finally the gesture
tracker class is a thread that is instantiated in weDefend so that it can write to the shared
data structures, more information on this class can be found in part three of this paper.

The soldier class contained many important methods and fields. The soldier class has
fields which allow all game logic and graphics to be updated. An integer will represent
the attack power constant that never changes for any soldier. The field of view distance
defines how far from the unit the field of view must be drawn. The field of view angles
theta and phi are used to orient the field of view. Theta is the angle relative to the center
of the soldier while phi denotes the angle of the actual field of vie which changes based
on distance. The screen coordinate point object is two integers x and y which defines
where the soldier should be drawn on the screen and where he exists in screen
coordinates. The unit ID is an integer which counts up from one and is assigned to every
instance of soldier that is created. The patrol route object as described above was owned
by the soldier to give the soldier class the capability of being put on patrol routes. This
data structure had a start point and endpoint to denote the beginning and end of a patrol
route. The gesture link ID is an integer which denotes which touch the soldier is currently
linked to. A soldier would fire at the first enemy that enters his field of view and would
not stop firing at that enemy until the enemy is either eliminated or exits the field of view
at which time the soldier will then choose the next enemy in his field of view to attack.
The linked Boolean will be used by the update unit state function to tell if any input
needs to be resolved for a particular soldier instance.

The methods for the soldier class are a series of overloaded update and draw functions
that update or draw based on what state the game is in and what parameters are needed I
each state. The soldier also has a follow patrol route method which it uses to move along
patrol routes autonomously based on the list that is returned by the patrol route puck. The
update debug method continually sends the debug information from fields of the soldier
to the debug item that has been assigned to that soldier. The update cursor method is used

to assist in updating the sol
directly to the location of the linked touch.

Insurgents are created by using two classes. The insurgent generator class uses a random
number generator to spawn insurgents at a set number o
around the map. The percent per update chance of spawning an insurgent is .003 if the
random number generator creates a number greater than this values then it will create an
insurgent at one of the hard coded routes.

The insurgent class is responsible for handling the logic once an insurgent has been
spawned. Insurgents update methods are continually moving them along their patrol route
every tick of the clock towards the protected zone. Once they reach the zone they
disappear. This movement as well as whether they have been shot, explained below, is
calculated in the insurgent update method. The draw method displays the changes on the
screen. The test hit and collision method use simple object collision in order to calculate
whether or not an insurgent has been hit by a bullet. If they have then a hit point i
subtracted from the hit point
insurgent is killed and removed from the insurgent list.

8.3 Computational Container System

The computer enclosure will be solely designed for the showcase application. All
decisions on the design of the system as a whole will be made with one goal in mind,
optimizing the showcase application. There were a number of constraints during the
design of the Computer System that had to be taken into consideration. The enclosure had

to assist in updating the soldier’s position fluidly instead of snapping the soldiers position
directly to the location of the linked touch.

Insurgents are created by using two classes. The insurgent generator class uses a random
number generator to spawn insurgents at a set number of hard coded spawn points all
around the map. The percent per update chance of spawning an insurgent is .003 if the
random number generator creates a number greater than this values then it will create an
insurgent at one of the hard coded routes.

urgent class is responsible for handling the logic once an insurgent has been
spawned. Insurgents update methods are continually moving them along their patrol route
every tick of the clock towards the protected zone. Once they reach the zone they

r. This movement as well as whether they have been shot, explained below, is
calculated in the insurgent update method. The draw method displays the changes on the
screen. The test hit and collision method use simple object collision in order to calculate
whether or not an insurgent has been hit by a bullet. If they have then a hit point i
subtracted from the hit point field and if the insurgent has run out of hit points the
insurgent is killed and removed from the insurgent list.

Figure 38 - weDefend Class Diagram

8.3 Computational Container System

The computer enclosure will be solely designed for the showcase application. All
decisions on the design of the system as a whole will be made with one goal in mind,
optimizing the showcase application. There were a number of constraints during the

n of the Computer System that had to be taken into consideration. The enclosure had

Page 84

dier’s position fluidly instead of snapping the soldiers position

Insurgents are created by using two classes. The insurgent generator class uses a random
f hard coded spawn points all

around the map. The percent per update chance of spawning an insurgent is .003 if the
random number generator creates a number greater than this values then it will create an

urgent class is responsible for handling the logic once an insurgent has been
spawned. Insurgents update methods are continually moving them along their patrol route
every tick of the clock towards the protected zone. Once they reach the zone they

r. This movement as well as whether they have been shot, explained below, is
calculated in the insurgent update method. The draw method displays the changes on the
screen. The test hit and collision method use simple object collision in order to calculate
whether or not an insurgent has been hit by a bullet. If they have then a hit point is

field and if the insurgent has run out of hit points the

The computer enclosure will be solely designed for the showcase application. All
decisions on the design of the system as a whole will be made with one goal in mind,
optimizing the showcase application. There were a number of constraints during the

n of the Computer System that had to be taken into consideration. The enclosure had

 Page 85

to be small enough to fit through a doorway. The enclosure had to be tall enough to use
while standing. The enclosure had to stay cool enough to keep all the inside hardware
from overheating. Finally, the design of the screen had to resemble that of a touch-screen
smart-phone. This is detailed as an acrylic sheet that goes wall to wall on the surface of
the enclosure.

The enclosure will be designed to be tall enough for the average user to run the
application standing up. With no real data to base our potential client’s height off of,
estimation was needed. From personal experience, an average height of 5’10” for males
is appropriate and 5’3” for females. . Because of this, the table was designed for an
average height of 5’7”. The group found that a total height of 36” was appropriate as it
allows users taller than 5’7” to still touch the screen without having to bend over and
allow users smaller than 5’7” to still comfortably reach the screen. A total screen size of
46” diagonal was chosen as its big enough to comfortably use the main application but
not too big where transportation would become a concern.

8.3.1 Image Display

Planck will use a short-throw projector to provide the display image for viewing the
showcase application. Much research was done on the image display but the feasibility
of a short-throw projector could not be over-looked. No mirrors need to be used to
maximize throw distance; the enclosure height is not of concern as short-throw projectors
can achieve a big image in a small space; and there is no risk of damage as no hardware
components needs to be removed and re-layered as in LCD televisions. The short-throw
projector meets the requirement of a resolution at least 1280x720. There are no other
drawbacks to a short-throw projector.

Short-throw projector choices were narrowed down to three. While previous multi-touch
users have disregarded manufacturer’s specifications and mounted the projector vertically,
the decision was made to obey all manufacturers’ specifications. They address these
issues for a reason, because they do not feel their product will work the way they
intended it to. This decision ruled out the Mitsubishi WD380U-EST. The Hitachi CP-
AW251N was chosen as the projector for Planck over the Sanyo PDG-DWL2500 for
many reasons. This list includes greater feedback from the NUIgroup community; less
power consumption; smaller dimensions; LCD technology over DLP, which is currently
favored for its sharper image; less weight; and it comes with better built-in support to
correct Keystone digitally.

The projector was mounted vertically against the wall of the enclosure. Collecting
information from the manufacturer’s manual, the vertical offset and throw distance
required to achieve a 46” diagonal display were found. This information can be found in
Figure 39. Using trigonometry, the angle that defines the vertical offset was calculated.
This is seen as α in Figure 39. The enclosure height required is 13.59 inches. The border,
defined as the distance between the edge of the enclosure and beginning of the display
image, must be 8.9” down one single side of the length of the enclosure.

 Page 86

With the vertical offset angle known, the measurements can be calculated when the
projector is tilted, to minimize the vertical offset. A modest tilt of 11.52° shortens the
border to 8.6” and increases the height of the enclosure to 17.15”. The measurements and
view of the tilt can be found in Figure 40. While the height is of little concern, the border
is barely minimized. This is due to the greater width the projector takes up from the tilt.
A greater tilt would reduce the border distance more but the ability to correct the
Keystone image becomes a concern. Of great importance is the fact that manufacturer
states all measurements account a chance of +/-8% error. Because of this, more time will
not be put into finalizing the exact tilt of the projector. Instead a precise tilting mount
will be constructed for the projector. The projector will be mounted and the exact tilt
required will be determined at the time of install.

Figure 39 - Projector Placement

 Page 87

Figure 40 - Titled Projector Placement

8.3.2 Computer

The computer that was chosen for the system has a quad-core i7 Intel. The video card
supports DirectX 11. To effectively take advantage of Intel’s aggressive prefetching
scheme, the computer has at least 4GB’s of main memory installed on the system. The
hard-drive should be a SSD to boot up with minimal delay for faster use. Figure 41 shows
the computer build that was bought for the project. An Intel quad-core 2nd generation i7
2600K was picked and paired with a compatible Asus ATX motherboard. Current ATX
boards only support memory at speeds of 1333mhz so 8gb’s of G.Skill was picked as
prices have dropped so rapidly on memory that it’s getting hard to find anything less at a
cost-savings. An additional 4gigs of memory only helps future-proof the system and is
well worth the additional $12 cost of only 4gigs of RAM. A budget friendly DirectX 11
video card was chosen to provide to power the graphics of the main application. A
Cooler Master 700W Bronze efficiency Awarded power supply was chosen to power the
computer, IR LED’s, and enclosure fans. While a 450-500W power supply would
probably be enough to power the computer itself, it was important to take into
consideration the power draw from the fans and IR LED’s. It’s also important to note
that power supplies consistently don’t deliver the wattage claimed. Starting with an
estimated wattage of 500W for the computer, another 100W allocated to the LED’s and
enclosure fans, and a 15% chance of error leaves a total power requirement of 690W. A
700w power supply meets these requirements. Finally, a Solid State Device hard drive
was chosen because of their faster read/write speeds over a magnetic hard drive. They

 Page 88

are also more reliable than the failure-prone magnetic hard drives. An OCZ Technology
Vertex3 Series 120gig was chosen for their claimed read time of 550mb/s and write of
500mb/s. This boots up Windows 7 faster than a magnetic drive allowing the user to start
using the showcase application more quickly. This is because the OCZ SSD has an
average read throughput of 500mb/s vs. 108 mb/s for a Western Digital Caviar black with
64mb cache. This is important as the user should have to wait a minimal time as per
specification.

Figure 41 - Detailed Computer Components

8.3.3 Enclosure

The enclosure was made out of ¾” thick Oak veneer. Oak was chosen because of it
being a strong hardwood and it being visually appealing. Veneer was chosen because of
its cost effectiveness and because it comes in large 4’x8’ sheets. Solid hardwood comes
in much smaller sizes which required a lot more gluing and is more expensive.

 Page 89

The enclosure was constructed essentially as an open-faced box. A door was not
included as calibration can be conducted without it, and it saves on construction time.
Unlike the prototype where a frame was constructed to house the LED’s and acrylic, the
frame was eliminated and the acrylic and LED’s were mounted directly to the sides of the
box. This eliminates a step and allowed us to achieve the specification of achieving the
smart-phone appearance. Eliminating the frame shortened the border and allows the
surface acrylic to span edge to edge on the enclosure. This can be viewed in Figure 42.
The acrylic is still removable from the box, one layer at a time. The dimensions of each
piece of the box are as follows:

Ends: 40.75”x19.75”; .75” dado cut at the bottom; .34” dado cut, .2” from the top.
Front/Back: 45”x19.75”; .75” dado cut bordering the bottom, the sides; .34” dado
cut, .197” from the top.
Bottom: 40.75”x44.25”; .75” dado cut bordering all sides.

Just like the prototype, the same dado design was used to piece the box together. Using a
dado blade provides many benefits such as allowing an exact fit of each piece of the box;
it’s easy and fast to piece together as it requires no glue and minor clamping; doesn’t
require any angles to be set as its being glued; and provides a stronger joint which
ultimately provides a stronger box. A door was not installed in the box. This was a big
change from initial research. The ultimate reason for not installing the door was to save
on construction time. It was determined that having a door would not help in the
calibration phase. Rather than install the door to calibrate and fix constantly breaking
parts, the idea was to pick parts that won’t break and make the correct installation on the
first try. This falls back to the requirement of everything being mounted securely. The
open-phase box also allows for the acrylic to come on and off the box easily. This
allowed for maintenance to the box if needed.

The enclosure was designed to accommodate a channel for mounting of the LED frame.
This is much the same design as the channel cut for the prototype. The difference is that
the channel is built directly into the side of the enclosure rather than on the top frame that
was built in the prototype. The channel was cut with a dado blade. The channel was as
thick as the EndLighten acrylic, 10mm. The channel was cut 3/8 deep into the sides of
the enclosure, half thickness of the wood. It was ½” wide, a measurement decided upon
based on the success of the prototype. There were several issues that arose in the wooden
LED frame in prototype. These include extensive soldering time, large room for error,
and exposed wiring leaving easy for accidental breakage. Rather than re-use this design,
project Planck will incorporate PCB boards into the design of the LED frame. The PCB
will be 10mm tall and surrounded all sides of the EndLighten acrylic. The PCB had
holes drilled in equally distributed intervals down the entire frame. The spacing of the
holes was determined by the design of Image Control System. With the frame built,
drilled, and the LED arrays mounted inside, the frame will be mounted snugly inside the
channel of the enclosure. From there the acrylic can begin to be stacked on top of each
other. The LED channel and acrylic layering can be viewed in Figure 42.

 Page 90

Figure 42 - Enclosure Cross Section showing LED Channel

Extra wooden blocks will have to be secured to the inside of the box for the EndLighten
acrylic to rest on. The only requirement on the size of the blocks is that they cannot be
wider than 2”. If they are any bigger they may start blocking the projector’s image.
Finally short acrylic rods will be welded onto the mar-resistant acrylic to act as a method
of fastening the surface acrylic to the top of the enclosure. This prevents movement of
the acrylic when in use. The rods were of approximate length of 3/8” and were fastened
using glue specially formulated to cause a chemical reaction that welds acrylic to acrylic.
The rods were mounted inside 3/8” holes drilled into the side of the enclosure.

8.3.4 Enclosure Features

Three fans were mounted inside the enclosure to dissipate built up heat from the various
hardware devices. The fans chosen are two Artic cooling AF12PWM 120mm case fan
and one Panasonic Panaflo 80mm. This delivers 57 CFM at 1350rpms with 0.5 Sone of
noise being produced. The fans are Fluid bearings as decided as the best choice in
research. They are claimed to have 120,000 hours of operation to ensure little
maintenance on the system over the years. The Artic Cooling fans also have the fourth
wire for Power Width Modulation (PWM). The position of both fans can be viewed in
Figure 44.

All three fans were mounted on the bottom of the box for a stealthily appearance. It was
deemed unfit to have hot air blowing on the legs of our customers. One AF12PWM was

 Page 91

mounted directly underneath the power supply, the second underneath the outtake of the
projector. The Panaflow has along PVC pipe attached to the intake that allows for the
Panaflo to draw hot air that collects at the top of the box. Rather than drilling more holes
for optional fans like other projects have done, the need was noted, but not included. If
the enclosure does not fall under satisfactory temperature level conditions during testing,
fans of the exact models as the previous will be bought and installed in locations directly
next to the original locations. This is an easy task and prevents the possibility of holes
being designed, drilled, and in the end, never used. The fans were connected to the
MSP40 in the Control System for power and received fan control based upon the
MSP40’s temperature sensors. This was an accurate way of judging the enclosure
temperature and controlling the heat.

The projector needs to be mounted to allow precision tilting. To accomplish this, the
projector was mounted to a 15”x13” wooden board. The wooden board was glued to a
second, very skinny piece of wood to effectively elevate one side of the projector. This
allowed tilting of the projector in an approximate ~20 degree angle. This was chosen
over metal hinges and a piano hinge due to the simplicity. Rather than go through the
math to calculate exact measurements for position and angle of the projector, that will
surely fail, a more estimated approach was taken. The projector can be zoomed in/out
and built-in hardware can correct for the Keystone effect when the projector is mounted
at an angle. We used both of these functions for exact calibration after mounting of the
projector. The projector mount can be seen in Figure 44.

The computer was mounted to an old computer case motherboard tray. The tray was
mounted down using screws and provided holes already on the tray. With the tray secure,
the motherboard and all parts connecting to the motherboard can be mounted as any other
typical setup. All relating computer hardware was mounted directly into the motherboard.
The positioning of the computer was off to the side of the enclosure and directly next to
the exhaust fan. The exhaust fan aided in dissipating the heat built up from the computer.
The power supply that powers the computer and various other devices will be mounted
on the wall of the enclosure directly above the exhaust fan. The exhaust fan will funnel
all heat from the power supply directly outside the table. The location of the computer,
power supply, and fans can be viewed in Figure 43.

To meet the requirement of the enclosure being 36” in total height, legs were designed.
This is because of the efficiency of the projector. Rather than make the enclosure bigger
than it needs to be, the enclosure was built to be as minimal height as possible. Legs
were designed and built to provide the height the system requires. An extra benefit to
this design is the possibility of shortening the system on a short notice. The legs were
designed to be removed with minimal work. The legs were made out of the same wood
as the enclosure, oak. The legs were 12” in total length. There are no requirements of
visual appearance, only that it can support the weight of the enclosure and 4 grown adults
leaning over the system. To meet this requirement, the legs were fashioned out of 4x4’s.
Each 4x4 has a wooden peg mounted on the surface. Four holes were drilled into the
bottom of the table. The pegs slide into the table for a secure, accurate fit. The legs can
be viewed in Figure 44.

 Page 92

Figure 43 - Placement of Fans, power supply, and Computer

Figure 44 - Hardware Placement inside Enclosure

 Page 93

8.4 Control System

The entire control system was powered by the 12 volt rails on the computer's power
supply. The specifications of the 700 watt power supply chosen are that it is capable of
producing the entire 700 watts over its single 12 volt rail. The MSP430 microcontroller
operates at a maximum of 4.1 volts, but requires that at least 2.2 volts to allow for all
clocks to be active, so a basic voltage splitter will be used to bring the voltage down to its
recommend voltage of 3.3 volts. This will allow it to have maximum frequency of the
clocks and allow it to have maximum current out of the output pins. The potentiometer
input to the MSP430 will also act on the 3.6 volts. The input current into the analog to
digital converter on the MSP430 requires the current be below 1ma. Due to this
restriction, the potentiometer was 50kΩ resistance. The TMP37 temperature sensors
were hooked up to a 5 volt line. The temperature sensor outputs at 20mV per degree
Celsius, and the produced current is well below the maximum allowable by the MSP430.
The clock rate of the MSP430 was set to 8 Mhz, and ran in an approximately 3200 cycle
loop, or 2.5Khz. The input values from the potentiometers connected to the analog to
digital converter were converted to a digital value that modulated the output pins. These
temperature sensors were connected to pins 2 and 3 of the MSP430. The modulated
signals were outputted from pins 8 and 9. Pin 8 outputted to the 4th wire of the enclosure
fans. These fans require that an input signal between 100 Hz and 25 KHz be used to
minimize noise. The 9th pin will output to the LED array. Two bipolar transistors
connected as a darlington pair were used to power the LED array.

Figure 45 – Overview of Control System

The LEDs were connected as 7 LEDs and a current limiting resistor in parallel. The
LEDs used were surface mount OSRAM SFH4258 LEDs. These operated at 850nm with
a 15 degree half angle. These were made into PCB chains that could be daisy chained

 Page 94

with lengths of 7, 10.5, and 14 inches, with the LEDs spaced half an inch apart. This can
be seen in Figure 46.

9. Future Work

The showcase application and gesture recognition module can be expanded in the future
to further the idea that traditional input and menus are not needed for complex
applications. Expanding weDefend to incorporate more complex unit interactions and
abilities can lead the way for creative new gestures and uses for fiducials. In the
showcase application a lot of attention to the details of complex units and interactions
with the terrain is considered. Project Planck would proceed in designing and developing
a more complex application with an immersive user experience similar to what
mainstream entertainment industry RTS titles strive for.

Adding many of the special abilities discussed for different units would push the gesture
development team to make more intuitive gestures that users could execute to avoid
menus and buttons that are typical in most applications. Some gestures could include
making small circles or using multiple fingers in order for soldiers to throw grenades.
Entire hands could be used to stop all patrolling units on the map. Splitting teams during
the action phase could be accomplished by using speedy finger drags in conjunction with
the acceleration data provided by reacTIVision across a selected team. These extra
gestures would also push the team into areas yet to be explored in the multi-touch domain
due to the minimal amount of these devices being used commercially. Mitigation of
multiple user interaction in complex applications is a glaring weakness in multi touch
technologies. However this weakness can be overcome with time and clever use of
scheduling algorithms common in modern operating systems.

Figure 46 - LED Chain PCB Layout

 Page 95

Fiducials could also be greatly expanded upon as hi-tech tokens that carry information on
a per user basis. Some developers have created multi-touch surfaces that also respond to
infrared light being shined on the surface. This could be used to expand the domain of
fiducials by not having them printed on paper but as a device with infrared LEDs that
shine the same fiducial shape onto the surface. They can be extended to create an
ownership system of touches and events on a multi touch system. Their use in
applications is also apparent when looking at larger more complex units in weDefend.
The ability to have air craft carriers that launch planes off the deck by using a fiducial or
rotating the guns on a battle ship are the simpler and more obvious uses of fiducials in a
RTS application. This work could lead to multi-touch surfaces taking the place of the
personal computer in the future effectively eliminating the need for traditional mouse and
keyboard input.

There are many other programs that can benefit from the collaborative nature of Planck
and the fiducial inputs it’s capable of. Many applications may find benefit from these
features, such as education, entertainment, and simulation. The collaborative nature of
Planck would be especially useful in a learning environment where many students could
interact together and visualize changes. An example may be an interactive demo or
simulation in a science museum. Kids of all ages could use objects to change and
visualize the results or consequences of their changes over the same display they are
interacting with. Similar devices are already implemented in many science museums, but
are made for specific exhibits. Planck would offer an alternative that could be used for
multiple exhibits, or be updated as an exhibit is updated.

Currently, Microsoft and other partners are exploring uses of the Microsoft Surface in
entertainment environments. Devices similar to Planck are currently being implemented
in bars, restaurants, and other entertainment venues and are used for advertising. By
placing drinks or other objects that may already be at hand, advertisements and other
information may be brought up. For example, a store may have items equipped with
fiducials, and Planck could be modified to read their barcodes and give additional
information on items that are placed on it.

Design programs also currently are limited to a single user. Mouse and keyboard input
do not easily facilitate collaboration. If work is to be done collaboratively in these
environments, it needs to be broken up into smaller pieces and worked on individually.
Alternatively, it can be worked on through a conferencing program or over a projector,
which still relies on a single person interacting with the design. Planck’s feature set may
offer a collaborative work environment where multiple designers can look at a design
spread out and edit parts simultaneously.

A huge drawback to many multi-touch technologies on the market is their inability to be
used in well-lit areas. This is true of Diffused Surface Illumination technology. While
this is not an issue for many, as they just use it in dimmer areas, DSI hybrid technology
would allow Planck to be used in any location and at any time of the day. NUIgroup
members that have previous experience with DSI have experimented with a hybrid
version of DSI. DSI Hybrid is a mix of Diffused Surface Illumination and rear Diffused

 Page 96

Illumination (DI). A detailed explanation of Diffused Illumination can be found in the
Image Recognition System. One implementation of the DSI-hybrid is to mount the
EndLighten acrylic above the rear-projection layer acrylic. Secondly, mounting directed
infrared LED light sources on the bottom of the enclosure that shine onto EndLighten
acrylic. This concept is specific to DI technology. This concentrates a heavy source of
infrared light onto the EndLighten, making it easier for the IR camera to pick up on
touches and fiducials that are placed onto the screen. DSI has been known to detect
touches better than DI. DI has been known to detect fiducials better than DSI. The
theory is that DSI-hybrid technology would combine the best of both worlds. This would
allow excellent touch and fiducial detection. This method will not be implemented into
project Planck as of now, but as the project evolves and the need arises, this method will
be pursued.

10. Administrative Content

10.1 Roles and Responsibilities

The team recognized that there were roles to play other than the standard project member.
Each team member will take equal part in the design and development of Planck, as well
as be assigned a specialized role. The following roles were realized as being necessary in
the design and build of project Planck:

1. Project Manager
2. Assistant Project Manager
3. Senior Software Engineer
4. Senior Hardware Engineer

The Project Manager’s role is to set milestones for the team and to make sure the team
reaches said milestone. When a team member requests a meeting, the Project Manager
will set the date and time for the meeting. The Project Manager has direct contact with
the team’s mentor and Dr. Richie. Peter Oppold will be our Project Manager.

The Assistant Project Manager’s role is to see to the requests of the Project Manager. If
the Project Manager is being overloaded, then the Assistant Project Manager will assist in
the workload. The Assistant Project Manager is also delegated the responsibility of
overseeing the editing of each team member’s documents. Hector Rodriguez will be our
Assistant Project Manager.

The Senior Software Engineer’s role is to manage all aspects of software as they relate to
this project. This includes the showcase application, the gesture recognition software, and
any other software that may comprise the system. His duty is to oversee and provide
direction for the main application. He will assign development tasks to the team members
and check each team member’s work for accuracy. The tasks also include setting the
standards that will be used for communication between the showcase application and the
gesture recognition software. The Sr. Software Engineer is also in charge of distributing

 Page 97

and maintaining our subversion software, GIT. Chris Sosa will be our Senior Software
Engineer.

The Senior Hardware Engineer’s role is to manage all electronics in the system. His duty
is to oversee and provide direction for the electronics used in Planck. The Sr. Hardware
Engineer will be responsible for the design and production of the Modulation timer. He
will have ultimate decision making powers in the Image Recognition System. He will be
managing the production of all electronics in Planck. Enrique Roche will be serving as
the Senior Hardware Engineer.

Two more roles were created after project Planck began. The first is the Project Status
Manager, or PSM. These responsibilities were assumed by the Assistant Project manager,
Hector Rodriguez. The Project Status Manager is in charge of the status of the each
group member. Status includes the wellness, measurable work count, member’s
issues/concerns, and deadline preparedness. Wellness includes moral, physical health,
and motivation. A few examples of the role of the PSM includes: The PSM stepping in
to address any group member’s failure to make meetings on time; the PSM coordinating
with the group to inform and re-allocate work because of a group member getting sick or
injured; and the PSM checking the status of measurable page count of each group
member and addressing any relating issues. This is a task important under the
development model Scrum which will be addressed later. Second, the Project Tester role
was created to address the issue of testing the System. Testing is a huge component of
project Planck. The Project Tester responsibilities will be delegated to Enrique Roche.
The Project Tester will manage the test cases for all systems of project Planck. The
Tester will manage all developer’s that are in the testing phase. The final approval of the
Test case passing can only be made by the Project Tester. Finally, he will address any
issues that are found from testing. If the test case fails, the Project Tester will create a
Spar (see Software Development Mode section for definition) and forward it onto the
Senior Software Engineer. The Senior Software Engineer will allocate resources to
address the Spar.

10.2 Division of Labor

Project Planck as a whole was split up into five systems. These five systems are the
Blob/Object Detection Software, Showcase Software, Enclosure/Computer, and
Power/Control and Image Recognition System. Each System was allocated to one
member of project Planck. This member is given the responsibility of defining,
researching, designing, building, and testing the System. The allocations of the Systems
are as follows: Hector Rodriguez is delegated the Touch and Fiducial Recognition
Software System; Chris Sosa is delegated the Showcase Software System; Pete Oppold
assumes responsibility for the Computational Container System; Enrique Roche is
delegated the Power/Control System and the Image Recognition System. These five
systems are directly dependent on each other and thus, communications between the
systems are important during the design phase. Each member is responsible for
communicating with members of another System when needed.

 Page 98

The team meets at least once a week in-person. This is typically after Senior Design
class on Tuesday or Thursday evenings. Besides these two nights, the team meets every
week either in-person or using a web-streaming application, Skype. Every meeting
follows a defined structure. The defined structure includes an opening, body, and closing.
The opening is where members will bring attention to any questions, issues, problems, or
concerns. This could be concerns about designing their system or concerns about
meeting a deadline. The group will be updated with each member’s progress since the
previous meeting. The body includes the main activity for the meeting, such as editing a
paper or working on the prototype: Phloe. This is the majority of the meeting. The
closing includes setting a future meeting date and assigning action items to group
members.

10.3 Milestones and Timelines

A Gantt chart was created at the start of project Planck to measure the team’s
performance and gauge their work output. The Gantt chart includes the dates of all
formal deliverables as well as milestones leading up to those deliverables. The
milestones will be used to track performance during the course of the next two semesters.
The ongoing Gantt chart can be found in the Appendix. The first deadline on the Gantt
chart is the Initial Proposal document. This is the document used to first propose the
multi-touch display, Planck. Next, The Workforce Central Florida presentation on Nov.
18 can be found. The measured work up to that date was presented. The Gantt chart also
shows the milestones leading up to the PDR on December 5th. The PDR is the initial
submittal of the design of project Planck. First the research was completed, then the
design. After the PDR, the Critical Design Review (CDR) date can be found on the Gantt
chart. The CDR is the review of the design of the project by the client and mentors. If
the CDR meets approval, the construction of project Planck can begin. There are many
milestones leading up to the completion of project Planck such as Touchscreen assembly,
Touchscreen Calibration, Optical Recognition Development, Device being touch capable,
Fiducials Recognized on the Device, Functional Demo of Software, Test Program
Development, and Testing on the system. These milestones lead up to the final deadline
on April 5th of our Final Presentation.

 Page 99

Figure 47 - Gantt Chart

10.4 Software Development Model

The Software Development Model that will be used in project Planck is Scrum. Scrum is
an implementation of Agile Methods. The first traces of Agile Methods dates back to
1957. It became popular in the 1990’s after heavily-regulated and documented models,
such as the infamous Waterfall model, began to face heavy criticism. These heavy-
weight models faced opposition after the realization that software is not a product that
can be predicted or controlled. One of the key founders of Agile Methods is Martin
Fowler. Agile Methods development methodology promotes development over
documentation. Face-to-face communication over written documents is promoted, both
with the client and the development team. Teamwork and collaboration are heavily
stressed as well. Agile Methods also realizes the need for adaptability in software
development. Things do not always go according to plan; issues may come up
throughout the life cycle and the development model should account for this. Tasks are
broken up into smaller increments and the work-output is based upon working software
only. The task is composed of the whole life cycle model. Each task should be defined,
designed, written, and tested before the next task begins.

Scrum, Extreme Programming (XP), Crystal, and Dynamic Systems Development
method (DSDM) are all implementations of Agile Methods. Two members in project

Planck have used Extreme Programming in previous work. However, Scrum was chosen
for a few reasons. First, the project Planck team has found th
are using Scrum for their software development model. Secondly, two members of
project Planck are using Scrum at their co
reason for using Scrum is that it incorporates all of the import
Development Model that project Planck supports. Scrum divides the development staff
into teams. Each team is assigned a Sprint for an interval period. A Sprint is a
compilation of tasks. The team must stay focused on the Sprin
course. A Sprint can last one week to a month, but typically doesn’t last much more
than a week. Each team meets daily to go over the daily activities in the current Sprint.
A Scrum Master is the representative for each team
Scrum Master of another team when team coordination is required. The Scrum Master
also allocates resources to fix Spars as they are created. Spars are simply bugs in the
system. Spars can be of different severities. As
will implement a fix. The Product Owner keeps the development team’s plan in
alignment with the client’s desires. This is done by weekly meetings to assess the new
Software from the previous Sprints. The Scrum pro
In the first stage, the product has been defined and each definition is sorted by priority.
From the definition of the product, backlogs of sprints are created to define the tasks that
will be sent to the development
the interval to the deadline will range from 24hours to 30 days (typically one week).
When the Sprint is completed, the new software will be tested. Spars are created for any
defects found in the software. When the Spars are fixed, the team is assigned another
Sprint and the cycle continues.

10.5 Software Version Control

Planck is a large system that incorporates two massive pieces of software. The
members in the group and each has experience in working with software. Since the two
software systems, the gesture recognition software system and the showcase application,
are so large, they will be split up into separate modules. This will al

Planck have used Extreme Programming in previous work. However, Scrum was chosen
for a few reasons. First, the project Planck team has found that most engineering firms
are using Scrum for their software development model. Secondly, two members of
project Planck are using Scrum at their co-op workplace. Finally, the most important
reason for using Scrum is that it incorporates all of the important aspects of a Software
Development Model that project Planck supports. Scrum divides the development staff
into teams. Each team is assigned a Sprint for an interval period. A Sprint is a
compilation of tasks. The team must stay focused on the Sprint and not deviate from its
course. A Sprint can last one week to a month, but typically doesn’t last much more
than a week. Each team meets daily to go over the daily activities in the current Sprint.
A Scrum Master is the representative for each team. The Scrum Master meets with the
Scrum Master of another team when team coordination is required. The Scrum Master
also allocates resources to fix Spars as they are created. Spars are simply bugs in the
system. Spars can be of different severities. As Spars are discovered, the Scrum Master
will implement a fix. The Product Owner keeps the development team’s plan in
alignment with the client’s desires. This is done by weekly meetings to assess the new
Software from the previous Sprints. The Scrum process can be viewed in Figure X below.
In the first stage, the product has been defined and each definition is sorted by priority.
From the definition of the product, backlogs of sprints are created to define the tasks that
will be sent to the development teams. A Sprint will be given to each Scrum team and
the interval to the deadline will range from 24hours to 30 days (typically one week).
When the Sprint is completed, the new software will be tested. Spars are created for any

tware. When the Spars are fixed, the team is assigned another
Sprint and the cycle continues.

Figure 48 - SCRUM Model

.5 Software Version Control

Planck is a large system that incorporates two massive pieces of software. The
members in the group and each has experience in working with software. Since the two
software systems, the gesture recognition software system and the showcase application,
are so large, they will be split up into separate modules. This will allow all of the group

Page 100

Planck have used Extreme Programming in previous work. However, Scrum was chosen
at most engineering firms

are using Scrum for their software development model. Secondly, two members of
op workplace. Finally, the most important

ant aspects of a Software
Development Model that project Planck supports. Scrum divides the development staff
into teams. Each team is assigned a Sprint for an interval period. A Sprint is a

t and not deviate from its
course. A Sprint can last one week to a month, but typically doesn’t last much more
than a week. Each team meets daily to go over the daily activities in the current Sprint.

. The Scrum Master meets with the
Scrum Master of another team when team coordination is required. The Scrum Master
also allocates resources to fix Spars as they are created. Spars are simply bugs in the

Spars are discovered, the Scrum Master
will implement a fix. The Product Owner keeps the development team’s plan in
alignment with the client’s desires. This is done by weekly meetings to assess the new

cess can be viewed in Figure X below.
In the first stage, the product has been defined and each definition is sorted by priority.
From the definition of the product, backlogs of sprints are created to define the tasks that

teams. A Sprint will be given to each Scrum team and
the interval to the deadline will range from 24hours to 30 days (typically one week).
When the Sprint is completed, the new software will be tested. Spars are created for any

tware. When the Spars are fixed, the team is assigned another

Planck is a large system that incorporates two massive pieces of software. There are four
members in the group and each has experience in working with software. Since the two
software systems, the gesture recognition software system and the showcase application,

low all of the group

 Page 101

members to work on the software as a whole. Large-scale software projects are difficult
to undertake without some sort of version control management software. To this end, the
use of Tortoise version control software is being employed. Enrique Roche has set up a
server at their home where the Tortoise project repository will reside. Each member of
the group will be able to work on the software and upload their changes to the central
server. The Senior Software Engineer will be responsible for maintaining consistency and
accuracy in the project repository. He will also be responsible for addressing any errors
or quality issues in a group members design. All new versions of the project will be
managed by Tortoise.

10.6 Budget

Workforce Central Florida is a government organization which runs the unemployment
offices in Orange, Osceola, Seminole, and Sumter counties. They also provide no cost
recruitment retention and training programs. Project Plank is being funded by Workforce
Central Florida contingent on the team being mentored by professional engineers. WCF
is providing five-thousand dollars to each senior design team that meets their funding
requirements.
Project Planck has two mentors Ronald Wolff and David Kotick from NAVAIR who are
assisting with the administrative and project development aspects of project Plank in
order to provide realistic industry input to the project. Below is a table of project Plank’s
budget. This includes what was budgeted versus the actual cost of the production of the
table, Planck. Planck came in barely under-budget. Items that ran over cost include the
cameras, electronic PCB’, and acrylic. Money was shifted from other allocations to
compensate for over expenditures to compensate for the loss.

 Page 102

Table 7

11. Owner’s Manual

 The owner’s manual details how to transport, setup, calibrate, and run the
application weDefend on the multi-user, multi-touch table Planck. Overall, the process if
fairly simple and can be mastered in only a few tries. It is recommended to not proceed
with any of these tests without the assistance of at least one other person. Ideally 2-3
people are recommended. The owner’s manual is split up into two sections, hardware
and software. First hardware setup will be discussed, which entails transportation and
setup of Planck.

11.1 Parts List

There are 9 separate components that make up Plank. These components are as follows:

1. Box

 Page 103

2. Legs
3. Cotter Pins
4. Mar-resistent Acrylic
5. Rear projection acrylic
6. Endlighten XXL acrylic
7. Projector controller
8. Keyboard and mouse
9. IR filters

11.2 Transportation of Planck

The multi-touch device, Planck, can be divided into smaller sections to allow for easy
travel. The legs detach from the box, and the acrylic can be lifted off the box to be
transported separately. The legs, box, and acrylic can all be transported separately and all
are capable of fitting through a standard doorway. The only complication is that the box
needs to be tilted on its side. It is recommended that the side with all of the hardware
components (computer and projector) travel on the side closest to the ground. The
following sections detail the exact procedures for the transportation and setup of the
multi-touch device Planck.

11.3 Hardware Setup of Planck

Once all components of Planck have reached the final destination, setup can begin. A
large floor footprint is needed to accommodate Planck. This should be at least a 6x6 ft
area. The first step is to place the legs of Planck in the middle of the areas set aside for
Planck. The pegs are keyed and should be facing up. The pegs slide into four holes on
the bottom of the box. The smaller peg is designed to fit inside a hidden hole underneath
the motherboard. See Figure 49 which illustrates the pegs located on the legs.

Figure 49 - Positioning of Pegs

 Page 104

With the legs positioned accordingly, the box can be lifted and placed on-top of the legs.
At least two people are required for this task. The pegs of the legs slide easily into the
holes of the box. Care should be practiced to prevent the pins from sliding into a fan.
Once the table is secure with the legs attached, the three cotter pins slide into very small
holes in pegs. This should be done inside the box, as seen in Figure 50.

With the table securely mounted on the legs and fastened with the cotter pins, the next
step is to check cable security. Every cable inside the box of Planck should be checked
for snugness before the startup of the system. First, check all cables attached to the LED
pcb’s. These are the green boards that encompass the upper perimeter of the box. All
cables should be snug inside the black connector. This is illustrated in Figure 51.

Cotte
r P

in

Figure 50 - Cotter Pin holes located on leg pegs

 Page 105

Figure 51 - Checking LED PCB Snugness

Second, confirm all other cables are snug. This includes all power plugs that attach to the
power module located inside the box. This includes the USB cables that attach to the
cameras and USB hub. Finally, confirm that the HDMI cable that attach to both the
projector and video card are snug. With all cables confirmed, the cameras should be
checked for proper positioning.

There are three cameras mounted inside the box of Planck. All three cameras are used to
capture touches. It’s possible that the cameras were tilted incorrectly during Planck in
travel mode. To aid the user in this process, block stops were mounted. These block
stops confirm the correct position and tilt of each camera. Carefully, tilt each camera
towards the block stop. Stop moving the camera when the camera can move no further.
This is the correct position for the camera. After all three cameras are positioned, the IR
filters can be placed on-top of each camera. These filters resemble that of a mirror.
These should be placed directly over the lens of the camera. This can be viewed in
Figure 52.

 Page 106

Figure 52 - Placement of IR Filters over camera

11.3.1 Cleaning of Acrylic

At this point, the table should be mounted on the legs and secured with cotter pins. All
cables inside the box should be secure. Finally, the cameras should be positioned
correctly and the IR filters placed over each camera. It is assumed that during the
transportation of the acrylic that fingerprints and dirt has reached each layer of acrylic.
Cleaning the acrylic before installation is a crucial step. Acrylic is a very soft material.
Foreign particles left on the acrylic can lead to permanent scratching. Fingerprints and
other smudges can lead to a distortion of the image the camera to capture for touch
recognition. Ideally, only a clean soft cotton towel and water should be used to clean the
acrylic. This process can be long and slow. It is recommended to follow rigorous
practices to prevent dirt and smudges from ever reaching the acrylic. The acrylic should
be dried with another clean, soft, dry cotton towel.

11.3.2 Mounting of the Acrylic

After the acrylic has been cleaned, it’s ready to be mounted to the box. It is
recommended to have at least two people for this job. With only touching the corners,
two people should pick up the Endlighten XXL acrylic. This is the thickest of the three
pieces. There is a black dot on both the table and the acrylic. The black dot on the
acrylic should go in the corner with the black dot on the table. This is illustrated in
Figure 53. There is a designed for the acrylic to sit on in the table, it is a snug fit.

 Page 107

Carefully place one side into the slot, and then the next. Care should be taken place not
to move wiring or scratch the acrylic. After the Endlighten has been placed, the rear
projection acrylic can be placed directly over the top of the Endlighten. There is no
specific orientation for this. The rear projection acrylic is grey. Finally, the mar-resistant
acrylic should be placed on top. There are four acrylic rods attached to the acrylic.
These four rods secure into four holes in each corner of the table. The acrylic has been
painted black to hide hardware appearances. The thicker black band overlays the thicker
wooden band as seen on-top of the box.

Figure 53 - Location of Black Dot

This concludes the installation and travel process for the multi-touch table Planck. This
process can be reversed for tear down instructions. While the box is fully capable of
being travel ready, it is recommended to reduce frequency of travel due to calibration and
the time involved in tear-down and setup. Please contact the manufacturer if any issues
arise. The next section will demonstrate how to start Planck once the table is fully setup.

11.4 Powering-up Planck

The starting of Planck is a fairly simple chore. There is a USB hub and a power switch
located underneath the table near the leg by the computer. This is can be seen in Figure
54. The USB hub is provided to connect input devices such as a keyboard or mouse. A
USB flash drive can also be connected to transfer files. First, flip the power switch to the
right, and then back to the middle. It is important not to leave the switch flipped or the
computer will immediately shutoff. The computer and cameras will receive power and
startup at this point.

 Page 108

Figure 54 - USB Hub and Power Switch

The next step is to use the provided projector remote to turn on the projector. Pressing
the power button once will accomplish this. It will take a few minutes for the bulb to
warm up. By this point, Windows will be waiting to be logged in. There is no password
needed to enter the home screen. Once all applications have loaded, start CCV software.
Next, start Microsoft Visual Studios and load the latest version of weDefend. From there,
a build without debugging is selected. The application, weDefend, will boot and will be
ready for use with multi-touch and object recognition capabilities. This concludes the
hardware setup for the multi-touch table Planck. The next sections to follow are that of
software calibration and game-play.

11.5 CCV

The settings of CCV are saved in .xml in the following directory: “C:\Program Files
(x86)\NUI Group\Community Core Vision\data\xml”. They are also backed up on the
desktop in a folder called “xml”. These .xml files stipulate the resolution of the cameras,
various settings in CCV that work with our table, and the calibration required in order to
stitch all three cameras together into one cohesive image. If they ever become corrupted
or a change is made in CCV that needs to be corrected, overwriting these files in the
installation directory listed above will solve the problem.

The camera settings used by CCV are not saved whenever Planck is rebooted. These
settings must be set every time CCV is booted. In order to adjust the camera settings
open CCV (shortcut located on the desktop) and click the “setup/track” button on the left
control panel column as seen in the figure below. Alternatively, pressing TAB on the
keyboard achieves the same function.

Once in the setup screen you will see the three cameras that are being used by CCV.
From left to right these are cameras 1, 2, and 3. Left clicking in on one of the camera
windows shows two options, “config” and “clear”. An image of this operation
below for each camera.

The camera settings used by CCV are not saved whenever Planck is rebooted. These
settings must be set every time CCV is booted. In order to adjust the camera settings

ut located on the desktop) and click the “setup/track” button on the left
control panel column as seen in the figure below. Alternatively, pressing TAB on the
keyboard achieves the same function.

Figure 55 - Calibration and Setup tabs

Once in the setup screen you will see the three cameras that are being used by CCV.
From left to right these are cameras 1, 2, and 3. Left clicking in on one of the camera
windows shows two options, “config” and “clear”. An image of this operation

Figure 56 - Location of config for Camera 1

Figure 57 - Location of config for Camera 2

Page 109

The camera settings used by CCV are not saved whenever Planck is rebooted. These
settings must be set every time CCV is booted. In order to adjust the camera settings

ut located on the desktop) and click the “setup/track” button on the left
control panel column as seen in the figure below. Alternatively, pressing TAB on the

Once in the setup screen you will see the three cameras that are being used by CCV.
From left to right these are cameras 1, 2, and 3. Left clicking in on one of the camera
windows shows two options, “config” and “clear”. An image of this operation is shown

Each camera must be configured individually by clicking “config” in the respective
camera that you wish to configure. When you press config a window with all the camera
settings is shown. It is very important to disable any automatic settings the camera
before applying settings. Unchecking the ‘auto’ checkbox disables these automatic
settings and allows manual manipulation of the camera settings. Copy the settings in the
two screen shots below into the two areas of the camera configuration:

Figu

Figure 58 - Location of config for Camera 3

Each camera must be configured individually by clicking “config” in the respective
camera that you wish to configure. When you press config a window with all the camera
settings is shown. It is very important to disable any automatic settings the camera
before applying settings. Unchecking the ‘auto’ checkbox disables these automatic
settings and allows manual manipulation of the camera settings. Copy the settings in the
two screen shots below into the two areas of the camera configuration:

Figure 59 - Example Calibration Settings (Part A)

Page 110

Each camera must be configured individually by clicking “config” in the respective
camera that you wish to configure. When you press config a window with all the camera
settings is shown. It is very important to disable any automatic settings the camera has
before applying settings. Unchecking the ‘auto’ checkbox disables these automatic
settings and allows manual manipulation of the camera settings. Copy the settings in the

These settings must be applied to each camera separately by moving the slider bars.

Once all the settings on the cameras have been adjusted, go back to the beginning screen
by hitting TAN or clicking the setup/track button on the left hand control column again.
Once at the home screen the images captured by the cameras should look like th
61.

Fine-tuning of the settings based on external lighting conditions may be necessary to
have images such as what is shown above.
look like. In order to see the fiducial settings, the “fiducial settings” button must be hit in
the left hand control column

Figure

These settings must be applied to each camera separately by moving the slider bars.

Once all the settings on the cameras have been adjusted, go back to the beginning screen
by hitting TAN or clicking the setup/track button on the left hand control column again.
Once at the home screen the images captured by the cameras should look like th

tuning of the settings based on external lighting conditions may be necessary to
have images such as what is shown above. Figure 60 shows of what the fiducial settings
look like. In order to see the fiducial settings, the “fiducial settings” button must be hit in
the left hand control column

Figure 60 - Example Calibration Settings (Part B)

Page 111

These settings must be applied to each camera separately by moving the slider bars.

Once all the settings on the cameras have been adjusted, go back to the beginning screen
by hitting TAN or clicking the setup/track button on the left hand control column again.
Once at the home screen the images captured by the cameras should look like the Figure

tuning of the settings based on external lighting conditions may be necessary to
of what the fiducial settings

look like. In order to see the fiducial settings, the “fiducial settings” button must be hit in

For more information on specific settings within CCV, consult their website and forums
located at http://ccv.nuigroup.com/
discussion forum for topics related to CCV and its settings with different IR technologies.

Figure

Figure 61 - Touch input settings screenshot

For more information on specific settings within CCV, consult their website and forums
http://ccv.nuigroup.com/. There are many tutorials, screenshots, and a

discussion forum for topics related to CCV and its settings with different IR technologies.

Figure 62 - Fiducial input settings screenshot

Page 112

For more information on specific settings within CCV, consult their website and forums
. There are many tutorials, screenshots, and a

discussion forum for topics related to CCV and its settings with different IR technologies.

11.6 weDefend Simulation
The weDefend simulation is comprised of a Microsoft Visual Studio solution project.
Below are instruction for running the file and using the software.

11.6.1 Running weDefend

To run weDefend first start up CCV and configure it as discussed in the in
above. Once it is configured and running, minimize it and double
Simulator” shortcut icon located on the desktop. The shortcut points to a Visual
Studio .sln file that will open the source code of the project. Once visual stu
running hit the “F5” key on the keyboard to begin execution of the program. This will
open up the title window of the simulator as shown below. WeDefend is now running.

Figure

11.6.1 Using weDefend

There are four main modes/states of operation in weDefend:

1. Opening Welcome Screen
2. Preparation Mode
3. Action Mode
4. Game Over

Changing between modes is primarily handled by using three fiducials to switch states.
Each fiducial is uniquely numbered with an ID number. The fiducials are shown in the
Figure 64.

.6 weDefend Simulation
The weDefend simulation is comprised of a Microsoft Visual Studio solution project.
Below are instruction for running the file and using the software.

.6.1 Running weDefend

To run weDefend first start up CCV and configure it as discussed in the in
above. Once it is configured and running, minimize it and double-click the “weDefend
Simulator” shortcut icon located on the desktop. The shortcut points to a Visual
Studio .sln file that will open the source code of the project. Once visual stu
running hit the “F5” key on the keyboard to begin execution of the program. This will
open up the title window of the simulator as shown below. WeDefend is now running.

Figure 63 - Screenshot of weDefend start screen

.6.1 Using weDefend

There are four main modes/states of operation in weDefend:

Opening Welcome Screen
Preparation Mode

Changing between modes is primarily handled by using three fiducials to switch states.
s uniquely numbered with an ID number. The fiducials are shown in the

Page 113

The weDefend simulation is comprised of a Microsoft Visual Studio solution project.

To run weDefend first start up CCV and configure it as discussed in the instructions
click the “weDefend

Simulator” shortcut icon located on the desktop. The shortcut points to a Visual
Studio .sln file that will open the source code of the project. Once visual studio is up and
running hit the “F5” key on the keyboard to begin execution of the program. This will
open up the title window of the simulator as shown below. WeDefend is now running.

Changing between modes is primarily handled by using three fiducials to switch states.
s uniquely numbered with an ID number. The fiducials are shown in the

 Page 114

Fiducial 1 will switch from the opening welcome screen to prep mode. Fiducial 2 will
switch from prep mode to action mode. When the simulation is lost (too many insurgents
in the defended area) the Game Over screen is displayed. To reset the game fiducial 3
must be placed on the screen. Fiducial 3 resets the game from any mode/state and takes
the user back to the opening welcome screen.

Prep Mode
By placing fiducial 1 on the opening welcome screen the user is taken to prep mode as
shown in the screenshot below.

Figure 64 - Fiducials for switching states. 1 for Prep mode, 2 for Action mode, 3 for

Reset.

In prep mode the user is faced with a top down view of the map they will be running the
simulation in. Each one of the yellow dots shown above is a soldier and each has an
associated field of view. The field of view corresponds to the area a soldier can see
within. If an enemy comes inside the blue area field of view area, the soldier fires at the
enemy.

If a touch is placed on any of the soldiers, the soldier will turn green to indicate it has
been selected. This is shown below. Selecting a soldier allows the user to do one of three
things: 1. Move the soldier, 2. Change the soldiers field of v
route for the soldier.

Figure

Figure 65 - Screenshot of Prep Mode

In prep mode the user is faced with a top down view of the map they will be running the
on in. Each one of the yellow dots shown above is a soldier and each has an

associated field of view. The field of view corresponds to the area a soldier can see
within. If an enemy comes inside the blue area field of view area, the soldier fires at the

If a touch is placed on any of the soldiers, the soldier will turn green to indicate it has
been selected. This is shown below. Selecting a soldier allows the user to do one of three
things: 1. Move the soldier, 2. Change the soldiers field of view size, 3. Create a patrol

Figure 66 - Example of solider being selected

Page 115

In prep mode the user is faced with a top down view of the map they will be running the
on in. Each one of the yellow dots shown above is a soldier and each has an

associated field of view. The field of view corresponds to the area a soldier can see
within. If an enemy comes inside the blue area field of view area, the soldier fires at the

If a touch is placed on any of the soldiers, the soldier will turn green to indicate it has
been selected. This is shown below. Selecting a soldier allows the user to do one of three

iew size, 3. Create a patrol

 Page 116

To move a soldier, select it with a finger. The soldier turns green to confirm that it has
been selected. Move your finger on the surface, dragging the soldier around.

To modify the field of view of a soldier select it with one finger. The soldier turns green
to confirm that it has been selected. Place another finger in any area of the field of view
and drag it to the selected radius away from the soldier. Rotating the finger that is
holding the field of view around the soldier shifts the location of the field of view around
the soldier. To deselect the field of view and apply those changes to the FOV, lift the
finger on the field of view. An illustration of these actions is shown below.

Figure 67 - Field of View Movement

\

To create a patrol route for a soldier, select the soldier with one finger. The soldier turns
green to confirm that it has been selected. Use a second finger to select the orange puck
located at the center of the soldier. Drag this puck around the area you would like the
soldier to patrol, image below.

Figure 68 - Example of patrol route puck being moved

When finished drawing the route, let go of the puck. It will snap back to the soldier and
the soldier will begin on the route just created.

Another control allowed in prep mode is the lasso object. The lasso object allows for a
selection area to be created in the map to group several units together. A lasso object can

be begun by placing your finger on an area of the ma
dragging this finger over the soldiers you would like to group together. A screenshot of
this is shown below.

With the soldiers you would like grouped
soldiers under the lasso should all get their colors changed, indicating that they now
belong to the same group. A screenshot of this is shown below.

be begun by placing your finger on an area of the map that has no objects in it, then
dragging this finger over the soldiers you would like to group together. A screenshot of

Figure 69 - Example of Lasso being drawn

With the soldiers you would like grouped under the lasso, remove your finger. The
soldiers under the lasso should all get their colors changed, indicating that they now
belong to the same group. A screenshot of this is shown below.

Figure 70 - Example of Units being Grouped

Page 117

p that has no objects in it, then
dragging this finger over the soldiers you would like to group together. A screenshot of

under the lasso, remove your finger. The
soldiers under the lasso should all get their colors changed, indicating that they now

Action Mode
To access action mode, place fiducial number 2 on the surface. In action mode
insurgents/enemies will begin to fill the screen from all four corners. There’s a
screenshot below of enemies coming into the map and soldiers firing at them

When 8 enemies reach the area being protected on
the simulator will automatically switch to the Game Over state, as can be seen below.

Fiducial 3 can then be used reset the game.

To access action mode, place fiducial number 2 on the surface. In action mode
insurgents/enemies will begin to fill the screen from all four corners. There’s a
screenshot below of enemies coming into the map and soldiers firing at them

Figure 71 - Screenshot of Action mode

When 8 enemies reach the area being protected on-screen (the blue square in the center),
the simulator will automatically switch to the Game Over state, as can be seen below.

Figure 72 - Game over screen

Fiducial 3 can then be used reset the game.

Page 118

To access action mode, place fiducial number 2 on the surface. In action mode
insurgents/enemies will begin to fill the screen from all four corners. There’s a
screenshot below of enemies coming into the map and soldiers firing at them.

screen (the blue square in the center),
the simulator will automatically switch to the Game Over state, as can be seen below.

 Page 119

Debug Mode
Three debug modes have been built into the game: 1. Debug Boxes, 2. Finger debug, 3.
Full debug. These modes can be enabled by placing certain fiducials on the surface:

4. Debug Boxes
5. Finger Debug
6. Full Debug

An image of the fiducials used to control the debugging options is shown below.

Figure 73 - Fiducials used for Debugging

When fiducial 4 is placed on Planck, Debug Boxes is enabled. Debug Boxes gives
information about all objects that can be interacted with on-screen. A screenshot of it is
shown in Figure 74. As you can see, one soldier has been selected and their debug
information contains a parameter that states where the original of its touch is located. In
addition to this information, the debug boxes also contain the coordinates of the soldier,
the angle its FOV, the FOV position, the FOV’s width, and if the FOV has also been
selected.

Fiducial 5 begins Finger Debugging. The Finger Debug is option is designed to show the
user where touches are being recognized. A small diamond shape is drawn beneath each
touch indicating where the touch is being recognized on the surface. This allows for
more exact selections of objects and is especially useful when trying to use the patrol
puck feature of the game. Fiducial 6 begins full debugging. This option turns on the two
debugging options listed above: Debug Boxes and Finger Debugging. A screenshot of
this option is shown in Figure

Figure 74 - Debug information being shown

Fiducial 5 begins Finger Debugging. The Finger Debug is option is designed to show the
being recognized. A small diamond shape is drawn beneath each

touch indicating where the touch is being recognized on the surface. This allows for
more exact selections of objects and is especially useful when trying to use the patrol

e game. Fiducial 6 begins full debugging. This option turns on the two
debugging options listed above: Debug Boxes and Finger Debugging. A screenshot of

Figure 75.

Page 120

Fiducial 5 begins Finger Debugging. The Finger Debug is option is designed to show the
being recognized. A small diamond shape is drawn beneath each

touch indicating where the touch is being recognized on the surface. This allows for
more exact selections of objects and is especially useful when trying to use the patrol

e game. Fiducial 6 begins full debugging. This option turns on the two
debugging options listed above: Debug Boxes and Finger Debugging. A screenshot of

Figure

Figure 75 - Full debug information being shown

Page 121

 Page 122

Works Cited
10 things you need to know aout 1080p/50. (n.d.).
Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs. (2001,

10 02). Retrieved from Maxim: http://www.maxim-ic.com/app-
notes/index.mvp/id/1080

4-Wire PWM Controlled fans Specification. (2005-2009).
Answering the "Where is the proof That Agile Methods Work" Question". (2007, 01 19).

Retrieved 11 2, 2011, from Agilemodeling.com: Agilemodeling.com
ATSC Standard: Video System Characteristics of AVC in the ATSC Digital Television

System. (2008-07-29).
720p. (2010, 10 08). Retrieved 10 22, 2011, from CNET.com:

http://reviews.cnet.com/4520-6029_7-6301006-1.html
Windows 7 system requirements. (2011). Retrieved 11 2, 2011, from Microsoft.com:

http://windows.microsoft.com/en-US/windows7/products/system-requirements
55" Class LED 8000 Series Smart TV. (n.d.). Retrieved 10 23, 2011, from

Saumsung.com: http://www.samsung.com/us/video/tvs/UN55D8000YFXZA-
features

Ambler, S. (2010). Survey Says: Agile Works in Practice. Dr. Dobb's.
Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge, New York:

Cambridge University Press .
Analog Devices. (2010). Low Voltage Temperature Sensors.
Baldwin, T. (n.d.). Combating Keystoning - Equation Derivation. Retrieved 2011, from

http://freespace.virgin.net/tom.baldwin/keyst_deriv.html
Bradshaw, B. (2010, 10 08). B.V. Technology. HDTV: What is 1080p?
Burke, M. (2004, 02). Why and How to Control Fan Speed for Cooling Electronic

Equipment. Retrieved from Analog Dialogue:
http://www.analog.com/library/analogDialogue/archives/38-02/fan_speed.html

Cha, B.-R. P.-Y. (n.d.). http://www.jstage.jst.go.jp/article/elex/7/1/40/ pdv. In Thermal

consideration in LED array design for LCD backlight unit applications (pp. pp.
40-46). IEICE Electron Express.

Costanza, E. (2011). Home Page. Retrieved 2011, from d-touch.org: http://d-touch.org/
Costanza, E., & Huang, J. (2009). Designing Visual Markers. CHI.
Douxchamps, D. (2011, 08 11). The IEEE1394 Digital Camera List. Retrieved from

http://damien.douxchamps.net/ieee1394/cameras/
Drewry, T. (n.d.). Multi-Touch Gaming. Retrieved 11 4, 2011, from

multitouchgaming.blogspot.com: http://multitouchgaming.blogspot.com/
Edwards, L. (2010, 01 12). New multi-touch screen technology developed. Retrieved

from Physorg: http://www.physorg.com/news182502758.html
Erickson, B. J., & Jack Jr, C. R. (n.d.). Correlation of single photon emission CT with MR

image data using fiduciary markers: Abstract. Retrieved 2011, from American
Journal of Neuroradiology: http://www.ajnr.org/content/14/3/713.abstract

Grassle, P., Baumann, H., & Baumann, P. (2005). UML 2.0 in Action. Birmingham, UK:
Packt Publishing.

Grootjans, R. (2003-2011). Riemer's XNA Tutorials. Retrieved December 4, 2011, from
file:///C:/Users/Chris/Dropbox/Senior%20Design/Systems/Showcase%20Applicat

 Page 123

ion%20System/References/Web%20Resources/Riemers%20XNA%20Tutorials.ht
m

Hickey, E. (January 2005). A look back at the NC200.
Kaltenbrunner, M. (n.d.). Main Page. Retrieved 2011, from TUIO.org.
LED vs. LCD TV Comparison. (n.d.). Retrieved 10 23, 2011, from LED TELE:

http://www.ledtele.co.uk/ledvslcd.html
Macedonia, M. (2002). Games, Simulation, and the Millitary Education Dilemma. Forum

for the Future of Higher Education.
Martin, K. (n.d.). Reactivision User Forum. Retrieved 2011, from Sourceforge:

http://sourceforge.net/apps/phpbb/reactivision/viewtopic.php?f=2&t=134&p=449
&hilit=CPU#p449

Microsoft. (2011). XNA Game Studio 4.0 Refresh. Retrieved Decemeber 4, 2011, from
file:///C:/Users/Chris/Dropbox/Senior%20Design/Systems/Showcase%20Applicat
ion%20System/References/Web%20Resources/MSDN%20XNA%20resource.ht
m

Natural User Interface Group ~ X1. (n.d.). Getting Started with CCV. Retrieved 2011,
from NUIGroup Wiki: http://wiki.nuigroup.com/Getting_Started_with_CCV

NUI Group. (n.d.). CCV - About. Retrieved 2011, from CCV: http://ccv.nuigroup.com/
NUI Group Community. (n.d.). NUI group about. Retrieved 2011, from NUIgroup.com:

http://nuigroup.com/go/lite/about/
NUIGroup. (n.d.). NUI Group Forum. Retrieved 2011, from NUI Group:

http://nuigroup.com/forums/
Powell, E. (2009, 7 28). Projector Central. Retrieved 12 4, 2011, from

projectorcentral.com: http://www.projectorcentral.com/lcd_dlp_comparison.htm
projectorcentral authors. (n.d.). Project Central. Retrieved 11 1, 2011, from

projectorcentral.com: http://www.projectorcentral.com/
Ramseyer, N. (n.d.). Diffusers and Projection Screens. Retrieved from Peau Productions:

http://peauproductions.com/diffusers.html
Salmon, T. O. (n.d.). Lecture 8 - Lambertian Surfaces, Trolands. Retrieved from

http://arapaho.nsuok.edu/~salmonto/vs2_lectures/Lecture8.pdf
Schulmeister, K. (n.d.). Wavelength Considerations. Retrieved 10 28, 2007, from

http://info.tuwien.ac.at/iflt/safety/section1/1_1_1.htm
Screen gain. (n.d.). Retrieved from Dnp: http://www.dnp-

screens.com/DNP08/Technology/Basic-Visual/Screens/Screen-gain.aspx
Segal, M., & Akeley, K. (August 8, 2011). The OpenGL Graphics System: A

specification. The Khronos Group Inc.
Sutcliffe, G. C. (2011). Microcontroller Interfacing. Retrieved from

http://www.w9xt.com/page_microdesign_toc.html
Texas Instruments. (2011, 07). MIXED SIGNAL MICROCONTROLLER.
Tomshardware Authors. (n.d.). Tom's Hardware The Authority on Tech. Retrieved 12 1,

2011, from Tomshardware.com:
http://www.tomshardware.com/reviews/Components,1/Cooling,7/

Varcholik, P. (n.d.). BespokeSoftware.org. Retrieved 11 1, 2011, from Bespoke Software:
http://www.bespokesoftware.org/wordpress/?page_id=41

Varcholik, P. (n.d.). TACTUS: A Hardware and Software Testbed Research in Multi-
Touch Interaction. 10.

 Page 124

Whitaker, R. (n.d.). XNA Tutorials. Retrieved December 4, 2011, from
http://rbwhitaker.wikidot.com/xna-tutorials

Wilkinson, S. (2009, May 29). Ultimate Vizio. Retrieved 10 13, 2011, from
UltimateAVmag.com.

Williams, M. (2007). Ball vs Sleeve: A Comparison in Bearing Performance.

