# Multiagent Reactive Plan Application Learning in Dynamic Environments

Hüseyin Sevay Department of Electrical Engineering and Computer Science

University of Kansas

hsevay@eecs.ku.edu

May 3, 2004

#### **Overview**

- Introduction
- Background
- Methodology
- Implementation
- Evaluation Method
- Experimental Results
- Conclusions and Future Work



### Introduction

- Theme: How to solve problems in realistic multiagent environments?
- Problem
  - Complex, dynamic, uncertain environments have prohibitively continuous/large state and action spaces. Search spaces grow exponentially with the number of agents
  - Goals require multiple agents to accomplish them
  - Agents are autonomous and can only observe the world from their local perspectives and do not communicate
  - Sensor and actuator noise

### Introduction (cont'd)

- Solution Requirements
  - Agents need to collaborate among themselves
  - Agents must coordinate their actions
- Challenges
  - How to reduce large search spaces
  - How to enable agents to collaborate and coordinate to exhibit durative behavior
  - How to handle noise and uncertainty



### Introduction (cont'd)

- *Multiagent Reactive plan Application Learning (MuRAL)* 
  - proposed and developed a *learning-by-doing* solution methodology that
    - uses high-level plans to focus search from the perspective of each agent
    - \* each agent learns independently
    - \* facilitates goal-directed collaborative behavior
    - \* uses case-based reasoning and learning to handle noise
    - incorporates a naive form of reinforcement learning to handle uncertainty



### Introduction (cont'd)

- We implemented MuRAL agents that work in the RoboCup soccer simulator
- Experimentally we show that learning improves agent performance
  - Learning becomes more critical as plans get more complex



#### Terminology

- agent: an entity (hardware or software) that has its own decision and action mechanisms
- plan: a high-level description of *what* needs to be done by a team of agents to accomplish a <u>shared</u> goal
- **dynamic:** continually and frequently changing
- **reactive:** responsive to dynamic changes
- **complex:** with very large state and action search spaces
- uncertain: difficult to predict
- role: a set of responsibilities in a given plan step



### **Motivation for Learning**

- Complex, dynamic, uncertain environments require adaptability
  - balance *reaction* and *deliberation*
  - accomplish goals despite adversities
- Interdependencies among agent actions are context-dependent
- Real-world multiagent problem solving requires methodologies that account for durative actions in uncertain environments
  - a strategy may require multiple agents and may last multiple steps
  - Example: two robots pushing a box from point A to point B

X

### Background

- Traditional planning (deliberative systems)
  - Search to transform the start state into goal state
  - Only source of change is the planner
- Reactive/Behavior-based systems
  - Map situations to actions
- Procedural reasoning
  - Preprogrammed (complex) behavior
- Hybrid systems
  - Combine advantages of reactive systems and deliberative planning

X

### **Related Work**

- Reinforcement Learning
  - Learn a policy/strategy over infinitely many trials
  - Only a single policy is learned
  - Convergence of learning is difficult

#### **Assumptions**

- High-level plans can be written for a given multiagent environment
- Goals can be decomposed into several coordinated steps for multiple roles



#### **An Example Soccer Plan**

```
(plan Singlepass
   (rotation-limit 120 15)
   (step 1
      (precondition
         (timeout 15)
         (role A 10
            (has-ball A)
            (in-rectangle-rel B 12.5 2.5 12.5 -2.5 17.5 -2.5 17.5 2.5))
         (role B - 1
            (not has-ball B)
            (in-rectangle-rel A 17.5 -2.5 17.5 2.5 12.5 2.5 12.5 -2.5)) )
      (postcondition
         (timeout 40)
         (role A -1 (has-ball B))
         (role B -1 (has-ball B) (ready-to-receive-pass B)))
      (application-knowledge
         (case Singlepass A 10 . . .
            (action-sequence (pass-ball A B)) ) )
```



#### Approach

- Thesis question: How can we enable a group of goal-directed autonomous agents with shared goals to behave collaboratively and coherently in complex, highly dynamic and uncertain domains?
- Our system: *Multiagent Reactive plan Application Learning* (MuRAL)
  - A *learning-by-doing* solution methodology for enabling agents to learn to apply high-level plans to dynamic, complex, and uncertain environments

### Approach

- Instead of learning of strategies as in RL, learning of how to fulfill *roles* in high-level *plans* from each agent's local perspective using a knowledge-based methodology
- Start with high-level skeletal plans
- Two phases of operation to acquire and refine knowledge that implements the plans (*learning-by-doing*)
  - application knowledge



### Approach (cont'd)

- Phases of operation
  - Training: each agent acquires knowledge about how to solve specific instantiations of the high-level problem in a plan for its own role (*top-down*)
    - \* case-based learning
  - Application: each agent refines its training knowledge to be able to select more effective plan implementations based on its experiences (*bottom-up*)

\* naive reinforcement learning

#### Methodology

- A skeletal plan contains a set of preconditions and postconditions for each plan step
  - describes only the conditions *internal* to a collaborative group
  - missing from a skeletal plan is the application knowledge for implementing the plan in specific scenarios
- Each role has *application knowledge* for each plan step stored in cases. A *case* 
  - describes the scenario in terms of conditions *external* to the collaborative group
  - contains an action sequence to implement a given plan step
  - records the success rate of its application

#### **Methodology: Training**

- for a skeletal plan, P
  for an agent, A, that takes on role r in P
  for each step, s, of P
   A dynamically builds a search problem using
   its role description in s
   A does search to implement r in s
   in terms of high-level actions
   A executes the search result
  - if successful, A creates and stores a case that includes a description of the external environment and the search result



#### Methodology: Plan Merging

- For each successful training trial, each agent stores its application knowledge locally
- We merge all pieces of knowledge from successful training trials into a single plan for each *role* (postprocessing)
  - ignore duplicate solutions

#### **Methodology: Application**

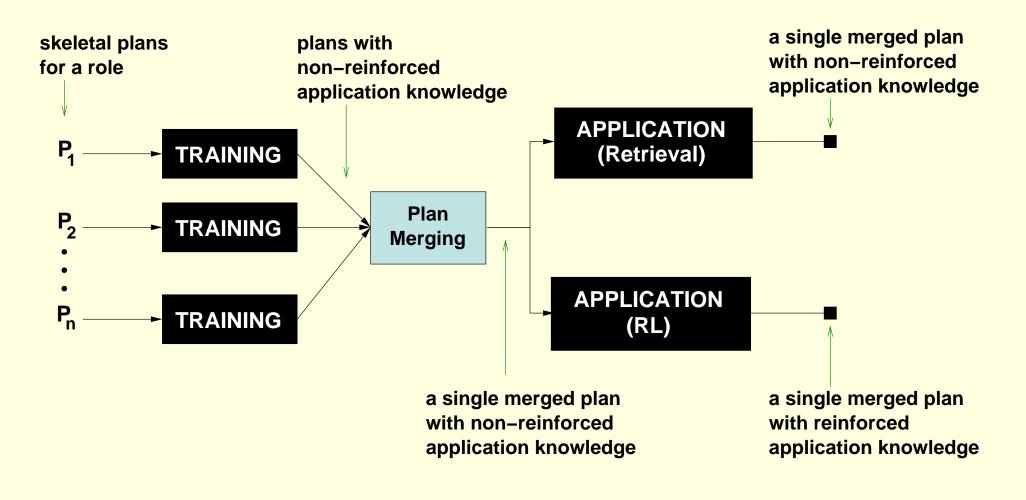
for an operationalized plan, P
for an agent, A, that takes on role r in P
for each step, s, of P

- A identifies cases that can implement s in the current scenario using CBR
- A selects one of these similar cases probabilistically
- A executes the application knowledge in that retrieved case

[RL Step]

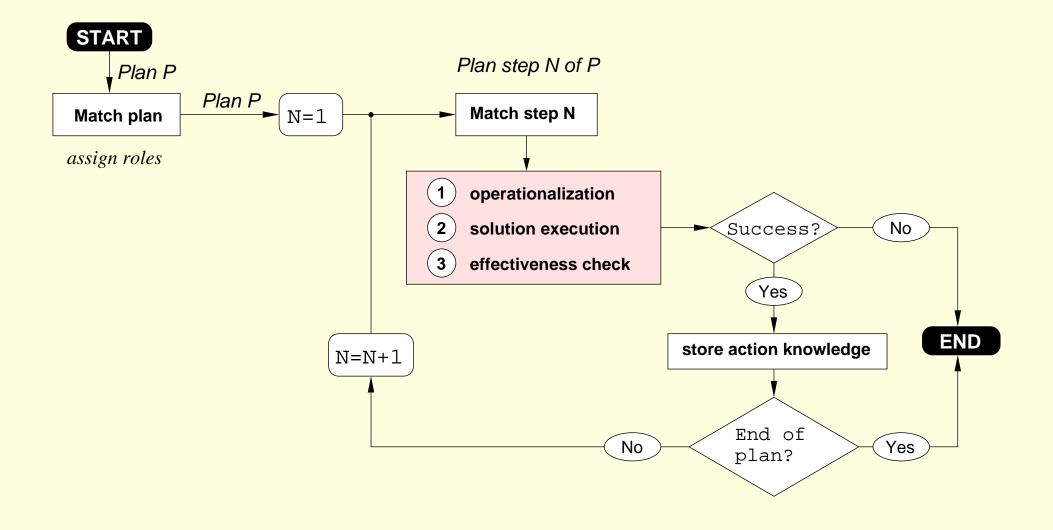
- A updates the success rate of the case based on the outcome

### **Methodology Summary**



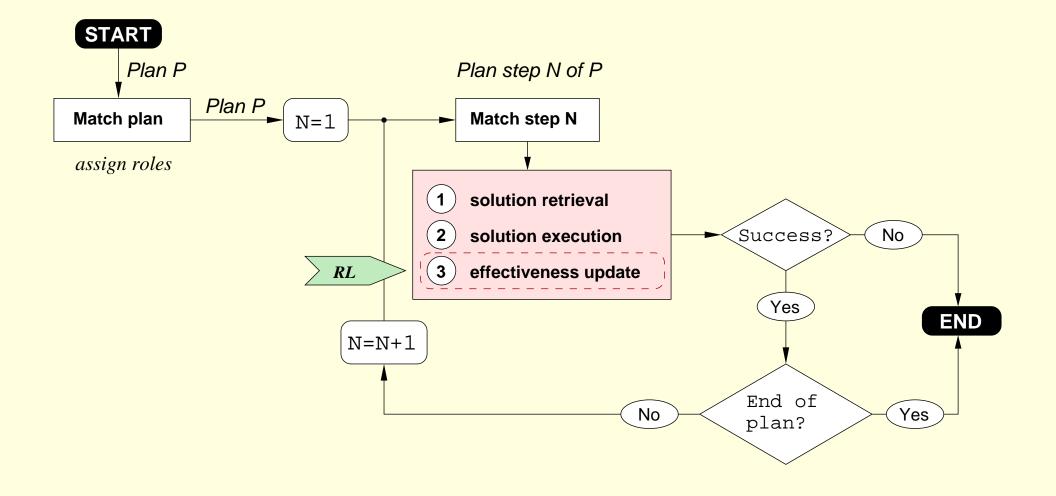


### **Methodology: Training**



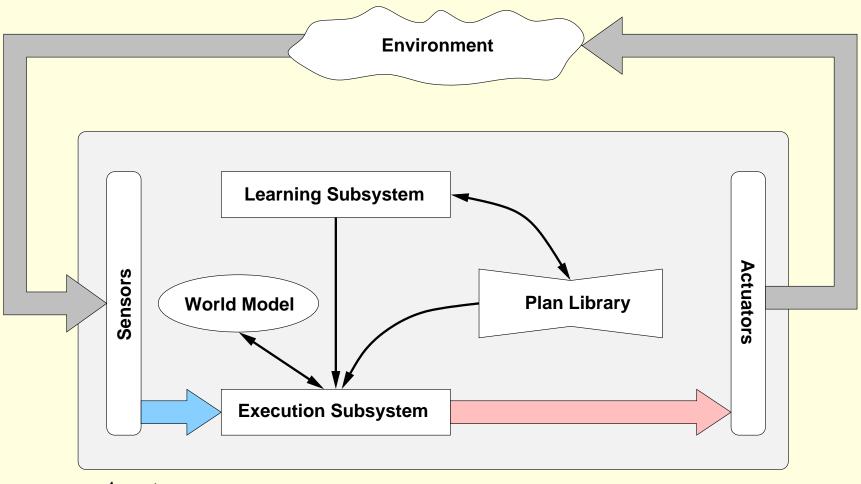
 $\blacksquare \blacksquare \diamond \triangleright \flat \flat \land \times$ 

### **Methodology: Application**





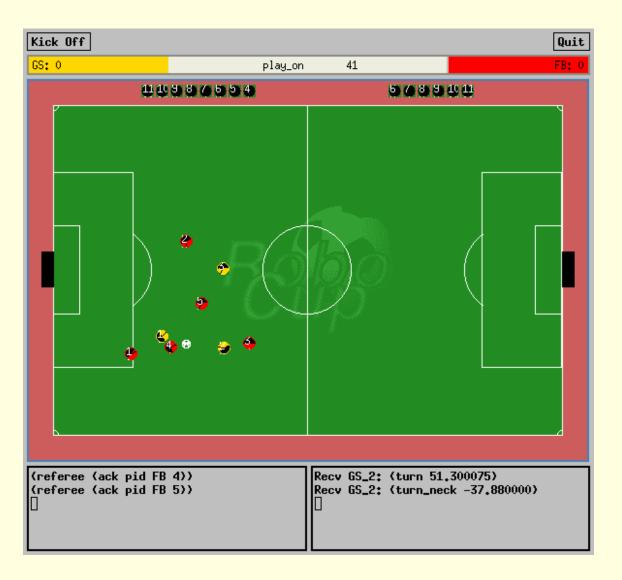
#### **Agent Architecture**



Agent



#### **RoboCup Soccer Simulator**



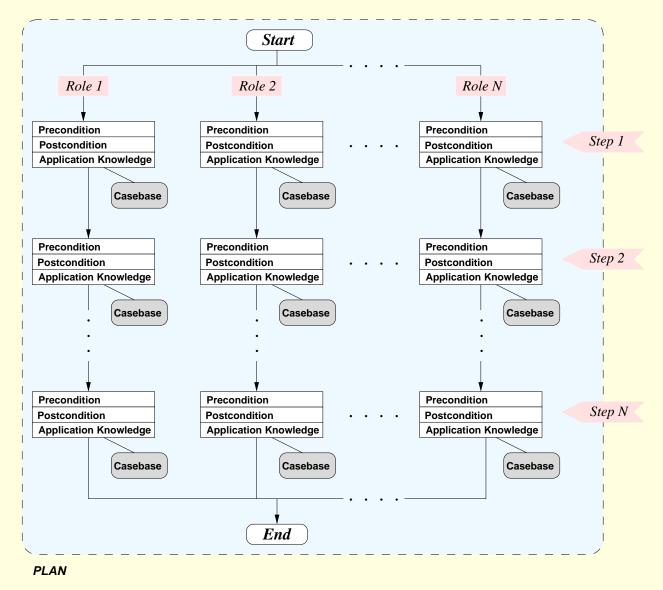


### **Implementation: Plan Specification Language**

```
(plan <symbol:plan-name>
   (rotation-limit <float[0..180]:max-rotation> <float[0..90]:rotation-increment>)
   (step <integer:plan-step-number>
      (precondition
         (timeout <integer:timeout-cycles>)
         (role <symbol:role-name> <integer:role-priority>
            ([not] <symbol:condition-name> <any:arg1> .. <any:argN>) .. )
         (role ...) .. )
      (postcondition
         (timeout <integer:timeout-cycles>)
         (role <symbol:role-name> -1 (<condition> <arguments>))
         (role ...) .. )
      (application-knowledge
         (case <symbol:plan-name> <symbol:role-name> <integer:plan-step-number>
            (gridunit <float:grid-unit>)
            (success <integer:success-count>) (failure <integer:failure-count>)
            (rotation <float:rotation>)
            (opponent-constellation (<integer:x-gridpos> <integer:y-gridpos>) .. (...))
            (action-sequence (<symbol:action-name> <any:arg1> .. <any:argN>) .. (...))
         (case ...) .. ))
   (step ...) .. )
```

X

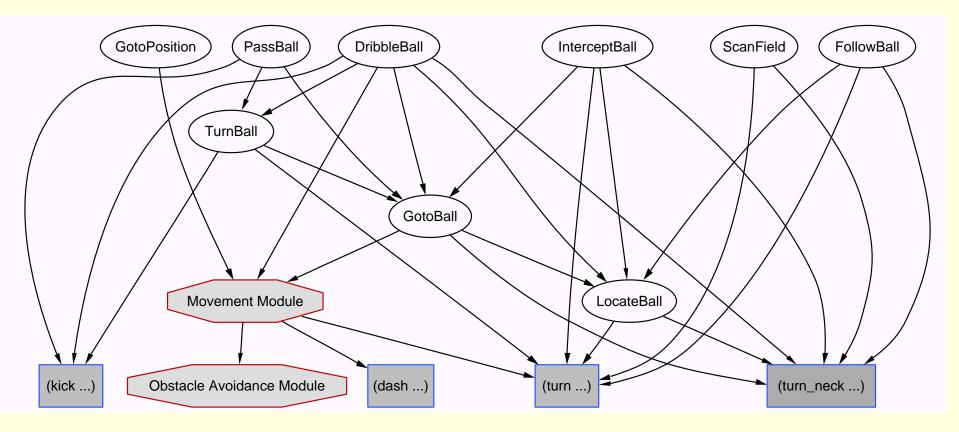
#### **Implementation: Plan Data Structure**



 $\times$ 

### **Implementation: Reactive Action Modules**

• Each reactive action module dynamically generates a sequence of primitive actions



X

#### **Implementation: Programs**

- Agent programs
  - soccerPlayer, soccerTrainer, dumbPlayer
  - 132 input parameters for customizing agent behavior
- Utilities
  - planstats, mergePlans, generateTestScenario
- Scripts
  - player, trainer, setup-train, setup-apply, runall, genresults, etc.

#### **Implementation: Programs**

- ~600 files
- ~250 C++ classes
- ~125,000 lines of code

| Program Classes   | #Lines (approx.) |  |
|-------------------|------------------|--|
| Action            | 12,000           |  |
| Search            | 14,000           |  |
| Planning          | 25,000           |  |
| Learning          | 2,000            |  |
| Infrastructure    | 19,000           |  |
| Debugging/Testing | 25,000           |  |
| Parsing           | 6,000            |  |
| Agents            | 21,000           |  |

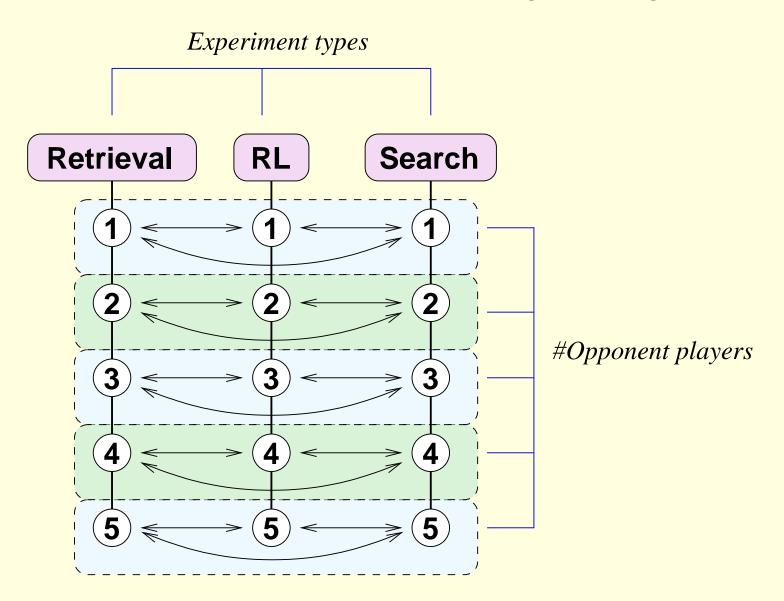
 $\blacksquare \blacksquare \diamond \triangleright \triangleright \flat \land \times$ 

#### **Evaluation Method**

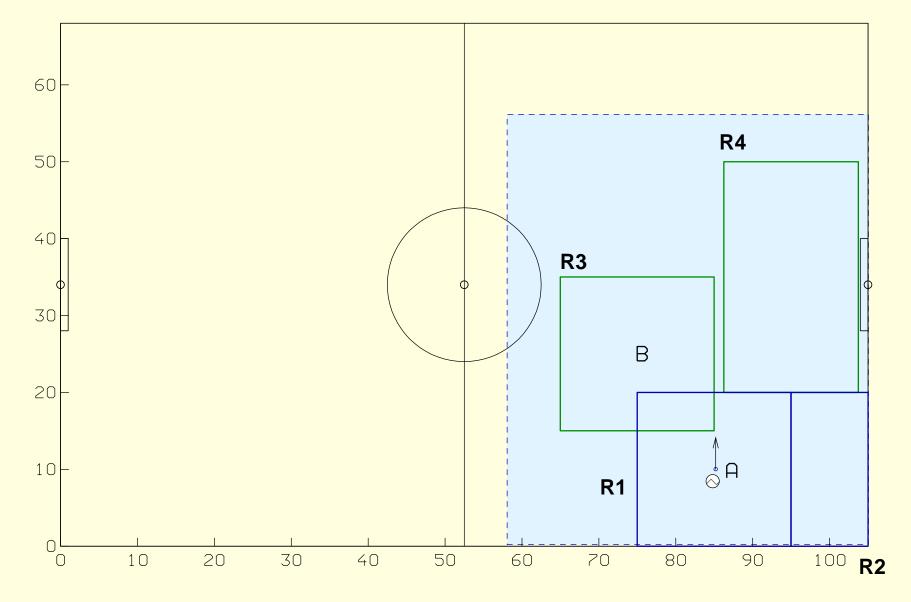
- Evaluation of multiagent systems is hard
- Experiments using different versions of the same program
  - Retrieval: each agent retrieves and applies its application knowledge
  - Search: each agent does search to implement its role
  - Naive RL: each agent retrieves, applies, and updates its application knowledge
- 4 test plans of varying complexity
- Statistical analysis using *paired t-test*

X

#### **Evaluation Method (cont'd)**

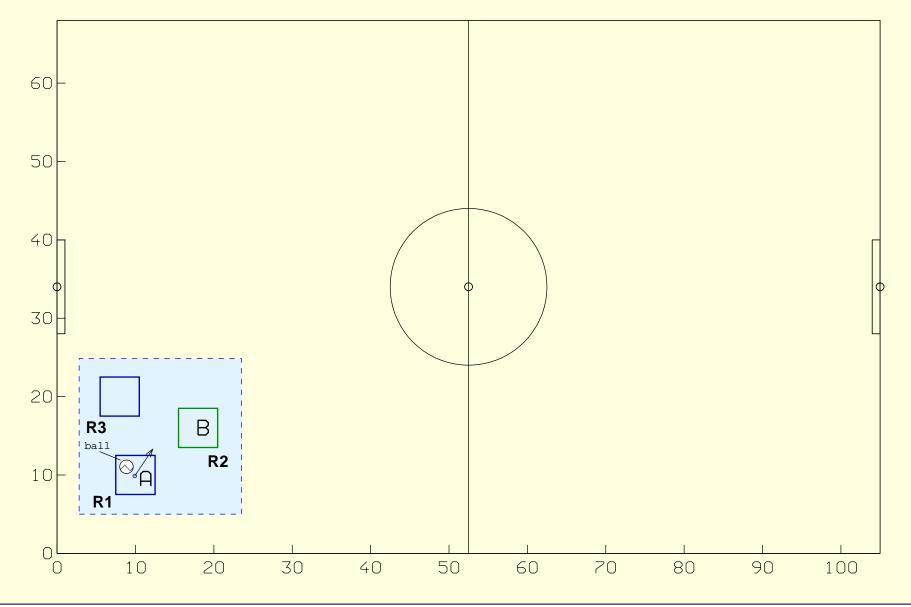


## **Test Plans: Centerpass (2 steps)**



 $\blacksquare \blacksquare \land \land \triangleright \models \flat \flat \land \land$ 

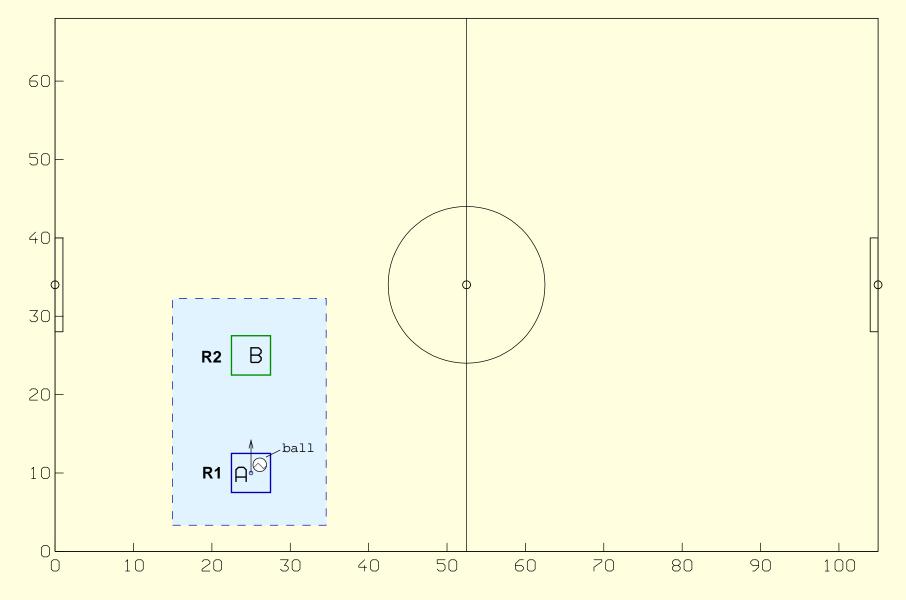
#### **Test Plans: Givengo (3 steps)**



32/57

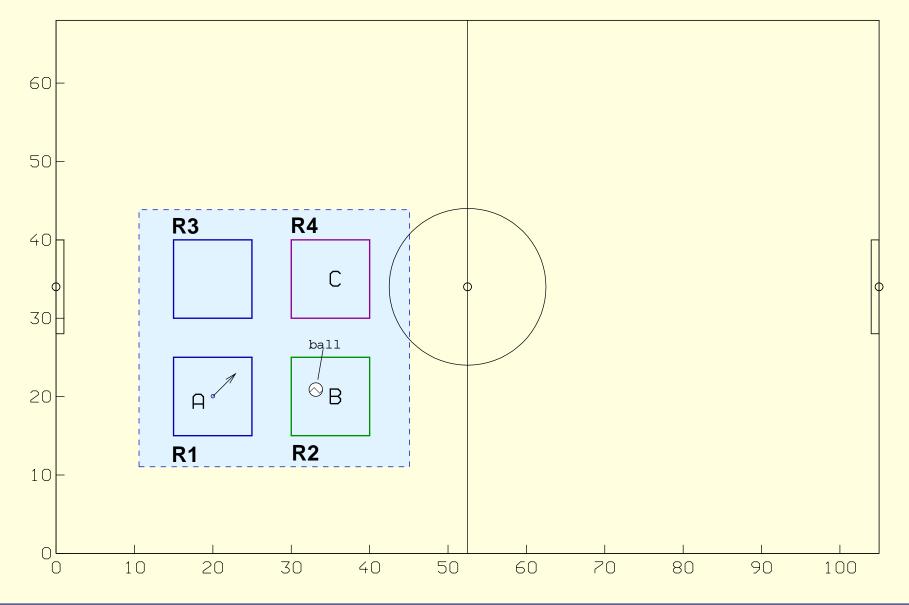
 $\blacksquare \blacksquare \land \land \triangleright \models \flat \land \land$ 

### **Test Plans: Singlepass (1 step)**



33/57

### **Test Plans: UEFA Fourwaypass (4 steps)**



### **Experiment Setup**

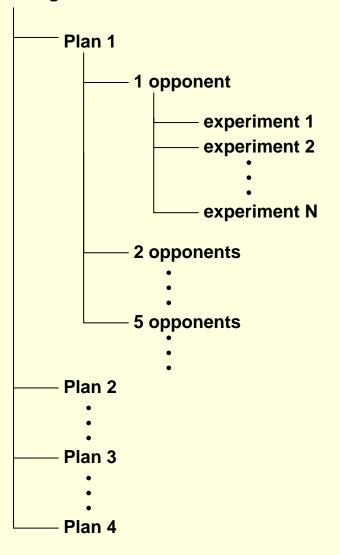
#### • Experiment and system modes

| Experiments/Modes       | RL  | Search | Retrieval | Case Storage |
|-------------------------|-----|--------|-----------|--------------|
| TRAINING                | off | on     | off       | on           |
| APPLICATION (Retrieval) | off | off    | on        | off          |
| APPLICATION (Learning)  | on  | off    | on        | off          |
| APPLICATION (Search)    | off | on     | off       | off          |

- Training: opponents do not move
- Application: opponents use a high-level ball interception behavior
- Plan skeletons are unchanged throughout testing

# **Experiment Setup Hierarchy**

Training/Retrieval/Search/RL



X

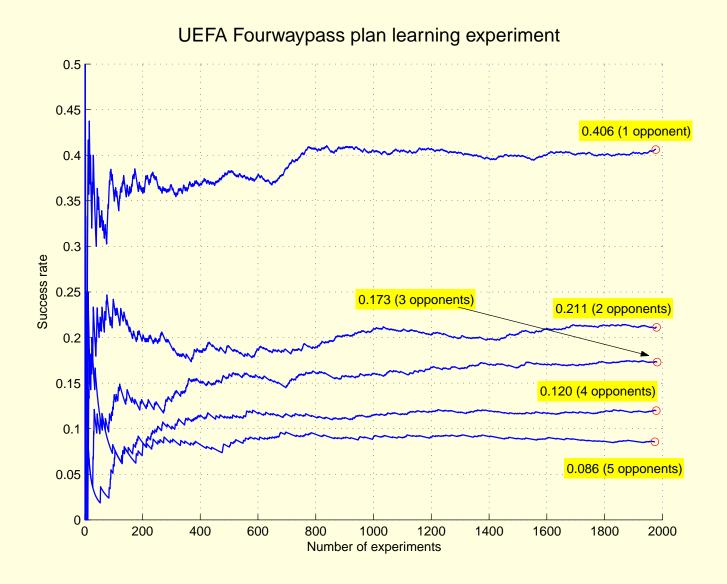
### **Experimental Results (Training)**

Plan Centerpass: Roles A, B - Step 1 [2 roles with cases] - Role: A, #Cases: 1 - Role: B, #Cases: 1 - Step 2 [2 roles with cases] - Role: A, #Cases: 1 - Role: B, #Cases: 1 Plan Givengo: Roles A, B - Step 1 [2 roles with cases] - Role: A, #Cases: 90 - Role: B, #Cases: 1 - Step 2 [1 role with cases] - Role: A, #Cases: 770 - Step 3 [2 roles with cases] - Role: A, #Cases: 1 - Role: B, #Cases: 9

### **Experimental Results (Training)**

Plan Singlepass: Roles A, B - Step 1 [2 roles with cases] - Role: A, #Cases: 210 - Role: B, #Cases: 1 Plan UEFA Fourwaypass: Roles A, B, C - Step 1 [2 roles with cases] - Role: A, #Cases: 1 - Role: B, #Cases: 41 - Step 2 [2 roles with cases] - Role: A, #Cases: 103 - Role: C, #Cases: 1 - Step 3 [1 role with cases] - Role: A, #Cases: 581 - Step 4 [3 roles with cases] - Role: A, #Cases: 1 - Role: C, #Cases: 2

# **Experimental Results (RL)**



39/57

## **Experimental Results**

Success rates of UEFA Fourwaypass plan experiments with  $[1 \dots 5]$  opponents

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| RL        | 0.402731 | 0.211927 | 0.173573 | 0.118803 | 0.085924 |
| Retrieval | 0.363636 | 0.194303 | 0.159960 | 0.114257 | 0.062753 |
| Search    | 0.000000 | 0.001124 | 0.000000 | 0.000000 | 0.000000 |

The mean and standard deviation of the last 100 values from the UEFA Fourwaypass plan RL experiment

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| mean      | 0.402731 | 0.211927 | 0.173573 | 0.118803 | 0.085924 |
| std. dev. | 0.001490 | 0.000829 | 0.000518 | 0.000587 | 0.000637 |

Paired t-test results for comparing UEFA Fourwaypass plan experiments

|                     | p-value  | t-value  | confidence |
|---------------------|----------|----------|------------|
| RL vs Retrieval     | 0.026885 | 3.415755 | 95.0%      |
| RL vs Search        | 0.023230 | 3.576998 | 95.0%      |
| Retrieval vs Search | 0.025039 | 3.493684 | 95.0%      |



# **UEFA Fourwaypass Experiment Summary**

- Success rate decreases as #opponents increases
- Success rates in each opponent scenario converge
- Naive RL performs best, followed by Retrieval, and finally Search in all scenarios with high statistical significance (95%)



# **Comparison of Experimental Results**

|                     | p-value | t-value | confidence |  |  |  |
|---------------------|---------|---------|------------|--|--|--|
| RL vs Retrieval     | 0.944   | -0.075  | —          |  |  |  |
| RL vs Search        | 0.001   | -10.216 | 99.9%      |  |  |  |
| Retrieval vs Search | 0.000   | -12.376 | 99.9%      |  |  |  |

#### Singlepass (2 agents, 1 step)

#### Centerpass (2 agents, 2 steps)

|                     | p-value | t-value | confidence |
|---------------------|---------|---------|------------|
| RL vs Retrieval     | 0.120   | 1.974   | 85.0%      |
| RL vs Search        | 0.006   | 5.212   | 99.0%      |
| Retrieval vs Search | 0.006   | 5.371   | 99.0%      |

#### Givengo (2 agents, 3 steps)

|                     | p-value | t-value | confidence |
|---------------------|---------|---------|------------|
| RL vs Retrieval     | 0.050   | 2.772   | 90.0%      |
| RL vs Search        | 0.001   | 9.421   | 99.9%      |
| Retrieval vs Search | 0.034   | 3.164   | 95.0%      |

#### UEFA Fourwaypass (3 agents, 4 steps)

|                     | p-value | t-value | confidence |
|---------------------|---------|---------|------------|
| RL vs Retrieval     | 0.027   | 3.416   | 95.0%      |
| RL vs Search        | 0.023   | 3.577   | 95.0%      |
| Retrieval vs Search | 0.025   | 3.494   | 95.0%      |



# **Comparison Summary**

- Success rates decrease as #opponents increases in all test plans
- In Singlepass plan
  - Search performs significantly better than both RL and Retrieval due to the simplicity of the scenario
  - RL and Retrieval performances are statistically identical likely due to inherent lack of variability in the solutions needed

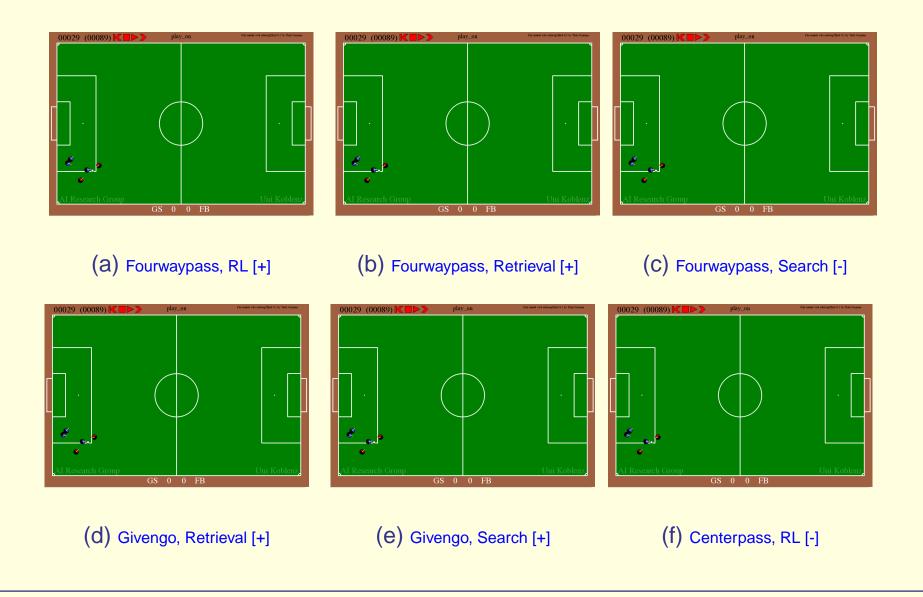


# **Comparison Summary (cont'd)**

- RL performs better than Retrieval and Search, and Retrieval performs better than Search in Centerpass, Givengo, and UEFA Fourwaypass test plans
- RL performs increasingly better than Retrieval as plan complexity increases (85%, 90%, 95%)
- In simpler plans, Search can find highly successful solutions.
   In harder plans, Search fails to find any solutions in almost all scenarios likely due to the lack of feedback that RL mode has

X

### **Example Runs**



### Conclusions

- Experimental results show that the MuRAL methodology can enable a group of goal-directed autonomous agents with shared goals to behave collaboratively and coherently in complex, dynamic, and uncertain domains
- MuRAL uses high-level plans to implement a *learning-by-doing* solution to multiagent problems
  - via case-based learning during training and
  - via naive reinforcement learning during application



X

### **Contributions**

- MuRAL: A *learning-by-doing* solution methodology for enabling agents to learn to apply high-level plans to dynamic, complex, and uncertain environments
- An agent architecture that enables reactive and collaborative strategy selection and application in situated environments
- A plan application approach that combines case-based reasoning and naive reinforcement learning
- A symbolic representation method for specifying both high-level multiagent and single-agent plans and for storing application knowledge in the form of cases

# **Contributions (cont'd)**

- An unsupervised learning algorithm that incorporates casebased learning and naive reinforcement learning
- A fully-implemented MuRAL system that works in the RoboCup soccer simulator





## Limitations

- Skeletal plans need to be manually written
- No learning of skeletal plans



### **Future Work**

- Automated recognition of learning opportunities arising from failures, either due to lack of plans or plan implementations
- Coherent successive plan application
  - How to select plans consistently
  - How to assign roles consistently
  - How to coordinate behavior
- Other issues
  - Resource allocation
  - Dynamic decision making for termination of failed plans instead of timeouts?

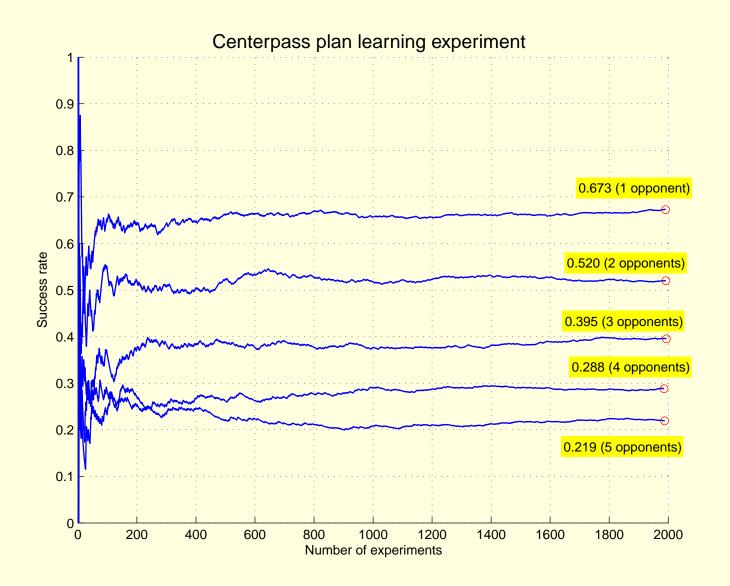


50/57

 $\bigcirc$ 



## **Experimental Results (Learning)**



51/57

X

# **Experimental Results (Learning)**

Success rates of Centerpass plan experiments with [1 . . 5] opponents

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| RL        | 0.670781 | 0.517448 | 0.395180 | 0.286241 | 0.221279 |
| Retrieval | 0.625626 | 0.509018 | 0.347041 | 0.288577 | 0.215726 |
| Search    | 0.042169 | 0.043000 | 0.018036 | 0.013026 | 0.018090 |

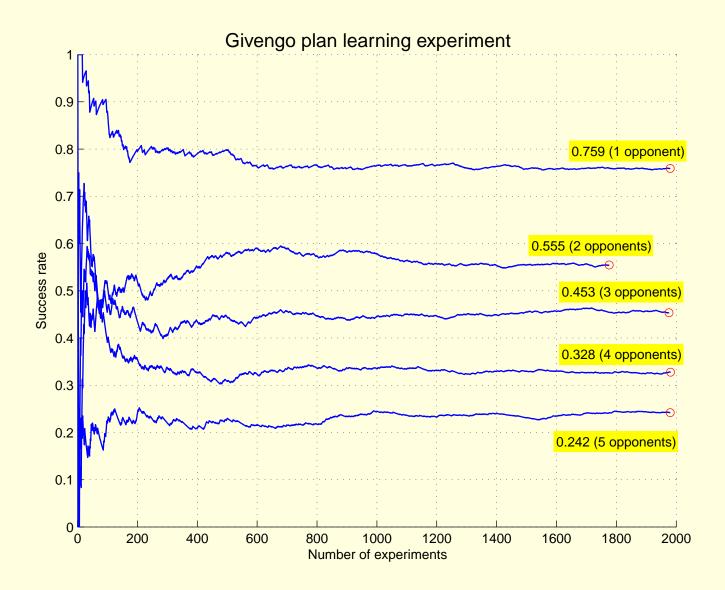
The mean and standard deviation of the last 100 values from the Centerpass plan RL experiment

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| mean      | 0.670781 | 0.517448 | 0.395180 | 0.286241 | 0.221279 |
| std. dev. | 0.001665 | 0.003728 | 0.000805 | 0.001383 | 0.000843 |

Paired t-test results for comparing Centerpass plan experiments

|                     | p-value  | t-value  | confidence |
|---------------------|----------|----------|------------|
| RL vs Retrieval     | 0.119635 | 1.973892 | 85.0%      |
| RL vs Search        | 0.006465 | 5.211575 | 99.0%      |
| Retrieval vs Search | 0.005805 | 5.370713 | 99.0%      |

## **Experimental Results (Learning)**



# **Experimental Results (Learning)**

Success rates of Givengo plan experiments with  $[1 \dots 5]$  opponents in RL, Retrieval and Search modes

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| RL        | 0.758004 | 0.553951 | 0.456083 | 0.325450 | 0.242873 |
| Retrieval | 0.740628 | 0.543611 | 0.381874 | 0.306061 | 0.204040 |
| Search    | 0.672556 | 0.491210 | 0.370291 | 0.257848 | 0.196262 |

The mean and standard deviation of the last 100 values from the Givengo plan RL experiment

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| mean      | 0.758004 | 0.553951 | 0.456083 | 0.325450 | 0.242873 |
| std. dev. | 0.000913 | 0.001630 | 0.001339 | 0.001096 | 0.000764 |

Paired t-test results for comparing Givengo plan experiments

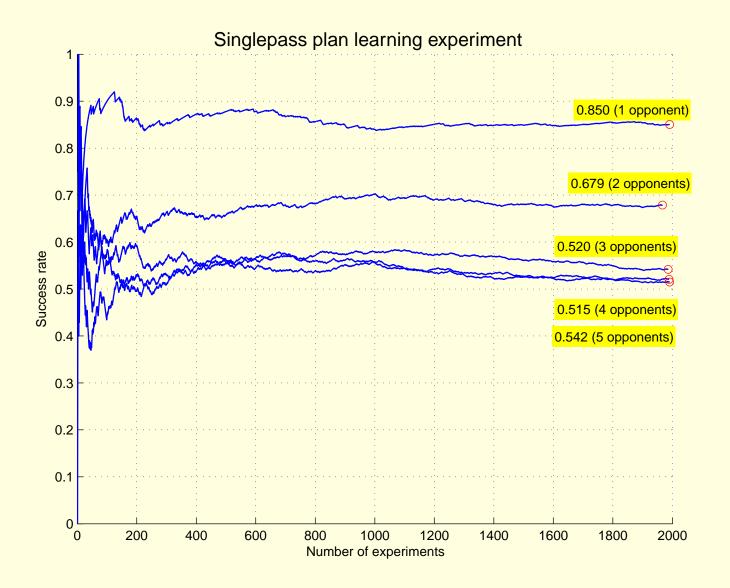
|                     | p-value  | t-value  | confidence |
|---------------------|----------|----------|------------|
| RL vs Retrieval     | 0.050232 | 2.771919 | 90.0%      |
| RL vs Search        | 0.000708 | 9.420699 | 99.9%      |
| Retrieval vs Search | 0.034065 | 3.163648 | 95.0%      |





X

## **Experimental Results (Learning)**



# **Experimental Results (Learning)**

Success rates of Singlepass plan experiments with [1 . . 5] opponents

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| RL        | 0.851200 | 0.676333 | 0.521230 | 0.514600 | 0.541750 |
| Retrieval | 0.835836 | 0.674000 | 0.508526 | 0.538616 | 0.550856 |
| Search    | 0.901000 | 0.757545 | 0.602603 | 0.600200 | 0.637550 |

The mean and standard deviation of the last 100 values from the Singlepass plan RL experiment

|           | 1        | 2        | 3        | 4        | 5        |
|-----------|----------|----------|----------|----------|----------|
| mean      | 0.851200 | 0.676333 | 0.521230 | 0.514600 | 0.541750 |
| std. dev. | 0.001813 | 0.001258 | 0.001268 | 0.000535 | 0.000909 |

Paired t-test results for comparing Singlepass plan experiments run in RL, Retrieval, and Search modes

|                     | p-value  | t-value    | confidence |
|---------------------|----------|------------|------------|
| RL vs Retrieval     | 0.944030 | -0.074713  | —          |
| RL vs Search        | 0.000517 | -10.215832 | 99.9%      |
| Retrieval vs Search | 0.000245 | -12.375628 | 99.9%      |



