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Introduction: Porting Algorithms to Multicore DSPs 
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• Distributed embedded systems are harder and harder to 

program 

• Difficult Constraints 

High computation requirements 

Low power consumption 

Many hardware and software choices: lack of information/metrics 

Real-time constraints (hard of soft real-time) 

Need to reuse legacy code 

 

• Difficult Goals 

Design both hardware and software 

Balance loads 

Obtain the most from a given architecture 

Respect  constraints 

5 
Addressed Problem 
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• Traditional code in C abstracts core architecture 

Amount of registers 

Number of pipeline stages 

Instruction parallelism 

Loop optimizations 

Cache accesses 

Data representation 

… 

 

• C code can not be efficiently transformed into coarse 

grain parallel code 

Assumed global state in a program 

Unique activity point 

Inspired by the Turing machine 

 

• The solution may come from dataflow MoCs 
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Addressed Problem 
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Grail of Multi-core DSP Programming 
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Code Porting 

Multi-core code porting  assignment, ordering and timing 

Core 1 Core 2 

Task 1 Task 2 

Task 3 Task 4 
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Code Porting 
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Code Porting 
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• And other tasks: 

Choose communication (shared memory, DMA, direct copy) 

Choose communication synchronization (polling or interrupts) 

Allocate in memory, order and time communications 

 

12 
Code Porting 
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Code Deployment 

Many possible  

assignments and orders 

Core 1 Core 2 
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Grail of Multi-core DSP Programming 
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• Optimizing / Offering trade-offs between 
• Latency / Response time 
• Throughput 
• Load Balancing 
• Memory consumption 
• Power consumption 

 
• Algorithm description portable to new 
device (DSP, GPU, HPC…) 
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• Demo Platform 

• Applications 

• Models of Computation 

• Architectures 

• Models of Architecture 

• Partitioning and Scheduling Problem 

• Compile-time and Runtime Tools 

15 

General Outline 
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• EVM = Evaluation Module for theTMS320C6678 

 

17 
Advantech Board TDMSEVM6678L 
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• 8-Core DSP 

8 C66x DSP Core Subsystems (C66x CorePacs), Each with: 

– 1.0 GHz or 1.25 GHz C66x Fixed/Floating-Point CPU Core 

 40 GMAC/Core for Fixed Point @ 1.25 GHz 

 20 GFLOP/Core for Floating Point @ 1.25 GHz 

 Total: 320 GMACs + 160 Gflops: hard to reach! 

– 2 levels of Core Memory 

 32K Byte L1P Per Core 

 32K Byte L1D Per Core 

 512K Byte Local L2 Per Core 

 

• 4 MB of Internal Shared Memory  

Multicore Shared Memory Controller (MSMC) 

L1D and L1P with automatic cache coherency in local 

Non coherent cache of the shared memory 

• Unified memory space for internal/external memory 

 

 

18 
TMS320C6678 
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• 512 MB of Shared DDR3 on the emulation board 

Any core can access DDR3, 8G Byte of DDR3 Addressable Memory 

 

• Hardware coprocessors 

For repetitive common operations 

Reduced because multi-purpose processor 

Cryptography 

Network 

 

• XDS510 JTAG 

via USB 

Possibility to extend to XDS560 via extension 

 

• Packaging 

40nm technology, 841-Pin Flip-Chip Plastic BGA (CYP) 

19 
Demo Board 
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• KeyStoneTeraNet switch fabric (Network on Chip) 

• Core Interrupt Controller 

 

• Enhanced Direct Memory Access v3 (EDMA3) 

Data movement 

Like a core with only MOV instructions 

 

• Multicore Navigator 

8192 Multipurpose Hardware Queues with Queue Manager 

Data movement or zero-copy 

 

• Shared MSMC and DDR3 

Data movement or zero-copy 

 

20 
Inter-core Communication 
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• Multicore Navigator 

Queue Manager Subsystem (QMSS)  

Packet DMA (PKTDMA) for Zero-Overhead Transfers 

Packet passing system between cores 

Abstracts real data transfer 

 

• Open Event Machine 

Software runtime system provided by TI to offload code on cores 

Event driven processing runtime for multicore 

21 
Inter-core Communication 
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Inter-core Communication 

Source: sprabh2a TI 
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Inter-core Communication Throughputs 

Source: sprabh2a TI 

256-bit VLIW 

Data switch fabric 

+ Configuration Switch fabric  

(not shown) 
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• Cache operations 

The L1 has automatic cache coherence if local L2 is modified 

L1 has no automatic cache coherence if non local memory is modified 

L2 has no automatic cache coherency 

L1 and L2 cache « write back » and « invalidate » must be called 

 

Up layer memory request: write back if modifications 

 

 

 

 

 

Low layer memory request: invalidate if modifications 

 

24 
Cache Access Latencies 

Core Shared L2 cache L1 cache 
Core or DMA 

Store to external memory 

Core Shared L2 cache L1 cache 
Core or DMA 

Load from external memory 

Write back 

Invalidate 
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• Caches have a strong effect on memory latency 

 

25 
Data Alignment and Performance 

Source: sprabh2a TI 

Single Read Single Read Burst Read Burst Read 

L1 Cache L2 Cache XMC Prefetch No Victim Victim No Victim Victim 
All Hit NA NA 0 NA 0 NA 
Local L2 Miss NA NA 7 7 3,5 10 
MSMC (SL2) Miss NA Hit 7,5 7,5 7,4 11 
MSMC (SL2) Miss NA Miss 19,8 20,1 9,5 11,6 
MSMC (SL3) Miss Hit NA 9 9 4,5 4,5 
MSMC (SL3) Miss Miss Hit 10,6 15,6 9,7 129,6 

MSMC (SL3) Miss Miss Miss 22 28,1 11 129,7 
DDR (SL2) Miss NA Hit 9 9 23,2 59,8 
DDR (SL2) Miss NA Miss 84 113,6 41,5 113 
DDR (SL3) Miss Hit NA 9 9 4,5 4,5 
DDR (SL3) Miss Miss Hit 12,3 59,8 30,7 287 
DDR (SL3) Miss Miss Miss 89 123,8 43,2 183 
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• Four Lanes of SRIO 2.1 

1.24 to 5 GBaud Operation Supported Per Lane  up to 20 Gbauds 

• PCIe Gen2 

Single port supporting 1 or 2 lanes 

Supports Up To 5 GBaud Per Lane  up to 10 Gbauds 

• HyperLink 

Supports Connections to Other KeyStone  up to 50 Gbauds 

Architecture Devices Providing Resource Scalability 

• Gigabit Ethernet (GbE) Switch Subsystem 

Two SGMII Ports 

Supports 10/100/1000 Mbps operation  up to 2 Gbps 

• Other ports 

UART Interface, I2C Interface, 16 GPIO Pins, SPI Interface 

• Remark 

Uncompressed 1920x1080 4:2:0 video @ 60Hz = 1.5 Gbps 

 

26 
Signal Input/Output 
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• Code Composer Studio v5 (CCS) IDE 

Based on Eclipse 3.7 Indigo 

Runs under Windows and Linux 

Integrable in an existing Eclipse 

 

• C66x compiler, linker, assembler, simulator… 

Delivered with CCS IDE 

 

• EVM Drivers 

Installed with CCS 

Connect to the EVM JTAG (breakpoints…) 

 

27 
Code Composer Studio Software 
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28 
Using DMAs 
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SYS/BIOS 
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• Multi-task OS :  

enables sharing the DSP between several tasks 

 

• OS with Static and Dynamic configuration  

Static : « configuration tool », .cfgfile 

Dynamic : specific functions to access interruptions, task creation, logs… 

 

• Gives many informations on the system for debug 

 

• Preemptive RTOS  

Scheduler 

task priorities 

 

• Alternative to DSP-BIOS:  

Enea Solutions : other RTOS for C6x 

 

30 
SYS/BIOS 
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31 
DSP BIOS Limits 

31 
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• Developed at IETR under Eclipse 

• From a dataflow graph to a multicore code execution 

• Automates multicore communication/synchronization 

32 
Preesm Software 
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• Overview 

• Standization Processes 

• MPEG HEVC 

• 4G 

34 

High Performance DSP Applications 
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• Embedded system applications & High Performance 

computing applications 

Base stations & software-defined radio 

Image and Audio processing 

Industrial control systems 

Aeronautics & transports 

Radar / Sonar 

Medical 

Scientific computing & numerical simulation 

 High Performance Computing (HPC) 

 … 

35 
High Performance DSP Applications : Overview 
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• Embedded system applications & High Performance 

computing applications 

36 
High Performance DSP Applications : Overview 
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• Typical types of operations / tasks / actors 

low-pass, band-pass, high-pass and adaptive filtering (FIR and IIR filters) 

cross/auto, linear/circular correlation (similarity between signals) 

Convolution (equivalent to multiplication in Fourier domain) 

transformations between domains (Fast Fourier, DCT, Hadamard, 

wavelet, Hilbert, Wigner-Ville...) 

noise removal 

power computation 

independent component analysis 

expected signal detection and extraction 

data prediction (temporal, spatial) 

entropy coding 

complex, vector and matrix operations 

forward error correction 

... 

37 
High Performance DSP Applications : Overview 
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• There are many standardization organizations 

• Famous standardization organizations regarding signal 

processing include: 

ISO (International Organization for Standardization) 

IEEE (Institute of Electrical and Electronics Engineers) 

ITU (International Telecommunication Union) 

3GPP (Third Generation Partnership Project ) 

 

• MPEG HEVC Video Compression Standard  

developed by the ITU-T Video Coding Experts Group (VCEG) together 

with the ISO/IEC JTC1 Moving Picture Experts Group (MPEG) 

• 3GPP LTE Radio Telecommunication Standard  

developed by the 3GPP (3rd Generation Partnership Project) 

Respecting (partially) the ITU-R organization IMT-Advanced specification 

38 
Standardization Processes 
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DSP Application : MPEG AVC and HEVC 
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• Mpeg-1 : (1992)   

• Mpeg-2 : (1994) 

•  Mpeg-4 : (since 1998) 

Example : Mpeg-4 Part 2 (DivX until v5,Xvid) 

Extension1: Mpeg-4 part 10 = H.264 (ITU-T) = AVC (Advanced Video 

Coding) 

• Each standard : better compression (HEVC: HD@4Mb/s) 

40 
MPEG Standards 
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Advanced Video Coding Decoder 
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HEVC Decoder 
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Source: Hervé Yviquel 
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DSP Application : 4G 
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45 
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46 

Preamble Detection 

Uplink Decoding 

Downlink Encoding 

LTE Access Network 
46 
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Core  
Network 

Base Station  
= eNodeB 

 Frequency Division Multiplexing, Multiple Input Multiple Output 
 Dozens of Users communicating concurrently 

 Up to 100 Mbps in downlink, 50 Mbps in uplink 

 Strong latency constraints 
 User allocation modified every millisecond 

 Complex physical layer 

3GPP Long Term Evolution rel. 9 
47 



Multicore DSP 

48 
Frequency Allocations 

• 3GPP LTE Frequency Allocations in France (ACERP october 2011) 
 

– 800 MHz band (previously UHF TV bands) 

 

 

 
 

 

– 2.6 GHz band 

 

Source: Wikipedia 

5 MHz 

20 MHz 20 MHz 15 MHz 

15 MHz 
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49 
LTE Frequency division: subcarriers 

•Spectrum flexibility 

– In both downlink and uplink 

 

1200 900 600 300 144 72 Number of 

available 

subcarriers 

2048 1536 1024 512 256 128 OFDM FFT 
size 

100 75 50 25 12 6 Number of 
available 

PRBs 
(downlink) 

Bandwidth 
(MHz) 

1.4 20 15 10 5 3 

Size (in complex values) of one symbol 
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• High Data Rates 

50Mbps(UpLink), 100Mbps (DownLink) 

• High User Equipment Speed 

Walking to bullet-train (optimized up to 120 km/h) 

• Reduced Latency 

Quick response time (under 5ms) 

• Cheap Roll-out 

Bandwidth flexibility 

• Optimized for packet-switching 

Good support for VoIP and data 

• Up to 100km radius cells (35km for GSM macrocells) 

• Up to 100 user per cell 

 

• Free to consult: search 36.211 and 36.212 in Google 

50 
3GPP LTE Rel. 9 Performance 
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LTE and OSI Layers 

LTE Specific Implementation 

7. Application Layer 
FTP, HTTP, SMTP, Telnet... 

6. Presentation Layer 
ASCII... 

5. Session Layer 
SSH... 

4. Transport Layer 
TCP, UDP, SSL, TLS... 

3. Network Layer 
IP... 

2. Data Link Layer 
Ethernet, PPP... 

1. Physical Layer 
RS-232, 802.11a/b/g/n.. connection, contention resolution, 

modulation, channel adaptation,  
physical signal manipulation,  
bit flow generation… 
 

physical layer control, error correction, 
point-to-point and point-to-multipoint control, 
data preparation for physical layer… 

connection-less transfers,  
variable-length data sequences, 
packet fragmentation,  
logical addressing… 

transparent transfers between end-users 
packet flow, error correction… 
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• Application is naturally described by a dataflow graph 

 

 

 

 

 

 

 

• This application requires high DSP computing power 

52 
Downlink/Uplink in a Base Station 
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LTE eNodeB DSP Programming 
53 



Multicore DSP 
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Active Users 
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Uplink Decoding Load 

Preamble Detection Load 

Time (ms) 

Static versus Variable Algorithms 
54 
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• Applications are complex! 

A designer should not need to be an expert in both application and 

architecture 

Legacy code reuse between systems is absolutely needed 

 When a programmer has generated a functional efficient piece of 

 code, he does want to reuse it  

A designer should not need to tweak his code for his target architecture 

 

• Streaming applications are naturally broken down into 

dataflow actors 

When we analyze an application, it is natural to use dataflow graphs 

 

55 
Conclusion from Applications Part 
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• Languages and MoCs 

• Dataflow MoCs and Languages 

Focus on PiMM and πSDF 

Focus on CAL 

• Practical Work Setup 

 

56 

Languages and Models of Computation (MoCs) for 

Application Description  
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• Among the 10 most used languages, all 10 are 

imperative, 7 are object-oriented. They share semantics. 

• Other semantics exist. A MoC specifies semantics 

independently from a language syntax 

57 
Languages and Models of Computation 
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• UML implements object-oriented semantics 

 

• C++ implements object-oriented semantics 

 

• They share semantics but not syntax 

58 
Semantics and Syntax 
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• Useful for 

Specification (especially for standards (cf. MPEG RVC)) 

Simulation (performance metrics and constraints checking) 

Execution (functional description) 

 

• Families of MoCs : 

 

• Finite State Machine MoCs 

MoC of imperative languages (C/C++/Java…) 

States and transitions based on conditions 

Computation is executed on transitions 

Representing the behavior of a Turing machine 

59 
Models of Computation for DSP 

Start 

End 

pts = @TAB 

(pts) = 0 
pts = pts + 1  

End 
TAB ? 

yes 

no 



Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013 

• Discrete Event MoCs 

Modules react to events by producing events 

Events tagged in time, i.e. the time at which events are consumed and 

produced is essential and is used to model system behavior 

Modules share a clock 

Used to model HDL behavior 

 

• Functional MoCs 

No state, a program returns the result of composed mathematical 

functions: result = f  g  h(inputs) 

Based on lambda calculus 

Haskell, Caml, Scheme, XSLT 

Functional languages are examples of declarative languages 

 

 

60 
Models of Computation for DSP 
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• Petri Nets 

Close to state machines but  

able to represent parallelism 

Operations are done on transitions 

 

 

 

 

 

• Synchronous MoCs 

Like in Discrete Events, modules react to events  

by producing new events 

Contrary to Discrete Events, time is not explicit and  

only the simultaneity of events and causality are important 

Language examples: Signal, Esterel, Lustre… 
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Models of Computation for DSP 
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• Process Network MoCs 

concurrent and independent modules (processes) communicate ordered 

tokens (data quanta) through First-InFirst-Out (FIFO) channels 

Include dataflow process networks 

Untimed models: the time is abstracted 

What we naturally used to describe MPEG HEVC and 3GPP LTE 

processing 

… 

 

• Any syntax can be used to express these semantics 

62 
Models of Computation for DSP 
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• Computation is done by processes (= Actors) 

• Actors communicate only though data infinite FIFOs 

Actors do not share a state and have no internal state 

• FIFO reading is blocked until a data arrives 

 

 

 

 

 

63 
Kahn Process Networks 

Get 

Do 

Set 

Stream of data to process Stream of processed data 
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• DPN is a special case of Kahn Process Networks 

defining: 

Firing rules: conditions on which an actor is ready to execute 

Actor « invocation » (=« firing ») 

 

 

 

 

 

Example of firing rule for Set: 

-Set consumes 3 tokens coming from Do and fires an action Set1, 

producing 1 token 

-Set consumes 1 token on Get and one token on Do and fires action Set2 

producing 2 tokens 

 

64 
Dataflow Process Networks 

Get 

Do 

Set 
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• Differences 

Is the number of exchanged 

tokens fixed/variable? 

Is it even specified? 

Does it depend of parameters? 

Is there an external control flow? 

Are there actor states 

 

• Devil is in the details 

Dynamic Dataflow (DDF) 

is not a DPN because 

it can « peek » FIFOs (look inside 

The FIFO without popping the token) 

 

65 
There Exist Many Dataflow MoCs 
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• Expressiveness 

How many different behavior types 

can the model specify? 

How « optimized » is the 

specification? 

How concise is the specification? 

 

• Predictability 

Can the behavior (production 

And consumption) be predicted? 

 at compile-time 

 in advance at runtime 

 

66 
There Exist Many Dataflow MoCs 
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• The dataflow MoC defines a coordination language 

• Actors are implemented by a host language 

Any host language can be used 

As long as the host language implements the firing rules 

We can combine and make communicate 

 IPs coded in VHDL 

 High-level software actors written in Java 

 Low-level software actors written in C 

 

 

67 
There Exist Many Dataflow MoCs 
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• Small grain, Locally to a core 

Imperative languages such as C/C++ have shown their capacity to use 

cores efficiently, including with low-level parallelism (SIMD, VLIW…) 

Finite state machine MoC 

 

• Coarse grain, to combine the cores 

Dataflow MoCs are good candidates because they decouple actors 

All possible communications between actors are specified, so they can 

be used to organize data flows between cores 

68 
Which MoC should we use to program Multicore DSPs? 
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69 
Which Dataflow Model for a Given Application ? 

P
red

ictab
ility Ex

p
re

ss
iv

en
es

s 

BDF 

DAG 

KPN 

PSDF 

Preamble Detection 

Uplink Decoding 

Downlink Encoding 

A B C 
? ? 

? 

3GPP LTE 
For example: 

DDF 

πSDF 

IBSDF 

SDF CSDF 



Multicore DSP 

70 
Synchronous Dataflow 

• Actors and Data Ports 

• FIFO Queues and Delays 

Actor_A 

Actor_B 

Actor_C 

2 
2 

1 

1 
3 

1 

E. Lee and D. Messerschmitt, “Synchronous data flow”, Proceedings of the IEEE, 1987. 

x1 

DDF 

πSDF 

SDF 

CSDF 
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71 
Synchronous Dataflow and Actor State 

Actor_A 

Actor_B 

Actor_C 

2 
2 

1 

1 
3 

1 

E. Lee and D. Messerschmitt, “Synchronous data flow”, Proceedings of the IEEE, 1987. 

x1 

DDF 

πSDF 

SDF 

CSDF 

1 1 



Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013 

• By resolving the topology equation, we can check 

consistency 

• By verifying that enough initial tokens have been set, we 

can check schedulability 

Ability to come back to the initial FIFO states 

72 
SDF Predictability 
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DDF 

πSDF 

SDF 

CSDF 

73 
Graph Scheduling and Transformation 

Synchronous Dataflow (SDF) graph: 
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DDF 

πSDF 

SDF 

CSDF 

74 
Graph Scheduling and Transformation 

Cyclo Static Dataflow (CSDF) graph: 
 
 
 
 
 

4 
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DDF 

πSDF 

SDF 

CSDF 

• Meta-model developped at IETR 

• in collaboration with UMD and TI 

 

• Targeted Dataflow Model of Computation  

• becomes: 

Hierarchical & Compositional 

Statically parameterizable 

Dynamically reconfigurable 

 

• PiMM fosters: 

Predictability 

Memory boundedness 

Parallelism 

Lightweight runtime overhead 

Developer-friendliness 

 

75 
PiMM and πSDF 
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76 
A Naive SDF Composition Mechanism 

• Hierarchical SDF 

A B h 
3 1 1 3 

1 
H1 H2 

1 X 1 

A H1 H2 

H1 H2 

H1 H2 

B 

Converted to HSDF 

With X = 1 

With X = 2 

A 
H2 

H2 

H1 

H1 

H2 

B 
H1 

H1 

H1 

H1 

A 

? ? 



Multicore DSP 
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PiMM Compositionality Mechanism 

• Hierarchical Interfaces 

J. Piat, S. Bhattacharyya, and M. Raulet, “Interface-based hierarchy for synchronous 
data-flow graphs” in SiPS Proceedings, 2009. 

A B h 
3 1 1 3 

1 
H1 H2 in

 

o
u

t 1 X 1 

With X = 1 

A H1 H2 

H1 H2 

H1 H2 

B 

With X = 2 

H1 

H1 

H1 

H1 

H1 

H1 

H2 

H2 

H2 

B Br 

Br 

Br 

A 
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78 
Trade-off Between Expressiveness and Analyzability 

• The more dynamism, the less predictability 

S. Neuendorffer and E. Lee, “Hierarchical reconfiguration of dataflow models” 
in MEMOCODE, 2004. 

B 1 3 A 2 C 2 
SDF 

x1 x2 x3 

DPN A C B 
x2 x1 x1 x2 x3 x1 

PiSDF 
B 1 A 2 C 2 

body 

Set_p 

x2 x3 x1 

p:=3 

p 

Compile Time 

After Config 

After execution 

NbUE 
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Configuring Parameters 

MaxCb

PerUE 

NbUE 

an
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n
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a 

PUSCH 

sn
k 

NbUE 1 

Converge 

NbUE*MaxCbPerUE 

Channel 
Decoding 
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• Dynamic Parameters 
• Configuration Actors 

m
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 Config 
NbUE 
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PiMM Operational Semantics 

Kernel 
Size Size/N 

Size/N 

Size/N 

Size/N 

Read Display 

in
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81 
PiMM Operational Semantics 

MaxCb

PerUE 

m
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Config 
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Channel 
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Data Ports 
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Interfaces 

IBSDF 

Parameters 
Param. Ports 

Dependencies 
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• CAL = CAL Actor Language, J. Ecker and J. Janneck 

• It implements  

the Dynamic Dataflow (DDF) MoC  

and a host code named CAL specifying firing rules 

• DDF graph gives no information on token flow 

Firing rules are specified in the CAL language 

 consumed tokens, guards, finite state machine, priorities 

DDF 

πSDF 

SDF 

CSDF 

82 
CAL and DDF 

actor decimate () I ==> O : 

  action I:[ a , b ] ==> O:[ a ] end 

end 
Consommation Production 

décimate 

I O 
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actor decimate () I ==> O: 

  a: action [ x ] ==> [ x ] end 

  b: action [ x ] ==>       end 

  schedule fsm s1: 

    s1 ( a ) --> s2; 

    s2 ( b ) --> s1; 

  end 

end 

DDF 

πSDF 

SDF 

CSDF 

 

 

 

 

 

 

 

 

 

• Via classification, a CAL actor can be transformed  

into SDF, CSDF, and soon πSDF 

In order to make the model more predictable  

• The Orcc compiler, developed at IETR, is a compiler for 

CAL 

 

 

83 
CAL and DDF 

Consommation Production 

actor posValue() I ==> O: 

 pos: action I: [ x ] ==> O: [ x ] guard x >= 0 

 end 

 neg: action I: [ x ] ==> O: 

 end 

  

 priority  

  pos > neg; 

 end 

end 

actor decimate () I ==> O: 

  int s := 0; 

 

  action [ x ] ==> [ x ] guard s = 0  

    do s := 1; end 

 

  action [ x ] ==> guard s = 1 

    do s := 0; end 

end 
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DDF 

πSDF 

SDF 

CSDF 

84 
CAL and DDF 

• From CAL, both hardware and software can be 

generated 

• CAL  Preesm is already working for static actors 

• CAL  PiSDF is a future theme of research 
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85 

Example: Describing 3GPP LTE Base Station Physical Layer 



Multicore DSP 

86 
Preamble Detection 

X Number of root sequences 

DFT Filter 

Select 
preamble 

subcarriers 

Correlate with 
root sequence 

IDFT Power 

Noise floor estimation Peak Search 

X Root Sequences X Reception Antennas 
X Preambles 

Detected Users 
Timing Advance 

X Reception Antennas 
X Preambles 
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Uplink 

X Users 
X Transport Blocks 

Blocks 

X Users 
X Code Blocks 

X Users 

X Reception Antennas 

FFT Prepare 

Demap 
Control/Data 

Decode 
Control 

X symbols (14)  
X Reception Antennas 

Data of 
Each user 

Estimate 
Channel 

Equalize Multiple 
Antennas 

Symbol and Bit 
Processing 

Code Block 
Processing 

Transport Block 
Processing 
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88 
Downlink 

IFFT 
Create Control 

Signals 

X symbols (14)  
X Transmission Antennas 

Data of 
Each user 

X Users X Users 
X Code Blocks 

X Users 
X Transport Blocks 

Transport Block 
Processing 

Code Block 
Processing 

Bit  and Symbol 
Processing 

Resource 
Mapping 

Prepare 
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• Applications are naturally broken down into dataflow 

actors 

When we analyze an application, it is natural to use dataflow graphs 

 

 

 

 

 

 

 

Many models exist with different semantics 

 

• Dataflow models express parallelism in algorithms 

 

• Syntax != Semantics 

Semantics matter more than syntax 

 

89 
Conclusion from Models Part 
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90 
Multi-core DSP Programming 

Simulator 

+ Debugger 

+ Profiler 

Multi-core Runtime 

ARM 

Multi-core 

Compiler 

Algorithm 
High Level 

Description Multi-core 

Program 

ARM Co-processor 

ARM 

ARM 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

DSP 

Co-processor 

Architecture 
High Level 

Description 
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• Types of embedded processors 

• DSP vs. GPP 

• Multicore DSP architectures 

91 

High Performance DSP Architectures 
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92 
Von Neumann Architecture 

DSP : digital signal processors != GPP : General purpose processors 
   processors optimized and adapted to signal processing 

Program memory, data memory 

Input / Output controller 

Control unit Program counter 

Instruction register Clock(s) 

State register 

Accumulator 

Other registers 

Arithmetic and logical unit 
Central  

processing unit 

Peripheral devices 

Internal 

Bus 

 

External bus 

Processor 



Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013 

• Processor types :  

Microcontroller  

Digital Signal Processors (DSP) 

General purpose processors (GPP) 

GP-GPU (General-Purpose Processing on Graphics Processing Units) 

• Choice factors:  

Price (architecture complexity, production technology) 

Power consumption 

CPU Performances 

I/O performances 

Memory capacity (data/code) 

 

93 
Processor Generalities 

C2000 

price  
Control I/O  

Engine control 

C5000 

  Efficiency 
Watt / price / size  

Phones 
Modem 
Camera  

C6000 

Performance  
Complex applications 

Image 
Video 
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94 
Applications and Processor Types 
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TI Processors and Applications 

Digital Media

Processors

OMAP

Applications

Processors

C6000

Digital Signal

Processors

C5000

Digital Signal

Processors

C2000

Microcontrollers

MSP430

Microcontrollers

Stellaris 32-Bit

ARM Cortex-M3

MCUs

Audio

Automotive

Communications

Industrial

Medical

Security

Video

Wireless

Key Feature Complete tailored

video solution

Low power and

high performance

High

performance

Power-efficient

performance

Performance,

integration for

greener industrial

applications

Ultra-low power Open architecture

software, rich

communications

options

Source: TI 
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Low cost System-on chip 

Locosto (TCS2305) 
Very cheap  ARM7 CPU + c54x 

65-nm technology  Minimal functionalities 
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Video Processing DSP 

Da Vinci TMS320DM644x 
1 DSP tms320c64x+ (720MHz max) Video I/O for screen 

1 ARM9 

1 Video Accelerator 
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Advanced System-on chip 

OMAP™ 4 Platform:   OMAP4430/OMAP4440 
High power of computation  2 General purpose ARM Cortex A9 cores (1GHz) 

Still low power consumption  IVA Supporting 1080p video encoding/decoding 

Interfaces to modern peripherals 3D graphics accelerator 

    No DSP!!! 
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• Optimization of the compilation and instruction set for 

signal processing 

•  Reduced Power consumption in DSPs 

•  Memory Management Unit (MMU) in the general 

purpose processor : 

 In DSPs, any memory is accessed by addresses: registers, stack, heap,  

OS memory… 

Advanced OS (like Linux) need pagination: a virtual memory space in 

pages 

 The MMU converts the virtual addresses into the physical addresses of 

the hardware 

 The MMU can protect memory spaces from unwanted accesses 

 DSPs use Real-Time OS: the c66x has SYS-BIOS 

• Kalray VLIW core is an exception: a DSP with MMU 

99 
DSPs vs. GPPs 
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• Less than 2W: no specific  

dissipation problem 

 

 

 

• 2 to 7W: heat sink and  

hot spot management 

 

 

 

• 7W+: heat sink, fan and  

complex hot spot management 

100 
Power Dissipation 
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• Frequency increase  power consumption  heat  

heat  need for cooling, more faults, reduced longevity 

 

Dynamic Power = Cte x capacity x voltage2 x frequency 

But augmenting frequency augments leakage so voltage must be higher 

 

Frequency x 1.5  Power x2 on Freescale MPC8641 1 

Cores x2  Power x1.3 on Freescale MPC8641 1 

 

Moreover, augmenting frequency may require longer pipeline 

 

• To increase MIPS and limit Watts 

Increase number of core instead than frequency 

101 
Why Go Multicore? 

Source:Freescale «  Embedded Multicore: An Introduction» 
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102 
Trade-off between Flexibility and Energy Efficiency 

Embedded 

FPGA 

EE : Efficiency : MIPS / Watt 

Reconfigurable 

    Processor 

Embedded 

Processor 

SA110 

0.4 MIPS/mW 

 

Alpha 

0.007 MIPS/mW 

   DSP 

2 V DSP 

3 MOPS/mW 

Pleiades 

10-50 MOPS/mW 

ASIC 
100-1000 MOPS/mW 

1 100 

F
le

x
ib

il
it

y
 

10 

ASIP 

TI C6678 

~20 MMAC / mW 

   Multicore DSP 
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• 3 sources of heterogeneity 

Non uniform cores implementing different instruction sets 

Combining software cores with hardware IPs 

Non uniform communication performance 

 

• Heterogeneity improves performance 

Repetitive and costly actors can be efficiently computed by hardware 

logic (ASIC) 

Actors with some control and reconfiguration needs are suited for DSPs 

Control tasks with many conditions are suited to be run on GPP 

 

103 
Why Go Heterogeneous? 

Source:Freescale «  Embedded Multicore: An Introduction» 
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TMS320TCI6488 (2007) 

Towards multicore DSPs 
TCI6488: Tri-core Telecommunication oriented DSP  Up to 1GHz/24Gips 

  Each core is programmed independantly  3MB L2 memory 

  RSA: specific instruction set for CDMA operation (3G oriented) 

  I/O driven by EDMA    

Source:TI 
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L2 RAM

Core

Core

Core

Switch

Fabric
Coprocessors

and

Peripherals

TMS320TCI6488 (2007) 
10
5 
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TMS320C6678 – Keystone I (2011) 
10
6 
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New c66x core: floating point arithmetic 

S be-1 be-2 b1 b0 b-1 b-2 

e m 

bm-2 bm-1 bm 

(-1)S. (1,m) . 2e 

 
Representing real numbers 

 
Floating-point arithmetics : Sign - exponent - mantissa 

S be-1 be-2 b1 b0 b-1 b-2 

i f 

bf-2 bf-1 bf 

(-1)S. e,f 

Fixed-point arithmetics : Sign – integer part – fractional part 
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TMS320C6678 – Keystone I (2011) 

TCI6678: Octo-core DSP   Up to 1.25GHz/320 GMACs/160 GFlops 
  Each core is programmed independantly  8MB L2 memory 
  I/O driven by Multi-core Navigator to automate transfers between cores 
  Fixed and floating-point ALUs 
 
Core c66x = Arithmetic and logic units (L & S), Data management units (D),  
 Multiplication units (M)    

Source:TI 

16 fixed multiplies
cycle (per side)

4 floating multiplies
per cycle (per side)

C66x DSP .M C66x

A B

D

Register
file

L

S M

D

Register
file

L

S M

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

Adders
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TI TMS320TCI6636 – Keystone II (2013) 

Source: TI 
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• 8 C66x @ 1.2GHz 

38.4 GMacs/Core for Fixed Point 

19.2 GFlops/Core for Floating Point 

• Memory 

32KB L1P Per Core 

32KB L1D Per Core 

1MB Local L2 Per Core 

6 MB MSM SRAM Memory Shared by 8 DSPs 

• ARM Cortex A15 Quad Core Cluster @ 1.2GHz 

32KB L1I Per Core 

32KB L1D Per Core 

4MB L2 Cache Memory Shared by Quad Core 

AMBA 4.0 AXI Coherency Extension Master Port connected to MSMC 

• Multicore Navigator 

16k Multi-purpose Hardware Queues with hardware queue manager 

Packet-Based DMA for Zero-Overhead Transfers 
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TI TMS320TCI6636 – Keystone II (2013) 

Source: TI 
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Freescale MSC8144 Starcore DSP 

Source: Freescale 
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Kalray MPPA 

Source: Kalray 

Shared memory costs much energy 
Putting a NoC at high level instead 
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113 

Levels of parallelism in Multicore DSP Architectures 
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Architecture Levels of Parallelism 

Core 
(MPSoc) 
 
Instruction 
(ILP, VLIW) 
 
Data 
(SIMD) 

Application 
 
 
Task / Actor 
 
 
Operation  

Functional 

Unit 
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Functional 
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Register File A 

Proc  1 

 
 
 

 
 
 

 
 
 

 
 
 

I/
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HW  1 Proc  2 DSP 1 

HW  2 DSP 2 Mem 1 Mem 2 

16 bits 

x,+,- 

16 bits 16 bits 

x,+,- 

16 bits 

16 bits 16 bits 
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DSP Evolution 

1980 1985 1990 1995 2000 2005 2010 2015
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0

10
1

10
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4
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5

TMS320C20 (5 MIPS) 

TMS320C10 (2.5 MIPS) 

DSP56001 (13MIPS) 

ADSP21xx (13MIPS) 

TMS320C50 First generation 

Second generation 

Improved conventional  
architecture 

Conventional  
architecture 

Third generation 

Fourth generation 
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Years 

MAC Multi- MAC VLIW Multi Pro. SoCs  

High  
performance  

DSP 

Low  
power 

DSP 

DSP56301 
TMS320C54x (100MIPS) 

ADSP2183 (50MIPS) 

VLIW 
SWP TMS320C62x 

StareCore   
TigerSharc 

Multi-core  
VLIW  
SWP 

TMS320C66x (8 cores) 
MSC815x (6cores) 

Bit level parallelism  

Data level parallelism  

Instruction level  
parallelism  

Thread level  
parallelism  

                            Multi Cores   
H-MPSoCs                           Many Cores 
 

OMAPx (ARM+C64) 
SC8144 (4cores) 

Sixth generation 

Heterogeneous multicores with HW accelerators 
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• Splitting ALU into subparts 

Example: 2 16-bit additions on 1 32-bit adder 

116 
Single Instruction Multiple Data 

16 bits 

x,+,- 

16 bits 16 bits 

x,+,- 

16 bits 

16 bits 16 bits 
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• VLIW characteristic 

Architecture made-up of parallel FU 

Several instructions par cycle embedded in a macro-instruction  

Homogeneous architecture : more orthogonal  

 Close to RISC processor  

Uniform register file made-up of several registers 

Load-Store architecture 
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Very Long Instruction Word 
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VLIW Example : C64x 

MPY ADD MPY ADD MV STW ADD ADD 

MPY ADD SHL SUB STW STW ADDK B 

ADD LDW SUB LDW B MVK NOP NO

P 
MPY ADD MPY ADD STW STW ADDK NO

P 

256 

Functional 

Unit 

 

.D2 

Functional 

Unit 

 

.M2 

Functional 

Unit 

 

.S2 

Functional 

Unit 

 

.L2 

Register File B 

Functional 

Unit 

 

.L1 

Functional 

Unit 

 

.S1 

Functional 

Unit 

 

.M1 

Functional 

Unit 

 

.D1 

Register File A 

Data Memory Controller 

Internal Memory 

Data Address 1 Data Address 2 

Fetch 

Dispatch Unit 

32x8=256 bits 

L:ALU 

S:Shift+ALU 

M:Multplier 

D:Address U 
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WLIV Compiler: Loop unrolling  

LOAD 

MULT 

ACC 

LOAD 

MULT 

ACC 

LOAD 

MULT 

ACC 

100% 

N/3 

Processor usage rate  

For(i=0;i<N;i++) 

{ 
  ACC=ACC + x[i].h[i] 
} 

For(i=0;i<N;i+=3) 

{ 

  ACC=ACC + x[i].h[i] 

  ACC=ACC + x[i+1].h[i+1] 

  ACC=ACC + x[i+2].h[i+2] 

} 
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• Improving the throughput at the cost of latency and 

memory 

WLIV Compiler: Software pipelining  

 

LOAD 

MULT 

ACC 

LOAD 

MULT 

ACC 

LOAD 

MULT 

ACC 

100% 

N 

Prolog 

Epilog 

Processor usage rate  
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121 
Convolution C code for VLIW and SIMD 

0 
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C code 
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5.8Mmults 16b 

 
C: 4,4Mcycles:  
  4,3 op/cycle 
Asm: 2Mcycles:  
  9.4 op/cycle 
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122 

Core-Level Parallelism 

Inter-Processor Communication and Architecture Models 
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• Transmitting one token via inter-processor 

communication or shared memory 

• Direct Signaling 

Interrupting a core from another core to either push or pull data 

• Indirect Signaling 

Delegating the transmission to a DMA (Direct Memory Access) element 

• Atomic arbitration 

Via hardware semaphores in case of shared memory 

 

123 

Types of Inter-Processor Communications 
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demand-driven   data-driven 

 

 

 

 

 

 

 

 

• Distributed or shared memory 

• In demand-driven case, first interrupt can be avoided  

if core A is constantly demanding data and core B cannot erase data 

befor e it is consumed (or if data can be discarded) 

• Inter-Processor communication can be ethernet, SRIO… 

124 
Direct Signaling Communication 
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Data driven    Demand driven 

 

 

 

 

 

 

 

 

 

• Distributed or shared memory 

DMA must be able to access the whole memory space 

DMA is another master on the memory bus 

Cores A and B are free to compute during DMA transfer 
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Indirect Signaling Communication: delegating to a DMA 
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Protecting shared memory accesses by semaphores 

 

 

 

 

 

 

 

 

• 1-place FIFO on Shared memory 

Possibility of N-places FIFO with a round buffer and read and write 

indexes 

2-place FIFO = « ping-pong » buffer 

• More than a mutex 

The 2 semaphores ensure alternate accesses from cores A and B 
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Atomic Arbitration: hardware or software semaphores 

Shared mem 
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• On Keystone I, data transfers have a speed of about 

L2 access: 5.3 GB/s 

DDR Access: 2.6 GB/s 

MSMC Access: 8 GB/s 

 

For comparison: Raw HD video 1080p60 4:2:0 = 0,19 GB/s 

 

• Inter-processor communication libs mask the 

complexity 
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Communication Speed 
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Modeling Architectures 
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• SystemC 

C++ templates and libraries used to simulate hardware modules 

 

• AADL 

Separating hardware and software but specifying both and oriented 

towards threads and processes 

 

• IP-XACT 

More a syntax for serialization than a real model 

 

• Custom models 

In MAPS compiler, in SynDEx rapid prototyping tool, in PREESM…  

129 
Models of Architecture 
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• Often oriented towards hardware design debug 

• Often custom and with no precise semantics 

• Often no real separation between application and 

hardware 
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Models of Architecture 
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Operator 

Processing Element 

Directed Data Link Undirected Data Link 

Set-up Link 

RAM DMA 

Communication Enablers 

Parallel Node Contention Node 

Communication Nodes 
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System-Level Architecture Model 
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• Architectures become more an more complex to 

program 

Parallelism rises at instruction and task level 

Heterogeneity rises 

Performance necessitates a correct use of DMA, cache, IPC 
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Conclusion from Architecture Part 
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135 
Multi-core DSP Programming 
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• Parallelism Laws 

• Multicore Scheduling 

• Multicore Tools 

Overview 

IETR Tools 

136 

Automatic porting of Multicore DSP Applications 
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137 

Parallelism Laws 
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• Developped in 1967 by Gene Amdahl 

 

• It gives a generic performance metric for applications 

Simplifying problem assumption: x% of the code is sequential, the rest is 

perfectly parallel 

With 5% of sequential code, speedup is limited to 7.5 on 12 cores 

Speedup refers to the acceleration brought by adding cores 
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Amdahl’s Law 
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• For different parallel section percentages 

Simplifying problem assumption: x% of the code is sequential, the rest is 

perfectly parallel 

With 50% of sequential code, speedup is limited to 1.84 on 12 cores 
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Amdahl’s Law 
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• Amdahl’s law has brought many doubts on multicores 

It does not take into account inter-process communication that worsens 

the speedup 

 

• Why add more cores if the parallelism of applications 

limits speedups so much? 
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Amdahl’s Law 
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• Developed by John Gustavson in 1988 

 

• With a different hypothesis, Gustafson has shown the 

limits of Amdahl’s law 

Hypothesis: more cores imply more parallelism, the sequential section 

stays the same percentage of execution latency regardless the number 

of cores  

in Amdahl’s law, the percentage tends to 100% because the parallel 

section time reduces and the sequential section stays unmodified 

 

With 5% of sequential code, speedup is limited to 11.89 on 12 cores 
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Gustavson’s Law 
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• With a different hypothesis, Gustafson has shown the 

limits of Amdahl’s law 

Hypothesis: more cores imply more parallelism, the sequential section 

stays the same percentage of execution latency regardless the number 

of cores (in Amdahl’s law, it tends to 100%) 

142 
Gustavson’s Law (1988) 
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• The maximum speedup of dataflow execution car be 

computed 

It is limited by the critical path length 

 

Example: ignoring communication times 
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Dataflow Speedup 
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• The maximum speedup of dataflow execution car be 

computed 

It is limited by the critical path length 

 

Example: ignoring communication times 

 critical path length = 1 + 5 + 3 + 2 + = 11ms 

 work = 19 ms 

 max speedup = 19 / 11 = 1.72 

 

144 
Dataflow Speedup 
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Preesm Speedup Assessment Chart 

0 

0,5 

1 

1,5 

2 

2,5 

3 

1 2 3 4 5 6 7 8 

work limit 

critical path limit 

GST 

Current Deployment 

Speedup 

Number of Cores 

Algorithm Limited 

: « blind » sched. 



Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013 

• Speedup Assessment Chart Limitations 

The speedup assessment chart considers only latency 

No pipelining is taken into account 

 

All cores are considered identical in the chart (main operator) 

All communications have the same speed (main communication node) 

 

• How to add speedup 

Redescribe the application to find more parallelism 

Add initial tokens (delays) to pipeline 
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Preesm Speedup Assessment Chart 



Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013 

• Parallelism in a dataflow graph 

There are 3 types of parallelism: task, data and pipeline parallelism 

Specific to stream processing applications 

147 
Task/Data/Pipeline Parallelism 
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• Parallelism in a dataflow graph 

There are 3 types of parallelism: task, data and pipeline parallelism 

Specific to stream processing applications 
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Task/Data/Pipeline Parallelism 
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• Parallelism in a dataflow graph 

There are 3 types of parallelism: task, data and pipeline parallelism 

Specific to stream processing applications 
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Task/Data/Pipeline Parallelism 
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• Parallelism in a dataflow graph 
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Task/Data/Pipeline Parallelism 
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• Parallelism in a dataflow graph 
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Task/Data/Pipeline Parallelism 
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152 

Multicore Scheduling 
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Scheduling Strategies 
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Scheduling Strategies 
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Scheduling Strategies 
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• Assignment, ordering and timing 

Part of « Operational Research » 

How to organize a company 

How to organize a project (Gantt chart…) 

How to take decisions in general 

 

• NP hard problem 

the verification that a possible solution of the problem is valid can 

be computed in polynomial time (verifying that a schedule is valid) 

 

no polynomial time algorithm for NP-complete problems is known 

and it is likely that none exists. 

 

When the problem grows (for example, the number of cores or 

actors), solving it is becoming more complex exponentially. 
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Heterogeneous Multicore Scheduling 

M. R Garey and D. S. Johnson “Computers and Intractability” 
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• Multicore scheduling is equivalent to quadratic 

assignment NP hard problem 

N facilities, each pair of facilities (f,g) associated to a flow of 

communication 

N locations to put the facilities, each pair of locations (l,m) 

associated to a distance 

 

 In which location (bijection) should we put each facility to 

minimize traffic (the sum of the distances multiplied by the 

corresponding flows) 
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Heterogeneous Multicore Scheduling 
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• The real problem is more complex 

M actors, N<M cores to put the facilities, each pair of locations 

(l,m) associated to a distance 

Heterogeneity: actors have different costs on different cores 

The objective function is not only communication minimization 

 latency, throughput… 
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Heterogeneous Multicore Scheduling 
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• The problems is solved by heuristics 

Exhaustive methods are useless 

Heuristics explore only parts of the given problem 

 

• Many heuristics exist 

 list scheduling, greedy scheduling 

 FAST scheduling (Y-K Kwok) 

 Hybrid flow-shop scheduling (J. Boutellier) 

 Meta-heuristics (genetic algorithms, ant colonies…) 

… 

 

• It is not possible to predict the quality of the result of a 

heuristic 

But models should contain enough information to take decisions 
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Heterogeneous Multicore Scheduling 
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• List scheduling 

Actors are scheduled in-order (topological order) 

The core that can finish actor execution first wins 
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Heterogeneous Multicore Scheduling 
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• List scheduling 

Actors are scheduled in-order (topological order) 

The core that can finish actor execution first wins 
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Heterogeneous Multicore Scheduling 
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• Fast scheduling 

Actors moved around to improve cost function (load balancing…) 

Critical path is more protected 
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Heterogeneous Multicore Scheduling 
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• Genetic algorithm 

Several mapping solutions are kept, they undergo mutations and 

cross-overs and worst solutions are regularly removed 
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Heterogeneous Multicore Scheduling 
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• If no information is available on task / actor behavior 

parallelism is brought by balancing the loads  

Execution is managed by task/job/actor queuing 
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• Load balancing without task behavior prediction 

Implemented over multi-threading 

 

Great freedom in thread creation 

 

The shared task queue becomes 

the bottleneck 
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Execution Schemes 
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• Load balancing without task behavior prediction 

Implemented over multi-threading 

 

One task queue per core:  

No more bottleneck 

 

Hard to predict performance 
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Execution Schemes 
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• Load balancing without task behavior prediction 

Implemented over multi-threading 

 

One task queue per core:  

No more bottleneck 

 

Hard to predict performance 
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Execution Schemes 
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• Scheduling with task behavior prediction 

No adaptivity to algorithm modifications 

 

No decision overhead 
Core 2 

Thread/Core 1 
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Execution Schemes 
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• Scheduling with task behavior prediction 

 

Adaptivity to algorithm variations 

 

Master core can become a bottleneck 

 

Thread/Core 2 
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Execution Schemes 
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• Why not use threads and processes instead of actors? 

 

• Threads share memory within a process 

Multicore thread execution necessitates shared memory between cores 

Shared memory is increasingly costly when number of cores grows 

This method of parallelizing is showing its limits already with 8 cores 

 

• Threads are designed for resource sharing 

Cores, memory… 

What we want is more resource combining 

 

• Actors are special types of processes 

With firing rules, i.e. computation is triggered by available data 

Actors are dedicated to stream processing. Threads and processes can 

implement control-oriented code 
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Actors versus threads 
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171 

Multicore Tools 
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172 
Some Tools and Initiatives 
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• Implemented on GCC 4.2 

• Implemented in TI compiler for Keystone I 

 

• Adds pragmas (metadata) in C to tell the compiler which 

loops can be parallelized 

 

• Example:  

#pragma omp parallel for 

For(i=0; i<10; i++){ 

 T[i] = f(i); 

} 

 

The compiler knows that the iterations are independent (data parallelism 

in this case) and can be parallelized. 
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OpenMP 
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• Model-Driven-Engineering (MDE) 

Starting from UML meta-model and meta-model transformation 

Defines a whole methodology from specification to final system 

UML profiles like UML Marte have been defined for that purpose 

 

• Synchronous languages 

Lustre, Signal, Esterel… 

Specifying synchronizations between operators: close to dataflow 

 

• C extensions 

OpenMP, OpenCL, OpenACC, OpenHMPP, Cilk 

Principal objective: a painless migration to coarse-grain parallelism 

 

• StreaMIT - MIT 

A language for stream processing, close to dataflow MoCs, and a 

compiler for massively parallel machiles 
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Other Tools and Initiatives with Common Objectives 
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• Task queueing software frameworks 

Intel Threading Building Blocks, Apple Grand Central Dispatch 

Not specifically oriented towards stream processing applications 

 

• Task queueing software/hardware frameworks 

Open Event Machine and Multicore Navigator 

 Available on C6678 
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Other Tools and Initiatives with Common Objectives 
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• Eclipse-based Open Source Rapid Prototyping Tool 

 

• Collaboration with Texas Instruments Nice 

Communication Infrastructure Business Unit (CI BU) 

Rapid prototyping of base station algorithms (used for LTE) 

 

• Goals 

Combine imperative actor (host) code and dataflow coordination code 

Latency, memory and energy study of embedded code execution 

Before target hardware is available 

With efficient automatic parallelization heuristics 

Generating static multi-core code 

Reuse legacy code 

176 
Preesm: Rapid Prototyping for Multi-core DSP 
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• Algorithm Model 

Static Hierarchical SDF with C-like behaviour (IBSDF and PiSDF) 

Combined with C Actor Code 

• Architecture Model 

System-Level Architecture Model (S-LAM) of heterogeneous 

architectures 

Focuses on important contention points 

• Prototyping 

Shared memory / Message passing / DMA transfers / 

Load balancing enhancement 

178 
Preesm: Rapid Prototyping for Multi-core DSP 
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• Applications and architectures are increasingly complex 

Model-based system design helps at several design stages 

• To evaluate languages/models: focus on MoC 

MoCs offer « pure » semantics, free of syntax 

• No one-fit-all solution to design Multicore DSP systems 

Many solutions exist now, complex choices have to be made 

Multicore Digital Signal Processing 
180 

General Conclusion 
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181 

Demo 


