
Multicore Digital

Signal Processing

Maxime Pelcat

2014
Slides from M. Pelcat, K. Desnos, J-F. Nezan,

D. Ménard, M. Raulet, J Gorin

Scheduling

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

2

Introduction: Porting Algorithms to Multicore DSPs

Multicore DSP

3
Typical Code Development Environment

Simulator

+ Debugger

+ Profiler

OS

Core (s)

Program Compiler

Algorithm
Code

Command
Line

Options

Multicore DSP

4
Possible MPSoC Dataflow-based Development Environment

Architecture
Model

Functional
Algorithm

Model + Code

Constraints
+ Options

OS

Core 2 Core 1

…

…

OS
Simulator

+ Debugger

+ Profiler

Compiler Deployment

Program
Program Program

Program

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Distributed embedded systems are harder and harder to

program

• Difficult Constraints

High computation requirements

Low power consumption

Many hardware and software choices: lack of information/metrics

Real-time constraints (hard of soft real-time)

Need to reuse legacy code

• Difficult Goals

Design both hardware and software

Balance loads

Obtain the most from a given architecture

Respect constraints

5
Addressed Problem

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Traditional code in C abstracts core architecture

Amount of registers

Number of pipeline stages

Instruction parallelism

Loop optimizations

Cache accesses

Data representation

…

• C code can not be efficiently transformed into coarse

grain parallel code

Assumed global state in a program

Unique activity point

Inspired by the Turing machine

• The solution may come from dataflow MoCs

6
Addressed Problem

Multicore DSP

7
Grail of Multi-core DSP Programming

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

Multicore DSP

8
Code Porting

Multi-core code porting assignment, ordering and timing

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Multicore DSP

9
Code Porting

Assignment

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1
Task 3

Task 2
Task 4

Multicore DSP

10
Code Porting

Ordering

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3 Task 2

Task 4

t t

Multicore DSP

11
Code Porting

Timing

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3

Task 2

Task 4

t t

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• And other tasks:

Choose communication (shared memory, DMA, direct copy)

Choose communication synchronization (polling or interrupts)

Allocate in memory, order and time communications

12
Code Porting

Multicore DSP

13
Code Deployment

Many possible

assignments and orders

Core 1 Core 2

Task 1

Task 3 Task 2

Task 4

Complicated

interconnections

Minimize latency/ response time

Minimize execution time

Minimize memory consumption

Minimize power consumption

…

Complicated

data/control

dependencies

Multicore DSP

14
Grail of Multi-core DSP Programming

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

• Optimizing / Offering trade-offs between
• Latency / Response time
• Throughput
• Load Balancing
• Memory consumption
• Power consumption

• Algorithm description portable to new
device (DSP, GPU, HPC…)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Demo Platform

• Applications

• Models of Computation

• Architectures

• Models of Architecture

• Partitioning and Scheduling Problem

• Compile-time and Runtime Tools

15

General Outline

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

16
Demo Platform

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• EVM = Evaluation Module for theTMS320C6678

17
Advantech Board TDMSEVM6678L

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• 8-Core DSP

8 C66x DSP Core Subsystems (C66x CorePacs), Each with:

– 1.0 GHz or 1.25 GHz C66x Fixed/Floating-Point CPU Core

 40 GMAC/Core for Fixed Point @ 1.25 GHz

 20 GFLOP/Core for Floating Point @ 1.25 GHz

 Total: 320 GMACs + 160 Gflops: hard to reach!

– 2 levels of Core Memory

 32K Byte L1P Per Core

 32K Byte L1D Per Core

 512K Byte Local L2 Per Core

• 4 MB of Internal Shared Memory

Multicore Shared Memory Controller (MSMC)

L1D and L1P with automatic cache coherency in local

Non coherent cache of the shared memory

• Unified memory space for internal/external memory

18
TMS320C6678

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• 512 MB of Shared DDR3 on the emulation board

Any core can access DDR3, 8G Byte of DDR3 Addressable Memory

• Hardware coprocessors

For repetitive common operations

Reduced because multi-purpose processor

Cryptography

Network

• XDS510 JTAG

via USB

Possibility to extend to XDS560 via extension

• Packaging

40nm technology, 841-Pin Flip-Chip Plastic BGA (CYP)

19
Demo Board

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• KeyStoneTeraNet switch fabric (Network on Chip)

• Core Interrupt Controller

• Enhanced Direct Memory Access v3 (EDMA3)

Data movement

Like a core with only MOV instructions

• Multicore Navigator

8192 Multipurpose Hardware Queues with Queue Manager

Data movement or zero-copy

• Shared MSMC and DDR3

Data movement or zero-copy

20
Inter-core Communication

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Multicore Navigator

Queue Manager Subsystem (QMSS)

Packet DMA (PKTDMA) for Zero-Overhead Transfers

Packet passing system between cores

Abstracts real data transfer

• Open Event Machine

Software runtime system provided by TI to offload code on cores

Event driven processing runtime for multicore

21
Inter-core Communication

Multicore DSP

22
Inter-core Communication

Source: sprabh2a TI

Multicore DSP

23
Inter-core Communication Throughputs

Source: sprabh2a TI

256-bit VLIW

Data switch fabric

+ Configuration Switch fabric

(not shown)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Cache operations

The L1 has automatic cache coherence if local L2 is modified

L1 has no automatic cache coherence if non local memory is modified

L2 has no automatic cache coherency

L1 and L2 cache « write back » and « invalidate » must be called

Up layer memory request: write back if modifications

Low layer memory request: invalidate if modifications

24
Cache Access Latencies

Core Shared L2 cache L1 cache
Core or DMA

Store to external memory

Core Shared L2 cache L1 cache
Core or DMA

Load from external memory

Write back

Invalidate

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Caches have a strong effect on memory latency

25
Data Alignment and Performance

Source: sprabh2a TI

Single Read Single Read Burst Read Burst Read

L1 Cache L2 Cache XMC Prefetch No Victim Victim No Victim Victim
All Hit NA NA 0 NA 0 NA
Local L2 Miss NA NA 7 7 3,5 10
MSMC (SL2) Miss NA Hit 7,5 7,5 7,4 11
MSMC (SL2) Miss NA Miss 19,8 20,1 9,5 11,6
MSMC (SL3) Miss Hit NA 9 9 4,5 4,5
MSMC (SL3) Miss Miss Hit 10,6 15,6 9,7 129,6

MSMC (SL3) Miss Miss Miss 22 28,1 11 129,7
DDR (SL2) Miss NA Hit 9 9 23,2 59,8
DDR (SL2) Miss NA Miss 84 113,6 41,5 113
DDR (SL3) Miss Hit NA 9 9 4,5 4,5
DDR (SL3) Miss Miss Hit 12,3 59,8 30,7 287
DDR (SL3) Miss Miss Miss 89 123,8 43,2 183

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Four Lanes of SRIO 2.1

1.24 to 5 GBaud Operation Supported Per Lane up to 20 Gbauds

• PCIe Gen2

Single port supporting 1 or 2 lanes

Supports Up To 5 GBaud Per Lane up to 10 Gbauds

• HyperLink

Supports Connections to Other KeyStone up to 50 Gbauds

Architecture Devices Providing Resource Scalability

• Gigabit Ethernet (GbE) Switch Subsystem

Two SGMII Ports

Supports 10/100/1000 Mbps operation up to 2 Gbps

• Other ports

UART Interface, I2C Interface, 16 GPIO Pins, SPI Interface

• Remark

Uncompressed 1920x1080 4:2:0 video @ 60Hz = 1.5 Gbps

26
Signal Input/Output

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Code Composer Studio v5 (CCS) IDE

Based on Eclipse 3.7 Indigo

Runs under Windows and Linux

Integrable in an existing Eclipse

• C66x compiler, linker, assembler, simulator…

Delivered with CCS IDE

• EVM Drivers

Installed with CCS

Connect to the EVM JTAG (breakpoints…)

27
Code Composer Studio Software

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

28
Using DMAs

transfert

(DMA)

DMA Handling

(CPU)

Principal program

(CPU)

Computing data1

Data1 ready

Event / Interruption
Data2 ready

Configuring DMA

for data2

Transmit Data1

End of

transmission

Computing data2

Configuring DMA

for data 1 (Chip Support Lib)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

29

SYS/BIOS

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Multi-task OS :

enables sharing the DSP between several tasks

• OS with Static and Dynamic configuration

Static : « configuration tool », .cfgfile

Dynamic : specific functions to access interruptions, task creation, logs…

• Gives many informations on the system for debug

• Preemptive RTOS

Scheduler

task priorities

• Alternative to DSP-BIOS:

Enea Solutions : other RTOS for C6x

30
SYS/BIOS

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

31
DSP BIOS Limits

31

Task
descriptors

Processor

Program

Data

Stack

PC
Registers

Context

Program

Data

Stack

PC
Registers

Context

P2
Context

Infos sched

P1
Context

Infos sched

Memory cost

 Modular but each module

 has a non negligible cost.

Time cost :

 system calls

 Interruption calls

Executive call
Saving context

Managing call

Calling scheduler

Retrieving context
Back to application

Saving context

Managing call

Calling scheduler
 Retrieving context Back to application

Interruption

Mono-core system

 No multicore OS

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Developed at IETR under Eclipse

• From a dataflow graph to a multicore code execution

• Automates multicore communication/synchronization

32
Preesm Software

Multi-Core Scheduling

Static Code Generation

Program
Program Program

Program

Algorithm Model
Multi-core

Architecture Model

Scenario
A

D B
E

C

Simulation

o1

o2

A B

C

D E

Deployment

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

33
Multi-core DSP Programming

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Overview

• Standization Processes

• MPEG HEVC

• 4G

34

High Performance DSP Applications

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Embedded system applications & High Performance

computing applications

Base stations & software-defined radio

Image and Audio processing

Industrial control systems

Aeronautics & transports

Radar / Sonar

Medical

Scientific computing & numerical simulation

 High Performance Computing (HPC)

 …

35
High Performance DSP Applications : Overview

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Embedded system applications & High Performance

computing applications

36
High Performance DSP Applications : Overview

Digital Media

Processors

OMAP

Applications

Processors

C6000

Digital Signal

Processors

C5000

Digital Signal

Processors

C2000

Microcontrollers

MSP430

Microcontrollers

Stellaris 32-Bit

ARM Cortex-M3

MCUs

Audio

Automotive

Communications

Industrial

Medical

Security

Video

Wireless

Key Feature Complete tailored

video solution

Low power and

high performance

High

performance

Power-efficient

performance

Performance,

integration for

greener industrial

applications

Ultra-low power Open architecture

software, rich

communications

options

Source: TI

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Typical types of operations / tasks / actors

low-pass, band-pass, high-pass and adaptive filtering (FIR and IIR filters)

cross/auto, linear/circular correlation (similarity between signals)

Convolution (equivalent to multiplication in Fourier domain)

transformations between domains (Fast Fourier, DCT, Hadamard,

wavelet, Hilbert, Wigner-Ville...)

noise removal

power computation

independent component analysis

expected signal detection and extraction

data prediction (temporal, spatial)

entropy coding

complex, vector and matrix operations

forward error correction

...

37
High Performance DSP Applications : Overview

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• There are many standardization organizations

• Famous standardization organizations regarding signal

processing include:

ISO (International Organization for Standardization)

IEEE (Institute of Electrical and Electronics Engineers)

ITU (International Telecommunication Union)

3GPP (Third Generation Partnership Project)

• MPEG HEVC Video Compression Standard

developed by the ITU-T Video Coding Experts Group (VCEG) together

with the ISO/IEC JTC1 Moving Picture Experts Group (MPEG)

• 3GPP LTE Radio Telecommunication Standard

developed by the 3GPP (3rd Generation Partnership Project)

Respecting (partially) the ITU-R organization IMT-Advanced specification

38
Standardization Processes

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

39

DSP Application : MPEG AVC and HEVC

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Mpeg-1 : (1992)

• Mpeg-2 : (1994)

• Mpeg-4 : (since 1998)

Example : Mpeg-4 Part 2 (DivX until v5,Xvid)

Extension1: Mpeg-4 part 10 = H.264 (ITU-T) = AVC (Advanced Video

Coding)

• Each standard : better compression (HEVC: HD@4Mb/s)

40
MPEG Standards

Multicore DSP

41
Advanced Video Coding Decoder

MB Image processing

MB data VLC
VLC environment

Macroblock
Generation

Bitstream

Reconstructed Frame

Deblocking Filter

Sample Reconstruction

Bitstream processing

Inter Prediction
Decoded Picture Buffer

Motion Vectors Reconstruction
Motion Vectors Neighborhood

Rescale

DC
Reconstruction

Dequantize

Inverse Transform

Intra Prediction
Current Decoding Slice

Multicore DSP

Interlace

Cabac

I slices

P slices

CAVLC

Bslices
(bidir)

SI / SP
slices

Data partitioning

Slice Groups Redundant
slices

ASO Arbitrary slice
ordering

FMO Flexible Macrobloc
Ordering

Extended Profile (so-called
streaming profile) Baseline

(low latency)

Main/High Profile

AVC Baseline

Low Delay,

Lower Processor

Load

AVC Main/High

Supports

Interlaced video,

B-Frames,

CABAC

encoding

AVC Extended

Includes Error

Resilience Tools,

B-Frames

→ Predictions

→ Entropy coding

→ Buffer management

I slices

P slices

Bslices

(bidir)

SI / SP

slices

Cabac

CAVLC

Interlace

Data

partitioning

Slice

Groups

Redundant

slices

ASO Arbitrary

slice ordering

FMO Flexible

Macrobloc Ordering

MPEG-4 AVC: principles AVC Profiles

Multicore DSP

43
HEVC Decoder

VLC

Decoding

Dequantization

Inverse Transform

Filtering

Source: Hervé Yviquel

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

44

DSP Application : 4G

Multicore DSP

2G

1990

100kbps

1G
1980

10kbps

2010

10Mbps

3G

2000

1Mbps

UMTS
HSPA

HSPA+

4G

LTE Advanced

…

3GPP Standards
45

Multicore DSP

Core
Network

46

Preamble Detection

Uplink Decoding

Downlink Encoding

LTE Access Network
46

Multicore DSP

Core
Network

Base Station
= eNodeB

 Frequency Division Multiplexing, Multiple Input Multiple Output
 Dozens of Users communicating concurrently

 Up to 100 Mbps in downlink, 50 Mbps in uplink

 Strong latency constraints
 User allocation modified every millisecond

 Complex physical layer

3GPP Long Term Evolution rel. 9
47

Multicore DSP

48
Frequency Allocations

• 3GPP LTE Frequency Allocations in France (ACERP october 2011)

– 800 MHz band (previously UHF TV bands)

– 2.6 GHz band

Source: Wikipedia

5 MHz

20 MHz 20 MHz 15 MHz

15 MHz

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

49
LTE Frequency division: subcarriers

•Spectrum flexibility

– In both downlink and uplink

1200 900 600 300 144 72 Number of

available

subcarriers

2048 1536 1024 512 256 128 OFDM FFT
size

100 75 50 25 12 6 Number of
available

PRBs
(downlink)

Bandwidth
(MHz)

1.4 20 15 10 5 3

Size (in complex values) of one symbol

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• High Data Rates

50Mbps(UpLink), 100Mbps (DownLink)

• High User Equipment Speed

Walking to bullet-train (optimized up to 120 km/h)

• Reduced Latency

Quick response time (under 5ms)

• Cheap Roll-out

Bandwidth flexibility

• Optimized for packet-switching

Good support for VoIP and data

• Up to 100km radius cells (35km for GSM macrocells)

• Up to 100 user per cell

• Free to consult: search 36.211 and 36.212 in Google

50
3GPP LTE Rel. 9 Performance

Multicore DSP

51
LTE and OSI Layers

LTE Specific Implementation

7. Application Layer
FTP, HTTP, SMTP, Telnet...

6. Presentation Layer
ASCII...

5. Session Layer
SSH...

4. Transport Layer
TCP, UDP, SSL, TLS...

3. Network Layer
IP...

2. Data Link Layer
Ethernet, PPP...

1. Physical Layer
RS-232, 802.11a/b/g/n.. connection, contention resolution,

modulation, channel adaptation,
physical signal manipulation,
bit flow generation…

physical layer control, error correction,
point-to-point and point-to-multipoint control,
data preparation for physical layer…

connection-less transfers,
variable-length data sequences,
packet fragmentation,
logical addressing…

transparent transfers between end-users
packet flow, error correction…

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Application is naturally described by a dataflow graph

• This application requires high DSP computing power

52
Downlink/Uplink in a Base Station

OFDMA

Encoding

Downlink Data Encoding

data

(bits)

Multi-Antenna

Precoding
Modulation

Interleaving/

Scrambling

Rate

Matching

CRC/Turbo

Coding

Channel Coding Symbol Processing

Turbo

Decoding/CRC

Uplink Data Decoding

data

(bits)

Rate

Dematching

/HARQ

Descrambling/

Deinterleaving

Channel Decoding

DemodulationSC-FDMA Decoding/

Multi-Antenna Equalization

Symbol Processing

Channel Estimation

Multicore DSP

Core

Core

Copro

Core

Core

Copro

Core

Core

Copro

OS

OS

OS

OS

OS

OS

Program

Program

Program

Program

Program

Program

Algorithm Model

?

LTE eNodeB DSP Programming
53

Multicore DSP

1 2 3 4 5 6 7 8

Active Users

Downlink Data per user

Uplink Data per user

Downlink Encoding Load

Uplink Decoding Load

Preamble Detection Load

Time (ms)

Static versus Variable Algorithms
54

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Applications are complex!

A designer should not need to be an expert in both application and

architecture

Legacy code reuse between systems is absolutely needed

 When a programmer has generated a functional efficient piece of

 code, he does want to reuse it

A designer should not need to tweak his code for his target architecture

• Streaming applications are naturally broken down into

dataflow actors

When we analyze an application, it is natural to use dataflow graphs

55
Conclusion from Applications Part

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Languages and MoCs

• Dataflow MoCs and Languages

Focus on PiMM and πSDF

Focus on CAL

• Practical Work Setup

56

Languages and Models of Computation (MoCs) for

Application Description

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Among the 10 most used languages, all 10 are

imperative, 7 are object-oriented. They share semantics.

• Other semantics exist. A MoC specifies semantics

independently from a language syntax

57
Languages and Models of Computation

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• UML implements object-oriented semantics

• C++ implements object-oriented semantics

• They share semantics but not syntax

58
Semantics and Syntax

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Useful for

Specification (especially for standards (cf. MPEG RVC))

Simulation (performance metrics and constraints checking)

Execution (functional description)

• Families of MoCs :

• Finite State Machine MoCs

MoC of imperative languages (C/C++/Java…)

States and transitions based on conditions

Computation is executed on transitions

Representing the behavior of a Turing machine

59
Models of Computation for DSP

Start

End

pts = @TAB

(pts) = 0
pts = pts + 1

End
TAB ?

yes

no

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Discrete Event MoCs

Modules react to events by producing events

Events tagged in time, i.e. the time at which events are consumed and

produced is essential and is used to model system behavior

Modules share a clock

Used to model HDL behavior

• Functional MoCs

No state, a program returns the result of composed mathematical

functions: result = f g h(inputs)

Based on lambda calculus

Haskell, Caml, Scheme, XSLT

Functional languages are examples of declarative languages

60
Models of Computation for DSP

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Petri Nets

Close to state machines but

able to represent parallelism

Operations are done on transitions

• Synchronous MoCs

Like in Discrete Events, modules react to events

by producing new events

Contrary to Discrete Events, time is not explicit and

only the simultaneity of events and causality are important

Language examples: Signal, Esterel, Lustre…

61
Models of Computation for DSP

P
ro

cessin
g th

read
 1

P
ro

cessin
g th

read
 2

OP1 OP2

Loop Loop

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Process Network MoCs

concurrent and independent modules (processes) communicate ordered

tokens (data quanta) through First-InFirst-Out (FIFO) channels

Include dataflow process networks

Untimed models: the time is abstracted

What we naturally used to describe MPEG HEVC and 3GPP LTE

processing

…

• Any syntax can be used to express these semantics

62
Models of Computation for DSP

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Computation is done by processes (= Actors)

• Actors communicate only though data infinite FIFOs

Actors do not share a state and have no internal state

• FIFO reading is blocked until a data arrives

63
Kahn Process Networks

Get

Do

Set

Stream of data to process Stream of processed data

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• DPN is a special case of Kahn Process Networks

defining:

Firing rules: conditions on which an actor is ready to execute

Actor « invocation » (=« firing »)

Example of firing rule for Set:

-Set consumes 3 tokens coming from Do and fires an action Set1,

producing 1 token

-Set consumes 1 token on Get and one token on Do and fires action Set2

producing 2 tokens

64
Dataflow Process Networks

Get

Do

Set

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Differences

Is the number of exchanged

tokens fixed/variable?

Is it even specified?

Does it depend of parameters?

Is there an external control flow?

Are there actor states

• Devil is in the details

Dynamic Dataflow (DDF)

is not a DPN because

it can « peek » FIFOs (look inside

The FIFO without popping the token)

65
There Exist Many Dataflow MoCs

SDF

BDF

DAG

DPN

PSDF

CSDF

DDF

πSDF

IBSDF

KPN

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Expressiveness

How many different behavior types

can the model specify?

How « optimized » is the

specification?

How concise is the specification?

• Predictability

Can the behavior (production

And consumption) be predicted?

 at compile-time

 in advance at runtime

66
There Exist Many Dataflow MoCs

P
red

ictab
ility Ex

p
re

ss
iv

en
e

ss

SDF

BDF

DAG

DPN

PSDF

CSDF

DDF

πSDF

KPN

IBSDF

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• The dataflow MoC defines a coordination language

• Actors are implemented by a host language

Any host language can be used

As long as the host language implements the firing rules

We can combine and make communicate

 IPs coded in VHDL

 High-level software actors written in Java

 Low-level software actors written in C

67
There Exist Many Dataflow MoCs

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Small grain, Locally to a core

Imperative languages such as C/C++ have shown their capacity to use

cores efficiently, including with low-level parallelism (SIMD, VLIW…)

Finite state machine MoC

• Coarse grain, to combine the cores

Dataflow MoCs are good candidates because they decouple actors

All possible communications between actors are specified, so they can

be used to organize data flows between cores

68
Which MoC should we use to program Multicore DSPs?

Multicore DSP

69
Which Dataflow Model for a Given Application ?

P
red

ictab
ility Ex

p
re

ss
iv

en
es

s

BDF

DAG

KPN

PSDF

Preamble Detection

Uplink Decoding

Downlink Encoding

A B C
? ?

?

3GPP LTE
For example:

DDF

πSDF

IBSDF

SDF CSDF

Multicore DSP

70
Synchronous Dataflow

• Actors and Data Ports

• FIFO Queues and Delays

Actor_A

Actor_B

Actor_C

2
2

1

1
3

1

E. Lee and D. Messerschmitt, “Synchronous data flow”, Proceedings of the IEEE, 1987.

x1

DDF

πSDF

SDF

CSDF

Multicore DSP

71
Synchronous Dataflow and Actor State

Actor_A

Actor_B

Actor_C

2
2

1

1
3

1

E. Lee and D. Messerschmitt, “Synchronous data flow”, Proceedings of the IEEE, 1987.

x1

DDF

πSDF

SDF

CSDF

1 1

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• By resolving the topology equation, we can check

consistency

• By verifying that enough initial tokens have been set, we

can check schedulability

Ability to come back to the initial FIFO states

72
SDF Predictability

Multicore DSP

DDF

πSDF

SDF

CSDF

73
Graph Scheduling and Transformation

Synchronous Dataflow (SDF) graph:

4 1 3 4

A B C 3 1

A
B3

B2

B4

B1

C3

C2

C1 1
1

1

1

1

1

1

3

1

3

1
2

2

Schedule: A (4 B) (3 C)

Single rate
graph

Multicore DSP

DDF

πSDF

SDF

CSDF

74
Graph Scheduling and Transformation

Cyclo Static Dataflow (CSDF) graph:

4
(1,2,1) (3,6,3)

4

A B C 3 1

A B2

B3

B1

C3

C2

C1 1

2

1

1

1

3

1

3

4

Schedule: A (3 B) (3 C)

Single rate
Graph = SDF!!

1

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

DDF

πSDF

SDF

CSDF

• Meta-model developped at IETR

• in collaboration with UMD and TI

• Targeted Dataflow Model of Computation

• becomes:

Hierarchical & Compositional

Statically parameterizable

Dynamically reconfigurable

• PiMM fosters:

Predictability

Memory boundedness

Parallelism

Lightweight runtime overhead

Developer-friendliness

75
PiMM and πSDF

Multicore DSP

76
A Naive SDF Composition Mechanism

• Hierarchical SDF

A B h
3 1 1 3

1
H1 H2

1 X 1

A H1 H2

H1 H2

H1 H2

B

Converted to HSDF

With X = 1

With X = 2

A
H2

H2

H1

H1

H2

B
H1

H1

H1

H1

A

? ?

Multicore DSP

77
PiMM Compositionality Mechanism

• Hierarchical Interfaces

J. Piat, S. Bhattacharyya, and M. Raulet, “Interface-based hierarchy for synchronous
data-flow graphs” in SiPS Proceedings, 2009.

A B h
3 1 1 3

1
H1 H2 in

o
u

t 1 X 1

With X = 1

A H1 H2

H1 H2

H1 H2

B

With X = 2

H1

H1

H1

H1

H1

H1

H2

H2

H2

B Br

Br

Br

A

Multicore DSP

78
Trade-off Between Expressiveness and Analyzability

• The more dynamism, the less predictability

S. Neuendorffer and E. Lee, “Hierarchical reconfiguration of dataflow models”
in MEMOCODE, 2004.

B 1 3 A 2 C 2
SDF

x1 x2 x3

DPN A C B
x2 x1 x1 x2 x3 x1

PiSDF
B 1 A 2 C 2

body

Set_p

x2 x3 x1

p:=3

p

Compile Time

After Config

After execution

NbUE

Multicore DSP

79
Configuring Parameters

MaxCb

PerUE

NbUE

an
te

n
n

a

PUSCH

sn
k

NbUE 1

Converge

NbUE*MaxCbPerUE

Channel
Decoding

MaxCbPerUE

• Dynamic Parameters
• Configuration Actors

m
ac

 Config
NbUE

Multicore DSP

80
PiMM Operational Semantics

Kernel
Size Size/N

Size/N

Size/N

Size/N

Read Display

in

Filter

Size

o
u

t

GetNbCore N

Size

Size

xSize

b
ac

k

fe
ed

 Size Size

1 Size

1

2
Size

Size

Size

Size

3

4

5

6
7

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

81
PiMM Operational Semantics

MaxCb

PerUE

m
ac

NbUE

Config
NbUE

an
te

n
n

a
PUSCH

sn
k

NbUE 1

Converge

NbUE*MaxCbPerUE

Channel
Decoding

MaxCbPerUE

Actors
Data Ports

FIFO Queues

SDF

Hierarchy
Interfaces

IBSDF

Parameters
Param. Ports

Dependencies
Dynamic Config. PiMM

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• CAL = CAL Actor Language, J. Ecker and J. Janneck

• It implements

the Dynamic Dataflow (DDF) MoC

and a host code named CAL specifying firing rules

• DDF graph gives no information on token flow

Firing rules are specified in the CAL language

 consumed tokens, guards, finite state machine, priorities

DDF

πSDF

SDF

CSDF

82
CAL and DDF

actor decimate () I ==> O :

 action I:[a , b] ==> O:[a] end

end
Consommation Production

décimate

I O

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

actor decimate () I ==> O:

 a: action [x] ==> [x] end

 b: action [x] ==> end

 schedule fsm s1:

 s1 (a) --> s2;

 s2 (b) --> s1;

 end

end

DDF

πSDF

SDF

CSDF

• Via classification, a CAL actor can be transformed

into SDF, CSDF, and soon πSDF

In order to make the model more predictable

• The Orcc compiler, developed at IETR, is a compiler for

CAL

83
CAL and DDF

Consommation Production

actor posValue() I ==> O:

 pos: action I: [x] ==> O: [x] guard x >= 0

 end

 neg: action I: [x] ==> O:

 end

 priority

 pos > neg;

 end

end

actor decimate () I ==> O:

 int s := 0;

 action [x] ==> [x] guard s = 0

 do s := 1; end

 action [x] ==> guard s = 1

 do s := 0; end

end

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

DDF

πSDF

SDF

CSDF

84
CAL and DDF

• From CAL, both hardware and software can be

generated

• CAL Preesm is already working for static actors

• CAL PiSDF is a future theme of research

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

85

Example: Describing 3GPP LTE Base Station Physical Layer

Multicore DSP

86
Preamble Detection

X Number of root sequences

DFT Filter

Select
preamble

subcarriers

Correlate with
root sequence

IDFT Power

Noise floor estimation Peak Search

X Root Sequences X Reception Antennas
X Preambles

Detected Users
Timing Advance

X Reception Antennas
X Preambles

Multicore DSP

87
Uplink

X Users
X Transport Blocks

Blocks

X Users
X Code Blocks

X Users

X Reception Antennas

FFT Prepare

Demap
Control/Data

Decode
Control

X symbols (14)
X Reception Antennas

Data of
Each user

Estimate
Channel

Equalize Multiple
Antennas

Symbol and Bit
Processing

Code Block
Processing

Transport Block
Processing

Multicore DSP

88
Downlink

IFFT
Create Control

Signals

X symbols (14)
X Transmission Antennas

Data of
Each user

X Users X Users
X Code Blocks

X Users
X Transport Blocks

Transport Block
Processing

Code Block
Processing

Bit and Symbol
Processing

Resource
Mapping

Prepare

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Applications are naturally broken down into dataflow

actors

When we analyze an application, it is natural to use dataflow graphs

Many models exist with different semantics

• Dataflow models express parallelism in algorithms

• Syntax != Semantics

Semantics matter more than syntax

89
Conclusion from Models Part

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

90
Multi-core DSP Programming

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Types of embedded processors

• DSP vs. GPP

• Multicore DSP architectures

91

High Performance DSP Architectures

Multicore DSP

92
Von Neumann Architecture

DSP : digital signal processors != GPP : General purpose processors
 processors optimized and adapted to signal processing

Program memory, data memory

Input / Output controller

Control unit Program counter

Instruction register Clock(s)

State register

Accumulator

Other registers

Arithmetic and logical unit
Central

processing unit

Peripheral devices

Internal

Bus

External bus

Processor

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Processor types :

Microcontroller

Digital Signal Processors (DSP)

General purpose processors (GPP)

GP-GPU (General-Purpose Processing on Graphics Processing Units)

• Choice factors:

Price (architecture complexity, production technology)

Power consumption

CPU Performances

I/O performances

Memory capacity (data/code)

93
Processor Generalities

C2000

price
Control I/O

Engine control

C5000

 Efficiency
Watt / price / size

Phones
Modem
Camera

C6000

Performance
Complex applications

Image
Video

Multicore DSP

94
Applications and Processor Types

Multicore DSP

95
TI Processors and Applications

Digital Media

Processors

OMAP

Applications

Processors

C6000

Digital Signal

Processors

C5000

Digital Signal

Processors

C2000

Microcontrollers

MSP430

Microcontrollers

Stellaris 32-Bit

ARM Cortex-M3

MCUs

Audio

Automotive

Communications

Industrial

Medical

Security

Video

Wireless

Key Feature Complete tailored

video solution

Low power and

high performance

High

performance

Power-efficient

performance

Performance,

integration for

greener industrial

applications

Ultra-low power Open architecture

software, rich

communications

options

Source: TI

Multicore DSP

96
Low cost System-on chip

Locosto (TCS2305)
Very cheap ARM7 CPU + c54x

65-nm technology Minimal functionalities

Multicore DSP

97
Video Processing DSP

Da Vinci TMS320DM644x
1 DSP tms320c64x+ (720MHz max) Video I/O for screen

1 ARM9

1 Video Accelerator

Multicore DSP

98
Advanced System-on chip

OMAP™ 4 Platform: OMAP4430/OMAP4440
High power of computation 2 General purpose ARM Cortex A9 cores (1GHz)

Still low power consumption IVA Supporting 1080p video encoding/decoding

Interfaces to modern peripherals 3D graphics accelerator

 No DSP!!!

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Optimization of the compilation and instruction set for

signal processing

• Reduced Power consumption in DSPs

• Memory Management Unit (MMU) in the general

purpose processor :

 In DSPs, any memory is accessed by addresses: registers, stack, heap,

OS memory…

Advanced OS (like Linux) need pagination: a virtual memory space in

pages

 The MMU converts the virtual addresses into the physical addresses of

the hardware

 The MMU can protect memory spaces from unwanted accesses

 DSPs use Real-Time OS: the c66x has SYS-BIOS

• Kalray VLIW core is an exception: a DSP with MMU

99
DSPs vs. GPPs

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Less than 2W: no specific

dissipation problem

• 2 to 7W: heat sink and

hot spot management

• 7W+: heat sink, fan and

complex hot spot management

100
Power Dissipation

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Frequency increase power consumption heat

heat need for cooling, more faults, reduced longevity

Dynamic Power = Cte x capacity x voltage2 x frequency

But augmenting frequency augments leakage so voltage must be higher

Frequency x 1.5 Power x2 on Freescale MPC8641 1

Cores x2 Power x1.3 on Freescale MPC8641 1

Moreover, augmenting frequency may require longer pipeline

• To increase MIPS and limit Watts

Increase number of core instead than frequency

101
Why Go Multicore?

Source:Freescale « Embedded Multicore: An Introduction»

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

102
Trade-off between Flexibility and Energy Efficiency

Embedded

FPGA

EE : Efficiency : MIPS / Watt

Reconfigurable

 Processor

Embedded

Processor

SA110

0.4 MIPS/mW

Alpha

0.007 MIPS/mW

 DSP

2 V DSP

3 MOPS/mW

Pleiades

10-50 MOPS/mW

ASIC
100-1000 MOPS/mW

1 100

F
le

x
ib

il
it

y

10

ASIP

TI C6678

~20 MMAC / mW

 Multicore DSP

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• 3 sources of heterogeneity

Non uniform cores implementing different instruction sets

Combining software cores with hardware IPs

Non uniform communication performance

• Heterogeneity improves performance

Repetitive and costly actors can be efficiently computed by hardware

logic (ASIC)

Actors with some control and reconfiguration needs are suited for DSPs

Control tasks with many conditions are suited to be run on GPP

103
Why Go Heterogeneous?

Source:Freescale « Embedded Multicore: An Introduction»

Multicore DSP

104
TMS320TCI6488 (2007)

Towards multicore DSPs
TCI6488: Tri-core Telecommunication oriented DSP Up to 1GHz/24Gips

 Each core is programmed independantly 3MB L2 memory

 RSA: specific instruction set for CDMA operation (3G oriented)

 I/O driven by EDMA

Source:TI

Multicore DSP

L2 RAM

Core

Core

Core

Switch

Fabric
Coprocessors

and

Peripherals

TMS320TCI6488 (2007)
10
5

Multicore DSP

TMS320C6678 – Keystone I (2011)
10
6

Multicore DSP

107
New c66x core: floating point arithmetic

S be-1 be-2 b1 b0 b-1 b-2

e m

bm-2 bm-1 bm

(-1)S. (1,m) . 2e

Representing real numbers

Floating-point arithmetics : Sign - exponent - mantissa

S be-1 be-2 b1 b0 b-1 b-2

i f

bf-2 bf-1 bf

(-1)S. e,f

Fixed-point arithmetics : Sign – integer part – fractional part

Multicore DSP

108
TMS320C6678 – Keystone I (2011)

TCI6678: Octo-core DSP Up to 1.25GHz/320 GMACs/160 GFlops
 Each core is programmed independantly 8MB L2 memory
 I/O driven by Multi-core Navigator to automate transfers between cores
 Fixed and floating-point ALUs

Core c66x = Arithmetic and logic units (L & S), Data management units (D),
 Multiplication units (M)

Source:TI

16 fixed multiplies
cycle (per side)

4 floating multiplies
per cycle (per side)

C66x DSP .M C66x

A B

D

Register
file

L

S M

D

Register
file

L

S M

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

16x16
MPY

16x16
MPY

16x16
MPY

16x16
MPY

Float

Adders

Multicore DSP

109
TI TMS320TCI6636 – Keystone II (2013)

Source: TI

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• 8 C66x @ 1.2GHz

38.4 GMacs/Core for Fixed Point

19.2 GFlops/Core for Floating Point

• Memory

32KB L1P Per Core

32KB L1D Per Core

1MB Local L2 Per Core

6 MB MSM SRAM Memory Shared by 8 DSPs

• ARM Cortex A15 Quad Core Cluster @ 1.2GHz

32KB L1I Per Core

32KB L1D Per Core

4MB L2 Cache Memory Shared by Quad Core

AMBA 4.0 AXI Coherency Extension Master Port connected to MSMC

• Multicore Navigator

16k Multi-purpose Hardware Queues with hardware queue manager

Packet-Based DMA for Zero-Overhead Transfers

110
TI TMS320TCI6636 – Keystone II (2013)

Source: TI

Multicore DSP

111
Freescale MSC8144 Starcore DSP

Source: Freescale

Multicore DSP

112
Kalray MPPA

Source: Kalray

Shared memory costs much energy
Putting a NoC at high level instead

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

113

Levels of parallelism in Multicore DSP Architectures

Multicore DSP

114
Architecture Levels of Parallelism

Core
(MPSoc)

Instruction
(ILP, VLIW)

Data
(SIMD)

Application

Task / Actor

Operation

Functional

Unit

.L1

Functional

Unit

.S1

Functional

Unit

.M1

 Functional

Unit

.D1

Register File A

Proc 1

I/
O

HW 1 Proc 2 DSP 1

HW 2 DSP 2 Mem 1 Mem 2

16 bits

x,+,-

16 bits 16 bits

x,+,-

16 bits

16 bits 16 bits

Multicore DSP

115
DSP Evolution

1980 1985 1990 1995 2000 2005 2010 2015
10

0

10
1

10
2

10
3

10
4

10
5

TMS320C20 (5 MIPS)

TMS320C10 (2.5 MIPS)

DSP56001 (13MIPS)

ADSP21xx (13MIPS)

TMS320C50 First generation

Second generation

Improved conventional
architecture

Conventional
architecture

Third generation

Fourth generation

Fifth generation

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Years

MAC Multi- MAC VLIW Multi Pro. SoCs

High
performance

DSP

Low
power

DSP

DSP56301
TMS320C54x (100MIPS)

ADSP2183 (50MIPS)

VLIW
SWP TMS320C62x

StareCore
TigerSharc

Multi-core
VLIW
SWP

TMS320C66x (8 cores)
MSC815x (6cores)

Bit level parallelism

Data level parallelism

Instruction level
parallelism

Thread level
parallelism

 Multi Cores
H-MPSoCs Many Cores

OMAPx (ARM+C64)
SC8144 (4cores)

Sixth generation

Heterogeneous multicores with HW accelerators

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Splitting ALU into subparts

Example: 2 16-bit additions on 1 32-bit adder

116
Single Instruction Multiple Data

16 bits

x,+,-

16 bits 16 bits

x,+,-

16 bits

16 bits 16 bits

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• VLIW characteristic

Architecture made-up of parallel FU

Several instructions par cycle embedded in a macro-instruction

Homogeneous architecture : more orthogonal

 Close to RISC processor

Uniform register file made-up of several registers

Load-Store architecture

117
Very Long Instruction Word

Multicore DSP

118
VLIW Example : C64x

MPY ADD MPY ADD MV STW ADD ADD

MPY ADD SHL SUB STW STW ADDK B

ADD LDW SUB LDW B MVK NOP NO

P
MPY ADD MPY ADD STW STW ADDK NO

P

256

Functional

Unit

.D2

Functional

Unit

.M2

Functional

Unit

.S2

Functional

Unit

.L2

Register File B

Functional

Unit

.L1

Functional

Unit

.S1

Functional

Unit

.M1

Functional

Unit

.D1

Register File A

Data Memory Controller

Internal Memory

Data Address 1 Data Address 2

Fetch

Dispatch Unit

32x8=256 bits

L:ALU

S:Shift+ALU

M:Multplier

D:Address U

Multicore DSP

WLIV Compiler: Loop unrolling

LOAD

MULT

ACC

LOAD

MULT

ACC

LOAD

MULT

ACC

100%

N/3

Processor usage rate

For(i=0;i<N;i++)

{
 ACC=ACC + x[i].h[i]
}

For(i=0;i<N;i+=3)

{

 ACC=ACC + x[i].h[i]

 ACC=ACC + x[i+1].h[i+1]

 ACC=ACC + x[i+2].h[i+2]

}

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Improving the throughput at the cost of latency and

memory

WLIV Compiler: Software pipelining

LOAD

MULT

ACC

LOAD

MULT

ACC

LOAD

MULT

ACC

100%

N

Prolog

Epilog

Processor usage rate

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

121
Convolution C code for VLIW and SIMD

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

240 300 600 1200

C code

Intrinsics

Tendency (3*size²)

1

0

)mod)(()()(

N

l

NklClZkY

N=1200:
5.8 Mloads 16b
7.2Madds 16b
5.8Mmults 16b

C: 4,4Mcycles:
 4,3 op/cycle
Asm: 2Mcycles:
 9.4 op/cycle

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

122

Core-Level Parallelism

Inter-Processor Communication and Architecture Models

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Transmitting one token via inter-processor

communication or shared memory

• Direct Signaling

Interrupting a core from another core to either push or pull data

• Indirect Signaling

Delegating the transmission to a DMA (Direct Memory Access) element

• Atomic arbitration

Via hardware semaphores in case of shared memory

123

Types of Inter-Processor Communications

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

demand-driven data-driven

• Distributed or shared memory

• In demand-driven case, first interrupt can be avoided

if core A is constantly demanding data and core B cannot erase data

befor e it is consumed (or if data can be discarded)

• Inter-Processor communication can be ethernet, SRIO…

124
Direct Signaling Communication

Core A Core B

Interrupt

Push data via IPC

notify

Core A Core B

Interrupt

Pull data via IPC

notify

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

Data driven Demand driven

• Distributed or shared memory

DMA must be able to access the whole memory space

DMA is another master on the memory bus

Cores A and B are free to compute during DMA transfer

125
Indirect Signaling Communication: delegating to a DMA

Core A DMA

Program

Move data

notify

Core B

Interrupt

notify

Core A DMA

Program

Move data

notify

Core B

Interrupt

notify

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

Protecting shared memory accesses by semaphores

• 1-place FIFO on Shared memory

Possibility of N-places FIFO with a round buffer and read and write

indexes

2-place FIFO = « ping-pong » buffer

• More than a mutex

The 2 semaphores ensure alternate accesses from cores A and B

126
Atomic Arbitration: hardware or software semaphores

Shared mem
Core A Core B

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• On Keystone I, data transfers have a speed of about

L2 access: 5.3 GB/s

DDR Access: 2.6 GB/s

MSMC Access: 8 GB/s

For comparison: Raw HD video 1080p60 4:2:0 = 0,19 GB/s

• Inter-processor communication libs mask the

complexity

127
Communication Speed

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

Modeling Architectures

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• SystemC

C++ templates and libraries used to simulate hardware modules

• AADL

Separating hardware and software but specifying both and oriented

towards threads and processes

• IP-XACT

More a syntax for serialization than a real model

• Custom models

In MAPS compiler, in SynDEx rapid prototyping tool, in PREESM…

129
Models of Architecture

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Often oriented towards hardware design debug

• Often custom and with no precise semantics

• Often no real separation between application and

hardware

130
Models of Architecture

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

Operator

Processing Element

Directed Data Link Undirected Data Link

Set-up Link

RAM DMA

Communication Enablers

Parallel Node Contention Node

Communication Nodes

131
System-Level Architecture Model

Multicore DSP 132

core1
core2 CN

1 Gbit/s

core3

RAM

DMA

S-LAM Examples
13
2

Multicore DSP

SCR

DMA

TCP2

RIO

VCP2

core1

core2

core3

SCR

DMA

TCP2 VCP2

core1

core2

core3

DSP 1 DSP 2

2 GB/s 2 GB/s

1 Gbit/s

S-LAM of a Board with 2 TCI6488
13
3

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Architectures become more an more complex to

program

Parallelism rises at instruction and task level

Heterogeneity rises

Performance necessitates a correct use of DMA, cache, IPC

134
Conclusion from Architecture Part

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

135
Multi-core DSP Programming

Simulator

+ Debugger

+ Profiler

Multi-core Runtime

ARM

Multi-core

Compiler

Algorithm
High Level

Description Multi-core

Program

ARM Co-processor

ARM

ARM

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Co-processor

Architecture
High Level

Description

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism Laws

• Multicore Scheduling

• Multicore Tools

Overview

IETR Tools

136

Automatic porting of Multicore DSP Applications

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

137

Parallelism Laws

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Developped in 1967 by Gene Amdahl

• It gives a generic performance metric for applications

Simplifying problem assumption: x% of the code is sequential, the rest is

perfectly parallel

With 5% of sequential code, speedup is limited to 7.5 on 12 cores

Speedup refers to the acceleration brought by adding cores

138
Amdahl’s Law

… …

… …

5% sequential 95% perfectly parallel

1 thread

As many threads
as we want

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• For different parallel section percentages

Simplifying problem assumption: x% of the code is sequential, the rest is

perfectly parallel

With 50% of sequential code, speedup is limited to 1.84 on 12 cores

139
Amdahl’s Law

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

5%

10%

25%

50%

50% sequential
50% parallel

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Amdahl’s law has brought many doubts on multicores

It does not take into account inter-process communication that worsens

the speedup

• Why add more cores if the parallelism of applications

limits speedups so much?

140
Amdahl’s Law

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Developed by John Gustavson in 1988

• With a different hypothesis, Gustafson has shown the

limits of Amdahl’s law

Hypothesis: more cores imply more parallelism, the sequential section

stays the same percentage of execution latency regardless the number

of cores

in Amdahl’s law, the percentage tends to 100% because the parallel

section time reduces and the sequential section stays unmodified

With 5% of sequential code, speedup is limited to 11.89 on 12 cores

141
Gustavson’s Law

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• With a different hypothesis, Gustafson has shown the

limits of Amdahl’s law

Hypothesis: more cores imply more parallelism, the sequential section

stays the same percentage of execution latency regardless the number

of cores (in Amdahl’s law, it tends to 100%)

142
Gustavson’s Law (1988)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

5%

10%

25%

50%

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• The maximum speedup of dataflow execution car be

computed

It is limited by the critical path length

Example: ignoring communication times

143
Dataflow Speedup

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• The maximum speedup of dataflow execution car be

computed

It is limited by the critical path length

Example: ignoring communication times

 critical path length = 1 + 5 + 3 + 2 + = 11ms

 work = 19 ms

 max speedup = 19 / 11 = 1.72

144
Dataflow Speedup

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

Multicore DSP

145
Preesm Speedup Assessment Chart

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8

work limit

critical path limit

GST

Current Deployment

Speedup

Number of Cores

Algorithm Limited

: « blind » sched.

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Speedup Assessment Chart Limitations

The speedup assessment chart considers only latency

No pipelining is taken into account

All cores are considered identical in the chart (main operator)

All communications have the same speed (main communication node)

• How to add speedup

Redescribe the application to find more parallelism

Add initial tokens (delays) to pipeline

146
Preesm Speedup Assessment Chart

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism in a dataflow graph

There are 3 types of parallelism: task, data and pipeline parallelism

Specific to stream processing applications

147
Task/Data/Pipeline Parallelism

Get
Pic

Filter

Set
Pic

Filter

Y Y

U+V U+V

Data parallelism

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism in a dataflow graph

There are 3 types of parallelism: task, data and pipeline parallelism

Specific to stream processing applications

148
Task/Data/Pipeline Parallelism

Get
Pic

Filter1
Pic

Combine
filters Filter2

Pic

Pic Pic

Pic Pic

Task parallelism

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism in a dataflow graph

There are 3 types of parallelism: task, data and pipeline parallelism

Specific to stream processing applications

149
Task/Data/Pipeline Parallelism

Get
Pic

Filter
Luma

Set
Pic

Y Y

Cores

time

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Pipeline parallelism

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism in a dataflow graph

150
Task/Data/Pipeline Parallelism

Get
Pic

Filter
Luma

Set
Pic

Y Y

Cores

time

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Pipeline parallelism

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Latency

Input
pic 0

Output
pic 0

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Parallelism in a dataflow graph

151
Task/Data/Pipeline Parallelism

Get
Pic

Filter
Luma

Set
Pic

Y Y

Cores

time

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Pipeline parallelism

Get Pic

Filter Luma

Set Pic

Get Pic

Filter Luma

Set Pic

Throughput

Input
pic 0

Output
pic 0

Output
pic 1

Output
pic 2

Input
pic 1

Input
pic 2

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

152

Multicore Scheduling

Multicore DSP

153
Scheduling Strategies

Assignment

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1
Task 3

Task 2
Task 4

Ordering

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3 Task 2

Task 4

t t

Timing

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3

Task 2

Task 4

t t

Multicore DSP

154
Scheduling Strategies

assignment ordering Timing

fully dynamic run run run

static-assignment compile run run

self-timed compile compile run

fully static compile compile compile
EA Lee Scheduling strategies for multiprocessor real-time DSP

More adaptivity

More performance

Assignment

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1
Task 3

Task 2
Task 4

Ordering

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3 Task 2

Task 4

t t

Timing

Core 1 Core 2

Task 1 Task 2

Task 3 Task 4

Task 1

Task 3

Task 2

Task 4

t t

Multicore DSP

155
Scheduling Strategies

assignment ordering Timing

fully dynamic run run run

static-assignment compile run run

self-timed compile compile run

fully static compile compile compile
EA Lee Scheduling strategies for multiprocessor real-time DSP

More adaptivity

More performance

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Assignment, ordering and timing

Part of « Operational Research »

How to organize a company

How to organize a project (Gantt chart…)

How to take decisions in general

• NP hard problem

the verification that a possible solution of the problem is valid can

be computed in polynomial time (verifying that a schedule is valid)

no polynomial time algorithm for NP-complete problems is known

and it is likely that none exists.

When the problem grows (for example, the number of cores or

actors), solving it is becoming more complex exponentially.

156
Heterogeneous Multicore Scheduling

M. R Garey and D. S. Johnson “Computers and Intractability”

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Multicore scheduling is equivalent to quadratic

assignment NP hard problem

N facilities, each pair of facilities (f,g) associated to a flow of

communication

N locations to put the facilities, each pair of locations (l,m)

associated to a distance

 In which location (bijection) should we put each facility to

minimize traffic (the sum of the distances multiplied by the

corresponding flows)

157
Heterogeneous Multicore Scheduling

f1
f2

f4

f3
5

5

5

5

1 l1 l2

l4

l3

5

8

3

6

5

3

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• The real problem is more complex

M actors, N<M cores to put the facilities, each pair of locations

(l,m) associated to a distance

Heterogeneity: actors have different costs on different cores

The objective function is not only communication minimization

 latency, throughput…

158
Heterogeneous Multicore Scheduling

f1
f2

f4

f3
5

5

5

5

1 l1 l2

l4

l3

5

8

3

6

5

3

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• The problems is solved by heuristics

Exhaustive methods are useless

Heuristics explore only parts of the given problem

• Many heuristics exist

 list scheduling, greedy scheduling

 FAST scheduling (Y-K Kwok)

 Hybrid flow-shop scheduling (J. Boutellier)

 Meta-heuristics (genetic algorithms, ant colonies…)

…

• It is not possible to predict the quality of the result of a

heuristic

But models should contain enough information to take decisions

159
Heterogeneous Multicore Scheduling

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• List scheduling

Actors are scheduled in-order (topological order)

The core that can finish actor execution first wins

160
Heterogeneous Multicore Scheduling

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

A B C E D F G

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• List scheduling

Actors are scheduled in-order (topological order)

The core that can finish actor execution first wins

161
Heterogeneous Multicore Scheduling

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

Cores

time

A

B

C

E

D

F

G

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Fast scheduling

Actors moved around to improve cost function (load balancing…)

Critical path is more protected

162
Heterogeneous Multicore Scheduling

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

Cores

time

A

B

C

E

D

F

G

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Genetic algorithm

Several mapping solutions are kept, they undergo mutations and

cross-overs and worst solutions are regularly removed

163
Heterogeneous Multicore Scheduling

A

B
D

C

1ms

E

F

G

1ms

3ms

2ms

5ms

2ms

5ms

A,1 B,2 C,1 E,2 D,1 F,2 G,1

A,1 B,2 C,1 E,3 D,1 F,2 G,1

Mutation

A,2 B,2 C,2 E,2 D,2 F,2 G,2

A,1 B,1 C,1 E,2 D,1 F,2 G,2

Cross over

A,1 B,1 C,1 E,1 D,1 F,1 G,1

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• If no information is available on task / actor behavior

parallelism is brought by balancing the loads

Execution is managed by task/job/actor queuing

164
Load balancing

Unbalanced Balanced

Core 1 Core 2 Core 3 Core 1 Core 2 Core 3

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Load balancing without task behavior prediction

Implemented over multi-threading

Great freedom in thread creation

The shared task queue becomes

the bottleneck

165
Execution Schemes

Work-queueing
(Apple Grand Central Dispatch, OpenMP)

Thread/Core 1

Core 2
pops

pushes

pops

pushes

Dequeue Task

Process Task

Enqueue Task(s)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Load balancing without task behavior prediction

Implemented over multi-threading

One task queue per core:

No more bottleneck

Hard to predict performance

166
Execution Schemes

Job stealing
(Cilk, Intel Threading Building Blocks)

Thread/Core 1

pops

Core 2

pops

Core 3

pops
steals

pushes pushes pushes

Dequeue Task

Process Task

Enqueue Task(s)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Load balancing without task behavior prediction

Implemented over multi-threading

One task queue per core:

No more bottleneck

Hard to predict performance

167
Execution Schemes

Job stealing
(Cilk, Intel Threading Building Blocks)

Thread/Core 1

pops

Core 2

pops

Core 3

pops
steals

pushes pushes pushes

Dequeue Task

Process Task

Enqueue Task(s)

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Scheduling with task behavior prediction

No adaptivity to algorithm modifications

No decision overhead
Core 2

Thread/Core 1

168
Execution Schemes

Decentralized
(Preesm, SynDEx)

Actor A

Actor B

Actor D tim
e

 Actor E

Actor C

Core 2

Actor C

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Scheduling with task behavior prediction

Adaptivity to algorithm variations

Master core can become a bottleneck

Thread/Core 2

169
Execution Schemes

Master/Slave
(Compa Runtime)

Master Operator

Multicore
Runtime

Core 1

assigns

finished

Dequeue Actor

Process Actor

Signals finished

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Why not use threads and processes instead of actors?

• Threads share memory within a process

Multicore thread execution necessitates shared memory between cores

Shared memory is increasingly costly when number of cores grows

This method of parallelizing is showing its limits already with 8 cores

• Threads are designed for resource sharing

Cores, memory…

What we want is more resource combining

• Actors are special types of processes

With firing rules, i.e. computation is triggered by available data

Actors are dedicated to stream processing. Threads and processes can

implement control-oriented code

170
Actors versus threads

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

171

Multicore Tools

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

172
Some Tools and Initiatives

Deduce parallelism from
Models of Computation

Extract parallelism from
code

High
Performance
Computing

Embedded
Systems

Ptolemy II

PREESM

OpenMP

Matlab + Simulink

OpenCL

ORCC

SystemC

Simulation
oriented

Execution
oriented

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Implemented on GCC 4.2

• Implemented in TI compiler for Keystone I

• Adds pragmas (metadata) in C to tell the compiler which

loops can be parallelized

• Example:

#pragma omp parallel for

For(i=0; i<10; i++){

 T[i] = f(i);

}

The compiler knows that the iterations are independent (data parallelism

in this case) and can be parallelized.

173
OpenMP

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Model-Driven-Engineering (MDE)

Starting from UML meta-model and meta-model transformation

Defines a whole methodology from specification to final system

UML profiles like UML Marte have been defined for that purpose

• Synchronous languages

Lustre, Signal, Esterel…

Specifying synchronizations between operators: close to dataflow

• C extensions

OpenMP, OpenCL, OpenACC, OpenHMPP, Cilk

Principal objective: a painless migration to coarse-grain parallelism

• StreaMIT - MIT

A language for stream processing, close to dataflow MoCs, and a

compiler for massively parallel machiles

174
Other Tools and Initiatives with Common Objectives

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Task queueing software frameworks

Intel Threading Building Blocks, Apple Grand Central Dispatch

Not specifically oriented towards stream processing applications

• Task queueing software/hardware frameworks

Open Event Machine and Multicore Navigator

 Available on C6678

175
Other Tools and Initiatives with Common Objectives

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Eclipse-based Open Source Rapid Prototyping Tool

• Collaboration with Texas Instruments Nice

Communication Infrastructure Business Unit (CI BU)

Rapid prototyping of base station algorithms (used for LTE)

• Goals

Combine imperative actor (host) code and dataflow coordination code

Latency, memory and energy study of embedded code execution

Before target hardware is available

With efficient automatic parallelization heuristics

Generating static multi-core code

Reuse legacy code

176
Preesm: Rapid Prototyping for Multi-core DSP

Multicore DSP

Rapid Prototyping using Preesm

Architectur
e Model

Algorithm
Model

Constraints

+ Options

OS

Core

OS

Core

…

…

Simulator

+ Debugger

+ Profiler

Preesm Self-timed
code

Program
Program Program

Program

17
7

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Algorithm Model

Static Hierarchical SDF with C-like behaviour (IBSDF and PiSDF)

Combined with C Actor Code

• Architecture Model

System-Level Architecture Model (S-LAM) of heterogeneous

architectures

Focuses on important contention points

• Prototyping

Shared memory / Message passing / DMA transfers /

Load balancing enhancement

178
Preesm: Rapid Prototyping for Multi-core DSP

Multicore DSP

A
D B

E

C

o1

o2

A B D E
C

Actor A

Actor B

Actor D

tim
e

 Actor E

Actor C

o1 o2

Static Code Generation : Self-Timed
17
9

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

• Applications and architectures are increasingly complex

Model-based system design helps at several design stages

• To evaluate languages/models: focus on MoC

MoCs offer « pure » semantics, free of syntax

• No one-fit-all solution to design Multicore DSP systems

Many solutions exist now, complex choices have to be made

Multicore Digital Signal Processing
180

General Conclusion

Maxime Pelcat – mpelcat@insa-rennes.fr - June 2013

181

Demo

