
Multicore Meets Petascale:
Catalyst for a Programming

Model Revolution

Kathy Yelick

U.C. Berkeley and

Lawrence Berkeley National Laboratory



Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra



Clock Scaling Hits Power Density Wall
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Scaling clock speed (business as usual) will not work



Multicore Revolution

• Chip density is
continuing
increase ~2x every
2 years

– Clock speed is
not

– Number of
processor cores
may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must
be exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and

Stanford (Olukotun, Hammond)



Petaflop with ~1M Cores By 2008
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Petaflop with ~1M Cores By 2008
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Need a Fundamentally New Approach

• Rethink hardware

– What limits performance

– How to build efficient hardware

• Rethink software

– Massive parallelism

– Eliminate scaling bottlenecks replication,
synchronization

• Rethink algorithms

– Massive parallelism and locality

– Counting Flops is the wrong measure



Rethink Hardware

(Ways to Waste $50M)



Waste #1: Ignore Power Budget

Power is top concern in hardware design

• Power density within a chip

– Led to multicore revolution

• Energy consumption

– Always important in handheld devices

– Increasingly so in desktops

– Soon to be significant fraction of budget in
large systems

• One knob: increase concurrency



Optimizing for Serial Performance
Consumes Power

• Power5 (Server)
– 389 mm2

– 120 W @ 1900 MHz

• Intel Core2 sc (Laptop)
– 130 mm2

– 15 W @ 1000 MHz

• PowerPC450 (BlueGene/P)

– 8 mm2

– 3 W @ 850 MHz

• Tensilica DP (cell phones)
– 0.8 mm2

– 0.09 W @ 650 MHz

Intel Core2

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you 
can pack 100x more cores onto a chip and consume 1/20 the power!

PPC450

TensilicaDP



Power Demands Threaten to Limit the Future
Growth of Computational Science

Looking forward to Exascale (1000x Petascale)
• DOE E3 Report

– Extrapolation of existing design trends

– Estimate: 130 MW

• DARPA Exascale Study

– More detailed assessment of component technologies

• Power-constrained design for 2014 technology

• 3 TF/chip, new memory technology, optical interconnect

– Estimate:
• 40 MW plausible target, not business as usual

• Billion-way concurrency with cores and latency-hiding

• NRC Study
– Power and multicore challenges are not just an HPC problem



Waste #2: Buy More Cores than
Memory can Feed

• Required bandwidth depends on the algorithm

• Need hardware designed to algorithmic needs
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Waste #3: Ignore Little’s Law--
Latency also Matters
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Sparse Matrix-Vector Multiply (2flops / 8 bytes) should be BW limited



Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies are insufficient to tolerate latencies

– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat bandwidth

– Performance model is simple and deterministic (much simpler than modeling a
complex cache hierarchy),

                    min{time_for_memory_ops, time_for_core_exec}

Cell STRIAD (64KB concurrency)
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Waste #4: Unnecessarily Synchronize
Communication

8-byte Roundtrip Latency
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• MPI Message Passing is two-sided: each transfer is tied to
a synchronization event (message received)

• One-sided communication avoids this
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One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a
network interface with RDMA support
– Avoid interrupting the CPU or storing data from CPU

(preposts)

• A two-sided messages needs to be matched with a receive
to identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network

 interface

memory

host

CPU

Joint work with Dan Bonachea



Rethinking Programming Models

for
Massive concurrency

Latency hiding
Locality control



Parallel Programming Models

• Most parallel programs are written using either:
–Message passing with a SPMD model

• Scientific applications; is portable and scalable

• Success driven by cluster computing

–Shared memory with threads in OpenMP or Threads

• IT applications; easier to program

• Used on shared memory architectures

• Future Petascale machines
–Massively distributed, O(100K) nodes/sockets

–Massively parallelism within a chip (2x every year,
starting at 4-100 now)

• Main question: 1 programming model or 2?
–MPI + OpenMP or something else



Partitioned Global Address
Space

• Global address space: any thread/process may
directly read/write data allocated by another

• Partitioned: data is designated as local or global
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• 3 Current languages: UPC, CAF, and Titanium
– All three use an SPMD execution model

– Emphasis in this talk on UPC and Titanium (based on
Java)

• 3 Emerging languages: X10, Fortress, and Chapel



PGAS Language Overview

• Many common concepts, although specifics differ
– Consistent with base language, e.g., Titanium is strongly

typed

• Both private and shared data
– int x[10];      and     shared int y[10];

• Support for distributed data structures
– Distributed arrays; local and global pointers/references

• One-sided shared-memory communication
– Simple assignment statements: x[i] = y[i];      or      t = *p;

– Bulk operations: memcpy in UPC, array ops in Titanium and
CAF

• Synchronization
– Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.



PGAS Languages for Distributed
Memory

• PGAS languages are a good fit to distributed
memory machines and clusters of multicore

– Global address space uses fast one-sided
communication

– UPC and Titanium use GASNet communication

• Alternative on distributed memory is MPI

– PGAS partitioned model scaled to 100s of nodes

– Shared data structure are only in the programmer’s
mind in MPI; cannot be programmed as such



One-Sided vs. Two-Sided: Practice
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Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:

–Chunk:

• Wait for 2nd dim FFTs to finish

• Minimize # messages

–Slab:

• Wait for chunk of rows destined
for 1 proc to finish

• Overlap with computation

–Pencil:

• Send each row as it completes

• Maximize overlap and

• Match natural layout
slab = all rows in a single plane with
same destination



NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost
too high

• Pencil is always best for UPC; more overlap
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PGAS Languages and Productivity



Arrays in a Global Address Space

• Key features of Titanium arrays

– Generality: indices may start/end and any point

– Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

• Use domain calculus to identify ghosts and iterate:
   foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
   gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost)
cells

ghost cells

intersection (copied area)

Joint work with Titanium group

Useful in grid
computations
including AMR



Languages Support Helps
Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL

• Bulk-synchronous comm:
– Pack boundary data between procs

– All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

– No explicit pack/unpack code
– Automated in runtime system

• General approach
– Language allow programmer optimizations
– Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Particle/Mesh Method: Heart Simulation

• Elastic structures in an incompressible fluid.
– Blood flow, clotting, inner ear, embryo growth,

…

• Complicated parallelization
– Particle/Mesh method, but  “Particles”

connected into materials (1D or 2D structures)

– Communication patterns irregular between
particles (structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000

Fortran

4000

Titanium

Note: Fortran code is not parallel





Dense and Sparse Matrix Factorization

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U
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Joint work with Parry Husbands and Esmond Ng



Matrix Factorization in UPC

• UPC factorization uses a highly multithreaded style

– Used to mask latency and to mask dependence delays

– Three levels of threads:
• UPC threads (data layout, each runs an event scheduling loop)

• Multithreaded BLAS (boost efficiency)

• User level (non-preemptive) threads with explicit yield

– No dynamic load balancing, but lots of remote invocation

– Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky

• Hard problems

– Block size tuning (tedious) for both locality and granularity

– Task prioritization (ensure critical path performance)

– Resource management can deadlock memory allocator if not
careful

Joint work with Parry Husbands



UPC HP Linpack Performance

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron 

cluster

UPC vs. 

MPI/HPL

0

50

100

150

200

Opt/64

G
F

lo
p

/s

MPI/HPL

UPC

Altix UPC. 

Vs. 

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

•Comparable to MPI HPL (numbers from HPCC database)

•Faster than ScaLAPACK due to less synchronization

•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p

Joint work with Parry Husbands
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PGAS Languages + Autotuning for
Multicore

• PGAS languages are a good fit to shared memory
machines, including multicore
– Global address space implemented as reads/writes

– Current UPC and Titanium implementation uses threads

• Alternative on shared memory is OpenMP or
threads
– PGAS has locality information that is important on multi-

socket SMPs and may be important as #cores grows

– Also may be exploited for processor with explicit local
store rather than cache, e.g., Cell processor

• Open question in architecture
– Cache-coherence shared memory

– Software-controlled local memory (or hybrid)

• How do we get performance, not just parallelism
on multicore?

DMA



Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning

– Search over possible implementations

– Use performance models to restrict search space

– Autotuned libraries for dwarfs (up to 10x speedup)

Block size (n0 x
m0) for dense
matrix-matrix
multiply

• Spectral (FFTW, Spiral)

• Dense (PHiPAC, Atlas)

• Sparse (Sparsity, OSKI)

• Stencils/structured grids

– Are these compilers?

• Don’t transform source

• There are compilers that
use this kind of search

• But not for the sparse
case (transform matrix)

Optimization:
1.5x more entries (zeros)

 1.5x speedup

Compilers won’t do this!



Sparse Matrices on Multicore

AMD X2
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Rethink Compilers and Tools



Compilers

• Challenges of writing optimized and
portable code suggest compilers should:
– Analyze and optimize parallel code

• Eliminate races

• Raise level of programming to data parallelism and
other higher level abstractions

• Enforce easy-to-learn memory models

– Write code generators rather than programs
• Compilers are more dynamic than traditional

• Use partial evaluation and dynamic optimizations
(used in both examples)



Parallel Program Analysis

• To perform optimizations, new analyses are
needed for parallel languages

• In a data parallel or serial (auto-parallelized)
language, the semantics are serial
– Analysis is “easier” but more critical to performance

• Parallel semantics requires
– Concurrency analysis: which code sequences may run

concurrently

– Parallel alias analysis: which accesses could conflict
between threads

• Analysis is used to detect races, identify
localizable pointers, and ensure memory
consistency semantics (if desired)



Concurrency Analysis
• Graph generated from program as follows:

– Node for each code segment between barriers and single
conditionals

– Edges added to represent control flow between segments
– Barrier edges removed

• Two accesses can run concurrently if:
– They are in the same node, or
– One access’s node is reachable from the other access’s node

// segment 1

if ([single])

  // segment 2

else

  // segment 3

// segment 4

Ti.barrier()

// segment 5

1

2 3

4

5

barrier

Joint work with Amir Kamil and Jimmy Su



Alias Analysis

• Allocation sites correspond to abstract
locations (a-locs)
– Abstract locations (a-locs) are typed

• All explicit and implicit program variables
have points-to sets
– Each field of an object has a separate set

– Arrays have a single points-to set for all elements

• Thread aware: Two kinds of abstract
locations: local and remote
– Local locations reside in local thread’s memory

– Remote locations reside on another thread

– Generalizes to multiple levels (thread, node,
cluster)

Joint work with Amir Kamil



% of Dynamic Fences Removed
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Joint work with Amir Kamil



Hierarchical Machines

• Parallel machines often have
hierarchical structure

B

level 1
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(node local)
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Rethink Algorithms



Latency and Bandwidth-Avoiding

• Many iterative algorithms are limited by

– Communication latency (frequent messages)

– Memory bandwidth

• New optimal ways to implement Krylov subspace methods on
parallel and sequential computers

– Replace x  Ax   by  x  [Ax,A2x,…Akx]

– Change GMRES, CG, Lanczos, … accordingly

• Theory
– Minimizes network latency costs on parallel machine

– Minimizes memory bandwidth and latency costs on sequential
machine

• Performance models for 2D problem
– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P

• Measure speedup: 3.2x for out-of-core
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Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send data to neighbors, receive from
neighbors

• Compute remaining locally
dependent entries

• Wait for receive

• Compute remotely dependent entries



Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms



Predictions and Conclusions

• Parallelism will explode

– Number of cores will double every ~2 years

– Petaflop (million processor) machines will be common in HPC
by 2015 (all top 500 machines will have this)

• Performance will become a software problem

– Parallelism and locality are fundamental; can save power by
pushing these to software

• Locality will continue to be important

– On-chip to off-chip as well as node to node

– Need to design algorithms for what counts (communication not
computation)

• Massive parallelism required (including pipelining and
overlap)



Conclusions

• Parallel computing is the future

• Re-think Hardware

– Hardware to make programming easier

– Hardware to support good performance tuning

• Re-think Software

– Software to make the most of hardware

– Software to ease programming

• Berkeley UPC compiler: http://upc.lbl.gov

• Titanium compiler: http://titanium.cs.berkeley.edu

• Re-think Algorithms

– Design for bottlenecks: latency and bandwidth



Concurrency for Low Power

• Highly concurrent systems are more power efficient
– Dynamic power is proportional to V2fC

– Increasing frequency (f) also increases supply voltage (V):
more than linear effect

– Increasing cores increases capacitance (C) but has only a
linear effect

• Hidden concurrency burns power
– Speculation, dynamic dependence checking, etc.

• Push parallelism discovery to software to save power
– Compilers, library writers and applications programmers

• Challenge: Can you double the concurrency in your
algorithms every 2 years?



LBMHD: Structure Grid Application

• Plasma turbulence simulation

• Two distributions:

– momentum distribution (27 components)

– magnetic distribution (15 vector components)

• Three macroscopic quantities:

– Density

– Momentum (vector)

– Magnetic Field (vector)

• Must read 73 doubles, and update(write) 79 doubles per
point in space

• Requires about 1300 floating point operations per point in
space

• Just over 1.0 flops/byte (ideal)

• No temporal locality between points in space within one
time step



Autotuned Performance
(Cell/SPE version)

• First attempt at cell
implementation.

• VL, unrolling, reordering
fixed

• Exploits DMA and
double buffering to load
vectors

• Straight to SIMD
intrinsics.

• Despite the relative
performance, Cell’s DP
implementation severely
impairs performance

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only 

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA



Autotuned Performance
(Cell/SPE version)

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only 

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

7.5% of peak flops

17% of bandwidth

42% of peak flops

35% of bandwidth

59% of peak flops

15% of bandwidth

57% of peak flops

33% of bandwidth


