
Multicore Meets Petascale:
Catalyst for a Programming

Model Revolution

Kathy Yelick

U.C. Berkeley and

Lawrence Berkeley National Laboratory

Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

Clock Scaling Hits Power Density Wall

4004

8008

8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
e
r

D
e
n

s
it

y
 (

W
/c

m
2
)

Hot Plate

Nuclear

Reacto
r

Rocket

Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

Scaling clock speed (business as usual) will not work

Multicore Revolution

• Chip density is
continuing
increase ~2x every
2 years

– Clock speed is
not

– Number of
processor cores
may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must
be exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and

Stanford (Olukotun, Hammond)

Petaflop with ~1M Cores By 2008

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008?

Data from top500.org

6-8 years

Common
by 2015?

Petaflop with ~1M Cores By 2008

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2009

6-8 years

On your desk
in 2025?

8-10 years

Need a Fundamentally New Approach

• Rethink hardware

– What limits performance

– How to build efficient hardware

• Rethink software

– Massive parallelism

– Eliminate scaling bottlenecks replication,
synchronization

• Rethink algorithms

– Massive parallelism and locality

– Counting Flops is the wrong measure

Rethink Hardware

(Ways to Waste $50M)

Waste #1: Ignore Power Budget

Power is top concern in hardware design

• Power density within a chip

– Led to multicore revolution

• Energy consumption

– Always important in handheld devices

– Increasingly so in desktops

– Soon to be significant fraction of budget in
large systems

• One knob: increase concurrency

Optimizing for Serial Performance
Consumes Power

• Power5 (Server)
– 389 mm2

– 120 W @ 1900 MHz

• Intel Core2 sc (Laptop)
– 130 mm2

– 15 W @ 1000 MHz

• PowerPC450 (BlueGene/P)

– 8 mm2

– 3 W @ 850 MHz

• Tensilica DP (cell phones)
– 0.8 mm2

– 0.09 W @ 650 MHz

Intel Core2

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
can pack 100x more cores onto a chip and consume 1/20 the power!

PPC450

TensilicaDP

Power Demands Threaten to Limit the Future
Growth of Computational Science

Looking forward to Exascale (1000x Petascale)
• DOE E3 Report

– Extrapolation of existing design trends

– Estimate: 130 MW

• DARPA Exascale Study

– More detailed assessment of component technologies

• Power-constrained design for 2014 technology

• 3 TF/chip, new memory technology, optical interconnect

– Estimate:
• 40 MW plausible target, not business as usual

• Billion-way concurrency with cores and latency-hiding

• NRC Study
– Power and multicore challenges are not just an HPC problem

Waste #2: Buy More Cores than
Memory can Feed

• Required bandwidth depends on the algorithm

• Need hardware designed to algorithmic needs

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

Time to fill 1/2 mem (usec)
Time to matmul on 1/2 mem (usec)
Time to FFT on 1/2 mem (usec)
Time to Stencil (usec)
Time for N 2̂ particle method

Waste #3: Ignore Little’s Law--
Latency also Matters

3.4 GF 1.9 GF 1.5 GFAutotune SpMV

--3%1%Efficiency %

-- 0.6 GF 1.0 GFNaïve SpMV (median of

many matrices)

25.6 GB/s21.321.3 GB/sPeak MemBW

 3.2X 1.5XAuto Speedup

14.6 (DP Fl. Pt.)17.6 GF74.6 GFPeak GFLOPS

3.2 GHz2.2 GHz2.3 GHzClock Rate

2-VLIW, SIMD, local
RAM, DMA

4-/3-issue, 2-/1-SSE3, OOO,
caches, prefetch

Architecture

 1*8 = 8 2*2 = 42*4 = 8Chips*Cores

CellOpteronClovertownName

Sparse Matrix-Vector Multiply (2flops / 8 bytes) should be BW limited

Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies are insufficient to tolerate latencies

– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat bandwidth

– Performance model is simple and deterministic (much simpler than modeling a
complex cache hierarchy),

 min{time_for_memory_ops, time_for_core_exec}

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

G
B

/
s

1 SPE 2 SPEs 3 SPEs 4 SPEs

5 SPEs 6 SPEs 7 SPEs 8 SPEs

Waste #4: Unnecessarily Synchronize
Communication

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
o

u
n

d
t
r
ip

 L
a
t
e
n

c
y
 (

u
s
e
c
)

MPI ping-pong

GASNet put+sync

• MPI Message Passing is two-sided: each transfer is tied to
a synchronization event (message received)

• One-sided communication avoids this

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714
231

763

223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e

r
c

e
n

t
H

W
 p

e
a

k

MPI

GASNet

One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a
network interface with RDMA support
– Avoid interrupting the CPU or storing data from CPU

(preposts)

• A two-sided messages needs to be matched with a receive
to identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network

 interface

memory

host

CPU

Joint work with Dan Bonachea

Rethinking Programming Models

for
Massive concurrency

Latency hiding
Locality control

Parallel Programming Models

• Most parallel programs are written using either:
–Message passing with a SPMD model

• Scientific applications; is portable and scalable

• Success driven by cluster computing

–Shared memory with threads in OpenMP or Threads

• IT applications; easier to program

• Used on shared memory architectures

• Future Petascale machines
–Massively distributed, O(100K) nodes/sockets

–Massively parallelism within a chip (2x every year,
starting at 4-100 now)

• Main question: 1 programming model or 2?
–MPI + OpenMP or something else

Partitioned Global Address
Space

• Global address space: any thread/process may
directly read/write data allocated by another

• Partitioned: data is designated as local or global

G
lo

b
a
l
a
d

d
re

s
s
 s

p
a
c
e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn

By default:

• Object
heaps are
shared

• Program
stacks are
private

• 3 Current languages: UPC, CAF, and Titanium
– All three use an SPMD execution model

– Emphasis in this talk on UPC and Titanium (based on
Java)

• 3 Emerging languages: X10, Fortress, and Chapel

PGAS Language Overview

• Many common concepts, although specifics differ
– Consistent with base language, e.g., Titanium is strongly

typed

• Both private and shared data
– int x[10]; and shared int y[10];

• Support for distributed data structures
– Distributed arrays; local and global pointers/references

• One-sided shared-memory communication
– Simple assignment statements: x[i] = y[i]; or t = *p;

– Bulk operations: memcpy in UPC, array ops in Titanium and
CAF

• Synchronization
– Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.

PGAS Languages for Distributed
Memory

• PGAS languages are a good fit to distributed
memory machines and clusters of multicore

– Global address space uses fast one-sided
communication

– UPC and Titanium use GASNet communication

• Alternative on distributed memory is MPI

– PGAS partitioned model scaled to 100s of nodes

– Shared data structure are only in the programmer’s
mind in MPI; cannot be programmed as such

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
a
n

d
w

id
th

 (
M

B
/s

)

GASNet put (nonblock)"

MPI Flood

Relative BW (GASNet/MPI)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5

• Half power point (N) differs by one order of magnitude

• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

 i
s

 g
o

o
d

) NERSC Jacquard
machine with
Opteron
processors

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:

–Chunk:

• Wait for 2nd dim FFTs to finish

• Minimize # messages

–Slab:

• Wait for chunk of rows destined
for 1 proc to finish

• Overlap with computation

–Pencil:

• Send each row as it completes

• Maximize overlap and

• Match natural layout
slab = all rows in a single plane with
same destination

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost
too high

• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F
l
o
p
s

p
e
r

T
h
r
e
a
d Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI

Best MPI

Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best NAS Fortran/MPI
Best MPI (always Slabs)
Best UPC (always Pencils)

.5 Tflops

 Myrinet Infiniband Elan3 Elan3 Elan4 Elan4

#procs 64 256 256 512 256 512

M
F

lo
p

s
 p

e
r

T
h

re
a

d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

PGAS Languages and Productivity

Arrays in a Global Address Space

• Key features of Titanium arrays

– Generality: indices may start/end and any point

– Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

• Use domain calculus to identify ghosts and iterate:
 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost)
cells

ghost cells

intersection (copied area)

Joint work with Titanium group

Useful in grid
computations
including AMR

Languages Support Helps
Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL

• Bulk-synchronous comm:
– Pack boundary data between procs

– All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

– No explicit pack/unpack code
– Automated in runtime system

• General approach
– Language allow programmer optimizations
– Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI

(Chombo)

L
in

e
s

 o
f

C
o

d
e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Speedup

0

10

20

30

40

50

60

70

80

16 28 36 56 112

#procs

sp
ee

d
u

p

Ti Chombo

Particle/Mesh Method: Heart Simulation

• Elastic structures in an incompressible fluid.
– Blood flow, clotting, inner ear, embryo growth,

…

• Complicated parallelization
– Particle/Mesh method, but “Particles”

connected into materials (1D or 2D structures)

– Communication patterns irregular between
particles (structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000

Fortran

4000

Titanium

Note: Fortran code is not parallel

Dense and Sparse Matrix Factorization

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
o

m
p

le
te

d
 p

a
rt o

f L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix

to be updated

Panel being factored

Joint work with Parry Husbands and Esmond Ng

Matrix Factorization in UPC

• UPC factorization uses a highly multithreaded style

– Used to mask latency and to mask dependence delays

– Three levels of threads:
• UPC threads (data layout, each runs an event scheduling loop)

• Multithreaded BLAS (boost efficiency)

• User level (non-preemptive) threads with explicit yield

– No dynamic load balancing, but lots of remote invocation

– Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky

• Hard problems

– Block size tuning (tedious) for both locality and granularity

– Task prioritization (ensure critical path performance)

– Resource management can deadlock memory allocator if not
careful

Joint work with Parry Husbands

UPC HP Linpack Performance

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron

cluster

UPC vs.

MPI/HPL

0

50

100

150

200

Opt/64

G
F

lo
p

/s

MPI/HPL

UPC

Altix UPC.

Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

•Comparable to MPI HPL (numbers from HPCC database)

•Faster than ScaLAPACK due to less synchronization

•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p

Joint work with Parry Husbands

UPC vs.

ScaLAPACK

0

20

40

60

80

2x4 proc grid 4x4 proc grid

G
F
lo

p
s

ScaLAPACK

UPC

PGAS Languages + Autotuning for
Multicore

• PGAS languages are a good fit to shared memory
machines, including multicore
– Global address space implemented as reads/writes

– Current UPC and Titanium implementation uses threads

• Alternative on shared memory is OpenMP or
threads
– PGAS has locality information that is important on multi-

socket SMPs and may be important as #cores grows

– Also may be exploited for processor with explicit local
store rather than cache, e.g., Cell processor

• Open question in architecture
– Cache-coherence shared memory

– Software-controlled local memory (or hybrid)

• How do we get performance, not just parallelism
on multicore?

DMA

Tools for Efficiency: Autotuning

• Automatic performance tuning
– Use machine time in place of human time for tuning

– Search over possible implementations

– Use performance models to restrict search space

– Autotuned libraries for dwarfs (up to 10x speedup)

Block size (n0 x
m0) for dense
matrix-matrix
multiply

• Spectral (FFTW, Spiral)

• Dense (PHiPAC, Atlas)

• Sparse (Sparsity, OSKI)

• Stencils/structured grids

– Are these compilers?

• Don’t transform source

• There are compilers that
use this kind of search

• But not for the sparse
case (transform matrix)

Optimization:
1.5x more entries (zeros)

 1.5x speedup

Compilers won’t do this!

Sparse Matrices on Multicore

AMD X2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n
se

P
ro

te
in

F
E
M

-S
p
h
r

F
E
M

-C
a
n
t

T
u
n
n
e
l

F
E
M

-H
a
r

Q
C
D

F
E
M

-S
h
ip

E
co

n
o
m

E
p
id

e
m

F
E
M

-A
c
c
e
l

C
ir

cu
it

W
e
b
b
a
se LP

M
e
d
ia

n

G
F
lo

p
/

s

1Core Naïve 1Core PF

1Core PF ,RB 1Core PF ,RB ,CB

2Core 2Socket x 2Core

2Core Naïve MPI + OSKI

Clovertown

0.0

0.5

1.0

1.5

2.0

2.5
D

e
n
se

P
ro

te
in

F
E
M

-S
p
h
r

F
E
M

-C
a
n
t

T
u
n
n
e
l

F
E
M

-H
a
r

Q
C
D

F
E
M

-S
h
ip

E
co

n
o
m

E
p
id

e
m

F
E
M

-A
cc

e
l

C
ir

cu
it

W
e
b
b
a
se LP

M
e
d
ia

n

G
F
lo

p
/

s
1Core Naïve 1Core PF

1Core PF ,RB 1Core PF ,RB ,CB

2Core 4Core

2Socket x 4Core 2Core Naïve

MPI+OSKI

Autotuning is more important than parallelism!And don’t think running MPI process per core is good enough

for performance.

Rethink Compilers and Tools

Compilers

• Challenges of writing optimized and
portable code suggest compilers should:
– Analyze and optimize parallel code

• Eliminate races

• Raise level of programming to data parallelism and
other higher level abstractions

• Enforce easy-to-learn memory models

– Write code generators rather than programs
• Compilers are more dynamic than traditional

• Use partial evaluation and dynamic optimizations
(used in both examples)

Parallel Program Analysis

• To perform optimizations, new analyses are
needed for parallel languages

• In a data parallel or serial (auto-parallelized)
language, the semantics are serial
– Analysis is “easier” but more critical to performance

• Parallel semantics requires
– Concurrency analysis: which code sequences may run

concurrently

– Parallel alias analysis: which accesses could conflict
between threads

• Analysis is used to detect races, identify
localizable pointers, and ensure memory
consistency semantics (if desired)

Concurrency Analysis
• Graph generated from program as follows:

– Node for each code segment between barriers and single
conditionals

– Edges added to represent control flow between segments
– Barrier edges removed

• Two accesses can run concurrently if:
– They are in the same node, or
– One access’s node is reachable from the other access’s node

// segment 1

if ([single])

 // segment 2

else

 // segment 3

// segment 4

Ti.barrier()

// segment 5

1

2 3

4

5

barrier

Joint work with Amir Kamil and Jimmy Su

Alias Analysis

• Allocation sites correspond to abstract
locations (a-locs)
– Abstract locations (a-locs) are typed

• All explicit and implicit program variables
have points-to sets
– Each field of an object has a separate set

– Arrays have a single points-to set for all elements

• Thread aware: Two kinds of abstract
locations: local and remote
– Local locations reside in local thread’s memory

– Remote locations reside on another thread

– Generalizes to multiple levels (thread, node,
cluster)

Joint work with Amir Kamil

% of Dynamic Fences Removed

0%

20%

40%

60%

80%

100%

sharing concur concur+

pointer

concur+

multi-level

pointer

fft

amr-gas

gsrb

lu-fact

pi

pps

sort

demv

spmv

amr-poisson

Implementing Sequential Consistency with
Fences and Analysis

Joint work with Amir Kamil

Hierarchical Machines

• Parallel machines often have
hierarchical structure

B

level 1
(thread local)

level 2
(node local)

level 3
(cluster local)

level 4
(grid world)

C
D

A
1

2

3 4

Race Detection Results
G

o
o
d

Rethink Algorithms

Latency and Bandwidth-Avoiding

• Many iterative algorithms are limited by

– Communication latency (frequent messages)

– Memory bandwidth

• New optimal ways to implement Krylov subspace methods on
parallel and sequential computers

– Replace x Ax by x [Ax,A2x,…Akx]

– Change GMRES, CG, Lanczos, … accordingly

• Theory
– Minimizes network latency costs on parallel machine

– Minimizes memory bandwidth and latency costs on sequential
machine

• Performance models for 2D problem
– Up to 7x (overlap) or 15x (no overlap) speedups on BG/P

• Measure speedup: 3.2x for out-of-core

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication

k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8

Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by neighbors

• Send data to neighbors, receive from
neighbors

• Compute remaining locally
dependent entries

• Wait for receive

• Compute remotely dependent entries

Work by Demmel and Hoemmen

Can use Matrix Power Kernel, but change Algorithms

Predictions and Conclusions

• Parallelism will explode

– Number of cores will double every ~2 years

– Petaflop (million processor) machines will be common in HPC
by 2015 (all top 500 machines will have this)

• Performance will become a software problem

– Parallelism and locality are fundamental; can save power by
pushing these to software

• Locality will continue to be important

– On-chip to off-chip as well as node to node

– Need to design algorithms for what counts (communication not
computation)

• Massive parallelism required (including pipelining and
overlap)

Conclusions

• Parallel computing is the future

• Re-think Hardware

– Hardware to make programming easier

– Hardware to support good performance tuning

• Re-think Software

– Software to make the most of hardware

– Software to ease programming

• Berkeley UPC compiler: http://upc.lbl.gov

• Titanium compiler: http://titanium.cs.berkeley.edu

• Re-think Algorithms

– Design for bottlenecks: latency and bandwidth

Concurrency for Low Power

• Highly concurrent systems are more power efficient
– Dynamic power is proportional to V2fC

– Increasing frequency (f) also increases supply voltage (V):
more than linear effect

– Increasing cores increases capacitance (C) but has only a
linear effect

• Hidden concurrency burns power
– Speculation, dynamic dependence checking, etc.

• Push parallelism discovery to software to save power
– Compilers, library writers and applications programmers

• Challenge: Can you double the concurrency in your
algorithms every 2 years?

LBMHD: Structure Grid Application

• Plasma turbulence simulation

• Two distributions:

– momentum distribution (27 components)

– magnetic distribution (15 vector components)

• Three macroscopic quantities:

– Density

– Momentum (vector)

– Magnetic Field (vector)

• Must read 73 doubles, and update(write) 79 doubles per
point in space

• Requires about 1300 floating point operations per point in
space

• Just over 1.0 flops/byte (ideal)

• No temporal locality between points in space within one
time step

Autotuned Performance
(Cell/SPE version)

• First attempt at cell
implementation.

• VL, unrolling, reordering
fixed

• Exploits DMA and
double buffering to load
vectors

• Straight to SIMD
intrinsics.

• Despite the relative
performance, Cell’s DP
implementation severely
impairs performance

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

Autotuned Performance
(Cell/SPE version)

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

7.5% of peak flops

17% of bandwidth

42% of peak flops

35% of bandwidth

59% of peak flops

15% of bandwidth

57% of peak flops

33% of bandwidth

