Multicore Meets Petascale:
Catalyst for a Programming
Model Revolution

Kathy Yelick
U.C. Berkeley and
Lawrence Berkeley National Laboratory

Moore’'s Law Is Alive and Well

1975 1980 1985 1990 1995

)

- Micro 500

(transistors) 2000 (mips)
oy
™ é Pentium 25
 Processor
(-~ i)
100K P ‘waL- 1.0
BO286
10K ‘ww 0.1
‘ ‘N)::U
- 0.1

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.

Ay

: A
reeceee | il

Elzau::

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

Clock Scaling Hits Power Density \Wall

Scaling clock speed (business as usual) will not work
10000

cm

Reacto
HJt Plate =9

=
o

~
=
>,
=
7))
c
O
)
O
=
o
o

Source: Patrick
Gelsinger, Intel®

1970 1980 1990 2000 2010
Year

. .
rreeeee ‘m

._

Multicore Revolution

10,000,000
 Chip density is
continuing 1,000,000 .
Increase ~2x every
2 years
. 100,000
— Clock speed is
not
— Number of 10,000
processor cores
may double .
instead o
« Thereis little or no
hidden parallelism 100
(ILP) to be found -
« Parallelism must 10 /
be exposed to and S
manag ed by 1 -_/ ; . = Transistors (000)
SOftwal’e o ¢ Clock Speed (MHz)
. *ge & Power (W)
Source: Intel, Microsoft (Sutter) and # Perf/Clock (ILP)

~~ Stanford (Olukotun, Hammond) ' ' ' '

reeeenese

N 1970 1975 1980 1985 1990 1995 2000 2005 ngg}p

Common

Petaflop with ~1M Cores by 20157

100 Pflop/s

1 PFlop system in 20082 /
10 Pflop/s AN
1 Pflop/s /
100 Tflop/s //

——#1
——#500

10 Tflops/s
1 Tflop/s

100 Gflop/s |

10 Gflop/s
1 Gflop/s Data from top500.org

10 MFlop/s

ll

1993 1996 1999 2002 2005 2008 2011 2014

-

] A
reeeeee ||||
El:=

On your desk

Petaflop with ~1M Cores - 2025?

100 Pflop/s

1 PFlop system in 2009
10 Pflop/s

1 Pflop/s /
100 Tflop/s
10 Tflops/s

1 Tflop/s —— #500 74
100 Gflop/s > ——Desktop
10 Gflop/s > /
1 Gflop/s 8-10 years
0 »Flopfs o~ o~
1993 1996 1999 2002 2005 2008 2011 2014
’\l 0
—

Need a Fundamentally New Ap

e Rethink hardware
— What limits performance
— How to build efficient hardware

e Rethink software

— Massive parallelism

— Eliminate scaling bottlenecks replication,
synchronization

 Rethink algorithms
— Massive parallelism and locality
— Counting Flops is the wrong measure

Rethink Hardware

(Ways to Waste $50M)

Waste #1: Ignore Power Budg

Power is top concern in hardware design

 Power density within a chip
— Led to multicore revolution

« Energy consumption
— Always important in handheld devices
— Increasingly so in desktops

— Soon to be significant fraction of budget in
large systems

« One knob: increase concurrency

Optimizing for Serial Perform
Consumes Power

TensilicaDP

Power5 (Server)
— 389 mm?
— 120 W @ 1900 MHz

Intel Core2 sc (Laptop)
— 130 mm?
— 15 W @ 1000 MHz

PowerPC450 (BlueGene/P)
— 8 mm?

— 3W @ 850 MHz

Tensilica DP (cell phones)

— 0.8 mMm?
— 0.09 W @ 650 MHz

PPC450

Each core peates at 1/3 to 1/10th efficiency of largest chip, but you
can pack 100x more cores onto a chip and consume 1/20 the power!

-

A
dddddns ||||
El:=

Power Demands Threaten to Limit th
Growth of Computational Scie

Looking forward to Exascale (1000x Petascale)

« DOE E3 Report
— Extrapolation of existing design trends
— Estimate: 130 MW

« DARPA Exascale Study
— More detailed assessment of component technologies
 Power-constrained design for 2014 technology
« 3 TF/chip, new memory technology, optical interconnect
— Estimate:
40 MW plausible target, not business as usual
e Billion-way concurrency with cores and latency-hiding
« NRC Study
— Power and multicore challenges are not just an HPC problem

Waste #2: Buy More Cores the
Memory can Feed

* Required bandwidth depends on the algorithm
 Need hardware designed to algorithmic needs

1.E+10
1.E+09 — = Time to fill /2 mem (usec) e
~— 4 Time to matmul on 1/2 mem (usec)
1. E+08 —e— Time to FFT on 1/2 mem (usec)
) -~ Time to Stencil (usec)
—x— Time for N2 particle method

-

,/—\l /\
L’N

Waste #3: Ignore Little's Law-- " £ >
Latency also Matters
Sparse Matrix-Vector Multiply (2flops / 8 bytes) should be BW limited
intel) AMD1 EEE

Name Clovertown Opteron Cell
Chips*Cores 2*4 =8 2*2 =14 1*8 =8
Architecture 4-/3-issue, 2-/1-SSE3, OO0, | 2-VLIW, SIMD, local
caches, prefetch RAM, DMA
Clock Rate 2.3 GHz 2.2 GHz 3.2 GHz
Peak MemBW 21.3 GB/s 21.3 25.6 GB/s
Peak GFLOPS 74.6 GF 17.6 GF 14.6 (DP FI. Pt.)
Naive Sp I}/IV) (median of 1.0 GF 0.6 GF --
Efficiency % 1% 3% --

Why is the STI Cell So Ef

(Latency Hiding with Software Controlle

45 STrad Bandwidin B ariumd STriad Cell STRIAD (64KB concurrency)
4 Hanium2 STREAD
Ogpteron STrad 30.000
a6 - Opteron STREAM
A G5 STriad 25.000
3 - G5 STREAM
® P3STriad 0 20.000
E 25 o — P3 STREAM B 15.000
o A O - % & > > & —
o 2+ 10.000
16 4 5.000
1 1 O-OOO T T T T T T T
05 16 32 64 128 256 512 1024 2048
F—o— 00— —0—0— 00— 00— -
0 4 stanza size
T T T T T T T T T 1 T
16 32 B4 128 256 512 1k 2k 4k 8k 16k
——1 SPE =2 SPEs 3 SPEs <4 SPEs
Stanza Length (words)
—*—5 SPEs 6 SPEs —+—7 SPEs 8 SPEs

 Performance of Standard Cache Hierarchy
— Cache hierarchies are insufficient to tolerate latencies
— Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)

o Cell “explicit DMA”
— Cell software controlled DMA engines can provide nearly flat bandwidth
— Performance model is simple and deterministic (much simpler than modeling a
complex cache hierarchy),
min{time_for_memory_ops, time_for_core_exec}

-

Waste #4: Unnecessarily Synchroni
Communication

. MPI Message Passing is two-sided: each transfer is tied to
a synchronization event (message received)

. One-sided communication avoids this

8'by[§fgund"'p Latency Flood Bandwidth for 4KB messages
2 ' 100% m MPI

21 o0t 23 B GASNet

1 MPIping-pong

714
0 B GASNet put+sync 80% -
v 70% |
~
©
0 0
% 14.6 Q 60% |
215
3 I 50% 750
c —
o c
“ 8 a0% -
j -
2101 0
% Q. 30% -
c
3 e 20%
0 07
14

o
|

10%

0%

Elan3/Alpha Eland/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

0 T T T
Elan Iphzi Eland/lA64 Murinet/x86 BIG5 IB/Onteron SPIFed

BERKELEY LAaB

One-Sided vs Two-Sided Communicati

two-sided message host
: CPU
messf':lge id data payload —> network
one-sided put message :
interface
address data payload —>
memory

« A one-sided put/get message can be handled directly by a
network interface with RDMA support
— Avoid interrupting the CPU or storing data from CPU
(preposts)
« A two-sided messages needs to be matched with a receive
to identify memory address to put data
— Offloaded to Network Interface in networks like Quadrics

crecees ,ﬁ‘ — Need to download match,fables 19,iptegface (from host)

Rethinking Programming Models

for
Massive concurrency
Latency hiding
Locality control

Parallel Programming Models

 Most parallel programs are written using either:
—Message passing with a SPMD model
o Scientific applications; is portable and scalable
e Success driven by cluster computing
—Shared memory with threads in OpenMP or Threads
o [T applications; easier to program
 Used on shared memory architectures

* Future Petascale machines
—Massively distributed, O(100K) nodes/sockets

—Massively parallelism within a chip (2x every year,
starting at 4-100 now)

 Main question: 1 programming model or 27

- .—MPI + OpenMP or something else

rrrrrrr lm’
El:m(,:

Partitioned Global Address
Space

 Global address space: any thread/process may
directly read/write data allocated by another

o Partitioned: data is designated as local or global

2 > g | By default:

© X:1 i M x:5 | X: 7 5 _ '

§ y: / [y: / y: 0 \\ « Object

g /! : l heaps are

§ |/// _ 'Y X |- / ShaI’Ed

E 4 — _ * Program

g g: g: o: / stacks are
o0 o1 on private

« 3 Current languages: UPC, CAF, and Titanium
— All three use an SPMD execution model
— Emphasis in this talk on UPC and Titanium (based on
Java)

ﬂ ‘,}“ 3 Emerging languages: X10, Fortress, and Chapel

PGAS Language Overview

« Many common concepts, although specifics differ

— Consistent with base language, e.g., Titanium is strongly
typed

Both private and shared data

— Int x[10]; and shared int y[10];

Support for distributed data structures

— Distributed arrays; local and global pointers/references

« One-sided shared-memory communication
— Simple assignment statements: x[i]=y[i], or t=*p;

— Bulk operations: memcpy in UPC, array ops in Titanium and
CAF

e Synchronization
— Global barriers, locks, memory fences
’ﬁ \‘Collective Communication, 1O libraries, etc.

PGAS Languages for Distribute
Memory

« PGAS languages are a good fit to distributed
memory machines and clusters of multicore

— Global address space uses fast one-sided
communication

— UPC and Titanium use GASNet communication

o Alternative on distributed memory is MPI

— PGAS partitioned model scaled to 100s of nodes

— Shared data structure are only in the programmer’s
mind in MPI; cannot be programmed as such

One-Sided vs. Two-Sided: Practice

=3 500 " NERSC Jacquard
o 800 —e— GASNet put (nonblock) machine with
=) oo — = MPI Flood W Onteron
= rocessors
— = /./ f/ p
Q = 600 7
2 =

E 500 / Relative BWGASNet/MPI) —

S 400 o

O

c

©

m

10 100 1,000 10,000 100,000 1,000,000
Size (bytes)

* InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5

« Half power point (N %) differs by one order of magnitude
e This is not a criticism of the implementation!

-

reeeeerr

rs iﬁ‘ Joint work with Paul Hargrove and Dan Bonachea

Communication Strategies for 3D

chunk = all rows with same destination

*Three approaches: g”ll

—Chunk: '
e Wait for 2" dim FFTs to finish
 Minimize # messages

—Slab:

e Wait for chunk of rows destined
for 1 proc to finish

e Overlap with computation
—Pencil:
 Send each row as it complete

 Maximize overlap and
 Match natural layout

pencil =1 row

slab = all rows in a single plane with
same destination

-

ceeced]
cre]

'...I Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

BERKELEY LAaB

NAS FT Variants Performance Summ

1100

B Chunk (NAS FT with FFTW)
] Best MPI (always slabs)
s00l- |1 Best UPC (always pencils)

1000 |- |

800k ST TR e,
700+ -
600

500

400

MFlops per Thread

300

200 |

100 - |

Myrinet Infiniband Elan3 Elan3 Elan4 Elan4
#procs 64 256 256 512 256 512

PGAS Languages and Productivity

Arrays in a Global Address Spac

 Key features of Titanium arrays
— Generality: indices may start/end and any point

— Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

« Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink(l).domain()) -..

 Array copies automatically work on intersection
gridB.copy(gridA.shrink(1));

intersection (copied area)
“restricted” (non-ghost) = L

cells \H / Useful in grid
' — computations
iIncluding AMR

= 4
ghost cells — gridA gridB

-

reeeeerr

re ﬁ’ Joint work with Titanium group

Languages Support Helps
Productivity

C++/Fortran/MPlI AMR

« Chombo package from LBNL 30000
e Bulk-synchronous comm:
— Pack boundary data between procs 25000
— All optimizations done by programmer = AMRElliptic
Titanium AMR 20000 = AMRTools
* Entirely in Titanium © m Util
* Finer-grained communication g - Grid
— No explicit pack/unpack code O
— Automated in runtime system ‘© 15000 = AMR
« General approach 3
— Language allow programmer optimizations 5 m Array
— Compiler/runtime does some automatically 10000
Speedup
80 5000
70 -
c0 = —
2 50
8 40
2 20 0
ig Titanium C++/F/IMPI
0 : : ‘ : (Chombo)
16 28 36 56 112
#procs

-

"\l ‘ —e—Ti —= Chombo ‘
QR

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

Particle/Mesh Method: Heart Sim

» Elastic structures in an incompressible fluid.
— Blood flow, clotting, inner ear, embryo growth, 2D Dirac Delta Function

« Complicated parallelization

— Particle/Mesh method, but “Particles”
connected into materials (1D or 2D structures)

— Communication patterns irregular between
particles (structures) and mesh (fluid)

Code Size in Lines

Fortran Titanium
8000 4000

Note: Fortran code is not parallel

-

reeeeerr

, Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

N

EXPERIMENT NVEER

FR~E NMEER
AEIMJTH AGLE
INCLIMATION ANGLE
TWIST ANGLE
FIELD OF VIEW AnGLE
EVYE DISTENCE (M)
MEAR DISTANCE (M)
FAR DISTANCE: (M)
CLIFP MIDFLANE (M)
CLIP THICKMNESS (M)

CEFPTH CLETIMNG

Dense and Sparse Matrix Factorizati

Ellocll<<s 2D|_
lock-cyclic
Completed part of U s distributed
Panel factorizations A(l,) A(i,k)‘
involve communication
for pivoting < Matrix-

matrix

multiplication
» _ / used here.

A(,1) A, K) Can be coalesced

Trailing matrix

to be updated

7 1o ued palajdwo)

Panel being factored

-

Q:_:::: .ﬁ‘ Joint work with Parry Husbands and Esmond Ng

El:mcc

Matrix Factorization in UPC

« UPC factorization uses a highly multithreaded style
— Used to mask latency and to mask dependence delays

— Three levels of threads:
 UPC threads (data layout, each runs an event scheduling loop)
» Multithreaded BLAS (boost efficiency)
« User level (non-preemptive) threads with explicit yield

— No dynamic load balancing, but lots of remote invocation
— Layout is fixed (blocked/cyclic) and tuned for block size
« Same framework being used for sparse Cholesky

« Hard problems
— Block size tuning (tedious) for both locality and granularity
— Task prioritization (ensure critical path performance)

— Resource management can deadlock memory allocator if not
careful

-

ceeced]

'ml Joint work with Parry Husbands

UPC HP Linpack Performance

X1 UPC vs. MPI/HPL Opteron Altix UPC.
cluster Vs.
1400
" MR PG vS. M PIHPL S UE,(A\:P\féK
1200 a Upc MPI/HPL 160 ca
1000 1407 o B ScalAPACK
200 - 120 -
800 m UPC
g_ 100 -
g 150 - @ 60
O 600 io"_ |__0|_ 80 - a
° o S 40 -
200 | 100 + 60 { m MPVHPL- '-o'-
40 |BUPC | 20 |
50 -
200 - 20 I
o |
0 A 0 0 1 2x4 proc grid 4x4 proc grid
60 X1/64 X1/128 Opt/64 Alt/32

sComparable to MPI HPL (hnumbers from HPCC database)
e Faster than ScaLAPACK due to less synchronization

eLarge scaling of UPC code on Itanium/Quadrics (Thunder)
«2.2 TFlops on 512p and 4.4 TFlops on 1024p

\‘ Joint work with Parry Husbands

-

reeceee | il

EII:EI(E

_BGAS—E&W + Autotuning f

MA Multicore

PGAS languages are a good fit to shared memory
machines, including multicore

— Global address space implemented as reads/writes

— Current UPC and Titanium implementation uses threads

Alternative on shared memory is OpenMP or
threads

— PGAS has locality information that is important on multi-
socket SMPs and may be important as #cores grows

— Also may be exploited for processor with explicit local
store rather than cache, e.g., Cell processor

Open question in architecture

— Cache-coherence shared memory

— Software-controlled local memory (or hybrid)

How do we get performance, not just parallelism
on multicore?

Tools for Efficiency: Autotuni

 Automatic performance tuning
— Use machine time in place of human time for tuning
— Search over possible implementations
— Use performance models to restrict search space
— Autotuned libraries for dwarfs (up to 10x speedup)

« Spectral (FFTW, Spiral)

* Dense (PHIPAC, Atlas)

e Sparse (Sparsity, OSKI)
e Stencils/structured grids

— Are these compilers? i [Optimization:
, iy 1.5x more entri zer
 Don’t transform source PR dX more entries (zeros)
_ e - 1.5x speedup
e There are compilers that HH
use this kind of search 1 Compilers won’t do this!

000000000000000000 O3

I,-] 000000000000000000 **
. u O Or e S arSe 5
| 000000000 S I D D O) O O

C R A L R L i LR LR L]

-

ceeced]

| case (transform matrix)

2.5

GFlop/s

And

Clovertown

B 1 Core Naive O 1Core PF

01Core PF ,RB B 1Core PF ,RB,CB
O 2Core 04Core
O 2Socket x 4Core 0 2Core Naive

AMPI +OSKI

B 1 Core Naive O 1Core PF

o 1Core PF ,RB m 1Core PF ,RB ,CB
m 2Core m 2Socket x 2Core
O 2Core Naive AMPI + OSKI

nk running MPI process per core is good enough
for performance.

Rethink Compilers and Tools

Compilers

 Challenges of writing optimized and
portable code suggest compilers should:

— Analyze and optimize parallel code
e Eliminate races

« Raise level of programming to data parallelism and
other higher level abstractions

 Enforce easy-to-learn memory models
— Write code generators rather than programs

« Compilers are more dynamic than traditional

e Use partial evaluation and dynamic optimizations
(used in both examples)

Parallel Program Analysis

« To perform optimizations, new analyses are
needed for parallel languages

 In a data parallel or serial (auto-parallelized)
language, the semantics are serial

— Analysis is “easier” but more critical to performance
e Parallel semantics requires

— Concurrency analysis: which code sequences may run
concurrently

— Parallel alias analysis: which accesses could conflict
between threads
 Analysis is used to detect races, identify
localizable pointers, and ensure memory
consistency semantics (if desired)

-

: A
reeceee | il

EII:EI(E

Concurrency Analysis

« Graph generated from program as follows:
— Node for each code segment between barriers and single

conditionals
— Edges added to represent control flow between segments

— Barrier edges removed

« Two accesses can run concurrently if:

— They are in the same node, or
— One access’s node is reachable from the other access’s node

// segment 1
1T ([single])
// segment 2
else
// segment 3
// segment 4
Ti.barrier(Q)

-

Joint work with Amir Kamil and Jimmy Su

reeeeerr]

Alias Analysis

 Allocation sites correspond to abstract
locations (a-locs)

— Abstract locations (a-locs) are typed
o All explicit and implicit program variables
have points-to sets
— Each field of an object has a separate set
— Arrays have a single points-to set for all elements
 Thread aware: Two kinds of abstract
locations: local and remote
— Local locations reside in local thread’s memory
— Remote locations reside on another thread

— Generalizes to multiple levels (thread, node,
cluster)

Joint work with Amir Kamil

Implementing Sequential Consisten
Fences and Analysis

% of Dynamic Fences Removed

—o fft
-~ = amr-gas

80% — gsrb
60% e ~|u-fact
40% S /]
20% — & pps
0% H ~+ sort
sharing concur concur+ concur+ demv
pointer multi-level spmyv
pointer — e amr-poisson

-

m| Joint work with Amir Kamil

Hierarchical Machines

e Parallel machines often have
hierarchical structure

level 1
(thread local)

evel 2

(node local)

level 3

(cluster local)

evel 4
(grid world)

Race Detection Re

Static Races Detected

Oconcur ®concur+PA1 mconcur+PA3

100000

10000

1000

100

Races (Logarithmic Scale)

10

Benchmark

,.2\| A
frrreeere r|||

BERKELEY LAaB

Rethink Algorithms

-

] A
rreeeee

Latency and Bandwidth-Avoidin

Many iterative algorithms are limited by
— Communication latency (frequent messages)
— Memory bandwidth

New optimal ways to implement Krylov subspace methods on
parallel and sequential computers

— Replace x = Ax by x = [AX,A2X,...AkX]

— Change GMRES, CG, Lanczos, ... accordingly
Theory

— Minimizes network latency costs on parallel machine

— Minimizes memory bandwidth and latency costs on sequential
machine

Performance models for 2D problem
— Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
Measure speedup: 3.2x for out-of-core

A8x s

x > » > X» » > P
< N w IN o o ~
X p3 X X X X

Can be computed without communic
k=8 fold reuse of A

ation

Remotely Dependent Entries for [X,AX,...

Type (1) Remote Dependencies for k=8

A8x slooooooo g ® ® ® 0000000000000 0 O
A'X 70000004 {}{} 00 O o
ABx 6looooooo 000 O
A5X 5FO0 O O O O O O 0O 0 O O
A4X 4ooooooo 00 0 o
A3x 3fooooo0o0o0 0 0 0 o
AZX 2O O O O O O ©O O 0 0O O
AX 1O 0 0O 0 O 0 O 0O 0 O Of
X 0o 0 0 0 0 0 © 00 0 O

| | | | | |

5 10 15 20 25 30

_ One message to get data needed to compute remotely dependent entries, not k=8

ceeced]

'...’ Price: redundant work

Fewer Remotely Dependent Entries for [x,AX,...,A8X],

Type (2) Remote Dependencies for k=8

A8x slooooooo g R P PO 0000000000000 O

AX 1O O OO0 O OO O0OO0OO0OO0OO0oOOoOOo O O O Of
X 0rO OO0 O O0OO0OO0OO0OO0OO0OOoOOoOOo O O O Of
EIS 1I0 1I5 2I0 2I5 3I0
N Reduce redundant work by half

,/—\l /\
L’N

Latency Avoiding Parallel Kernel fo
[X, AX, A2X, ..., AKX]

Compute locally dependent entries
needed by neighbors

Send data to neighbors, receive from
neighbors

Compute remaining locally
dependent entries

Wait for receive
Compute remotely dependent entries

reeent

—

BERKELEY

Can use Matrix Power Kernel, but change Algori

Log10 of 2-norm relative residual

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

I I I I I I 1

Nonrestarted GMRES

v Restarted GMRES(192)
O Monomial-GMRES(24 8)
A Newton-GMRES(24,38)

rr o

Work by Demmel and Hoemmen

| | | | | | | | |

100 200 300 400 S00 600 700 800 900
Inner iteration number

1000

m

-

] A
rreeeee

Predictions and Conclusion

Parallelism will explode
— Number of cores will double every ~2 years

— Petaflop (million processor) machines will be common in HPC
by 2015 (all top 500 machines will have this)

Performance will become a software problem

— Parallelism and locality are fundamental; can save power by
pushing these to software

Locality will continue to be important

— On-chip to off-chip as well as node to node
— Need to design algorithms for what counts (communication not
computation)
Massive parallelism required (including pipelining and
overlap)

Conclusions

o Parallel computing is the future

 Re-think Hardware
— Hardware to make programming easier
— Hardware to support good performance tuning

e Re-think Software
— Software to make the most of hardware

— Software to ease programming
 Berkeley UPC compiler: http://upc.lbl.gov
o Titanium compiler: http://titanium.cs.berkeley.edu

 Re-think Algorithms
— Design for bottlenecks: latency and bandwidth

Concurrency for Low Powe

Highly concurrent systems are more power efficient
— Dynamic power is proportional to V4fC

— Increasing frequency (f) also increases supply voltage (V):
more than linear effect

— Increasing cores increases capacitance (C) but has only a
linear effect

Hidden concurrency burns power
— Speculation, dynamic dependence checking, etc.

Push parallelism discovery to software to save power
— Compilers, library writers and applications programmers

Challenge: Can you double the concurrency in your
algorithms every 2 years?

LBMHD: Structure Grid Applicat

Top 40% at T = 40k

 Plasmaturbulence simulation
« Two distributions:
— momentum distribution (27 component
— magnetic distribution (15 vector compc¢ -~
« Three macroscopic quantities:
— Density
— Momentum (vector)
— Magnetic Field (vector) .
« Mustread 73 doubles, and update(write) 79 doubles per
point in space
 Requires about 1300 floating point operations per point in
space
o Just over 1.0 flops/byte (ideal)

* No temporal locality between points in space within one
time step

-

reeeeerr

|||‘
B:m{,:

GFlop/s

GFlop/s

Autotuned Performance

Intel Clovertown

16.0

14.0

12.0

SELLEEED

6413

~Sun Niagara2 (Huron)

12873

@Hﬁ

12813

2.0
‘=ml ﬂ -
1 2 4 8 1
6473

16.0

14.0

12.0

GFlop/s

(Cell/SPE version)
AMD Opteron

]

1 2
6413

4

1

2
12873

IBM Cell Blade®

First attempt at cell
implementation.

VL, unrolling, reordering
fixed

Exploits DMA and
double buffering to load
vectors

Straight to SIMD
intrinsics.

Despite the relative
performance, Cell's DP
implementation severely
impairs performance

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naive+NUMA

ol

6413

8

16

1

2

4
128173

8

16

"collision() onl

rrr

o
n

16.0

14.0

12.0

GFlop/s
@
<)

4.0

2.0

0.0

18.0

16.0

14.0

12.0

GFlop/s
®
o

4.0

2.0

0.0

Autotuned Performance

Intel Clovertown

7.5% of peak flops
17% of bandwidth

59% of peak flops
15% of bandwidth

~ml D?? il

12873

GFlop/s

GFlop/s

18.0

16.0

14.0

12.0

18.0

16.0

14.0

12.0

®
o

4.0

2.0

0.0

(Cell/SPE version)
AMD Opteron

42% of peak flops
35% of bandwidth

33% of bani

|
< 57% of peak flops

dwidth

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naive+NUMA

“collision() on/

