
Multicore OS Design based on AUTOSAR for

MPC5668G

Roshin Angel Cherian, Tressa Michael

Electronics and Communication Engineering

Rajagiri School of Engineering & Technology

 Kochi, Kerala, India

Laya Raj

Embedded Product Design

Tata Elxsi Ltd

Trivandrum, Kerala, India

Abstract — This paper introduces the design of an operating
system based on AUTOSAR [Automotive Open System Archi-
tecture] for MPC5668G. The designed operating system is

for a dual core micro-controller. As the number of ECUs
increases, it further increases the design complexity of
automotive control systems. Multicore processors on a

chip, have emerged to be the main computing controllers
not only for embedded control systems but also for high
end servers. Hence more centralized architecture designs

can be implemented for automotive control systems with the
help of multicore processors. There has been a steady rise
in the amount of computational power required for an

ECU. This requirement has been met with architectural
changes in the hardware and by increasing the clock rate.
Key to exploit multicore is the decomposition of the

application tasks and interrupts handlers into smaller
components that communicate with each other. The
distribution of components is carried out over the available

computing resources. AUTOSAR supports the automotive
ECU software development, which is based on the idea of
static (i.e. Compile time) configuration. Changing it0 s

configuration of the system whilst it is running is too
expensive and complex. So the issuing of workload to cores
is static and this implies that the communication between

the cores is also static. The MPC5668G microcontroller is
designed to address the need for more integration of
electronic features within the vehicle. In the core

architecture, e200z650 acts as the CPU and e200z0 as the
input output processor (IOP). The controller is developed
by Freescale on 32 bit Power architecture for primary

use in automotive and industrial control systems. This
MCU family built for automotive gateway and high end
body applications. Also, it is user compatible one.

Keywords - AUTOSAR; Automotive domain;

OSEK/VDX; ECUs; Power architecture; Multicore

I. INTRODUCTION

Embedded system applications are mainly used today in

aerospace, automotive areas. The number of electronic

control units (ECUs) in modern vehicles has

continuously increased in last few decades. The design

complexity of automotive control systems increases due to

the introduction of advanced functions like anti-lock

braking systems, adaptive cruise con- trol and climate

control put higher computational demand on ECUs.

Multicore processors on a chip have become to be the

main computing controllers not only for high end servers

but also for embedded control systems. More centralized

architecture designs can be implemented for control

systems with the help of multicore processors. With the

help of in- vehicle network like CAN and FlexRay, it is

expected that computational control tasks of different

functions can share one ECU.

Recently multicores become economical for mass

produced deeply embedded systems due to the ability to

put more than one core on the same piece of silicon along

with memory and peripherals. Key to exploit multicore is

the decomposition of the application tasks and interrupts

handlers into smaller com- ponents that communicate

with each other. The distribution of components is

carried out over the available computing resources.

AUTOSAR supports the automotive ECU software

development, based on the idea of static (i.e. compile

time) configuration. Changing it’s configuration of the

system whilst it is running is too complex and

expensive. So the issuing of workload to cores is static

and this implies that the communication between the cores

is also static.

This work is for the designing of a real time operating
sys- tem based on AUTOSAR architecture working on a
multicore although the various table text styles are provided.
The formatter will need to create these components,
incorporating the applicable criteria that follow.

II. LITERATURE SURVEY

A. Existing Standards

Specialized real time operating systems called
Vehicular Application Specific Embedded Operating
Systems (VASOS) are developed, after the intervention of
application specific operating systems. Some VASOS are
VxWorks, QNX, and PSOS etc. They provide functions of
vehicle domain such as device drivers, fundamental network
functions. OSEK/VDX (Open systems and corresponding
interfaces for automotive electronics/Vehicle Distributed
executive) is an open vehicular industry standard. It provides
environment for developing and redeveloping ECU
software and improve compatibility of those applications.
OSEK and its successor AUTOSAR plays an important role
in software development of automotive domain.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100838

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1276

1) VxWorks: VxWorks is a versatile RTOS which
offers the developer a great deal of control over scheduling
of tasks and synchronization. It is one of the strongest
points of the operating system and for RTOS this is
essential one, because it is a need to make sure things
happen when they should and that they do not interfere with
other, i.e. aerospace or healthcare with a safety critical
system. One of the weakest points of VxWorks, is the
allocation of memory with fragmentation. It is due to the
first fit algorithm used in the allocation of memory space.

2) QNX: QNX Neutrino is widely used as the basis

for automotive electromechanical components, industrial

control systems, medical instruments, nuclear power

plants, defense systems and other mission critical

applications. It0 s software architecture is the key to

building the flexibility that automakers need. It helps the

software strategy that maximizes their productivity.

3) PSOS: PSOSystem is a modular, high performance

real time operating system designed specifically for

embedded microprocessors. Based on open systems

standards, it provides a complete multitasking

environment. PSOS is well suited to situations in which

one wants to support many applications with different or

conflicting requirements. There is no much more

difference between PSOS and Vxworks. Because PSOS is

not allowed to develop more since WindRiver owned it.

4) OSEK/VDX: OSEK/VDX (Open systems and

corresponding interfaces for automotive electronics /

Vehicle Distributed executive) is an open vehicular

industry standard. It provides environment for developing

and redeveloping ECU software and improve compatibility

of those applications. OSEK OS provides a sufficiently

flexible scheduling policy to schedule AUTOSAR

systems. It is a mature specification and implementations

are used in millions of ECUs worldwide. OSEK time OS

and the HIS Protected OSEK are immature specifications

that contain concepts necessary for AUTOSAR and satisfy

specific application domains. Advantages of OSEK/VDX

are portability and reliability. OSEK/VDX is an operating

system meant for distributed embedded control units.

III. MOTIVATION

The recent developments on AUTOmotive Open System

ARchitecture (AUTOSAR) have established several

standards for automotive software and hardware designs,

which explains the directions for designing centralized

architecture with multicore ECUs for automotive control

systems. There has been a steady rise in the amount of

computational power required for an ECU. This

requirement has been met with architectural changes in the

hardware and by increasing the clock rate. Both of these

have resulted in ECU that provide more computational power

but also have increased power dissipation. The heat thereby

generated must be conducted away from the ECU. So

increasing the clock speed does not result in more power for

free. Instead it incurs a significant cost in terms of the

thermal design and manufacture of the ECU. A simple

architectural change to make to the microprocessor is to

add more cores (or CPUs). A core takes a relatively small

amount of the die area and overall power consumption. So

adding more cores is a simple way to increase computing

power for a specific clock frequency without significantly

increasing the power dissipation. However, the software

architectural implications of adding more cores must be

taken into account.

Recently multicores become economical for mass

produced deeply embedded systems due to the ability to put

more than one core on the same piece of silicon along with

memory and peripherals. Key to exploit multicore is the

decomposition of the application tasks and interrupts

handlers into smaller components that communicate with

each other. The distributions of components are carried out

over the available computing resources. AUTOSAR supports

the automotive ECU software development, based on the

idea of static (i.e. compile time) configuration. Changing it0 s

configuration of the system whilst it is running is too

complex and expensive. So the issuing of workload to

cores is static and this implies that the communication

between the cores is also static.

IV. BLOCK DIAGRAM AND DESCRIPTION

A. OS Modules:

The operating system can be divided into several

modules according to their functionality. These modules

are essential for the smooth working of OS on the

hardware. Some of the modules are hardware dependent

and others are not. For regular functioning, each of the

modules may depend one another. The modules of OS

are Timer, Counter, Alarm, Schedule Table, Events,

Tasks, ISR, Scheduler, Resources, Stack Monitoring,

Applications, Protection facilities, Hook functions, Error

macros, Platform, Spin lock mechanism, IOC, Locatable

Entities and Multi core start up concept. OS as a whole

does not support any post build variants. Only link time

and pre - build variants are supported. The block diagram

which describes the OS modules is given below.

 Fig. 1 OS Modules

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100838

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1277

V. EXPERIMENTATIONS

It is possible to split the whole work into several pieces
of small works and called them as tasks. That means, task is
a simple program or part of an execution flow that
competes with other concurrent tasks for processor
execution time. It is an independent entity. Each task is
assigned with a priority. With the correct ordering of these
small programs make the whole work into a real one. Hence
some measures should be taken, which keeps them in real
time environment. Tasks are pre-assigned to both of the
cores. According to the priorities, these tasks are getting
executed.

A. Using Alarms:

Tasks can be initiated with the help of alarms. Alarms

can be made available for the execution of tasks according

to the specifications given. Resources can also be used for

the above mentioned purpose. It helps the low priority

tasks to execute without keeping them in waiting state.

VI. FLOW CHART

The functional flow of program execution on a real

hardware is explained below with the help of flow charts.

The Master core, z6 get activated manually. Then after, z0

called as Slave core activated by z6. Further flow of

executions is shown here.

Fig. 2 Flow Chart 1

The second flow chart explains the working of a sample

program. From the diagram, we can understand that the

tasks are assigned to both cores and get executed in parallel

manner. It is based on priority. After the activation of

idle tasks on both cores, executions o f r e q u i r e d

t a s k s a r e carried out. The flow chart is shown below,

which explains it clearly. Core 0 and Core 1 indicate

Master core and Slave core respectively.

Fig. 3 Flow Chart 2

VII. IMPLEMENTATIONS

Operating System design was implemented with the

help of StarUML design tool. Freescale MPC5668G

development board is used for hardware implementation

and for compila- tion, WindRiver Diab Compiler is

introduced. Then for flash- ing and debugging of the

board, Trace32 – LAUTERBACH debugger tool used.

VIII. PARAM ETERS

There are some parameters related to real time operating

system. These parameters define the characteristics of the

OS. Some of the parameters are given in the table.

Table 1 – Parameters of OS
Features Characteristics

Scheduling Pre-emptive Priority based Algorithm

Memory footprint
ROM
RAM

23.432KB

35.676KB

Resource Scheduling Priority Ceiling Protocol

IX. SIMULATION

As per the part of the work, an operating system based on

AUTOSAR for a multicore microcontroller was developed.

That means, the two cores are ready for executing tasks

simultaneously, which are defined offline. The first step of

this work was the code generation. It includes coding of

functions, include files, make files, configuration files etc.

After this, compilation carried out with the help of

WindRiver Diab Compiler. Thus, .elf file generated as

the executable image file. The snapshot of elf file

generation is given below.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100838

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1278

Fig. 4 .elf file generation

Then, this file gets flashed on to the board with the help

Trace32 - LAUTERBACH debugger. After flashing, the

elf file loaded into the hardware and ready for execution.

The snapshot is given below.

Fig. 5 Flashing

Then, for knowing the execution flow, breakpoints were

set and carried out debugging process. During debugging,

it can able to watch the program flow based on the

tasks defined for execution. Also, the given below

snapshots show context switching between tasks of lower

and higher priorities. The following are the snapshots

during the debugging process.

Fig. 6 Execution of StartOS function

Fig. 7 Execution of Idle Task0

Fig. 8 Execution of Idle Task1

Fig. 9 Execution of Task1

Fig. 10 Execution of Task2 - Core1

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100838

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1279

Then executions of Task 3 and task 5 are carried

out by Core 0. After that Task 4 executed by Core 1. With

the help of break-points, these executions can be examined.

X. FUTURE SCOPE

The design of Hybrid cars need to know the state

of the vehicle to control in an optimal way. There is a

need of central software. Communication between cars,

between cars and road infrastructure will be able to

implement in future. Standardization of vehicle platform

with the help of AUTOSAR is needed at that time.

Operating system plays an important role in the

development process.

XI. CONCLUSION

As the increasing complexity of Electrical and

electronics circuits, there is need of circuits which have

more efficiency in reduced space. Thus ECUs are developed

for the need of controlling systems. AUTOSAR plays an

important role in software development of automotive

domain. The concept of AUTOSAR is introduced to

standardize the communication and non-functional software.

The non-functional software includes the Run time

environment and the Basic software. The functional

software i.e., the application software is standardized by its

interfaces. Without the problem of compatibility, it can be

able to design soft and hardware components for an

application. That means, reduced integration cost with

standardization. As by the introduction of new concept,

safety measures are also updated.

ACKNOWLEDGEMENT

The authors would like to thank Mr. Jaison Jacob, Mr.

Anoop Thomas, RSET, Kochi, Kerala, India for their

contributions to this work. Also, we express gratitude

towards Mr. Anurag R, Competency Manager, Tata Elxsi

Ltd., Trivandrum.

REFERENCES

1. AUTOSAR 4.0.3 - Specification of Operating
System, http://www.autosar.org/

2. OSEK/VDX - Operating System Specification 2.2.3,
http://www.osek- vdx.org/

3. Data sheet of Freescale
MPC5668G/E

4. StarUML User Manual
5. WindRiver Compiler User Manual
6. Trace32 - LAUTERBACH debugger Manual
7. VxWorks - http://www.windriver.com/products/vxworks/
8. QNX - http://www.qnx.com/products/neutrino-

rtos/index.html
9. pSOS - http://en.wikipedia.org/wiki/PSOS
10. JaeYoung Kim, JungWook Lee, Jeongho Son, Kee-Koo

Kwon and Gwangsu Kim, Lightweight AUTOSAR Software

Platform for Automo- tive, IEEE International Conference on
Consumer Electronics (ICCE), January 2012.

11. Simon P. Brewerton, Natalia Willey, Swapnil Gandhi,
Thorsten Rosen- thal, Claus Stellwag and Matthieu Lemerre,
Demonstration of Automotive Steering Column Lock using
Multicore AutoSAR Operating System, SAE International,
April 2012.

12. Florian Kluge, Mike Gerdes and Theo Ungerer, AUTOSAR
OS on a Message-Passing Multicore Processor, 7th IEEE
International Symposium on Industrial Embedded Systems
(SIES12), June 2012.

13. Sylvain Cotard, Sebastien Faucou and Jean Luc Bechennec, A
Data-flow Monitoring Service Based on Run-time
Verification for AUTOSAR OS: Implementation and
Performances, High Performance Computing and
Communication and 2012 IEEE 9th International Conference
on Embed- ded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on, June 2012.

14. Kim Gruttner, Philipp A. Hartmann, Philipp Reinkemeier,
Frank Oppenheimer and Wolfgang Nebel, Challenges of
Multi- and Many-Core Architectures for Electronic System
Level Design, Embedded Computer Systems (SAMOS), 2011
International Conference on, July 2011.

15. Senthilkumar.K and Ramesh Ramadoss, Designing
Multicore ECU architecture in vehicle networks using
AUTOSAR, Advanced Computing (ICoAC), 2011 Third
International Conference on, December 2011.

16. Tong Li, Paul Brett, Rob Knauerhase, David Koufaty,
Dheeraj Reddy and Scott Hahn, Operating System Support
for Overlapping - ISA Heterogeneous Multi-core
Architectures, High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on,
January 2010.

17. Ke PEI, Gang ZHANG and Qing CHANG, OS-Level IPC
Implemen- tation in Complementary Multiprocessor Systems,
Wearable Computing Systems (APWCS), 2010 Asia-Pacific
Conference on, April 2010.

18. Huang Bo, Dong Hui, Wang Dafang and Zhao Guifan,
Basic Concepts on AUTOSAR Development, International
Conference on Intelligent Computation Technology and
Automation, May 2010.

19. Jing Chen, Chung-Ping Young, Da-Wei Chang, Guan-Ying
Huang, Chung-Yuan Ke, Shih-Tun Yen and Tsang-Shuo Kuo,
Multi-Kernel Embedded System on PAC Multi-Core
Platform, Quality Software (QSIC), 2010 10th International
Conference on, July 2010.

20. Nicolas Navet, Aurlien Monot, Bernard Bavoux and Franoise
Simonot Lion, Multi-source and multicore automotive ECUs
OS protection mechanisms and scheduling, Industrial
Electronics (ISIE), 2010 IEEE International Symposium on,
July 2010.

21. Jorn Schneider and Christian Eltges, Towards an
Evaluation Infrastructure for Automotive Multicore Real-
Time Operating Systems, 4th International Conference on
Leveraging Applications of Formal Methods, Verification and
Validation, Heraclion, Crete, Special Track on Resource and
Timing Analysis, 2010.

22. Aamir Shafi and Jawad Manzoor, Towards Efficient Shared
Memory Communications in MPJ Express, Parallel and
Distributed Processing, IPDPS 2009, IEEE International
Symposium on, May 2009.

23. Ronald Goodman and Scott Black, Design Challenges for
Realization of the Advantages of Embedded Multi-Core
Processors, AUTOTESTCON 2008 IEEE, September 2008.

24. Lui Sha, Ragunathan Rajkumar and John P Lehoczky,
Priority Inheritance Protocols: An Approach to Real Time
Synchronization, IEEE Transactions on Computers, Volume
39, No. 9, September 1990.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100838

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1280

