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Abstract

We apply and extend some well-known and some recent techniques
from algebraic residue theory in order to relate to each other two major
subjects of algebraic and numerical computing, that is, computations with
structured matrices and solving a system of polynomial equations. In the
first part of our paper, we extend the Toeplitz and Hankel structures of
matrices and some of their known properties to some new classes of struc-
tured (quasi-Hankel and quasi-Toeplitz) matrices, naturally associated to
systems of multivariate polynomial equations. In the second part of the
paper, we prove some relations between these structured matrices, which
extend the classical relations of the univariate case.

1 Introduction

We apply and extend some well-known and some recent techniques from al-
gebraic residue theory in order to relate to each other two major subjects of
algebraic and numerical computing, that is, the computations with structured
matrices and solving a system of polynomial equations. We also reveal some hid-
den correlations between these two subjects via the study of the associated op-
erators of multivariate displacement. The latter operators naturally extend the



univariate displacement operators, which define Toeplitz and/or Hankel struc-
ture of matrices (cf. [1]). In our multivariate case, we generalize such a matrix
structure and arrive at the new classes of operators and structured matrices,
which include operators and matrices associated to the polynomial systems of
equations and which we call quasi-Hankel and quasi-Toeplitz operators and ma-
trices since some well-known properties of Toeplitz and Hankel operators and
matrices can be extended to them (see section 2). Due to high importance of
computations with structured matrices (see e.g. [1]), our study of these matrix
classes may be of independent technical interest. In section 3, we recall some
basic definitions and facts about algebraic residues, in order to extend classical
relations between structured matrices to the multivariate case (section 4).

Next, we will state some definitions. R = Clxy,...,x,] will denote the
polynomial ring in variables zi,...,x, over the complex field C, and L =
Clzf', ...,z will denote the ring of Laurent’s polynomials in the same vari-
ables. We will write x = (21,...,2,) and x* = 7' ---2%". For a vec-
tor a = (a,...,an), we will write |a| to denote the 1-norm of this vector,
la| = Y0, |- The total degree of a monomial ¢ x, with a coefficient ¢, is
|a|. The total degree of a polynomial ) c,x®, with coefficients ¢, # 0, is the
highest total degree of its monomials. We will write | S] to denote the cardi-
nality of a set S. ops will stand for "arithmetic operations". e; will denote the
i-th unit coordinate vector in C".

Our study can be immediately extended from the complex field C to the
case of any number field of constants having characteristic 0. Furthermore,
with the exception of the results based on the interpolation techniques of [3] (cf.
proposition 2.6), our study can be extended to the case of any field of constants.

2 Structured Matrices

In this section, we propose a generalization of the structure of Toeplitz, Hankel
and Van der Monde matrices to the case of matrices associated with multivariate
polynomials having rows and columns indexed by monomials.

2.1 Quasi-Hankel and quasi-Toeplitz matrices, operators,
and the associated generating polynomials: definitions
and a correlation

DEFINITION 2.1 Let E and F be two subsets of Z™ and let M = (Mo, 3)acE, geF
be a matriz whose rows and columns are indexed by the elements of E and F
respectively.

o M is an (E,F) quasi-Hankel matriz iff, for all « € E,3 € F, the en-
tries Ma,g = hayp depend only on a + 3. For every i = 1,...,n, we
have mqo_e; g+e; = Ma,3, provided that a,oo —e; € E; 3,3 +e; € F;



such a matriz M is associated with the Laurent polynomial Hp(x) =

Youcp—p hux"
e M is an (E, F) quasi-Toeplitz matriz iff, for alla € E, 3 € F, the entries
Ma,3 = ta—p depend only on a — 3. For every ¢ = 1,...,n, we have

Mate;,B+e; = Ma,a, provided that o, +e; € E;3,8+e; € F; such a
matriz M is associated with the polynomial Th(x) = Zu€E+F tuxv.

For E=10,---,m—1]and F =[0,...,n —1], definition 2.1 turns into the usual
definition of Hankel (resp. Toeplitz) matrices [1].

DEFINITION 2.2 Let Pg : L — L be the projection map such that

ay | x¥ifa€eFE
Pr(x?) = { 0 otherwise. (1)
Let
PE = Id - PE7

where Id denotes the identity operator, Id(e) = e for all e. For any element
Q of L, let png : L — L denote the operator of multiplication by Q. For any
matric M = (Mo g)acE ger, let M denote the linear map L — L such that

“ 1 0 otherwise.

M(x7) = { S OET (2)

The matriz of this linear operator coincides with the matriz M on (x~%) x (x?),
fora € E, B € F, and is null elsewhere. We will call this operator an (E, F)
quasi-Hankel (resp. an (E,F) quasi-Toeplitz) operator if the matriz M is an
(E, F) quasi-Hankel (resp. an (E,F) quasi-Toeplitz) matriz.

PROPOSITION 2.3 If M is an (E,F) quasi-Hankel (resp. an (E,F) quasi-
Toeplitz) matriz, then

M=P_gopug, oPr= (resp. M =Pgopur, oPr). (3)

To the end of this section, we will assume that both sets E and F' contain 0.

2.2 Examples

Quasi-Toeplitz matrices: Let us be given some multivariate polynomials
Py, ..., P, in the variables z1,...,z, and let us consider the matrix associated
with the linear map

¢ Vox---xV, — V|

(Qov"'in) = ZPZQz
=0



Here V; is the vector space generated by the monomials x” for 3 € F;, which is
the set of all monomials of the polynomial @;,i =0,...,n, and V is generated
by the monomials x* for a € E, where E denotes the set of the exponents of
the monomials of (P;Q;)i=o,...,n. Such maps typically appear in the construction
of resultant type matrices associated to the system {P; =0, ¢ = 0,...,n}, of
polynomial equations (see [7], [6] or [2] for an effective algorithm).

Let M denote the matrix of this linear map in the monomial basis of V x
---x V, and V. The rows of this matrix are indexed by the elements of the set
E and the columns by the elements of the set Fy U --- U Fj,. Let zyp be a new
variable and let us view Z™ as the subset of Z"*! consisting of elements of the
form (0,ay,...,a,). Let ey denote the first canonical vector of Z"*1. Then, the
elements of the subset

F={ieg+3;0<i<n,B€F}

of Z™*! index the columns of M.
Note that the (a,ieg + ()-th entry of the matrix M is the coefficient of x*
in xPP;. It is also the coefficient of x*~” in P;. Therefore, it depends only on

Oé—ﬂ—ieo.

REMARK 1 — Resultant type matrices and their transposes are quasi-Toeplitz
matrices.
REMARK 2 — The Laurent polynomial associated to a quasi-Toeplitz operator
o 1is just

T, = ixo—i P
1=0

An example of such astructure and an application to the computation of sparse
resultants, can also be found in this volume (article of I.Z. Emiris and V.Y Pan).

Quasi-Hankel matrices: Let \ € L be a linear form on L and consider the
matrix

[)‘(Xa-l—ﬁ)]aeE,ﬁeF

This is an (E, F') quasi-Hankel matrix. As we will see in the next section, such
matrices appear in algebraic residue theory. If B is a Gorenstein algebra (for
instance, if B is a complete intersection) and has a finite dimension over C, then
any non-degenerating bilinear form ¢ can be represented as (a,b) — ¢(a,b) =
A(ab) where \ € L is a linear form (see [5]). Furthermore, any Gramm-Schmidt
matrix, (¢(u;,u;)), where (u;) is a basis of B, is conjugated to a quasi-Hankel
matrix.



2.3 Multiplication of quasi-Hankel and quasi-Toeplitz ma-
trices by vectors.

Multiplication of an (E,F) quasi-Hankel matriz by a vector v = [vg] €
CF can be reduced to (Laurent) polynomial multiplication in the following way.
Let M = (Mma,g)acE,per denote an (E, F) quasi-Hankel matrix, let Hy(x) =
Y wep_p hux™" denote the associated Laurent polynomial, and let V(x) =
> ser vpx”. Then we have

HM(X)V(X) = Z X7u+ﬁhuvg
uweE—F,peF
= X x| X hawsvs |,
a=u—FBEE-2F BEF

where we assume that vg =0ifu g E—F, h, =0 if u € E — F. Therefore, for
a € E, the coefficient of x~< equals

Y hatsvs =D Masvs,

BEF BEF

which is precisely the coefficient o of M v.

A similar argument reduces multiplication of an (E, F') quasi- Toeplitz matriz
by a vector to multiplication of a pair of Laurent’s polynomials.

The stated reductions enable us to deduce the following result:

PROPOSITION 2.4 An (E, F) quasi-Hankel (resp. an (E,F) quasi-Toeplitz) ma-
triz. M can be multiplied by a vector in O(N log® N + Cu n) ops, where N =
|[E —2F] (resp. |E+2F]) and where Cpr,n bounds the cost of evaluating the
polynomial Hyy (resp. Thr) on a fized set of N points.

Proof. See [8]. ad
In some special cases, we have better complexity estimates.
PROPOSITION 2.5 In the case where E = F = {(aq,...,a,) € N* ; 0 < ; <

d; — 1}, an (E, F) quasi-Hankel (resp. an (E, F) quasi-Toeplitz) matriz can be
multiplied by a vector in O(3™ Dlog(3™ D)) ops, where

D=]]d. (4)

)



Proof. See [8]. O

PROPOSITION 2.6 In the case where E = {a € N"||a| < k}, F = {f €
N |8] <1} and where the computations are over a field of constants containing
the field of rational numbers, an (E, F) quasi- Toeplitz matriz can be multiplied
by a vector in O(o log® o) ops, where

)" /Vn), e =2.718 .. ..

204+k+n > — 0((e 204+k+n
n n

0 = 02l4+k,n = <

(The latter equation is implied by Stirling’s formula.)

Proof. See [8]. O

2.4 Multivariate displacement operators and ranks: defi-
nition

By convention, if A : L. — L is a linear operator, A will denote its matrix in a

(sub)basis of L. These operators may have infinite dimension, but in our case,

we will only study the finite dimension case. The rank of the operator A is the

rank of the matrix A. For all o, € Z", [Ala,g = Aa,s is the coefficient of x*
in A(x").

DEFINITION 2.7 For every subset E of Z™ and for every i,i = 1,...,n, we
define the two following unit E-displacement matrices (operators):
ZE = Prp ., Pr (5)
and
ZE =Ppu,1Pg. (6)
In particular, for E = [0,...,n — 1] and ¢ = 1, we arrive at the well-known
displacement matrix
Qcervervennns 0
1
zE =1 o
Q--n--- 0 1 0

and its transpose, ZF, (cf. [1]) .



DEFINITION 2.8 Let E and F denote two subsets of Z™ and let A denote a
linear operator L — L. Then, the operators

HF(A)=A—Z2ZFAZF, H7(A) = A— 27 FAzZF, (7)

THA) = A= ZEAZ], T7(A) = A- 2P AZT, (®)

will be called the (—,+,—E, F,i), (+,—,—E, F,i), (—,+,E,F,i), and (+,—, E, F,i)
displacements of A, respectively. The ranks of these displacements will be called
the (_7 +7 _Ev Fvi)’ (+7 R _EvFvi)’ (_7 +7E7 Fvi)’ and (+7 _7E7 sz) displace—
ment ranks of A, resp., and will be denoted r— 1 _g pi(A), 7+ — 5 ri(A),

r— 4 Bri(A), and 74 _ g ri(A), resp. The operators transforming A into the
above displacements will be called the (—,+,—E, F,i), (+,—,—E, F,i), (-, +, E, F,1),
and (+, —, E, F,i) displacement operators, resp.

2.5 Bounds on displacement ranks of quasi-Hankel and
quasi-Toeplitz matrices

DEFINITION 2.9 Hereafter, we write
bi(E)={a:a€E;a+e; ¢ E}
(resp. 6_i(E)={a:a € E;a—e; & E}).

PROPOSITION 2.10 For an (E, F,) quasi-Hankel operator M, we have the fol-
lowing bounds on its (—,+, E, F,1) and (+,—, E, F,i) displacement ranks:

T -, Fi(M) < [6:(=E)] + [6:(F)],

T BFi(M) < [6i(=E)] + [6-4(F)].

For an (E, F) quasi-Toeplitz operator M, we have the following bounds on its
(=,+,E,F,i) and (+,—, E, F,i) displacement ranks:

T+, B, Fi(M) < [6-i(E)] + [6:(F)],

4,8, Fi(M) < [6i(B)] + [6-:(F)].

Proof. See [8]. ad

In the particular case, where E = F = {(ay,...,a,) € N*; 0 < a; < d;—1},
the displacement rank of H} (M) is bounded by 2 % =21l d;.



2.6 Generalized Van der Monde matrices: definition

DEFINITION 2.11 For two sets of exponents E = {au,...,ap} and points Z =
{¢1,...,Cp}, let the matric

Ve(Z) = (' )i<ij<p

be called the generalized Van der Monde matriz of basis Z and exponents E.

3 Algebraic residues: definitions and basic facts

In this section, we will recall some basic definitions from algebraic residue theory,
referring the reader to [4], [5] for further details. Let R = C[x] = Clz1,..., 2]
be the algebra of polynomials in x; over the field C. In addition to the vector

(set) of variables x, we consider the vector y = (y1,...,y,) and write x(0) = x,
A i—1

xD = (y1,29,...,2,), ..., X" =y. We define 0;(P) = %, the

discrete differentiation of P. For any sequence of n+ 1 polynomials P, ..., P, €

R, let us construct the following polynomial in x and y:

Po(x) 01(FRo) -+ On(Fo)
Op(Fy) = O(P, Py,...,P,) = : : : , (9

Po(x) 61(Py) - 0n(Pn)
where |A| denotes the determinant of A, and P = (Py,..., P,). Let us write
Op = Op(1) = O(1,P,,...,P,) € C[x,y]. Now, we define the residue of

P =(P,...,P,) as a unique linear form 7 in the set of linear forms on R such
that

1. 7 vanishes on (P),
2. Op(1)—1€(P),

where ©p(7) denotes the polynomial in x, that we obtain when we apply A on
the monomials in y of Op. Hereafter, I will denote the ideal generated by the
polynomials Py, ..., P,; B = R/I will denote the quotient ring defined in R by
I, and = will denote an equality in B.

If (x*)acr is a basis of B, let (w,) be the dual basis of (x%) for 7:

T(Xa Wg) = (5(1”3,

ba,p is 1 if @ = 3 and 0 otherwise. Let us write wao(x) = > 5. p wp,ax" and

1 = (Wa,8)a,6eE-
Then we have the following property ([4], [5]):

Op = Z x*w,(y) = Z wo(x)y® mod (P(x),P(y)). (10)

a€EE acE



Thus, for any b € B, we have the relations

b= T(bx*)wa =Y m(bwa)x". (11)

acE acFk

For any b in B, we let

Op(b) = Op(b)(x,y) = > ul)xy” (12)
a,fEE

denote the decomposition of @p(b) in the basis (x*) of B.
Moreover, we recall from [4], [5], that for any polynomial @ € R, we have

Op(1)(x,y) Q(x) = Op(1)(x,y) Q(y) mod (P(x),P(y)). (13)

In particular, we set Q(x) = z; i = 1,...,n, and for any pair ¢ and 7 of distinct
roots of the polynomial system P = 0, we set x = {, y = 1 and deduce that

Op((,n) = 0. (14)

4 Relations among structured matrices

For any b in B, let u;, denote the operator of multiplication by b in B and let
M, = (m(ab’)ﬁ)a,ﬁeE denote its matrix in the basis (x*). Let N, = (n(ab’)ﬁ)aﬂeg
denote its matrix in the basis (w).

PROPOSITION 4.1 The matriz Ny, of multiplication by b in B, in the basis (W, ),
is the transpose MY of the matriz M, of multiplication by b in B, in the basis

(x2).

Proof. For any a € E, we have

bx® = Z mgb)a X7, bw, = anb)a W,

vEE YEE
and
m(ab)ﬁ = (bxP|wy) = 7(bx° w,),
n(ab)ﬂ = (bwg|x*) = 1(bx“ wg) = mg’)a
Therefore, N, = M. O

Let (x%) (resp. (Wa)) be the dual basis of (x®) (resp. (wq)). Let u; denotes
the multiplication by b in B: uj(A) =b- A. The map p; is the transpose of the

map g, and its matrix in the basis (x) is M. Its matrix in the basis (W) is
M.



DEFINITION 4.2 For any b in B, let =y denote the quasi-Hankel matriz of
residues
= = (1(bx* x%))apeE-

Let Q, denote the matrixz of residues
Dy = (7(bwa Wg))a,6eE-
For any b € B, let 1y : B — B be the following map :
A= (A Z u(b) Ax
a,BEE

where the coefficients u(ab)ﬂ are defined in (12). This map is independent of the

decomposition.

PROPOSITION 4.3 The matriz of the map 1y
1. from the basis (x°) of B to the basis (x*) of B is QU = (1(bwo Wg3)),

2. from the basis (Wy) to the basis (Wo) is Zp = (T(bx* x7)).

Proof. The image of P by this map is
b(xP) = Y ull x,

whose coordinates in the basis (x%),cpg are [u (ab)ﬁ]aeE Therefore, the matrix of

the map v, from (x%) to (x*) is the matrix (u( )ﬁ) The coefficients u( )

computed by the formula

can be

ull)y = (s (%) w,).

By using the identity (13), we obtain Op(b) = b(x)Op (1), so that VA € B, Pp(A) =
b1 () and
T(¢b(xﬁ) Wa) = T(b¢1 (X/B) Wa)'

According to the identity (10), we have
V1(x7) = wg, (15)

which implies that

u(b?g =T(bwo wg).

This proves part 1 of proposition.

10



Now, express Op(b) in the basis (w,):
= > o ws(y)-
a,BEE

By interchanging the roles of (x*) and (w, ), we prove part 2 of the proposition,

that is, we prove that the matrix of the map v, from (w,) to (w,) is (vg’)ﬂ),
where

)

O
Note that the matrices (u (b)ﬁ) (v, (b) ;) also correspond to the matrices of the map

& : BxB — C
) = > u A p(x*)

a,BeE
in the bases (x%) x (x%) and (w®) x (w®) of B x B, respectively.

The matrix Q; is just the matrix of the coefficients of (w, ) in the basis (x%)
of B. We relate it to the quasi-Hankel matrix of residues Z;:

THEOREM 4.4 The inverse of =1 is .

Proof. According to (10), we have the equations
T(Xa Wﬁ) = Z T(Xa X/B) Wga,a = 6&,[37
BEE

where 6,5 equals 1 if & = $ and is 0 otherwise. In term of matrices, this is
equivalent to the equation

20 =1,

where [ p is the identity matrix, of size D. O

THEOREM 4.5 For any b € B, we have
W = O M{=M, (16)
Zy, = = M,=M}Z,. (17)

Proof. According to (13), VA € B, Pp(A) = by (A) = ¢¥(b- A). Thus we can
decompose the map v, as

Yy = pp 01 = 1Py o .

11



If we choose (x®) and (x®) respectively, as the bases of B and B, (x*) and (x®)
we obtain the relations (16). If we choose the bases (w,) and (w, ), we obtain
the relations (17). m|
This also proves that the matrix of the map 1,

1. from the basis (w,) to the basis (x*) is M},
2. from the basis (x%) to the basis (wq) is M.

Indeed, to go from the basis (w,) to the basis (x*), we multiply by the matrix
Q.

PROPOSITION 4.6 Ifab =1 in B, then

Qa2 =W 2, =1p.

Proof. According to (16), we have
QuZp = U MEMEZ =045 =1p,
for M, My = M, =1 p. Similarly, we also have Q, =, = Ip. O

Let Z = {(,...,(p} denote the set of all common roots of the n polynomials
Py,...,P,. Let us assume that the roots ( € Z are simple. Then Jp((;) # 0,
where Jp is the Jacobian of P.

Let Vg(Z) be the generalized Van der Monde matrix defined in 2.11. Let
0¢; + R — C denotes the evaluation at ¢:

b¢c;(p) = p(G).

We immediately check that the columns of the matrix Vg (Z), are nothing else
but the coefficients of the evaluations d¢; in the dual basis of (x*)sep-

PROPOSITION 4.7 — For any polynomial a € R, we have
VE(Z)t Qa VE(Z) = diag(a(gl) Jp(Cl), Ce ,a(CD) JP(CD))
Proof. As Vg(Z) represents the coefficients of the evaluation ., in the dual
basis (x¥)4,5, the matrix Vg(Z)! Q, Vg(Z) is the matrix of the map
BxB — C
Aw) = Adalp)

in the basis (¢, )i=1,....p of B. In other words, the entry (,7) of this matrix is

6(:’ (wa(éfj )) = @p(@)((ﬁ CJ)

12



According to the equation (14), if ( # n, we have Op(a)((,n) = Op(¢,n) = 0.
If n = (, then, by definition, Op(a)(¢,{) = a(¢) Jp(¢). Consequently,
(©p(a)(¢,¢;)) is the diagonal matrix

diag(a(¢i) Je(¢1), .-, a(Cp) Je(Cp))-

COROLLARY 4.8 If the roots of the system P = 0 are simple, then

1 1
Je(C)” 7 Je(Cp)

[1]

1 = Ve(Z2) diag(

We(2).

Proof. We have Q; = Vg(Z) 'diag(Jp (&), ..., Jp((p))Ve(Z)™t, according to
proposition (4.7), and we deduce from theorem (4.4) that

2 =07 = Ve(2)diag( We(2)"

1
Je(G)” 7 Je(Cp)
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