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Abstract

We apply and extend some well�known and some recent techniques
from algebraic residue theory in order to relate to each other two major
subjects of algebraic and numerical computing� that is� computations with
structured matrices and solving a system of polynomial equations� In the
�rst part of our paper� we extend the Toeplitz and Hankel structures of
matrices and some of their known properties to some new classes of struc�
tured �quasi�Hankel and quasi�Toeplitz� matrices� naturally associated to
systems of multivariate polynomial equations� In the second part of the
paper� we prove some relations between these structured matrices� which
extend the classical relations of the univariate case�

� Introduction

We apply and extend some well�known and some recent techniques from al�
gebraic residue theory in order to relate to each other two major subjects of
algebraic and numerical computing� that is� the computations with structured
matrices and solving a system of polynomial equations� We also reveal some hid�
den correlations between these two subjects via the study of the associated op�
erators of multivariate displacement� The latter operators naturally extend the



univariate displacement operators� which de�ne Toeplitz and�or Hankel struc�
ture of matrices �cf� ���	� In our multivariate case� we generalize such a matrix
structure and arrive at the new classes of operators and structured matrices�
which include operators and matrices associated to the polynomial systems of
equations and which we call quasi�Hankel and quasi�Toeplitz operators and ma�
trices since some well�known properties of Toeplitz and Hankel operators and
matrices can be extended to them �see section 
	� Due to high importance of
computations with structured matrices �see e�g� ���	� our study of these matrix
classes may be of independent technical interest� In section �� we recall some
basic de�nitions and facts about algebraic residues� in order to extend classical
relations between structured matrices to the multivariate case �section �	�

Next� we will state some de�nitions� R � C �x� � � � � � xn� will denote the
polynomial ring in variables x�� � � � � xn over the complex �eld C � and L �
C �x��� � � � � � x��n � will denote the ring of Laurents polynomials in the same vari�
ables� We will write x � �x�� � � � � xn� and x� � x��

� � � �x�nn � For a vec�
tor � � ���� � � � � �n�� we will write j�j to denote the ��norm of this vector�
j�j � Pn

i�� j�ij� The total degree of a monomial c x�� with a coe�cient c� is
j�j� The total degree of a polynomial

P
� c�x

�� with coe�cients c� �� �� is the
highest total degree of its monomials� We will write bSe to denote the cardi�
nality of a set S� ops will stand for �arithmetic operations�� ei will denote the
i�th unit coordinate vector in C n �

Our study can be immediately extended from the complex �eld C to the
case of any number �eld of constants having characteristic �� Furthermore�
with the exception of the results based on the interpolation techniques of ��� �cf�
proposition 
��	� our study can be extended to the case of any �eld of constants�

� Structured Matrices

In this section� we propose a generalization of the structure of Toeplitz� Hankel
and Van der Monde matrices to the case of matrices associated with multivariate
polynomials having rows and columns indexed by monomials�

��� Quasi�Hankel and quasi�Toeplitz matrices� operators�

and the associated generating polynomials� de�nitions

and a correlation

Definition ��� Let E and F be two subsets of Zn and let M � �m������E���F
be a matrix whose rows and columns are indexed by the elements of E and F
respectively�

� M is an �E�F � quasi�Hankel matrix i�� for all � � E� � � F � the en�
tries m��� � h��� depend only on � � �� For every i � �� � � � � n� we
have m��ei���ei � m���� provided that �� � � ei � E��� � � ei � F �






such a matrix M is associated with the Laurent polynomial HM �x� �P
u�E�F hux

�u�

� M is an �E�F � quasi�Toeplitz matrix i�� for all � � E� � � F � the entries
m��� � t��� depend only on � � �� For every i � �� � � � � n� we have
m��ei���ei � m���� provided that �� � � ei � E��� � � ei � F � such a
matrix M is associated with the polynomial TM �x� �

P
u�E�F tux

u�

For E � ��� � � � �m��� and F � ��� � � � � n���� de�nition 
�� turns into the usual
de�nition of Hankel �resp� Toeplitz	 matrices ����

Definition ��� Let PE 	 L� L be the projection map such that

PE�x�� �
�
x� if � � E
� otherwise�

��	

Let
�E � Id�PE �

where Id denotes the identity operator� Id�e� � e for all e� For any element
Q of L� let �Q 	 L � L denote the operator of multiplication by Q� For any
matrix M � �m������E���F � let M denote the linear map L� L such that

M�x�� �

� P
��E m���x

�� if � � F
� otherwise�

�
	

The matrix of this linear operator coincides with the matrix M on �x�����x���
for � � E� � � F � and is null elsewhere� We will call this operator an �E�F �
quasi�Hankel �resp� an �E�F � quasi�Toeplitz� operator if the matrix M is an
�E�F � quasi�Hankel �resp� an �E�F � quasi�Toeplitz� matrix�

Proposition ��� If M is an �E�F � quasi�Hankel �resp� an �E�F � quasi�
Toeplitz� matrix� then

M � P�E � �HM
� PF � �resp� M � PE � �TM � PF �� ��	

To the end of this section� we will assume that both sets E and F contain ��

��� Examples

Quasi�Toeplitz matrices� Let us be given some multivariate polynomials
P�� � � � � Pn in the variables x�� � � � � xn and let us consider the matrix associated
with the linear map

� 	 V� � � � � � Vn � V�

�Q�� � � � � Qn� ��
nX
i��

PiQi�

�



Here Vi is the vector space generated by the monomials x� for � � Fi� which is
the set of all monomials of the polynomial Qi� i � �� � � � � n� and V is generated
by the monomials x� for � � E� where E denotes the set of the exponents of
the monomials of �PiQi�i�������n� Such maps typically appear in the construction
of resultant type matrices associated to the system fPi � �� i � �� � � � � ng� of
polynomial equations �see ���� ��� or �
� for an e�ective algorithm	�

Let M denote the matrix of this linear map in the monomial basis of V� �
� � � � Vn and V � The rows of this matrix are indexed by the elements of the set
E and the columns by the elements of the set F� t � � � t Fn� Let x� be a new
variable and let us view Zn as the subset of Zn�� consisting of elements of the
form ��� a�� � � � � an�� Let e� denote the �rst canonical vector of Z

n��� Then� the
elements of the subset

F � fi e� � � � � 	 i 	 n� � � Fig

of Zn�� index the columns of M �
Note that the ��� i e� � ���th entry of the matrix M is the coe�cient of x�

in x�Pi� It is also the coe�cient of x��� in Pi� Therefore� it depends only on
�� � � i e��

Remark � � Resultant type matrices and their transposes are quasi�Toeplitz
matrices�

Remark � � The Laurent polynomial associated to a quasi�Toeplitz operator
� is just

T� �

nX
i��

x�i� Pi�

An example of such astructure and an application to the computation of sparse
resultants� can also be found in this volume �article of I�Z� Emiris and V�Y Pan	�

Quasi�Hankel matrices� Let � � 
L be a linear form on L and consider the
matrix

���x�������E���F �

This is an �E�F � quasi�Hankel matrix� As we will see in the next section� such
matrices appear in algebraic residue theory� If B is a Gorenstein algebra �for
instance� if B is a complete intersection	 and has a �nite dimension over C � then
any non�degenerating bilinear form q can be represented as �a� b� �� q�a� b� �
��a b� where � � 
L is a linear form �see ���	� Furthermore� any Gramm�Schmidt
matrix� �q�ui�uj��� where �ui� is a basis of B� is conjugated to a quasi�Hankel
matrix�

�



��� Multiplication of quasi�Hankel and quasi�Toeplitz ma�

trices by vectors�

Multiplication of an �E�F � quasi�Hankel matrix by a vector v � �v� � �
C F can be reduced to �Laurent� polynomial multiplication in the following way�
Let M � �m������E���F denote an �E�F � quasi�Hankel matrix� let HM �x� �P

u�E�F hux
�u denote the associated Laurent polynomial� and let V �x� �P

��F v�x
� � Then we have

HM �x�V �x� �
X

u�E�F���F

x�u�� hu v�

�
X

��u���E��F

x��

�
�X
��F

h��� v�

�
A �

where we assume that v� � � if u �� E �F � hu � � if u �� E �F � Therefore� for
� � E� the coe�cient of x�� equalsX

��F

h��� v� �
X
��F

m��� v� �

which is precisely the coe�cient � of M v�
A similar argument reduces multiplication of an �E�F � quasi�Toeplitz matrix

by a vector to multiplication of a pair of Laurent�s polynomials�
The stated reductions enable us to deduce the following result�

Proposition ��� An �E�F � quasi�Hankel �resp� an �E�F � quasi�Toeplitz� ma�
trix M can be multiplied by a vector in O�N log�N � CM�N � ops� where N �
bE � �F e �resp� bE � �F e� and where CM�N bounds the cost of evaluating the
polynomial HM �resp� TM� on a 	xed set of N points�

Proof� See ���� �

In some special cases� we have better complexity estimates�

Proposition ��� In the case where E � F � f���� � � � � �n� � Nn � � 	 �i 	
di � �g� an �E�F � quasi�Hankel �resp� an �E�F � quasi�Toeplitz� matrix can be
multiplied by a vector in O��nD log��nD�� ops� where

D �

nY
i

di� ��	

�



Proof� See ���� �

Proposition ��� In the case where E � f� � Nn � j�j 	 kg� F � f� �
Nn � j�j 	 lg and where the computations are over a 	eld of constants containing
the 	eld of rational numbers� an �E�F � quasi�Toeplitz matrix can be multiplied
by a vector in O�� log� �� ops� where

� � ��l�k�n �

�
�l � k � n

n

�
� O��e

�l � k � n

n
�n	

p
n�� e � ���� � � � �

�The latter equation is implied by Stirling�s formula��

Proof� See ���� �

��� Multivariate displacement operators and ranks� de��

nition

By convention� if A 	 L � L is a linear operator� A will denote its matrix in a
�sub	basis of L� These operators may have in�nite dimension� but in our case�
we will only study the �nite dimension case� The rank of the operator A is the
rank of the matrix A� For all �� � � Zn� �A���� � A��� is the coe�cient of x�

in A�x���

Definition ��� For every subset E of Zn and for every i� i � �� � � � � n� we
de	ne the two following unit E�displacement matrices �operators�


ZE
i � PE �xiPE ��	

and
ZE
�i � PE �x��

i
PE � ��	

In particular� for E � ��� � � � � n � �� and i � �� we arrive at the well�known
displacement matrix

ZE
� �

�
BBBBBBB�

� � � � � � � � � � � � � �

�
� � �

���

�
� � �

� � �
���

���
� � �

� � �
� � �

���
� � � � � � � � � �

�
CCCCCCCA

and its transpose� ZE
�� �cf� ���	 �

�



Definition ��� Let E and F denote two subsets of Zn and let A denote a
linear operator L� L� Then� the operators

H�
i �A� � A�Z�E�i AZF

i � H�i �A� � A�Z�Ei AZF
�i� ��	

T �
i �A� � A�ZE

�iAZF
i � T �i �A� � A�ZE

i AZF
�i ��	

will be called the ������E�F� i�� ������E�F� i�� ����� E� F� i�� and ����� E� F� i�
displacements of A� respectively� The ranks of these displacements will be called
the ������E�F� i�� ������E�F� i�� ����� E� F� i�� and ����� E� F� i� displace�
ment ranks of A� resp�� and will be denoted r�����E�F�i�A�� r�����E�F�i�A��
r����E�F�i�A�� and r����E�F�i�A�� resp� The operators transforming A into the
above displacements will be called the ������E�F� i�� ������E�F� i�� ����� E� F� i��
and ����� E� F� i� displacement operators� resp�

��	 Bounds on displacement ranks of quasi�Hankel and

quasi�Toeplitz matrices

Definition ��	 Hereafter� we write


i�E� � f� 	 � � E � �� ei �� Eg

�resp� 
�i�E� � f� 	 � � E � �� ei �� Eg��

Proposition ���
 For an �E�F� � quasi�Hankel operator M� we have the fol�
lowing bounds on its ����� E� F� i� and ����� E� F� i� displacement ranks


r�����E�F�i�M� 	 b
i��E�e� b
i�F �e�

r�����E�F�i�M� 	 b
�i��E�e� b
�i�F �e�
For an �E�F � quasi�Toeplitz operator M� we have the following bounds on its
����� E� F� i� and ����� E� F� i� displacement ranks


r����E�F�i�M� 	 b
�i�E�e� b
i�F �e�

r����E�F�i�M� 	 b
i�E�e� b
�i�F �e�

Proof� See ���� �

In the particular case� where E � F � f���� � � � � �n� � Nn � � 	 �i 	 di��g�
the displacement rank of H�

i �M� is bounded by � D
di

� �
Q

j ��i dj �

�



��
 Generalized Van der Monde matrices� de�nition

Definition ���� For two sets of exponents E � f��� � � � � �Dg and points Z �
f��� � � � � �Dg� let the matrix

VE�Z� � ���ij ���i�j�D

be called the generalized Van der Monde matrix of basis Z and exponents E�

� Algebraic residues� de�nitions and basic facts

In this section� we will recall some basic de�nitions from algebraic residue theory�
referring the reader to ���� ��� for further details� Let R � C �x� � C �x� � � � � � xn�
be the algebra of polynomials in xi over the �eld C � In addition to the vector
�set	 of variables x� we consider the vector y � �y�� � � � � yn� and write x��� � x�

x��� � �y�� x�� � � � � xn�� � � � � x
�n� � y� We de�ne �i�P � � P �x�i���P �x�i����

yi�xi
� the

discrete di�erentiation of P � For any sequence of n�� polynomials P�� � � � � Pn �
R� let us construct the following polynomial in x and y�

�P�P�� � ��P�� P�� � � � � Pn� �

�������
P��x� ���P�� � � � �n�P��

���
���

���
Pn�x� ���Pn� � � � �n�Pn�

������� � ��	

where jAj denotes the determinant of A� and P � �P�� � � � � Pn�� Let us write
�P � �P��� � ���� P�� � � � � Pn� � C �x�y�� Now� we de�ne the residue of
P � �P�� � � � � Pn� as a unique linear form  in the set of linear forms on R such
that

��  vanishes on �P��


� �P�� � � � �P��

where �P�� denotes the polynomial in x� that we obtain when we apply � on
the monomials in y of �P� Hereafter� I will denote the ideal generated by the
polynomials P�� � � � � Pn� B � R	I will denote the quotient ring de�ned in R by
I � and 
 will denote an equality in B�

If �x����E is a basis of B� let �w�� be the dual basis of �x
�� for  �

�x�w�� � 
��� �


��� is � if � � � and � otherwise� Let us write w��x� �
P

��E w���x
� and

�� � �w��������E �
Then we have the following property ����� ���	�

�P 

X
��E

x�w��y� 

X
��E

w��x�y
� mod �P�x��P�y��� ���	

�



Thus� for any b � B� we have the relations

b 

X
��E

�bx��w� 

X
��E

�bw��x
�� ���	

For any b in B� we let

�P�b� � �P�b��x�y� �
X

����E

u
�b�
��� x

�y� ��
	

denote the decomposition of �P�b� in the basis �x�� of B�
Moreover� we recall from ���� ���� that for any polynomial Q � R� we have

�P����x�y�Q�x� 
 �P����x�y�Q�y� mod �P�x��P�y��� ���	

In particular� we set Q�x� � xi i � �� � � � � n� and for any pair � and � of distinct
roots of the polynomial system P � �� we set x � �� y � � and deduce that

�P��� �� � �� ���	

� Relations among structured matrices

For any b in B� let �b denote the operator of multiplication by b in B and let

Mb � �m
�b�
��������E denote its matrix in the basis �x��� Let Nb � �n

�b�
��������E

denote its matrix in the basis �w���

Proposition ��� The matrix Nb of multiplication by b in B� in the basis �w���
is the transpose M t

b of the matrix Mb of multiplication by b in B� in the basis
�x���

Proof� For any � � E� we have

bx� 

X
��E

m�b�
��� x

� � bw� 

X
��E

n�b����w� �

and
m

�b�
��� � hbx� jw�i � �bx� w���

n
�b�
��� � hbw�jx�i � �bx�w�� � m

�b�
����

Therefore� Nb � M t
b � �

Let �cx�� �resp� �cw��	 be the dual basis of �x�� �resp� �w��	� Let ��b denotes

the multiplication by b in bB� ��b��� � b � �� The map ��b is the transpose of the
map �b� and its matrix in the basis �cx�� is M t

b � Its matrix in the basis �cw�� is
Mb�

�



Definition ��� For any b in B� let �b denote the quasi�Hankel matrix of
residues

�b � ��bx� x�������E �

Let �b denote the matrix of residues

�b � ��bw�w�������E �

For any b � B� let �b 	 bB � B be the following map �

� �� �b��� �
X

����E

u
�b�
��� ��x

��x��

where the coe�cients u
�b�
��� are de�ned in ��
	� This map is independent of the

decomposition�

Proposition ��� The matrix of the map �b

�� from the basis �cx�� of bB to the basis �x�� of B is �b � ��bw�w����

�� from the basis �cw�� to the basis �w�� is �b � ��bx� x����

Proof� The image of cx� by this map is

�b�cx�� �X
�

u
�b�
��� x

��

whose coordinates in the basis �x����E are �u
�b�
������E � Therefore� the matrix of

the map �b from �cx�� to �x�� is the matrix �u
�b�
����� The coe�cients u

�b�
��� can be

computed by the formula

u
�b�
��� � ��b�cx��w���

By using the identity ���	� we obtain�P�b� 
 b�x��P���� so that �� � bB��b��� �
b ����� and

��b�cx��w�� � �b ���cx��w���

According to the identity ���	� we have

���cx�� � w�� ���	

which implies that

u
�b�
��� � �bw�w���

This proves part � of proposition�

��



Now� express �P�b� in the basis �w���

�P�b� �
X

����E

v
�b�
���w��x�w��y��

By interchanging the roles of �x�� and �w��� we prove part 
 of the proposition�

that is� we prove that the matrix of the map �b from �cw�� to �w�� is �v
�b�
�����

where
v
�b�
��� � �bx� x���

�

Note that the matrices �u
�b�
����� �v

�b�
���� also correspond to the matrices of the map

�b 	 bB � bB � C

��� �� ��
X

����E

u
�b�
��� ��x

����x��

in the bases �cx��� �cx�� and �cw��� �cw�� of bB � bB� respectively�
The matrix �� is just the matrix of the coe�cients of �w�� in the basis �x��

of B� We relate it to the quasi�Hankel matrix of residues ���

Theorem ��� The inverse of �� is ���

Proof� According to ���	� we have the equations

�x�w�� �
X
��E

�x� x��w��� � 
��� �

where 
��� equals � if � � � and is � otherwise� In term of matrices� this is
equivalent to the equation

���� � I�

where ID is the identity matrix� of size D� �

Theorem ��� For any b � B� we have

�b � ��M
t
b �Mb��� ���	

�b � ��Mb � M t
b ��� ���	

Proof� According to ���	� �� � bB� �b��� � b ����� � ��b � ��� Thus we can
decompose the map �b as

�b � �b � �� � �� � ��b �

��



If we choose �cx�� and �x�� respectively� as the bases of bB and B� �cx�� and �x��
we obtain the relations ���	� If we choose the bases �cw�� and �w��� we obtain
the relations ���	� �

This also proves that the matrix of the map �b

�� from the basis �cw�� to the basis �x�� is M t
b �


� from the basis �cx�� to the basis �w�� is Mb�

Indeed� to go from the basis �w�� to the basis �x��� we multiply by the matrix
���

Proposition ��� If a b 
 � in B� then

�a �b � �b �a � ID�

Proof� According to ���	� we have

�a�b � ��M
t
aM

t
b �� � ���� � ID�

for MaMb �Ma b � ID� Similarly� we also have �b �a � ID� �

Let Z � f��� � � � � �Dg denote the set of all common roots of the n polynomials
P�� � � � � Pn� Let us assume that the roots � � Z are simple� Then JP��i� �� ��
where JP is the Jacobian of P�

Let VE�Z� be the generalized Van der Monde matrix de�ned in 
���� Let

�i 	 R� C denotes the evaluation at ��


�i�p� � p��i��

We immediately check that the columns of the matrix VE�Z�� are nothing else
but the coe�cients of the evaluations 
�i in the dual basis of �x����E �

Proposition ��� � For any polynomial a � R� we have

VE�Z�t �a VE�Z� � diag�a���� JP����� � � � � a��D� JP��D���

Proof� As VE�Z� represents the coe�cients of the evaluation 
�i in the dual
basis �cx����� � the matrix VE�Z�t�a VE�Z� is the matrix of the map

bB � bB � C

��� �� �� ���a����

in the basis �
�i�i�������D of bB� In other words� the entry �i� j� of this matrix is


�i��a�
�j �� � �P�a���i� �j��

�




According to the equation ���	� if � �� �� we have �P�a���� �� � �P��� �� � ��
If � � �� then� by de�nition� �P�a���� �� � a��� JP���� Consequently�

��P�a���i� �j�� is the diagonal matrix

diag�a���� JP����� � � � � a��D� JP��D���

�

Corollary ��� If the roots of the system P � � are simple� then

�� � VE�Z� diag�
�

JP����
� � � � �

�

JP��D�
�VE�Z�t�

Proof� We have �� � VE�Z��t diag�JP����� � � � � JP��D��VE�Z���� according to
proposition ����	� and we deduce from theorem ����	 that

�� � ���� � VE�Z�diag�
�

JP����
� � � � �

�

JP��D�
�VE�Z�t�

�
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