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Multiloop and Multivariable Control

• Process Interactions and Control Loop Interactions

• Pairing of Controlled and Manipulated Variables

• Singular Value Analysis

• Tuning of Multiloop PID Control Systems

• Decoupling and Multivariable Control Strategies
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Control of Multivariable Processes

• Control systems that have only one controlled variable   
and one manipulated variable.
� Single-input, single-output (SISO) control system
� Single-loop control system

• In practical control problems there typically are a
number of process variables which must be controlled
and a number of variables which can be manipulated.
� Multi-input, multi-output (MIMO) control system

Example: product quality and throughput
must usually be controlled.

Note the "process interactions" between controlled  
and manipulated variables.                                  
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Several simple physical examples

Process interactions :

Each manipulated variable 
can affect both controlled 
variables
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SISO

MIMO
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• In this chapter we will be concerned with characterizing process
interactions and selecting an appropriate multiloop control 
configuration.

• If process interactions are significant, even the best multiloop 
control system may not provide satisfactory control.

• In these situations there are incentives for considering 
multivariable control strategies.

Definitions:

• Multiloop control: Each manipulated variable depends on 
only a single controlled variable, i.e., a set of conventional 
feedback controllers.

• Multivariable Control: Each manipulated variable can depend 
on two or more of the controlled variables.

Examples: decoupling control, model predictive control
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Multiloop Control Strategy
• Typical industrial approach
• Consists of using several standard FB controllers (e.g., PID), 

one for each controlled variable.

• Control system design

1.  Select controlled and manipulated variables.
2.  Select pairing of controlled and manipulated variables.
3.  Specify types of FB controllers.

Example: 2 x 2 system

Two possible controller pairings:
U1 with Y1, U2 with Y2 (1-1/2-2 pairing)

or
U1 with Y2, U2 with Y1             (1-2/2-1 pairing)

Note: For n x n system, n! possible pairing configurations.
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Process Interactions

• Two controlled variables and two manipulated variables
(4 transfer functions required)

• Thus, the input-output relations for the process can be     
written as:

( )
1 1

11 12
1 2

2 2
21 22

1 2

18 1

p p

p p

Y ( s ) Y ( s )
G ( s ), G ( s )

U ( s ) U ( s )

Y ( s ) Y ( s )
G ( s ), G ( s )

U ( s ) U ( s )

−

= =

= =

( )
( )

1 11 1 12 2

2 21 1 22 2

18 2

18 3

P P

P P

Y ( s ) G ( s )U ( s ) G ( s )U ( s )

Y ( s ) G ( s )U ( s ) G ( s )U ( s )

−

−

= +
= +

Transfer Function Model (2 x 2 system)
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In vector-matrix notation as

where Y(s) and  U(s) are vectors

And Gp(s) is the transfer function matrix for the process

( ) ( ) ( ) ( )18 4ps s s= −Y G U

( )1 1

2 2
18 5

Y s U s
s s

Y s U s

   
= = −   
   

( ) ( )
( ) ( )

( ) ( )
Y U

( )11 12

21 22
18 6

p p
p

p p

G ( s ) G ( s )
( s )

G ( s ) G ( s )

 
 
 
 

= −G

The steady-state process transfer matrix (s=0) is called the process 
gain matrix K

11 12 11 12

21 2221 22

0 0

0 0
p p

p p

G ( ) G ( ) K K
K KG ( ) G ( )

   
  =  
     

=K
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Block Diagram for 2x2 Multiloop Control

1-1/2-2 control scheme

1-2/2-1 control scheme
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Control-loop Interactions
• Process interactions may induce undesirable

interactions between two or more control loops.

Example: 2 x 2 system

Change in U1 has two effects on Y1

(1) direct effect : U1 � Gp11 � Y1

(2) indirect effect : 

U1 � Gp21 � Y2 � Gc2 � U2 � Gp12 � Y1
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• Control loop interactions are due to the presence of a 

third  feedback loop.

Example: 1-1/2-2 pairing

• Problems arising from control loop interactions
i.  Closed-loop system may become destabilized.
ii. Controller tuning becomes more difficult.

The hidden feedback 
control loop (in dark lines)
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Block Diagram Analysis

For the multiloop control configuration, the transfer function 
between a controlled and a manipulated variable depends on 
whether the other feedback control loops are open or closed.

Example:  2 x 2 system, 1-1/2 -2 pairing

From block diagram algebra we can show

Note that the last expression contains GC2.

� The two controllers should not be tuned independently

1
11

1

= p

Y ( s )
G ( s )

U ( s )

12 211
11

1 2 22

2

1
= −

+
p p

p
c p

cG GY ( s )
G

U (

G

GGs )

(second loop open)

(second loop closed)
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Example: Empirical model of a distillation column

3

7 3

12.8 18.9
( ) ( )16.7 1 21 1
( ) ( )6.6 19.4

10.9 1 14.4 1

− −

− −

 −
    + + =   −    
 + + 

s s

D

s s
B

e e
X s R ss s
X s S se e

s s

Pairing Kc

xD - R 0.604 16.37

xB - S -0.127 14.46

τ I

Single-loop ITAE tuning

xD set-point response xB set-point response
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• Relation between controlled variables and set-points

• Closed-loop transfer functions

• Characteristic equation

Closed-Loop Stability

where
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Example: Two P controllers are used to control the process

2 1.5

10 1 1( )
1.5 2

1 10 1

 
 + +=  
 
 + + 

p
s sG s

s s

Stable region for Kc1 and Kc2

1-1/2-2 pairing 1-2/2-1 pairing
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• Control of distillation column

• Controlled variables:

• Manipulated variables:

Top flow rate

Top composition

Bottom flow rate
Bottom composition

Column 
pressure

Reflux drum liquid level

Base liquid level Reflux flow rateReboiler heat duty

Condenser heat duty

Possible multiloop 
control strategies

= 5! = 120

, , , ,D B D Bx x P h h

, , , ,D BD B R Q Q

Pairing of Controlled and Manipulated Variables
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AC1

AC2

PC

LC1

LC2

• One of the practical pairing

→
→

→
→

→D

B

B

B

D

D

D

Q

R

Q

h

P

B

x

h

x
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Relative Gain Array (RGA)

(Bristol, 1966)

• Provides two types of useful information:

1. Measure of process interactions

2. Recommendation about best pairing of 

controlled and manipulated variables.

• Requires knowledge of steady-state gains

but not process dynamics.
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Example of RGA Analysis: 2 x 2 system

• Steady-state process model

The RGA, ΛΛΛΛ, is defined as:

where the relative gain, λij , relates the ith controlled variable    
and the jth manipulated variable

1 11 1 12 2

2 21 1 22 2

y K u K u

y K u K u

= +
= +

11 12

21 22
ΛΛΛΛ  

=  
 

λ λ
λ λ

( )
( )

i j u
ij

i j y

y / u

y / u
λ

∂ ∂
=

∂ ∂
open-loop gain

closed-loop gain
≜

( )i j u
y / u∂ ∂ : partial derivative evaluated with all of the manipulated variables 

except uj held constant (Kij)

( )i j y
y / u∂ ∂ : partial derivative evaluated with all of the controlled variables 

except yi held constant

=y Kuor
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Scaling Properties:

i. λij is dimensionless

ii.

For a 2 x 2 system,

Recommended Controller Pairing

It corresponds to the λij which have the largest 
positive values that are closest to one.

1ij ij
i j

λ λ= =∑ ∑

11 12 11 21
12 21

11 22

1
1

1
,

K K

K K

= = − =
−

λ λ λ λ

1

1

λ λ
λ λ

− 
=  − 

ΛΛΛΛ ( )11λ λ=
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In general:In general:
1.  Pairings which correspond to negative pairings should

not be selected.
2.  Otherwise, choose the pairing which has λij closest 

to one.

Examples:Examples:

Process Gain Relative Gain 
Matrix, K : Array, ΛΛΛΛ :

11

22

0

0

K

K

 
 
 

12

21

0

0

K

K

 
 
 

11 12

220

K K

K

 
 
 

11

21 22

0K

K K

 
 
 










10

01










01

10










10

01










10

01

⇒

⇒

⇒

⇒
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11 12 11 21
12 21

11 22

1
, 1

1
K K

K K

λ λ λ λ= = − =
−

For 2 x 2 systems:

1 11 1 12 2

2 21 1 22 2

y K u K u

y K u K u

= +

= +

Example 1:Example 1:

11 12

21 22

2 1 5

1 5 2

2 29 1 29

1 29 2 29

K K .

K K .

. .

. .

   
= =   

  

− 
∴ =  − 

K

Λ

Recommended pairing is Y1 and U1, 
Y2 and U2.

∴

Example 2:Example 2:

2 1 5 0 64 0 36

1 5 2 0 36 0 64

. . .

. . .

−   
= ⇒ =   
   

K Λ

∴ Recommended pairing is Y1 with U1 and Y2 with U2.
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EXAMPLE: Blending SystemEXAMPLE: Blending System

The RGA is:

Note that each relative gain is between 0 and 1.  The recommended
controller pairing depends on the desired product composition x.
For x = 0.4, w-wB / x-wA (large interactions)
For x = 0.9, w-wA / x-wB (small interactions)

   

1

1

A Bw w

w

x

x x

x x

− 
=  − 

Λ

Controlled variables: w and x
Manipulated variables: wA and wB

Steady-state model:

A B

A
A

A B

w w w

w
xw w x

w w

= +

= ⇒ =
+

Steady-state gain matrix:

1 1

1 x x

w w

 
 = − − 
 

K
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: Schur product
(element by element multiplication)

RGA for Higher-Order Systems
For a n x n system,

Each λij can be calculated from the relation,

where Kij is the (i,j) -element of the steady-state gain K matrix,     

Hij is the (i,j) -element of the                   .

Note :

( )

1 2

1 11 12 1

2 21 22 2

1 1

18 25

n

n

n

n n n nn

u u u
y

y

y

 
 
 = −
 
 
  

Λ

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

λ λ λ
λ λ λ

λ λ λ

( )18 37ij ij ijK Hλ −=

( )1 T-=Η K

≠Λ KH

In matrix form, ⊗Λ= K H ⊗
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Example: HydrocrackerExample: Hydrocracker

The RGA for a hydrocracker has been reported as,

Recommended controller pairing?

1 2 3 4

1

2

3

4

0 931 0 150 0 080 0 164

0 011 0 429 0 286 1 154

0 135 3 314 0 270 1 910

0 215 2 030 0 900 1 919

u u u u
y . . . .

y . . . .

y . . . .

y . . . .

− 
 − − =
 − − −
 − 

Λ
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Example: Example: 

An important disadvantage of RGA approach is that it ignores 
process dynamics

Recommended controller pairing?

Dynamic Consideration

2 1.5

10 1 1( )
1.5 2

1 10 1

s s

p s
s

e e

s sG s
e

e
s s

− −

−
−

 −
 + + =
 
 + + 

11 0 64.λ =
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Singular Value Analysis
• Any real m x n matrix can be factored as,

K = W ΣΣΣΣ V
T

• Matrix ΣΣΣΣ is a diagonal matrix of singular values:
ΣΣΣΣ = diag (σ1, σ2, …, σr)

• The singular values are the positive square roots of the 
eigenvalues of K

T
K ( r = the rank of KTK).

• The columns of matrices W and V are orthonormal. Thus,
WW

T
= I and    VV

T
= I

• Can calculate ΣΣΣΣ, W, and V using MATLAB command, svd.
• Condition number (CN) is defined to be the ratio of the largest 

to the smallest singular value,

• A large value of CN indicates that K is ill-conditioned.

1

r

CN ≜
σ
σ
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• CN is a measure of sensitivity of the matrix properties to 
changes in individual elements.

• Consider the RGA for a 2x2 process,

• If K12 changes from 0 to 0.1, then K becomes a singular 
matrix, which corresponds to a process that is difficult to 
control. 

• RGA and SVA used together can indicate whether a process 
is easy (or difficult) to control.

• K is poorly conditioned when CN is a large number 
(e.g., > 10).  Thus small changes in the model for this 
process can make it very difficult to control.

1 0

10 1

 
= ⇒ = 
 

K Λ I

10.1 0
( ) =     CN = 101

0 0.1
∑∑∑∑

 
 
 

K

Condition Number
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Selection of Inputs and Outputs

• Arrange the singular values in order of largest to smallest 
and look for any σi/σi-1 > 10; then one or more inputs (or 
outputs) can be deleted.

• Delete one row and one column of K at a time and evaluate 
the properties of the reduced gain matrix.

• Example:

0.48 0.90 0.006

0.52 0.95 0.008

0.90 0.95 0.020

− 
 =  
 − 

K
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•
CN = 166.5 (σ1/σ3)

The RGA is:

Preliminary pairing:  y1-u2,  y2-u3,  y3-u1.

CN suggests only two output variables can be controlled. Eliminate one 
input and one output (3x3→2x2).

    0.5714 0.3766   0.7292

   0.6035 0.4093 0.6843

0.5561 0.8311   0.0066

 
 = − 
 − 

W

1.618 0 0

0 1.143 0

0 0 0.0097

 
 ∑ =  
  

  0.0541   0.9984   0.0151

  0.9985 0.0540 0.0068

0.0060   0.0154 0.9999

 
 = − − 
 − − 

V

2.4376   3.0241 0.4135

  1.2211 0.7617 0.5407

  2.2165 1.2623 0.0458

− 
 = − 
 − 

ΛC
h

ap
te

r 
18



M
u

lt
ilo

o
p

 a
n

d
 M

u
lt

iv
ar

ia
b

le
 C

o
n

tr
o

l

31



M
u

lt
ilo

o
p

 a
n

d
 M

u
lt

iv
ar

ia
b

le
 C

o
n

tr
o

l

32

Matrix Notation for Multiloop Control Systems

Single loop

CLTF
1

p c
sp

p c

G G
Y Y

G G
=

+ ( )-1
p c p c spY = Ι + G G G G Y

Multi-loop

pG

Characteristic
equation 1 0p cG G+ = ( )det 0=p cΙ + G G

Y : (n x 1) vector of control variables
Ysp : (n x 1) vector of set-points
Gp : (n x n) matrix of process transfer functions
Gc : (n x n) diagonalmatrix of controller 

transfer functions
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• Detuning method
– Each controller is first designed, ignoring process interactions

– Then interactions are taken into account by detuning each controller

• More conservative controller settings (decrease controller gain,
increase integral time)

– Tyreus-Luyben (TL) tuning

Tuning of Multiloop PID Control Systems
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• Log-modulus : a robustness measure of control systems
– Single loop

A specification of                        has been suggested.

– Multi-loop

Define

Luyben suggest that 

where n is the dimension of the multivariable system.

Biggest log-modulus tuning (BLT) method
(Luyben, 1986)

20log 20log
1 1

p c
c

p c

G G G
L

G G G
= =

+ +

max max max 20log
1c c

G
L L

Gω ω

 = =  + 

max 2 dBcL =

( )1 detW = − + p cΙ + G G

20log
1c

W
L

W
=

+

max max 2c cL L n
ω

= =
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1. Calculate Z-N PI controller settings for each control loop

2. Assume a factor F; typical values between 2 and 5
3. Calculate new values of controller parameters by

4. Compute                                               for  

for example, 2x2 system 

5. Determine 

6. If                   , select a new value of F and return to step 2 until 

Tuning Procedure of BLT method

, ,0.45 , 1.2c ZN cu I ZN uK K Pτ= =

max 2cL n=

,
,, ;ci ZN

ci Ii Ii ZN
K

K F
F

τ τ= =

( )1 detW = − + p cΙ + G G

max max 20log
1c

W
L

Wω

 =  + 

max 2cL n≠

( ) ( )1 11 2 22 1 2 11 22 12 21det 1 c p c p c c p p p pG G G G G G G G G G= + + + −p cΙ + G G

(detuning)

0 ω≤ < ∞

1,2, ,i n= ⋯
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• Design IMC controller based in diagonal process transfer 
functions

• The IMC controller is designed as

with

• Since the off-diagonal terms of Gp have been dropped, 
modeling error are always present. 

Multiloop IMC Controller

11 1

1

p p n

pn pnn

G G

G G

 
 =  
 
 

⋯

⋮ ⋱ ⋮

⋯

pG

[ ]1 2diag c c cnG G G= ⋮cG

1
ci pii iG G f−

−= 1,2, ,i n= ⋯
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1.  "Detune" one or more FB controllers.
2.  Select different manipulated or controlled variables.

e.g., nonlinear functions of original variables
3.  Use a decoupling control scheme.
4.  Use some other type of multivariable control scheme.

Decoupling Control Systems

• Basic Idea: Use additional controllers (decoupler) to 
compensate for process interactions and thus reduce control 
loop interactions

• Ideally, decoupling control allows setpoint changes to affect 
only the desired controlled variables.

• Typically, decoupling controllers are designed using a simple 
process model (e.g., a steady-state model or transfer function 
model)

Alternative Strategies for Dealing with 
Undesirable Control Loop Interactions
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A Decoupling Control System

decoupler
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Decoupler Design Equations

We want cross-controller, T12, to cancel the effect of U2 on Y1.
Thus, we would like

Because U22 ≠ 0 in general, then

Similarly, we want T12 to cancel the effect of U1 on Y2.  Thus, we
require that,

Compare with the design equations for feedforward control based 
on block diagram analysis

11 12 22 12 22 0p pG T U G U+ =

12
12

11

p

p

G
T

G
= −

22 21 11 21 11

21
21

22

0p p

p

p

G T U G U

G
T

G

+ =

∴ = −

11 12 12 22 0p pG U G U+ =

or
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Variations on a Theme

1. Partial Decoupling:
Use only one “cross-controller.”

2. Static Decoupling:
Design to eliminate Steady-State interactions
Ideal decouplers are merely gains:

3. Nonlinear Decoupling
Appropriate for nonlinear processes.

12
12

11

21
21

22

p

p

p

p

K
T

K

K
T

K

= −

= −



Wood-Berry Distillation Column Model 
(methanol-water separation)

CT

CT

Feed F

Reflux R Distillate D,
composition (wt. %) XD

Bottoms B,
composition (wt. %) XB

Steam S
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3

1 1

2 27 3

1

2

1

12.8 18.9

16.7 1 21 1( ) ( )
(18 12)

( ) ( )
6.6 19.4

10.9 1 14.4 1

where:

distillate composition, %MeOH

bottoms composition, %MeOH

reflux f

s s

s s

D

B

e e

s sy s u s

y s u s
e e

s s

y x

y x

u R

− −

− −

 −
 + +    

= −    
    

− 
 + + 

= =
= =
= =

1

low rate, lb/min

reflux flow rate, lb/minu S= =

Wood-Berry Distillation Column Model

4242
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