Multiloop and Multivariable Control

Process Interactions and Control Loop Interactions

Pairing of Controlled and Manipulated Variables

Singular Value Analysis

Tuning of Multiloop PID Control Systems

Decoupling and Multivariable Control Strategies
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Control of Multivariable Processes

 Control systems that have only one controlled variable
and one manipulated variable.

» Single-input, single-output (SISO) control system
» Single-loop control system

- In practical control problems there typically are a
number of process variables which must be controlled
and a number of variables which can be manipulated.

» Multi-input, multi-output (MIMO) control system

Example: product quality and throughput
must usually be controlled.
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Note the "process interactions" between controlled
and manipulated variables.
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{a) In-line blending system

E

Process interactions :

can affect both controlled
variables
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Steam
g

Each manipulated variable

Several simple physical examples

?

Feed —aet
{&) Distillation colurmn

i
T e

v
T e

{c) Gas—liquid separataor
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SISO

Disturbances

RN

U —>

Process

(a) Single-input, single-output proce:

==

with multiple disturbances

MIMO

Disturbances

RRR!

Bl >

Ug —

Process

(b) Multiple-input, multiple-output process (2 x 2)

Disturbances

RRRR

L

Process

A |
P~ Y5

—> Yn

(c¢) Multiple-input, multiple-output process (n x n)



 In this chapter we will be concerned with characterizing process
Interactions and selecting an appropriate multiloop control
configuration.

 If process interactions are significant, even the best multiloop
control system may not provide satisfactory control.

* In these situations there are incentives for considering
multivariable control strategies.

Definitions:

 Multiloop control: Each manipulated variable depends on
only a single controlled variable, i.e., a set of conventional
feedback controllers.

 Multivariable Control: Each manipulated variable can depend
on two or more of the controlled variables.
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Examples: decoupling control, model predictive control
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Multiloop Control Strategy

« Typical industrial approach

« Consists of using several standard FB controllers (e.g., PID),
one for each controlled variable.

 Control system design

1. Select controlled and manipulated variables.
2. Select pairing of controlled and manipulated variables.
3. Specify types of FB controllers.

Example: 2 x 2 system

U, Y " @
u Process —
2 "YE g

{a) In-line blending system

®E

Two possible controller pairings:
U, with Y, U, with Y, (1-1/2-2 pairing)
or
U, with Y,, U, with Y, (1-2/2-1 pairing)
Note: For n x n system, n! possible pairing configurations. 6



Process Interactions

Transfer Function Model (2 x 2 system)

« Two controlled variables and two manipulated variables
(4 transfer functions required)

le((ss)) = Gpll(s)’ LTl((SS)) = GplZ(S)

1 2 (18—1)
%(5) =G,(S), Y(3) =G, (S)
U,(s) U,(s)

* Thus, the input-output relations for the process can be
written as:

Yi(8)=Gpp(S)U(8)+Gp {S)U {S) (18-2)
Y,(S)=G,,,(S)U(S)+G, LS {5s) (18-3)
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In vector-matrix notation as

Y(s)=Gp(s)U (9 [18-4

where Y(s) and U(s) are vectors

_| Ya(s) _| Ua(s) B
Y(S)_{YZ(S)} U(s)—{uz(s)} (18- 5)

And G(s) Is the transfer function matrix for the process

Go1i(S) Gpads) )
Gpoa(S) szz(s)} (18-6

The steady-state process transfer matrix (s=0) is called the process
gain matrix K

Gp(S):
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Gp11(0) GplZ(O)}_{Kll K12:|

Gp21(0) Gpod 0)| |Kap Koo
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Block Diagram for 2x2 Multiloop Control

Gp12

p21
Yo E U Y.
p 2 2 %D 2
é% Geo Gpo2 o+

(a) 1-1/2-2 controller pairing

U/
%)

Y1 U Y
D 1 1
Geo Gp11 /\%
Gp12
) Gpe1
é =
+

Ysp2 E, U,
? G, Gpao

() 1-2/2-1 controller pairing

1-1/2-2 control scheme

1-2/2-1 control scheme



Control-loop Interactions

 Process interactions may induce undesirable
Interactions between two or more control loops.
Example: 2 x 2 system
Change in U, has two effects on Y,
(1) direct effect: U; 2> G, 2 Y,
(2) indirect effect :
U 226G 2 Y, 2G,2U, 26,2 Y,

128 @ .
T,

{&] Distillation colummn 10

D_
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- Control loop interactions are due to the presence of a
third feedback loop.
Example: 1-1/2-2 pairing

Y. E U Y
= — G, L > Gp11 :
G .
Bl The hidden feedback
control loop (in dark lines)
Gp21
Y E U Y.
P2 el G fm Gpoo :
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* Problems arising from control loop interactions
I. Closed-loop system may become destabilized.
lil. Controller tuning becomes more difficult. 1




Block Diagram Analysis

For the multiloop control configuration, the transfer function
between a controlled and a manipulated variable depends on
whether the other feedback control loops are open or closed.

Example: 2 x 2 system, 1-1/2 -2 pairing
From block diagram algebra we can show

E— second loop open
0,(5) Gi(s) p open)

Yl( S) — _ GplZGp 216c2
U,(s) TRl g Gchpzz (second loop closed)
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Note that the last expression contains Gg,.

=>» The two controllers should not be tuned independently

12




Example: Empirical model of a distillation column

2 o8 —18.°% Single-loop ITAE tuning
-
S {XD(S)} _[16.755+1 25+ 1 {R(S)} Paiing Ko T
P Xs(s)] | 6.66™ -19.4> | [S(9 X,-R  0.604  16.37
3 110.%5+1 14.4+ 1 x-S -0.127  14.46
S
> _ :
= Xp set-point response Xg set-point response
- 1.4 1.4 | l T | 1 | |
2 | | | ‘xB Ioopi in ma:mal | Lok xp loop in manual |
ch 12— === Both loops in automatic | ) ——— Both loops in automatic
o] 1+ ‘\\ ///, _________ 1+
=y o8- -7 . 0.8}
g 0.6 - ’ 0.6 —
S 0.4 - 0.4
2 0.2 — 0.2

O s 1o 15 20 25 30 35 40 % 20

Time (min) ' Time (min)
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Closed-Loop Stability

* Relation between controlled variables and set-points
Yi =T1uYsp + T'2¥sp2
Yo=TInuYgp + Ta¥g

* Closed-loop transfer functions

' = GClGPH + GCIGCZ(Gpllezz — GplszEI)
A(s)

G2Goiz
= Ua2bpiz
I'2 AGs)

GGt
— —Clpel
I = (S)

F22 _ GCZGP22 + GClGCZ(GpllGPZZ — GPIZGPZ].)
A(s)

where zi&(S) = (1 *+ Gchpu)(l + Gchpzz) a GchcEGplQGle
* Characteristic equation
(1 + GaGpu)(1 + Ga2Gp22) — GaGe2Gp12Gpa1 = 0

14



Example: Two P controllers are used to control the process

2 1.5 |
G.(s) = 10s+1 s+1
P 1.5 2
| s+1 10s+ 1]

Stable region for K, and K,
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1-1/2-2 pairing 1-2/2-1 pairing
K. Kcl
/s 7
3_
2 il
1_ .
OStabhlg reggoln | 1 | I | Stable region
21 1 2 3 4 5 6 Ko ol |
7 -1 1 2 3 4 5 6
//%/_ 1% / ////—17/
B % /// //
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Reboiler heat duty
QB >
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Baseliquid leyel

Colu

Pairing of Controlled and Manipulated Variables

e Control of distillation column
« Controlled variables: Xy, %g, P, Ny, g Possible multiloop
« Manipulated variables: D, B, R, Q5 , Q5

control strategies
=51=120

T @
pressure
P Qp Condenser heat duty

/>\L) @ Coolant

( S
N

ZZICroo

AAAAA

Reflux drum liquid level
@ >|Q<]_T>Op flow rate
D
XD

Top composition

Reflux R Distillate
Reflux flow rate

é 2 hg
Heating - .
medium

1

I

_@
P g

> B Bottom flow rate

Bottoms xp Bottom composition 16



 One of the practical pairing
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B_ hB J\ (> ) @ }Coolant
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g > ﬁ Reflux B Distill Q_)D
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Heating é
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Relative Gain Array (RGA)
(Bristol, 1966)

- Provides two types of useful information:
1. Measure of process interactions
2. Recommendation about best pairing of
controlled and manipulated variables.

 Requires knowledge of steady-state gains
but not process dynamics.

18



Example of RGA Analysis: 2 x 2 system

* Steady-state process model
Y1 = Kyu+ Ko
Yo = Koyt Koy g
The RGA, A, is defined as:

A1 A
N = [ 11 12}
A1 Az

where the relative gain, 4;, relates the i™" controlled variable

and the j" manipulated variable

or Y=Ku

2. 2 (ayi foy )u _ open-loop gain

I (ayi /auj )y - closed-loop gain
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(ay: / au, )u : partial derivative evaluated with all of the maulated variables
excepty, held constantl;)

(ay: /0u;) : partial derivative evaluated with all of the carited variables
excepty, held constant 19




[
| -
-+
-
O
O
@
O
©
—
©
>
E
-]
=
[®)
-
©
o
@
O
=
-]
=

Scaling Properties:

. JjIs dimensionless
i YA =>4 =1
i j

For a 2 x 2 system,
1

Aq = , Ao=1-A1.=A 5.
11 KK 12 11=4 2
K11K 22
A 1-A
N = A=
L5 e

Recommended Controller Pairing

It corresponds to the A; which have the largest
positive values that are closest to one.

20



In general:
1. Pairings which correspond to negative pairings should
not be selected.

© . iy :
= 2. Otherwise, choose the pairing which has A; closest
-
S to one.
O n
o Examples:
e Process Gain Relative Gain
S Matrix, K : Array, / :
>
= Ky, O 1 0]
= | 0 sz 0 1
g } ) L -
0 K - 7
G 12 01
—
> K D 10
s _ _ i i
= Kix Ky — (1 0]
= 0 K,
= - 0 1)
(K 0 ] - 7
Kll < : 1 O
| ™M 21 22 _0 1_




For 2 x 2 systems:

_ 1
= yp = Ky + Kl M= ATl An=A
= 12021
= = K,u; + K =
= Yo = Roglg T Rodls KK op
O
Q Example 1:
T
[ [Ku Ki]_[2 15
S Koy Kgo] [15 2
E
E 229 -129 [ ] Recommended pairing is Y, and U,,
= 129 2929 Y, and U..
o
c_cg) Example 2:
% -2 15 Q64 03
— K= = A=

1.5 2 Q36 06

L] Recommended pairing is Y; with U; and Y, with U.,.
22




EXAMPLE: Blending System

va—m— DK

E’ w Controlled variablesy andx

= @ 5 Manipulated variablesy, andw,
@) wpg

@)

) : :

I Steady-state model: Steady-state gain matrix:
© _ _

= W= W, + W 1 1

; WA K - 1_X —X

= XW = Wy = X=—5H2—

= Wp +Wg . W W

= The RGA is:

© Wa Wg

o w| X 1-X

o A=

2 x|1-X X

= : .

S Note that each relative gain is between 0 and 1. The recommended

controller pairing depends on the desired product composition X.
Forx = 0.4,w-wg/ x-w, (large interactions)

For x = 0.9w-w, / x-wg (small interactions) 23
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RGA for Higher-Order Systems

For a n x n system,

) u u, - Uy )
Y1 /]11 /]12 /]h
a=H e e s
Yn _/]nl /]nl ot /]nn |

Each A; can be calculated from the relation,
/]ij :Kinij (18— 37)
where Kij is the (i,j) -element of the steady-state gain K matrix,

!
H, is the (i) -element of the H = ( K'l) |

(element by element multiplication)

Note: A% KH

24



Example: Hydrocracker

The RGA for a hydrocracker has been reported as,
Y u, Us Uy

y;| 00931 0150 0080 - 016

yo| —=0.011 -0429 0286 115

y3/ —0.135 3314 -0270- 191

y4 0.215 -2030 0900 1091

Recommended controller pairing?
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Dynamic Consideration

An important disadvantage of RGA approach is that it ignores
process dynamics

Example: - -
P —2e° 1.57°
G, (g=| 108+ s+l
157 2
| s+1 10s+1 |
A11:O.64

Recommended controller pairing?
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Singular Value Analysis

Any real m x n matrix can be factored as,
K=wzV'

Matrix 2 is a diagonal matrix of singular values:
2 =diag (0,, 0,, ..., O))

The singular vaIuTes are the positive square roots of the
eigenvalues of K K ( r = the rank of K K).

The columns of matrices W and V are orthonormal. Thus,
WW' =1 and W' =]
Can calculate 2, W, and V using MATLAB command, svd.

Condition number (CN) is defined to be the ratio of the largest
to the smallest singular value,

cN2Y9L
JI’
A large value of CN indicates that K is ill-conditioned.
27



Condition Number

 CN is a measure of sensitivity of the matrix pnbigs to
changes in individual elements.

« Consider the RGA for a 2x2 process,

1 O
K= = A=
LO 1}

* If K, changes from O to 0.1, thé&becomes a singular
maitrix, which corresponds to a process that iscdilff to
control.

« RGA and SVA used together can indicate whethapagss
IS easy (or difficult) to control.

101 O
Z(K):{O OJ CN = 10:

« Kis poorly conditioned when CN is a large number
(e.g., > 10). Thus small changes in the modeiHisr
process can make it very difficult to control.
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Selection of Inputs and Outputs

Arrange the singular values in order of largestnllest
and look for any./o. , > 10; then one or more inputs (or
outputs) can be deleted.

Delete one row and one columnkofit a time and evaluate
the properties of the reduced gain matrix.

Example:

0.48 0.90 - 0.008
K ={0.52 0.95 0.008
10.90 -0.95 0.020

29
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0.5714 0.3766 0.729
W= 0.6035 0.4093 - 0.684
-0.5561 0.8311 0.006¢

1.618 O 0 0.0541 0.9984 0.01
>=| 0 1.143 0 V = 0.9985 - 0.0540 - 0.006¢
0 0 0.009 —0.0060 0.0154 - 0.999¢

CN = 166.5 §,/0,)

The RGA is: )
—-2.4376 3.0241 0.413

A = 1.2211 - 0.7617 0.540
2.2165 - 1.2623 0.045

Preliminary pairing:y,-U,, Y,-Us;, Y5-U;.

CN suggests only two output variables can be contrai®ahinate one
input and one output (3x32x2).

30



= Table 18.3 CN and A for Different 2 X 2 Pairings, Example 18.7

o

g Pairing Controlled Manipulated

O Number Variables Variables CN A

&)

I | Vi, V2 Uy, 12 184 39.0
@© 2 Y1, ¥2 Ui, Uz 72.0 0.552
o~ 3 Vi, V2 w2, U3 133 0.558
> 4 Y1, V3 w2, U 0.640
= 5 Y1, V3 1, U3 69.4 0.640
§ o Vi, V3 s, U 139 1.463
= 7: ¥2, V3 w2, Uj (1].634
c 8 ¥2, V3 Wi, U3 338 3.2
© 9 V2, V3 12, U3 67.9 0.714
o

@

S

=

)

=
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Matrix Notation for Multiloop Control Systems

CLTF

Controller

D
Process
— G D —:Y-

Yo E G
_)'(% )_)‘ c

Single loop
y=_p%
1+G,G, P

Characteristic

equation

1+G,G, = 0

Multi-loop

-1
Y =(I+G,G;) GG, Y

Y : (n x 1) vector of control variables
Yq : (N X 1) vector of set-points
G, : (n x n) matrix of process transfer functions
G. : (n x n)diagonalmatrix of controller
transfer functions

det(I+G,G,) = C

32



Tuning of Multiloop PID Control Systems

e Detuning method
— Each controller is first designed, ignoring procegsractions

— Then interactions are taken into account by detuaach controller

* More conservative controller settings (decrease chertigain,
Increase integral time)

— Tyreus-Luyben (TL) tuning
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Ziegler-Nichols K. Tl D
P 0.5K.. — —
PI 045K, P,/12 —
PID 0.6K.. P2 P,/8
Tyreus-Luybenf K. TI D
PI 0.31K., 2.2P, —
PID 0.45K. 22P, P./6.3

T Luyben and Luyben (1997).
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Biggest log-modulus tuning (BLT) method
(Luyben, 1986)
e Log-modulus: a robustness measure of control systems
— Singleloop G
= 20I04 ‘

Ge 1+G
L. =maxL, = max 20lo S
w w 1+G

A specification of L™ =2dB  has besiggested.

G,G,
1+G,G

L. =20log

— Multi-loop
Define W = -1+ det(I+ GpGC)
W
L. =20lo
c gl+W‘
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Luyben suggest thate = maxL, = I

w
wheren is the dimension of the multivariable system. .y
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Tuning Procedure of BLT method

. Calculate Z-N PI controller settings for each oalrfbop

Kezn =0.4Ky, 7y 2y =R/ 1

. Assume a factd¥; typical values between 2 and 5
. Calculate new values of controller parameters by

K .

. Compute \ = -1+ det(I+GpGC) forg< w<w

for example, 2x2 system

det(I+GpGC) = 1+ GyGp11+ G Ly 22+ G f5¢ Z(Gp 1$p 257 Gp 1%y Z)J

. Determine W
L™ =max{ 20lo
w 1+W

f L™ £ 2n |, select a new valueFodind return to step 2 until™® = 2n

35
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Multiloop IMC Controller

* Design IMC controller based in diagonal proceaadfer
functions

 The IMC controller is designed as
C':'c - diag[Gcl GCZ : Gcn
. _ _1 .
W|th GCi —_ Gpii— fi 1=1,2,--.n

* Since the off-diagonal terms &, have been dropped,
modeling error are always present.

36



Alternative Strategies for Dealing with
Undesirable Control Loop Interactions

1. "Detune" one or more FB controllers.

2. Select different manipulated or controlled variables.
e.g., nonlinear functions of original variables

3. Use a decoupling control scheme.

4. Use some other type of multivariable control scheme.

Decoupling Control Systems

 Basic Idea: Use additional controllers (decoupler) to
compensate for process interactions and thus reduce control
loop interactions

» |deally, decoupling control allows setpoint changes to affect
only the desired controlled variables.
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* Typically, decoupling controllers are designed using a simple
process model (e.g., a steady-state model or transfer function

model)
37




A Decoupling Control System

Y,
Yo,
Ty» >—G,o1
e 7 P
/
Vepo E U U Y. Y.
sp 2 G., 92 R )@ 2 ! Gl 22_< £
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decoupler
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Decoupler Design Equations

We want cross-controller, T,,, to cancel the effect of U, on Y.
Thus, we would like G +G,,M ,,=0

p11~ 12

or G, ,TU,+G U ,=0

1112

Because U,, # 0 in general, then
_ Gp12

T.=
12 C5p11

Similarly, we want T,, to cancel the effect of U, on Y,. Thus, we

require that,
szz-rz}J nt Gp 2p 11~ 0

G
0T, =- Gp”

p22

Compare with the design equations for feedforward control based
on block diagram analysis

39
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Variations on a Theme

1. Partial Decoupling:
Use only one “cross-controller.”

2. Static Decoupling:
Design to eliminate Steady-State interactions
|deal decouplers are merely gains:

K

__“p12
T12 - K
pll
21 — K
p22

3. Nonlinear Decoupling
Appropriate for nonlinear processes.

40



Wood-Berry Distillation Column Model
(methanol-water separation)

e
FeedF . ‘L@ QZ%Z} (Ci)=

Reflux R Distillate D,
composition (wt. %)X,

@ SteamS

T M BottomsB,

composition (wt. %Xz
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Wood-Berry Distillation Column Model
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where:
y; = Xp =distillate composition, %MeOH
Y, = Xg = bottoms composition, %MeOH
U, = R=reflux flow rate, Ib/min
U, = S=reflux flow rate, Ib/min
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Figure 19.13. An experimental application of decoupling (noninteracling) control to a

distillation column {3].



