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ABSTRACT
At its very core multimedia information retrieval means the process of searching for and finding
multimedia documents; the corresponding research field is concerned with building the best possible
multimedia search engines.The intriguing bit here is that the query itself can be a multimedia excerpt:
For example,when you walk around in an unknown place and stumble across an interesting landmark,
would it not be great if you could just take a picture with your mobile phone and send it to a service
that finds a similar picture in a database and tells you more about the building — and about its
significance for that matter?

This book goes further by examining the full matrix of a variety of query modes versus
document types. How do you retrieve a music piece by humming? What if you want to find news
video clips on forest fires using a still image? The text discusses underlying techniques and common
approaches to facilitate multimedia search engines from metadata driven retrieval, via piggy-back
text retrieval where automated processes create text surrogates for multimedia, automated image
annotation and content-based retrieval. The latter is studied in great depth looking at features and
distances, and how to effectively combine them for efficient retrieval, to a point where the readers
have the ingredients and recipe in their hands for building their own multimedia search engines.

Supporting users in their resource discovery mission when hunting for multimedia material is
not a technological indexing problem alone.We look at interactive ways of engaging with repositories
through browsing and relevance feedback, roping in geographical context, and providing visual sum-
maries for videos. The book concludes with an overview of state-of-the-art research projects in the
area of multimedia information retrieval, which gives an indication of the research and development
trends and, thereby, a glimpse of the future world.

KEYWORDS
multimedia information retrieval, multimedia digital libraries, visual search, content-
based retrieval, piggy-back text retrieval, automated image annotation, audiovisual fin-
gerprinting, semantic gap, polysemy, multimedia features and distances, fusion of fea-
tures and distances, high-dimensional indexing, video summaries, information visual-
isation, relevance feedback, geo-temporal browsing
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Preface
I am not easily convinced to write a book. The main reason why I got fascinated by this assignment
is that it gave me a unique opportunity to write up tricks of the trade that are relevant for a number
of multimedia search projects (and that I have had to endlessly repeat, again and again, during the
supervision of around 65 undergraduate, master and PhD projects over the last decade).The Morgan
& Claypool format of this lecture series is great too, as I can go to considerably more detail than in
a book chapter without having to deliver a 700 page opus.

This book targets undergraduate classes on multimedia information retrieval, and everyone
who carries out projects that build components of multimedia search for work or studies, in particular
for individual final projects — be it at undergraduate or graduate level. I have put an emphasis on
illustrating the material with figures, photographs and videos, but also gone to the technical depth of
explicit mathematical relations that form the core of the technologies.Each theme is cross-referenced
to a set of relevant and significant primary literature, which will help readers along who wish to
delve into even more detail. Each chapter concludes with a set of reflective exercises, which can be
used as supplemental assignments for university courses or as suggestions for further independent
exploration by interested readers.

I know that this book will save me and my students much time and effort in the future, and I
hope that others can benefit from it, too.

Stefan Rüger
November 2009

You are welcome to use the book’s artwork that is not otherwise protected (see page 135)
provided you acknowledge the source as Stefan Rüger (2010). Multimedia information retrieval.
Morgan & Claypool Publishers.

http://kmi.open.ac.uk/people/stefan/mir-book/rueger-mir-2010.html
http://kmi.open.ac.uk/people/stefan/mir-book/rueger-mir-2010.html




1

C H A P T E R 1

What is Multimedia
Information Retrieval?

1.1 INFORMATION RETRIEVAL
We all have come to experience information retrieval as a process that involves search engines, for
example, Google, Yahoo, Microsoft’s Bing and many more. Giving users access to documents is one
of the defining tasks of information retrieval. For thousands of years, the traditional methods of
information retrieval have been facilitated by librarians: they create reference cards with metadata
that are put into catalogues (nowadays databases); they also place the objects in physical locations
that follow certain classification schemes, and they answer questions at the reference desk.

One of the oldest documented instances of “information retrieval” arose for cuneiform clay
tablets from the cradle of civilisation in Mesopotamia. These tablets recorded business accounts and
religious texts, and they were kept at the time for later reference. Figure 1.1 is a wonderful example
of such a clay tablet from the 24th century BCE, now in the Kirkor Minassian collection in the
Library of Congress.

Figure 1.1: Clay tablet

Hundreds of thousands of these tablets survived war, conflict and burning down of libraries
and temples. Actually, the fire may have preserved more of the tablets than was intended at the time!
They were usually kept in storerooms full of boxes. Apart from the fact that only an elite within
the population were allowed to access the tablets, the storerooms were often physically difficult to
reach: located underground and sometimes only accessible by a ladder through a hole in the ceiling.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-000.jpg&w=95&h=158
http://kmi.open.ac.uk/people/stefan/mir-book/cuneiform-script-nobg.jpg
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Searching for specific tablets was equally cumbersome, but at least facilitated by clay tablets that,
for each of the boxes, detailed the boxes’ contents. The Sumerians in ancient Iraq did not have titles
on their documents: they used incipits instead, which are the first few words of the text. Here is an
example of the incipits on one tablet (Lerner, 2001; Dalby, 1986):

1. Honored and noble warrior
2. Where are the sheep
3. Where are the wild oxen
4. And with you I did not
5. In our city
6. In former days
7. Lord of the observance of heavenly laws
8. Residence of my God
9. Gibil, Gibil [the fire god]

10. On the 30th day, the day when sleeps
11. God An [the sky god], great ruler
12. An righteous woman, who heavenly laws

Those incipit tables served as orientation for browsing and searching 5000 years ago, and
still today, we use little catalogue cards with a small description of documents to facilitate finding
them. In this respect, little has changed except technology. Today, rather than climbing down into
storerooms and matching our information need with the incipits of the documents in boxes, we
deploy computers to match our information need with the text of the documents itself.

There is no denying that the advent of digital documents has radically changed the organisation
principles; now it is possible to automatically index and search document collections as big as the
world-wide web — and browse them utilising author-inserted links. It is almost as if automated
processing has turned the traditional library access paradigm upside down. Instead of searching
metadata catalogues in order to retrieve the document, web search engines search the full content
of documents and retrieve their metadata, eg, the location where documents can be found or the
names of authors who wrote about certain themes or concepts.

How have increasing computer power and collapsing storage costs made it easy, conceptually
at least, to search for text in huge collections? One simplified answer is that computers insert every
word from the document into an index that points back to the documents. So, when we query with
a single word in a web search engine, the indexing process has already created a huge list of web
pages that contain this word. If we type two words into a search box, then the intersection of the
two corresponding lists is returned.

The index of any web search engine looks just like the text index from the travel guide of
Figure 1.2 with the differences that every word is indexed and that documents are listed instead of
page numbers.

I do not want to hide the fact that there remains a large number of engineering challenges
and many other research questions, too: What is the best way to rank matching documents? How
to best utilise document structure? How to best express the user’s information need? These research
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Figure 1.2: Index of a book

questions, and many more, are catered for by the thriving and large field of Information Retrieval,
but are outside the scope of this book.

The important message here is that the combination of being digital and cheap computing
power has transformed the process of information retrieval into a disruptive search technology that
has given rise to a multinational multi-billion search industry.

1.2 MULTIMEDIA
Literally, the word multimedia means “two or more different media” and refers to different “modes” of
information consumption: listening, seeing, reading,watching, smelling etc. In contrast,monomedium
is understood to mean just one medium: a photograph, a piece of text, an audio music track, a video
etc. It should be noted that videos are often subsumed under multimedia, as they have both a visual
channel and an aural channel. In the same way, one might argue that newspapers constitute multi-
media (as they are a mixture of text, still photographs and sketches) or, likewise, monomedia (as they
are one object, one medium). These perspectives are further confounded by the advent of the world-
wide web, which has introduced explicit and easy to follow hyperlinks between documents.The term
hypertext refers to such interlinked text documents, while hypermedia refers to interlinked media. For
the purpose of this book, the distinctions between these four terms (multimedia, monomedium,
hypertext, hypermedia) is not relevant, and I will loosely subsume all these into multimedia.

There are two important restrictions, though, in my use of the term multimedia within this
book: it needs to be digital, so that the processing methods detailed here can be applied, and it ought

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-001.jpg&w=283&h=212
http://kmi.open.ac.uk/people/stefan/mir-book/nz-index.jpg
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to be meant for communication rather than purely entertainment or art. A digitised — 3d or otherwise
— scan of the cuneiform clay tablet in Figure 1.1 is considered “multimedia” in the framework of
this book, the original tablet not. This book does not focus on music retrieval except in the case of
symbolic score representations as these are also used for communication. Music retrieval is a large
research field of its own with dedicated conferences, most notably ISMIR1, and is, symbolic music
retrieval aside, outside the scope of this book.

1.3 MULTIMEDIA INFORMATION RETRIEVAL

At its very core, multimedia information retrieval means the process of searching for and finding
multimedia documents; the corresponding research field is concerned with building multimedia
search engines. The intriguing bit about multimedia retrieval is that the query itself can be a multi-
media excerpt: for example, if you walk around in pleasant Milton Keynes, you may stumble across
the interesting building that is depicted in Figure 1.3.

Figure 1.3: Milton Keynes’s Peace Pagoda

Would it not be nice if you could just take a picture with your mobile phone and send it to
a service that matches your picture to their database and tells you more about the building? The
service could reply with “Built by the monks and nuns of the Nipponzan Myohoji, this was the first Peace
Pagoda to be built in the western hemisphere and enshrines sacred relics of Lord Buddha. The Inauguration
ceremony, on 21st September 1980, was presided over by the late most Venerable Nichidattsu Fujii, founder
. . .”2

1http://www.ismir.net
2 http://www.mkweb.co.uk/places_to_visit/displayarticle.asp?id=411

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-002.jpg&w=226&h=169
http://www.ismir.net
http://kmi.open.ac.uk/people/stefan/mir-book/peace-pagoda-medium.jpg
http://www.ismir.net
http://www.mkweb.co.uk/places_to_visit/displayarticle.asp?id=411
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Given the much wider remit of multimedia search over just text search, and assuming we
could perfectly search with queries that are “multimedia” itself, what could we do with multimedia
search?

The previous example is an obvious applications for tourism. There are also applications for
advertising that so much seems to underpin the whole search industry: Snaptell Inc, is a startup
company that specialises in mobile image search; their idea is that customers take pictures from
print-media adverts, send them in and receive promotion or product information, vouchers and so
on. For example, customers sending in a picture of the print poster that advertises a new movie
receive an exclusive trailer, see showtimes of cinemas in the area and, in theory, could straight away
phone to order tickets. One added benefit for advertisers is that they receive feedback as to where
print adverts were noticed.

Figure 1.4: Snaptell’s service

Another considerable and obvious application is for medical image databases. When someone
who suffers from shortness of breath consults doctors, they might wonder where they have seen the
light shadow on the x-ray before. If computers were able to match significant, medically relevant
patterns with those in the database, they could return data on these diagnosed cases, so the specialists
can undertake an informed differential diagnosis using medical-image retrieval (Figure 1.5).

The common factor of the previous examples was that documents and queries can consist
of various different media. Figure 1.6 takes this observation radically forward by looking at the
full matrix of combining different query modes (columns) with document repository types (rows).
Entry A in this matrix corresponds to a traditional text search engine; this deploys a completely
different technology than Entry B, a system that allows you to express musical queries by humming
a tune and that then plays the corresponding song. The three C entries in Figure 1.6 correspond to a
multi-modal video search engine allowing search by emotion with example images and text queries,
eg, find me video shots of “sad” scenes using an image of a dilapidated castle and the text “vampire”. In
contrast to this, Entry D could be a search engine with a query text box that returns BBC Radio 4
discussions.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-003.jpg&w=246&h=121
http://kmi.open.ac.uk/people/stefan/mir-book/inaugural-ppt-artwork-000.jpg
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Figure 1.5: Medical-image retrieval (mock-up)

It is relatively easy to come up with a usage scenario for each of the matrix elements in
Figure 1.6: for example, the image input speech output matrix element might be “given an X-ray
image of a patient’s chest, retrieve dictaphone documents with a relevant spoken description of a
matching diagnosis”. However, creating satisfying retrieval solutions is highly non-trivial and the
main subject of the multimedia information retrieval discipline. Chapter 2 summarises different
basic technologies involved in these multimedia search modes. Not all combinations are equally
useful, desirable or well researched, though: Entry E might be a query where you roar like a lion and
hope to retrieve a wildlife documentary.

Figure 1.6: New search engine types

Undoubtedly, it is the automated approaches that have made all the difference to the way the
vast collections can be used. While the automated indexing of text documents has been successfully
applied to collections as large as the world-wide-web for nearly two decades now, multimedia

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-005.jpg&w=268&h=150
http://kmi.open.ac.uk/people/stefan/mir-book/medical-retrieval-mockup.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/search-engine-types-iii.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-004.jpg&w=244&h=137
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indexing by content involves different, still less mature and, in some sense, less scalable technologies.
One focus of this book is these automated methods known as content-based retrieval.

1.4 CHALLENGES OF AUTOMATED MULTIMEDIA INDEX-
ING

Multimedia collections pose their very own challenges; for one, queries in one media mode need
to be able to match potentially other media modes (cross-media retrieval). Another difficulty is that
images and videos don’t often come with dedicated reference cards or metadata, and when they do,
as in museum collections, their creation will have been expensive and time-consuming.

There are a number of open issues with the content-based retrieval approach in multimedia.
On a perceptual level, those low-level features do not necessarily correlate with any high-level
meaning the images might have. This problem is known as the semantic gap: look at the photograph
from 1966 in Figure 1.7 in which Bobby Moore, the captain of the English National Football
team, receives the world cup trophy from Queen Elizabeth II. For a computer, this photograph is
simply a number of pixels with a certain colour distribution. With state-of-the-art computer vision
algorithms, you will detect (if not recognise) the faces, possibly even the vase-like object. But think
again: this photograph depicts the captain of a national team receiving a trophy from Her Royal
Highness Queen Elizabeth II for winning a world tournament in arguably the most important sport
in that country! This image is really about glory, victory and triumph3. This discrepancy between
low-level features and high-level meaning is called the semantic gap.

Figure 1.7: The semantic gap

3if you support the English team, that is — for supporters of the West German team, this image probably signified misery, defeat,
agony and, as Reid and Zisserman (1996) proved, justified misgivings about a particular linesman decision

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-006.jpg&w=319&h=187
http://kmi.open.ac.uk/people/stefan/mir-book/inaugural-ppt-artwork-013-q.jpg
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Some of the computer vision methods go towards the bridging of the semantic gap, for
example, the ability to assign simple concrete labels to image parts such as “grass”, “sky”, “people”,
“plates”. This automated annotation is the theme of Section 2.4. A consequent use of an ontology
could explain the presence of higher-level concepts such as “barbecue” in terms of the simpler labels.

Even if the semantic gap could be bridged, there is still another challenge, namely polysemy:
images usually convey a multitude of meanings so that the query-by-example approach is bound to
under-specify the real information need. Users who submit an image such as the one in Figure 1.8
could have a dozen different information needs in mind: “find other images with the same person”,
“find images of the same art scene”, “find other bright art sculptures”, “find images with gradual
shadow transitions”, . . . It is these different interpretations that make further user feedback so
important. Section 4.4 discusses how the explicit support of browsing processes can help leverage
the intelligence of the user, specifically in the context of relevance feedback techniques that put the
user in the loop and are discussed in Section 4.3.

Figure 1.8: Photographs and polysemy

On a practical level, the multitude of features assigned to images poses a fusion problem; how
to combine possibly conflicting evidence of two images’ similarity? Subsection 3.6 discusses some
approaches.

There is a responsiveness problem, too, in that the naïve comparison of query feature vectors
to the database feature vectors requires a linear scan through the database. Although the scan is
eminently scalable, the practicalities of doing this operation can mean an undesirable response time
in the order of 10s of seconds or worse — rather than the constant 100 milli-seconds that can be
achieved by text search engines. The problem is that high-dimensional tree structures tend to be not
very effective, so that compression methods or approximative nearest neighbour searches need to be
deployed for efficiency. Subsection 3.5 looks into these techniques.

Even if all these challenges were solved, indexing sheer mass is no guarantee of a success-
ful annotation either: while most of today’s inter-library loan systems allow access to virtually

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-007.jpg&w=225&h=149
http://kmi.open.ac.uk/people/stefan/mir-book/the-aarhus.jpg
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any publication in the world — there are at least around 150m bibliographic entries in OCLC’s
Worldcat database4, and 3m entries from Bowker’s Books In Print — students and researchers alike
seem to be reluctant to actually make use of this facility. On the other hand, the much smaller cata-
logue offered by online bookshops appears to be very popular, presumably owing to added services
such as the following:

• subject categories
• fault tolerant search tools
• personalised services telling the customer what’s new in a subject area
• collaborative filtering: what have others with a similar profile bought?
• pictures of book covers
• media and customer reviews
• access to the table of contents and to selections of the text
• full-text index of popular books
• the perception of fast delivery

In the same spirit, traditional search engine companies such as Google, Yahoo and Microsoft invest
much of their resources into ways of keeping their market share with added functionality in almost
any aspects of information management that consumers may be interested in: diaries, calendars,
maps, shopping, etc.

In the multimedia context, Chapter 4 argues that automated added services such as visual
queries, relevance feedback and summaries can prove useful for information retrieval in multimedia
digital libraries. Section 4.1 is about summarising techniques for videos, Section 4.2 exemplifies visu-
alisation of search results, while Section 4.3 discusses visual search modes such as query-by-example
in the context of relevance feedback. Finally, Section 4.4 promotes browsing as resource discovery
mode and looks at underlying techniques to automatically structure the document collection to
support browsing.

The current research challenges in multimedia information retrieval are being exemplified
with state-of-the-art research projects in Chapter 5.

1.5 SUMMARY
Digitisation means that we are no longer restricted to catalogue cards. We can carry out full-
text searches in books and articles with just about any keyword that we deem relevant; computers
tell us who the author is, what the title is and where to find the resource. Rather than searching
through catalogues to find the books, computers search through books to find their catalogue cards.
Multimedia retrieval is an attempt to do the same with multimedia rather than solely text, ie,
automatically index multimedia based on its contents and then use same- or cross-modal matching
techniques to retrieve relevant multimedia from multimedia queries.

4http://www.oclc.org/worldcat/statistics as of Nov 2009

http://www.oclc.org/worldcat/statistics
http://www.oclc.org/worldcat/statistics
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1.6 EXERCISES
1.6.1 MEMEX

One of the early true visionaries of digital libraries was Vannevar Bush (1890–1974): he predicted
the internet and modern digital libraries long ahead of their time — and did not live to experience
them! In July 1945 he published an essay “As we may think” in The Atlantic Monthly, in which
he described the idea of a memory extender, short memex. This fictitious machine (see Figure 1.9
for its design) would be integrated into a desk that contains a glass plate with a camera to take
pictures of pages, microfilm storage, projection systems for two screens, and a keyboard with levers.
Its purpose was to provide scientists with the capability to exchange information and to have access
to all recorded information in a private library that contained all your books, correspondence and
own work. It would function as a rapid information retrieval system and extend the power of human
memory.

Figure 1.9: Memex design

More importantly, his design included the concept of associating resources and adding com-
ments to them. The most remarkable fact of the memex design is that its (analogue) links are very
similar to the links on web-pages. For that reason, Bush is now seen as the grandfather of the world-
wide web. It took nearly two decades after the invention of the internet for the element of memex
that allows adding your own work to be widely and easily used: wikipedia5, an online encyclopedia,
was born in 2001, where everyone can link to resources, add comments and corrections and write
own articles.

5http://wikipedia.org

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-008.jpg&w=283&h=212
http://kmi.open.ac.uk/people/stefan/mir-book/memex-design-kmi.jpg
http://wikipedia.org
http://wikipedia.org
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• Discuss whether the microfilms in the memex constitute monomedia, multimedia, hypertext or
hypermedia in their strict literal sense. What about wikipedia articles? Or this book used online?
What about the same as a printed book? Which of the above are multimedia as defined in Section 1.2?

1.6.2 LOOPS AND INTERACTION

Information retrieval is more than just search: it is browsing, searching, selecting, assessing and
evaluating, ie, ultimately accessing information. Figure 1.10 gives a breakdown of different stages of
this process from information need to information use.

Figure 1.10: Stages of Information Retrieval

• Illustrate these steps using examples of an information retrieval quest for (a) a book, say an early
“Asterix” graphic novel, in your local library; (b) for a government tax form on the web that allows
you to declare the income-equivalent-benefits of your employer providing free tea; (c) for a figure in
an electronic image library that demonstrates how a prism disperses light into rainbow colors.
• Identify loops in this process, for example, after document evaluation you may want to go back to
the document selection step. Add all loops to Figure 1.10 that you think useful for the information
retrieval process.

1.6.3 AUTOMATED VS MANUAL

Not all manual intervention has been abandoned in web search engines. For example, the Yahoo
directory is an edited classification scheme of submitted web sites that are put into a browsable
directory structure akin to library classification schemes.
• Find and discuss other examples of manual intervention or manually delivered services that are
associated to web search engines.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-009.jpg&w=189&h=148
http://kmi.open.ac.uk/people/stefan/mir-book/retrieval-loops-i.jpg
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1.6.4 COMPOUND TEXT QUERIES
Text search engines normally go through the following indexing steps: collect the documents to
be indexed; extract a list of terms from each document by ignoring punctuation, identifying word-
boundaries and normalising terms with respect to accents, diacritics spelling variants and folding to
lower case; and maintain one list of documents for every term sorted by decreasing relevance. Such
a list is called postings list for that particular term. The set of postings lists for the whole vocabulary
is called inverted-file index, simply index or, misleadingly, inverted index.
• Assuming you wanted a two-term query white house to return all documents that contain the terms
white and house, what would be a fast way of processing the intersection between the two postings
lists for white and house? How would you efficiently compute the results for the query white −house
targeting documents that contain the term white but not the term house?
• How could you change the index of a collection in order to be able to search for phrases such as
white house requiring the two terms to appear successively in the document?
• Implement a simple text search engine that indexes e-mail folders using above ideas: relevance is
defined as recency of the e-mail (the older, the less relevant).

1.6.5 SEARCH TYPES
Revisit the matrix of search engine types in Figure 1.6. Give five more search and retrieval scenarios
for elements of this query-retrieval matrix. Give two more examples for search and retrieval scenarios
that, like Entry C, span multiple query modes or multiple document types.
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C H A P T E R 2

Basic Multimedia Search
Technologies

The current best practice to index multimedia collections is via the generation of a library card, ie, a
dedicated database entry of metadata such as author, title, publication year and keywords. Depending
on the concrete implementation, these can be found with SQL database queries, text-search engines
or XML queries, but all these search modes are based on text descriptions of some form and are
agnostic to the structure of the actual objects they refer to, be it books, CDs, videos, newspaper
articles, paintings, sculptures, web pages, consumer products etc. The first section of this chapter is
about the traditional metadata driven retrieval.

The text column of the matrix of Figure 1.6 is underpinned by text search technology and
requires the textual representation of the multimedia objects, an approach that I like to call piggy-
back text retrieval . Other approaches are based on an automatic classification of multimedia objects
and on assigning words from a fixed vocabulary. This can be a certain camera motion that can be
detected in a video (zoom, pan etc); a genre for music pieces such as jazz or classics; a generic scene
description in images such as inside/outside, people, vegetation, landscape, grass, city-view etc or
specific object detection like faces and cars etc. These approaches are known as feature classification
or automated annotation.

The type of search that is most commonly associated with multimedia is content-based: the
basic idea is that still images, music extracts, video clips themselves can be used as queries and that the
retrieval system is expected to return ‘similar’ database entries.This technology differs most radically
from the thousands-year-old library card paradigm in that there is no necessity for metadata at all.
In certain searches, there is the desire to match not only the general type of scene or music that the
the query represents but instead one and only one exact multimedia object. For example, you take
a picture of a painting in a gallery and submit this as a query in the hope of receiving the gallery’s
(or otherwise) record about this particular painting. In this case, you use an image of the real world
to obtain a link into the electronic world and not to see a variant or otherwise similar exhibit. The
underlying technology is sometimes called fingerprinting or known-item search.

2.1 METADATA DRIVEN RETRIEVAL
Metadata are pieces of information about a multimedia object that are not strictly necessary for
working with it, but that are useful to

• describe resources so they can be indexed, classified, located, browsed and found
• store technical information, such as data formats and compression schemes
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• manage resources such as their rights or where they are currently located
• record preservation actions
• create usage trails, eg, which section of a video has been watched how many times

All of these aspects are relevant for multimedia information retrieval. Undoubtedly, the first
type of so-named descriptive metadata has been deployed since thousands of years to keep track of
documents and objects: the old Sumerians used incipits to form surrogate summaries, which they
could browse, while later document titles were invented and are still the most important form of
metadata. Library cards such as the one in Figure 2.1 have for centuries recorded metadata such as
title, author, year of publication, classification tag, location in library, publisher with their address,
and so on.

Figure 2.1: What library cards looked like

The printed out library card has become obsolete, and the most important technique for multi-
media retrieval based on metadata has become structured-document retrieval. Document structure is
increasingly often expressed in the XML schema language1 of the World Wide Web Consortium2.
Lalmas (2009) covers XML Retrieval in depth.

When using metadata, it becomes apparent how vital it is that they can be exchanged,especially
so in digital libraries. One of the oldest and most widespread standards for bibliographic metadata
is MARC, which stands for machine-readable cataloguing. It is an elaborate standard with several
hundred entries that are subject to the Anglo-American Cataloguing Rules in its current version
AARC2R. Owing to the complexity of these rules, only trained specialists are able to create a MARC
record. However, once created, a record can then be shared by libraries all over the world. It is the
use of standards such as MARC that have made it possible to create and search the Worldcat union
catalogue at OCLC of currently more than 150 million entries in 470 languages3. MARCXML is
the corresponding XML language that expresses a MARC record in XML.
1http://www.w3.org/XML/Schema
2http://www.w3.org
3http://www.oclc.org/worldcat/statistics/charts/languagecloud.htm as of Nov 2009

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-010.jpg&w=240&h=142
http://kmi.open.ac.uk/people/stefan/mir-book/library-card-v2.jpg
http://www.w3.org/XML/Schema
http://www.w3.org
http://www.oclc.org
http://www.oclc.org/worldcat/statistics/charts/languagecloud.htm
http://www.w3.org/XML/Schema
http://www.w3.org
http://www.oclc.org/worldcat/statistics/charts/languagecloud.htm
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On the other side of the spectrum of complexity resides the Dublin Core standard named after
the city in Ohio, US, where the first meeting took place in 1995. Its almost trivial structure — only
15 elements such as title, creator, subject, description and date each of which is optional and may be
repeated — make it very easy for everyone to instantly create metadata for their multimedia objects.
The Dublin Core metadata initiative have produced a comprehensive and comprehensible guide
Using Dublin Core4. Figure 2.2 shows an XML representation of simple Dublin Core metadata for
this book.

<?xml version="1.0"?>
<metadata

xmlns="http://w.x.y/z/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://w.x.y/z/ http://w.x.y/z/schema.xsd"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title> Multimedia information retrieval </dc:title>
<dc:description>

This book covers the process of finding multimedia documents, how to
build multimedia search engines, and guides through related research.

</dc:description>
<dc:creator> Stefan Rueger </dc:creator>
<dc:date> 2010 </dc:date>
<dc:publisher> San Rafael, Ca: Morgan & Claypool Publishers </dc:publisher>
<dc:identifier>

http://dx.doi.org/10.2200/S00224ED1V01Y200910ICR010
</dc:identifier>
<dc:identifier> ISBN paper 9781608450978 </dc:identifier>
<dc:identifier> ISBN ebook 9781608450985 </dc:identifier>

</metadata>

Figure 2.2: Dublin core record for this book

Metadata are not always stored outside the documents themselves. Many multimedia docu-
ments contain provisions for storing metadata, especially technical metadata. For example, the tagged
image file format TIFF contains an internal directory structure to hold many images in one file; each
image can have its own description in terms of size, bit sampling information, compression and
so on. Although all images are rectangular, the format allows for a vector-based cropping path for
outlines or image frames. TIFF was initially conceived for scanners but is now a good format for
any digital image no matter what the source, be it a screenshot, a digital camera, a grey-level scan, a
photo-editing programme or a medical imaging device. The TIFF standard is extensible and some
companies have created proprietary image file formats on the back of TIFF describing using custom
compression schemes or additional tags. Nikon’s NEF format is one such example. Most digital
libraries chose to store images in TIFF with lossless compression, which is also the best format to
4http://dublincore.org/documents/usageguide

http://dublincore.org/documents/usageguide
http://dublincore.org/documents/usageguide
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process images in photo-editors — a lossy file format such as JPEG would otherwise lose some of
its quality in each store-reload step.

Most camera manufacturers have agreed on a way of incorporating metadata into the files that
the camera produces; this is the so-named exchangeable image file format EXIF that records mostly
technical (as opposed to descriptive) metadata, including a thumbnail of the image, see Figure 2.3
for an example for the kind of information that can be stored in it. EXIF metadata can be stored in
TIFF.

Model Nikon D200
Exposure Auto exposure, aperture priority, pattern metering
Exposure 1/640, f8.0, +0.78eV, 100 ISO, 15mm focal length
Flash did not fire
Orientation top_left
Date 22.07.2007 12.45 BST
GPS data 52 ◦ 03’27.6”N, 0 ◦ 43’30.0”W, 71m
Media 3872x2592 image/jpeg Baseline Fine (4:1)

Thumbnail Bits/channel 8 8 8

Figure 2.3: Some EXIF metadata for a JPEG photograph

Other file formats associate different metadata standards with them. Adobe Systems, for
example, pushes its extensible metadata platform XMP that is very versatile and includes, amongst
other things, rights management. Originally developed for Adobe’s Portable Document Format,
its structure can be applied to images, audio and video files alike. In 2008 the International Press
Telecommunications Council released a photo metadata standard based on XMP. The Library of
Congress’ Network Development and MARC Standards Office promotes a different XML schema
for a set of technical data elements required to manage digital image collections. The schema, also
known as Metadata for Images in XML (MIX), provides an alternative format for interchange and/or
storage.

The most salient metadata standard for multimedia is MPEG-7, which was developed by
MPEG (Moving Picture Experts Group)5 and is a format for description and search of audiovisual
resources. MPEG-7 also contains low-level descriptors that can be used with content-based queries.
As such, MPEG-7 is the ideal choice of meta-data for audiovisual search engines. MPEG-7 also
proposes a set of features that can be used for this purpose, but the standard does not suggest nor
prescribe how content-based queries should be carried out. Section 2.3 and Chapter 3 will go into
more detail how content-based queries can be processed.

MPEG-7 descriptions cater for still images, graphics, 3d models, audio, speech, video, and
information about how these elements are composed in a multimedia presentation. They care about
the content of the multimedia object on various levels, from low-level machine-extractable features,

5Other MPEG standards include MPEG-1 and MPEG-2, which enabled video on CD-ROM, MP3, Digital Audio Broadcasting
and Digital Television through compression; MPEG-4, which is the multimedia standard to support animation and interactivity;
MPEG 21, which is a metadata standard for content delivery and rights management

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-011.jpg&w=110&h=82
http://kmi.open.ac.uk/people/stefan/mir-book/peace-pagoda-medium.jpg
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to high-level human annotations, but they do not engage with the way the content is represented:
physical world objects such as a drawing on paper can have an MPEG-7 description in the very
same way as a compressed digital TIFF image.

As with other metadata standards, there is not a single one “right” MPEG-7 file for a particular
multimedia object. MPEG-7 allows, and encourages, different levels of granularity in the description
depending on the application type.Although MPEG-7 puts a great emphasis on content description,
more traditional metadata such as media type, rights information, price and parental ratings can also
be included. The three main elements of MPEG-7 are:

• Descriptors to define the syntax and the semantics of each feature, and description schemes to
specify the relationships between their components, which in turn may be descriptors and
description schemes

• Description definition language to define the syntax of the MPEG-7 description tools and to
allow the creation of new description schemes and descriptors

• System tools and reference implementations to support binary coded representation for efficient
storage and transmission, multiplexing of descriptions, synchronization of descriptions with
content, management and protection of rights

Figure 2.4 shows an MPEG-7 encoding of the results of an algorithm that predicts
the presence of tree, field and horses with various levels of confidence. Can you spot those
words? More information about MPEG-7 can be found at the MPEG6 website and the
MPEG-7 Consortium website7.

Witten et al (2010, Chapter 6) give a deeper insight into metadata in general and their use
within digital libraries, but see also (Hillmann and Westbrooks, 2004; Gilliland-Swetland, 1998;
Intner et al, 2006; Lagoze and Payette, 2000; Zeng and Qin, 2008; Messing et al, 2001).

2.2 PIGGY-BACK TEXT RETRIEVAL

Amongst all media types,TV video streams arguably have the biggest scope for automatically extract-
ing text strings in a number of ways: directly from closed-captions, teletext or subtitles; automated
speech recognition on the audio and optical character recognition for text embedded in the frames
of a video. Full text search of these strings is the way in which most video retrieval systems operate,
including Google’s latest TV search engine8 or Blinkx-TV9. This technology existed in some re-
search labs much earlier: for example, Físchlár-TV10 was an experimental web-based video recorder
system, developed and maintained 1999–2004 by Dublin City University’s Centre for Digital Video

6http://www.chiariglione.org/mpeg
7http://mpeg7.nist.gov
8http://video.google.com
9http://www.blinkx.tv

10http://www.cdvp.dcu.ie/aboutfischlar.html

http://www.cdvp.dcu.ie/aboutfischlar.html
http://www.chiariglione.org/mpeg
http://mpeg7.nist.gov
http://video.google.com
http://www.blinkx.tv
http://www.cdvp.dcu.ie/aboutfischlar.html
http://www.chiariglione.org/mpeg
http://mpeg7.nist.gov
http://video.google.com
http://www.blinkx.tv
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<?xml version="1.0" encoding="UTF-8"?>
<Mpeg7 xsi:schemaLocation="urn:mpeg:mpeg7:schema:2004 ./davp-2005.xsd"
xmlns="urn:mpeg:mpeg7:schema:2004"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2004"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="AudioVisualType">
<AudioVisual>
<StructuralUnit href="urn:x-mpeg-7-pharos:cs:AudioVisualSegmentationCS:root"/>
<MediaSourceDecomposition criteria="kmi image annotation segment">
<StillRegion>
<MediaLocator>
<MediaUri>http://server/location/Zion_National_Park_392099.jpg</MediaUri>
</MediaLocator>
<StructuralUnit href="urn:x-mpeg-7-pharos:cs:SegmentationCS:image"/>
<TextAnnotation type="urn:x-mpeg-7-pharos:cs:TextAnnotationCS:

image:keyword:kmi:annotation_1" confidence="0.87">
<FreeTextAnnotation>tree</FreeTextAnnotation>

</TextAnnotation>
<TextAnnotation type="urn:x-mpeg-7-pharos:cs:TextAnnotationCS:

image:keyword:kmi:annotation_2" confidence="0.72">
<FreeTextAnnotation>field</FreeTextAnnotation>

</TextAnnotation>
<TextAnnotation type="urn:x-mpeg-7-pharos:cs:TextAnnotationCS:

image:keyword:kmi:annotation_3" confidence="0.63">
<FreeTextAnnotation>horses</FreeTextAnnotation>

</TextAnnotation>
</StillRegion>

</MediaSourceDecomposition>
</AudioVisual>

</MultimediaContent>
</Description>

</Mpeg7>

Figure 2.4: MPEG-7 example for automated text annotation of an image

Processing. A final-year student project at Imperial College London that indexed videos through
teletext received a national prize in the year 200011, see also Section 4.1.

In contrast to television, for which legislation normally requires subtitles to assist the hearing
impaired, videos stored on DVD don’t usually have textual subtitles. They have subpicture channels
for different languages instead, which are overlaid on the video stream. This requires the extra step
of optical character recognition, which can be done with a relatively low error rate owing to good
quality fonts and clear background/foreground separation in the subpictures. In general, teletext
has a much lower word error rate than automated speech recognition. In practice, it turns out that

11http://www.setawards.org/previous_winners.vc

http://www.setawards.org/previous_winners.vc
http://www.setawards.org/previous_winners.vc
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this does not matter too much as query words often occur repeatedly in the audio - the retrieval
performance degrades gracefully with increased word error rates.

Web pages afford some context information that can be used for indexing multimedia objects.
For example, words in the anchor text of a link to an image, a video clip or a music track, the file
name of the object itself, metadata stored within the files and other context information such as
captions. A subset of these sources for text snippets are normally used in web image search engines.

Some symbolic music representations allow the conversion of music into text, such as MIDI
files which contain a music representation in terms of pitch, onset times and duration of notes. By
representing differences of successive pitches as characters one can, for example, map monophonic
music to one-dimensional strings as demonstrated in Figure 2.5. The numbers are midi represen-
tations of the pitch of the score. We just record the differences of successive notes (as only a few
gifted ones have the power of absolute pitch) and convert the difference to a letter. Zero is Z, 1
is upper case A, -1 is lowercase a, and so on. The process in Figure 2.5 glides a window over the
music piece and records “musical words” of a certain length. These words then act as surrogate
text for music representation; query by humming can thus be treated as a text retrieval problem.
Downie and Nelson (2000) were the first to map music to text in this way. Later Doraisamy (2005)
deployed this principle and extended it to both polyphonic music, where more than one note is
present, and rhythm, ie, music retrieval by tapping. She built a query by humming system that is
based on the reduction of music to text followed by text search: you can watch a demonstration video
that lays open the individual steps of her algorithm by clicking on Figure 2.5 or by going directly to
http://people.kmi.open.ac.uk/stefan/mir-book/movie0008-audio.wmv.

Figure 2.5: Music Retrieval by Humming (click frame to play demo video)

A large range of different text matching techniques can be deployed, for example, the edit
distance of database strings with a string representation of a query. The edit distance between two
strings computes the smallest number of deletions, insertions or character replacements that is
necessary to transform one string into the other. In the case of query-by-humming, where a pitch
tracker can convert the hummed query into a MIDI-sequence (Birmingham et al, 2006), the edit
distance is also able to deal gracefully with humming errors.

http://people.kmi.open.ac.uk/stefan/mir-book/movie0008-audio.wmv
http://people.kmi.open.ac.uk/stefan/mir-book/movie0008-audio.wmv


20 CHAPTER 2. BASIC MULTIMEDIA SEARCH TECHNOLOGIES

2.3 CONTENT-BASED RETRIEVAL

Content-based retrieval uses characteristics of the multimedia objects themselves, ie, their content
to search and find multimedia. Its main application is to find multimedia by examples, ie, when the
query consists not of words but of a similar example instance.

Figure 2.6: Millions of pixels with intensity values and the corresponding intensity histogram

One of the difficulties of matching multimedia is that the parts the media are made from are
not necessarily semantic units. Another difficulty comes about by the sheer amount of data with little
apparent structure. Look at the black and white photograph of Figure 2.6, for example. It literally
consists of millions of pixels, and each of the pixels encodes an intensity (one number between
0=black and 255=white) or a colour (three numbers for the red, green and blue colour channel, say).
One of the prime tasks in multimedia retrieval is to make sense out of this sea of numbers.

The key here is to condense the sheer amount of numbers into meaningful pieces of infor-
mation, which we call features. One trivial example is to compute an intensity histogram, ie, count
which proportion of the pixels falls into which intensity ranges. In Figure 2.6 I have chosen 8 ranges,
and the histogram of 8 numbers conveys a rough distribution of brightness in the image.

Figure 2.7 shows the main principle of query-by-example; in this case, the query is the image
of an ice-bear on the left.This query image will have a representation as a certain point (o) in feature
space. In the same way, every single image in the database has its own representation (x) in the same
space. The images, whose representations are closest to the representation of the query are ranked
top by this process. The two key elements really are features and distances. Our choice of feature
space and how to compute distances has a vital impact on how well visual search by example works.

Features and distances are a vital part of content-based retrieval and so is the ability to
efficiently find nearest neighbours in high-dimensional spaces. This is the content of Chapter 3

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-013.jpg&w=379&h=177
http://kmi.open.ac.uk/people/stefan/mir-book/inaugural-ppt-artwork-002.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/inaugural-ppt-artwork-003.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/intensity-histogram.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/histogram-bins.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-013.jpg&w=379&h=177
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-013.jpg&w=379&h=177
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-013.jpg&w=379&h=177
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Figure 2.7: Features and distances

that treats content-based retrieval in depth. Lew et al (2006) and Datta et al (2008) have published
overview articles on content-based retrieval.

2.4 AUTOMATED IMAGE ANNOTATION

Two of the factors limiting the uptake of digital libraries for multimedia are the scarcity and the
expense of metadata for digital media. Flickr12, a popular photo sharing site, lets users upload,
organise and annotate their own photographs with tags. In order to search images in Flickr, little
more than user tags are available with the effect that many photographs are difficult or impossible
to find. The same is true for the video sharing site YouTube13. At the other end of the spectrum
are commercial sites such as the digital multimedia store iTunes14, which sells music, movies, TV
shows, audio-books, podcasts and games. They tend to have sufficiently many annotations as the
commercial nature of iTunes makes it viable to supply metadata to the required level of granularity.
While personal photographs and videos do not come with much metadata except for the data that
the camera provides (time-stamp and technical data such as aperture, exposure, sensitivity and focal
length), a whole class of surveillance data carries even less incentive to create metadata manually:
CCTV recordings, satellite images, audio recordings in the sea and other sensor data. The absence
of labels and metadata is a real barrier for complex and high-level queries such as “what did the
person with a red jumper look like who exited the car park during the last 6 hours in a black Volvo
at high speed”.

12http://flickr.com
13http://www.youtube.com
14http://www.apple.com/itunes

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-017.jpg&w=325&h=180
http://kmi.open.ac.uk/people/stefan/mir-book/inaugural-ppt-artwork-006.jpg
http://flickr.com
http://www.youtube.com
http://www.apple.com/itunes
http://flickr.com
http://www.youtube.com
http://www.apple.com/itunes
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One way to generate useful tags and metadata for multimedia objects is to involve a com-
munity of people who do the tagging collaboratively. This process is also called folksonomy, social
indexing or social tagging. Del.icio.us15 is a social bookmarking system and a good example for
folksonomies. Similarly, the ability of Flickr to annotate images of other people falls also into this
category. Von Ahn and Dabbish (2004) have invented a computer game that provides an incentive
(competition and points) for people to label randomly selected images. All these approaches tap into
“human computing power” for a good cause: the structuring and labelling of multimedia objects.
Research in this area is still in the beginning, and it is by no way clear how to best harness the social
power of collaborative tagging to improve metadata for, and access to, digital museums and libraries.

Another way to bridge the semantic gap (see Figure 1.7) is to try to assign simple words
automatically to images solely based on their pixels. Methods attempting this task include dedicated
machine vision models for particular words such as “people” or “aeroplane”.These individual models
for each of the words can quickly become very detailed and elaborate: Thomas Huang of the Uni-
versity of Illinois at Urbana Champaign once joked during his keynote speech at CIVR 2002 that in
order to enable a system to annotate 1,000 words automatically, it was merely a case of supervising
1,000 corresponding PhD projects!

Automated annotation can be formulated in more general terms of machine translation as
seen in Figure 2.8. The basic idea is to first dissect images into blobs of similar colour and then use
these blobs as “words” of a visual vocabulary. Given a training set of annotated images a correlation
between certain words and certain blobs can then be established in a similar way to correlations
between corresponding words of two different languages using a parallel corpus (for example, the
official records of the Canadian Parliament in French and English). Duygulu et al (2002) created
the first successful automated annotation mechanisms based on this idea.

Figure 2.8: Automated annotation as machine translation problem

However, the most popular and successful generic approaches are based on classification tech-
niques. This normally requires a large training set of images that have annotations from which one
can extract features and correlate these with the existing annotations of the training set. For ex-

15http://del.icio.us

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-018.jpg&w=170&h=126
http://del.icio.us
http://kmi.open.ac.uk/people/stefan/mir-book/machine-translation-crop.jpg
http://del.icio.us
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ample, images with tigers will have orange-black stripes and often green patches from surrounding
vegetation, and their existence in an unseen image can in turn bring about the annotation “tiger”.
As with any machine learning method, it is important to work with a large set of training examples.
Figure 2.9 shows randomly selected, royalty free images from the Corel’s Gallery 380,000 product
that were annotated with sunset (top) and city (bottom). Each of these images can have multiple
annotations: there are pictures that are annotated with both sunset and city, and possibly other terms.

Automated algorithms build a model for the commonalities in the features of images, which
can later be used for retrieval. One of the simplest machine learning algorithms is the Naïve Bayes
formula,

P(w|i) = P(w, i)

P (i)
=

∑
j P (w, i|j)P (j)

∑
j P (i|j)P (j)

=
∑

j P (i|w, j)P (w|j)P (j)
∑

j

∑
w P (i|w, j)P (w|j)P (j)

,

where j are training images, w are word annotations and P(w|i) is the probability of a word w

given an (unseen) image i. The probability P(w, j) that word w is used to annotate image j can be
estimated from an empirical distribution of annotations in the training data.

Figure 2.10 shows an unseen image i for which the five words with the highest probabilities
p(w|i) according to above Naïve Bayes classification are all sensible and useful.

Yavlinsky et al (2005) built models based on a similar idea for which the model for keywords
appearance is derived from non-parametric density estimators with specialised kernels that utilise
the Earth mover’s distance. The assumption is that these kernels reflect the nature of the underlying
features well. Yavlinsky built a corresponding search engine behold16, where one could search for
Flickr images using these detected terms. These algorithms all make errors as one can expect from
fully automated systems. Figure 2.11 shows screenshots from an early version of behold. Clearly,
not all words are predicted correctly, and the ugly examples from this figure might motivate to
study methods that use external knowledge, for example, that stairs and icebergs normally do not go
together.

Today, Makadia et al’s recent (2008) work on the nearest neighbour label transfer provide a
baseline for automatic image annotation using global low-level features and a straightforward label
transfer from the 5 nearest neighbours. This approach is likely to work very well if enough images
are available in a labelled set that are very close to the unlabelled application set. This may be the
case, for example, in museums where images of groups of objects are taken in a batch fashion with
the same lighting and background and only some of the objects in the group have received manual
labels. Liu et al (2009a) also use label transfer, albeit in a slightly different setting since they aim to
segment and recognise scenes rather than assign global classification labels.

16http://www.behold.cc

http://www.behold.cc
http://www.behold.cc
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Figure 2.9: Machine learning training samples for sunset (top) and city images (bottom)

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-020.jpg&w=272&h=242
http://kmi.open.ac.uk/people/stefan/mir-book/sunset-examples-part.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/city-examples-part.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-019.jpg&w=272&h=242
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Figure 2.10: Automated annotation results in water, buildings, city, sunset and aerial

Automated annotation from pixels faces criticism not only owing to its current inability to
model a large and useful vocabulary with high accuracy. Enser and Sandom (2002, 2003) argue that
some of the vital information for significance and content of images has to come from metadata: it
is virtually impossible to, eg, compute the date or location of an image from its pixels. A real-world
image query such as “Stirling Moss winning Kentish 100 Trophy at Brands Hatch, 30 August 1968”
cannot be answered without metadata. They argue that pixel-based algorithms will never be able
to compute significance of images such as “first public engagement of Prince Charles as a boy” or
“the first ordination of a woman as bishop”. Their UK-funded arts and humanities research project
“Bridging the Semantic Gap in Visual Information Retrieval” (Hare et al, 2006; Enser and Sandom,
2003) brought a new understanding about the role of the semantic gap in visual image retrieval.

Owing to these observations and also owing to their relatively large error rates, automated
annotation methods seem to be more suitable in the context of browsing or in conjunction with
other search methods. For example, if you want to “find shots of the front of the White House in the
daytime with the fountain running”17, then a query-by-example search in a large database may be
solved quicker and better by emphasising those shots that were classified as “vegetation”, “outside”,
“building” etc — even though the individual classification may be wrong in a significant proportion
of cases.

There is a host of research that supports the bridging of the semantic gap via automated
annotation. Hare and Lewis (2004) use salient interest points and the concept of scale to the se-
lection of salient regions in an image to describe the image characteristics in that region; they then
extended this work (2005) to model visual terms from a training set that can then be used to annotate
unseen images. Magalhães and Rüger (2006) developed a clustering method that is more compu-
tationally efficient than the currently very effective method of non-parametric density estimation,
which they later (2007) integrated into a unique multimedia indexing model for heterogeneous
data. Torralba and Oliva (2003) obtained relatively good results with simple scene-level statistics,

17Topic 124 of TRECVid 2003, see http://www-nlpir.nist.gov/projects/tv2003

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-021.jpg&w=198&h=132
http://kmi.open.ac.uk/people/stefan/mir-book/244089.jpg
http://www-nlpir.nist.gov/projects/tv2003
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door

wave

iceberg

Figure 2.11: The good, the bad and the ugly: three examples for automated annotation

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-024.jpg&w=225&h=165
http://kmi.open.ac.uk/people/stefan/mir-book/fig2x11.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-022.jpg&w=225&h=165
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-023.jpg&w=225&h=164
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while others deploy more complex models: Jeon et al (2003) and Lavrenko et al (2003) studied cross-
lingual information retrieval models, while Metzler and Manmatha (2004) set up inference networks
that connect image segments with words. Blei and Jordan (2003) carry out probabilistic modelling
with latent Dirichlet allocation, while Feng et al (2004) use Bernoulli distributions.

Machine learning methods for classification and annotation are not limited to images at all.
For example, one can extract motion vectors from MPEG-encoded videos and use these to classify
a video shot independently into categories such as object motion from left to right, zoom in, tilt,
roll, dolly in and out, truck left and right, pedestal up and down, crane boom, swing boom etc. In
contrast to the above classification tasks, the extracted motion vector features are much more closely
correlated to the ensuing motion label than image features are to text labels, and the corresponding
learning task should be much simpler a consequence.

The application area for classification can be rather diverse: Baillie and Jose (2004) use au-
dio analysis of the crowd response in a football game to detect important events in the match;
Cavallaro and Ebrahimi (2004) propose an interaction mechanism between the semantic and the
region partitions, which allows to detect multiple simultaneous objects in videos.

On a higher level, Salway and Graham (2003) developed a method to extract information
about emotions of characters in films and suggested that this information can help describe higher
levels of multimedia semantics relating to narrative structures. Salway et al (2005) contributed to
the analysis and description of semantic video content by investigating what actions are important
in films.

Musical genre classification can be carried out on extracted audio-features that repre-
sent a performance by its statistics of pitch content, rhythmic structure and timbre texture
(Tzanetakis and Cook, 2002): timbre texture features are normally computed using short-time
Fourier transform and Mel-frequency cepstral coefficients that also play a vital role in speech
recognition; the rhythmic structure of music can be explored using discrete wavelet transforms
that have a different time resolution for different frequencies; pitch detection, especially in poly-
phonic music, is more intricate and requires more elaborate algorithms. For details, see the work of
Tolonen and Karjalainen (2000). Tzanetakis and Cook (2002) report correct classification rates of
between 40% (rock) and 75% (jazz) in their experiments with 10 different genres.

2.5 FINGERPRINTING
Multimedia fingerprints are a means to uniquely identify multimedia objects in a database, given a
possibly different representation of it.Fingerprints are computed from the contents of the multimedia
objects. They are small, allow the fast, reliable and unique location of the database record and, most
importantly, are robust against degradation or deliberate change as long as the human perception is
the same.

The idea is to be able to identify a specific multimedia object based solely on its content. For
example, you listen to a song in a restaurant and would like to know more about it. You could record a
piece of the song and use this representation to query a database of performances. Your recording will
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be degraded by background noise, and it will be only a part of the original performance. Its fingerprint
should be sufficient to uniquely determine the entry in your large database of original recordings,
say, CD tracks as published by the music industry. This does not mean that the fingerprint of the
query has to be identical to the fingerprint of the original multimedia object — the former needs
only contain enough evidence to identify the original fingerprint beyond reasonable doubt.This also
means that we would expect to distinguish even between different performances of the same song by
the same artist at different occasions. Sinitsyn (2006) explains how audio fingerprinting algorithms
can be integrated into data management middleware to perform background self-cleaning from
duplicates.

Fingerprinting is just as useful in the visual world: for example, consider videos uploaded to
YouTube, a video sharing site. The uploaded video may already exist in YouTube, but have been
transcoded for a different bandwidth into a different format, edited to conform to a different aspect
ratio, may have logos or advertisement inserted, but its fingerprint should still identify it as a copy
of another one already in the database.

As we want to identify objects based on perception, simple hashes such as Message Digest
algorithm 5 (MD5) or the Cyclic Redundancy Check (CRC) of the multimedia contents are not
sufficient: these would already change when a single bit of the file is changed, let alone when the
whole representation and encoding of the multimedia object radically changed.

2.5.1 AUDIO FINGERPRINTING
For audio, many fingerprinting algorithms are based on the spectrogram of the song. A spectrogram
is a threeway graph telling us which frequencies contain how much energy at which time of the audio
piece. Salient points of a spectrogram are time-frequency points (τ, f ) that contain a relatively high
amount of energy. In order to compute the energy as a function of the frequency at a given point τ
in time, the original pressure-wave sound signal τ #→ s(τ ) is subjected to a short window around τ

in time. Rather than using rectangular windows that would harshly cut off the signal and artificially
introduce high frequencies near the cut-off points, one uses smooth infinite windows such as a
Gaussian or, more popularly, a finite Hann window t #→ w(t) = (1 − cos(2π(t − τ )/T ))/2 with
width T on the interval [τ − T/2, τ + T/2]. This short-term signal is then subjected to a Fourier
transform, the magnitude of which is known as the energy distribution in frequency space:

spectrogram(f, τ ) =
∣∣∣∣

∫ ∞

−∞
s(t)w(t − τ )ejf tdt

∣∣∣∣
2

In practice, the spectrogram is computed as the squared modulus of the discrete short-term Fourier
transform using discrete time and frequency variables and sums instead of integrals.

Other transformations are in use, such as the Modulated complex lapped transform, the
Walsh-Hadamard transform or variants of the Fourier transform, from all of which robust features
are extracted (Cano et al, 2005). In the following few paragraphs, we will look at two detailed
mechanisms to find known pieces of music in a database from spectrograms: Shazam’s constellation



2.5. FINGERPRINTING 29

maps (Wang,2003) and Philips Research’s fingerprint blocks (Haitsma and Kalker,2003).Shazam18

actually provides a service that allows you to capture snippets of music via your mobile phone and
returns one of the 8 million tracks in their database19.

Figure 2.12 is a screenshot of audacity, a free digital audio editor, displaying a spectrogram of a
5 second light sabre sound from Star Wars. The bright points in the colour spectrogram correspond
to the peaks in the energy.The important point to remember is that the location of these peaks would
remain invariant under varying compression, audio encoding, background noise etc. The light sabre
sound has a characteristic near continuous band of high energy in the low frequencies in addition
to columns of energy spread over the whole frequency spectrum. Once quantised with a suitable
algorithm, we get distinct salient points in the spectrum, see Figure 2.13. In music pieces, they look
a bit like star constellations, which is why Wang (2003) has called the scatter plot of these points
constellation maps.

Figure 2.12: Audacity screenshot of the spectrogram of a light sabre sound

The quantised coordinate list for the constellation maps recording peak energy is sparse and
discrete. The problem of detecting the song in the database is reduced to a registration problem of
the constellation maps: Imagine the constellation maps of all database songs on a long strip of paper
and the query’s constellation map on a small piece of transparency foil. You find the matching music
piece by gliding the transparency over the paper strip and noting the best match.

18http://www.shazam.com
19http://www.shazam.com/music/web/newsdetail.html?nid=NEWS103 (last accessed Apr 2009)

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-025.jpg&w=339&h=215
http://www.shazam.com
http://people.kmi.open.ac.uk/stefan/mir-book/lightsabre.wav
http://www.shazam.com
http://www.shazam.com/music/web/newsdetail.html?nid=NEWS103
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-025.jpg&w=339&h=215
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-025.jpg&w=339&h=215
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Wang (2003) used certain pairs of constellation points to search for matches: for each con-
stellation point (also called anchor point) he considers a fixed rectangular target zone to the right of
the anchor point and uses all pairs that consist of the anchor point and a point in target zone. Each
of these constellation pairs is encoded as its pair of frequencies and the time difference making the
representation time invariant. With a suitable discretisation of the time and frequency axis, say 10
bits each, these three values can be packed into a 32-bit hash value that associates the song id and
time offset of the anchor point within the song to it, see Figure 2.13. The use of constellation pairs
instead of points increases the specificity of a single match of a constellation pair (as opposed to a
point) by a factor of 220 ≈ 1, 000, 000 (30 bits vs 10 bits). Let us assume that the dimension of the
target zone is constructed in a way that the number of constellation points in it is limited to, on
average, n points, say n = 10. Then there are n times more pairs to store than there are points and
there are n times more query pairs to match than there are anchor points. This reduces the speed-up
factor of one match to approximately 1, 000, 000/n2 = 10, 000, assuming n = 10.

Figure 2.13: Salient points in the spectrum of a light sabre sound. Certain pairs of spectral points are
used for retrieval and encoded as as the hash function (f1, f2, t2 − t1) #→ (t1, id ). The visualised salient
points here are not to scale: see Exercise 2.6.5.

The actual matching process is straightforward: the audio query, which is a captured part of
a song, is processed and hash values of certain constellation pairs (as described above) are extracted.
Each of the hashes is looked up in the database of constellation pairs hashes of all songs. Each match
results in three pieces of information: the time t

q
1 of the anchor point in the query hash, the time td1

of the matching anchor point in the database and the corresponding song id. For a true match of
the music sample with a particular song, the matched pairs need to align consistently in time. As the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-028.jpg&w=340&h=204
http://kmi.open.ac.uk/people/stefan/mir-book/sabre-rgb-03.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-028.jpg&w=340&h=204
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query only captures a part of the song, which can start anywhere in the song, the times of the anchor
points of query and matching song will not be the same, but their difference td1 − t

q
1 is expected to

be a constant for true matches, and this constant should be the starting time of the captured query
in the full song. Separating true matches from spurious ones can thus be done with the following
method: for each song, in which a match of a constellation pair occurred, keep a small histogram of
the observed differences td1 − t

q
1 . One of these histograms is expected to exhibit a substantial peak

in a particular time difference, and the corresponding song will be the right one from the database.
Haitsma and Kalker (2003) from Philips Research suggest to use the spectrogram for their

fingerprints, too. They extract a 32-bit sub-fingerprint every 11.6 ms (the granularity of the time
axis) and collect 256 adjacent sub-fingerprints into a block covering around 3 s of music.They divide
the frequency scale between 300 Hz and 2,000 Hz into 33 logarithmically spaced frequency bands,
so that the distance between two neighbouring frequency bands becomes roughly 1/12 of an octave,
or a semitone. Let E(m, n) denote the energy of the mth frequency band at the nth time frame of
11.6 ms. Then the mth bit of the nth frame is set to the sign of the following neighbouring energy
differences (0 ≤ m ≤ 31 and 0 ≤ n ≤ 255):

[E(m, n) − E(m + 1, n)] − [E(m, n + 1) − E(m + 1, n + 1)] (2.1)

They argue that the sign of this energy difference is relatively robust under different encoding
schemes. A partial fingerprint block for the light sabre sound is depicted in Fig 2.14. In theory
this is now a similar registration and matching problem as in Shazam’s representation, but it is
approached differently here. The reason for this is presumably owing to the fact that perceptually
same music pieces can exhibit a bit error rate of 10-30% between matching fingerprint blocks. Indeed,
Haitsma and Kalker (2003) set a threshold of 35%: if the bit error rate between two fingerprint blocks
falls below 35% then they declare these two blocks as coming from the same song.

Even though a high bit error rate of b = 0.3 causes the probability p(4) that no more than 4
bits were flipped to drop under 2%, it is the case that when you look at 256 sub-fingerprints, at least
one of them will have no more than 4 bit errors with more than 99% probability (see Exercise 2.6.3).

The basic search idea is to go through the 256 sub-fingerprints in a query block and try
to match each sub-fingerprint against a database sub-fingerprint. If there is a match of two sub-
fingerprints, then the corresponding blocks are compared; if, furthermore, the bit error rate is below
the threshold, then a match is declared on the corresponding song. If no matching song was found
when checking all 256 sub-fingerprints in the query, then it is assumed that none of the 256 sub-
fingerprints of the query has survived the transformation from the original song unscathed. The
next best thing is to assume that at least one of the query sub-fingerprints has only one bit flipped.
This gives rise to 32 different sub-fingerprints with one changed bit. If the next round of checks
with 256 · 32 modified sub-fingerprints from the query does not identify a matching song then
2 bit-errors are assumed to have happened in the query. There would be

(32
2

)
= 32 · 31/2 = 496

different combinations that can be produced from each sub-fingerprint. As this is getting more
and more computationally expensive, Haitsma and Kalker (2003) suggest a heuristics: they assume
that bits in the query sub-fingerprints are more susceptible to bit changes if they arise from energy
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differences (2.1) closer to zero.They would only create modified query sub-fingerprints for the most
susceptible bits. This makes it feasible to explore variations where more than 2 bits are changed. If
after all reasonable attempts still no matching block could be identified, it is assumed that the query
song was either too distorted or is not in the database.

Figure 2.14: Partial fingerprint block of initial light sabre sound

Audio fingerprints of music tracks are expected to distinguish even between different perfor-
mances of the same song by the same artist at different occasions.

Interesting applications include services that allow broadcast monitoring companies to identify
what was played, so that royalties are fairly distributed or programmes and advertisements verified.
Other applications uncover copyright violation or, for example, provide a service that allows you to
locate the metadata such as title, artist and date of performance from snippets recorded on a (noisy)
mobile phone.

2.5.2 IMAGE FINGERPRINTING

The requirements for image fingerprints are the same as for audio fingerprints: they should be small,
and allow the fast, reliable and unique location of the database record under degradation or small
deliberate change. The main difference between Images and Audio is that images are static two-
dimensional colour distributions, while sound is a one-dimensional air pressure function of time.
We will look at different ways to record image features, so that similar images can be recognised
“beyond a reasonable doubt”. The underlying basic idea is to create a number L of independent
representations, each of which maps near duplicates to the same quantised value with a reasonable,
but not necessarily very high probability; this quantised value corresponds to the constellation pair
hash for audio fingerprinting. The next step is to require a match of a certain number m out of the
L independent representations between two images for them to be declared near identical. In the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-030.jpg&w=339&h=123
http://kmi.open.ac.uk/people/stefan/mir-book/ls-log-spectrogram-gray-300Hz-2000Hz+axis.jpg
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following, we will look at one method, locality sensitive hashing (LSH), for near-duplicate detection
for dense features and one, min hash, for sparse features.20

Locality Sensitive Hashing

LSH (Datar et al, 2004) consists of independent random projections of the original feature space to
integers that are combined into a hash value. The basic procedure maps a feature vector v ∈ Rd to
an integer

hi(v) =
⌊

aiv + bi

w

⌋
, (2.2)

where ai ∈ Rd is a random vector with independent normal distributed components, w ∈ R+ is a
constant specifying the granularity of the results and bi ∈ [0, w) is a random uniformly distributed
number. A k-tuple of these integers defines a composite hash-value

h(v) = (h1(v), h(2(v), . . . , hk(v)).

The preimage in feature space of a particular hash-value is an area that is bordered by pairs of
hyperplanes that are perpendicular to one of the random vectors ai and that have a distance of w.
Normally we have k < d, which means that the preimage is not bounded. Figure 2.15 visualises how
such a hash function works for k = 2. Consequently, we have two random vectors a1, a2 ∈ Rd that
determine the orientation of the d − 1-dimensional hyperplanes in feature space where the value of
the hash function changes. In the figure, each random vector ai and the corresponding perpendicular
hyperplanes are shown in the same colour. The random offsets b1, b2 ∈ [0, w) effectively shift the
point of origin in feature space by less than the width w of a hash bin, and they are not visualised
here. From the illustration it is clear that nearby points in feature space are likely to end up with the
same hash value, though they could have neighbouring hash values owing to boundary effects. It is
also apparent that points far away may share the same hash bin. Hence, a series of L independent
hash functions is computed for the query with the condition that at least m of these L composite
hash values coincide with the corresponding one of a multimedia object before the latter is assumed
to be close to the query beyond reasonable doubt.

In practice, only a finite number of bits will be used to store a particular hash integer computed
from (2.2). In the example of Figure 2.15, we have 3 bit per axis yielding 6 finite bins and two infinite
bins per axis.This setup is only reasonable if we can assume that the points in feature are concentrated
on a finite domain (ie, the features are essentially normalised). The composite hash value h(v) only
has 6 bit in our example. Note that a reasonable number of bits in a large repository would be around
20 bit, so that a single hash lookup has the potential to reduce the number of points in feature space
by a factor of roughly one million (ie, 220). Based on this the approximate speedup factor should be
L/1, 000, 000, as executing a single query means to compute L composite hash values and looking

20Dense features are ones that are likely to have non-zero components in a fair number of them for a typical image. This would be
the case for colour histograms of images. In contrast to this, sparse feature vectors are those for which the number of non-zero
components is small, eg, a ‘bag of word’ representation of text documents or an artificial visual vocabulary for images.
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Figure 2.15: Preimage of an LSH function v #→ h(v) = (h1(v), h2(v)) leaving d − 2 dimensions un-
bounded in the d-dimensional feature space

up the contents of corresponding, possibly unbounded, hash bins. Those database elements that
appear in at least m of the L bins are candidates for nearest neighbours. If precision is important,
then the true distance to the query in feature space can be checked for each candidate, but in some
applications one might even consider not looking at the feature values of the database elements at
all during query time.

Note that w, k and L have to be chosen at index time (unlike m that can be chosen at query
time), and their choice should reflect the properties of the repository data in feature space: the
product mk ought to exceed d in order for LSH to have a chance of bounding a finite area around
the query, while w and k should be chosen so that the typical bin has the desired occupancy.

It looks as if each query can be done in constant time, but — like all hashing techniques —
LSH has a query time that is proportional to the number of database entries as the average bucket
occupancy increases with the database size. A careful redesign of the hash parameters k and w,
however, can reduce the average bucket occupancy once the response is deemed too slow. Although
each composite hash value may use only a small disk space, the fact that L hash tables need to be
stored makes LSH space-hungry. Ideally, the hash tables are kept in main memory, which limits the
number of multimedia entries that can be managed by one single server. In order to alleviate that
effectively, kL individual hash values are kept for each feature vector of a multimedia object, one can
reuse hash functions: rather than deploying kL random vectors ai and offsets bi , one can generate
a smaller number n (2k < n < kL) of these and randomly chose k out of n vectors and offsets for
each of the L composite hash functions. The effect of this reuse is that the composite hash values
are not completely independent of each other, but this ultimately saves space.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-031.jpg&w=339&h=182
http://kmi.open.ac.uk/people/stefan/mir-book/lsh-grid4.jpg
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The significance of using random vectors ai with components drawn independently from a
normal (Gaussian) distribution lies in the fact that their random projections approximately preserve
Euclidean distances. It has been argued that Manhattan distances often work better for feature
comparisons in content-based image retrieval (Howarth and Rüger, 2005a); random vectors whose
components are independently drawn from a particular distribution of family of Cauchy distributions
x #→ c

π

(
c2 + x2)−1 with parameter c > 0, approximate Manhattan distances.

Min Hash

Some of the features developed for describing images are sparse, for example, quantised SIFT
features from salient image regions. These quantised features share some of the properties of words
in language and, hence, are called visual words. Let V be the vocabulary of visual words and Ai ⊂ V

be a set of words that describes a particular image i. The similarity between two images i and j can
then be expressed as the ratio of the size of the intersection and the union of the representing sets,

sim(Ai, Aj ) = |Ai ∩ Aj |
|Ai ∪ Aj |

, (2.3)

which is a number between 0 meaning no overlap and 1 meaning identical representing sets. Broder
(1997) called this similarity the resemblance of two documents and published a method of estimating
sim(Ai, Aj ) using random permutations. I will exemplify Broder’s algorithm in a simplified form
using the following four small text documents:

1. Humpty Dumpty sat on a wall,

2. Humpty Dumpty had a great fall.

3. All the King’s horses, And all the King’s men

4. Couldn’t put Humpty together again!

Removing stop words and putting the words into sets leaves the following four sets:
A1 = {humpty, dumpty, sat, wall}
A2 = {humpty, dumpty, great, fall}
A3 = {all, king, horse, men}
A4 = {put, humpty, together, again}

Equivalently, a document-word matrix of zeros and ones records membership of words in documents.
This results in long document vectors, the columns of this matrix:
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A1 A2 A3 A4

humpty 1 1 0 1
dumpty 1 1 0 0

sat 1 0 0 0
wall 1 0 0 0

great 0 1 0 0
fall 0 1 0 0
all 0 0 1 0

king 0 0 1 0
horse 0 0 1 0
men 0 0 1 0
put 0 0 0 1

together 0 0 0 1
again 0 0 0 1

Using the full document-word matrix for a large collection to compute the inter-document
similarities (2.3) is very slow. Owing to the sparsity of the document vectors, the naïve approach
of randomly sampling rows of this matrix would result in many uninformative rows for particular
documents, ie samples that contain only zeros. Note that for any pair of documents there are only
four different rows in the corresponding matrix: (0,0), (0,1), (1,0) and (1,1). It turns out, indeed,
that above definition (2.3) of sim(Ai, Aj ) does not depend on how many words occur in neither
document: let cxy count the number of (x, y) rows. The key observation is then that

sim(Ai, Aj ) = c11

c11 + c10 + c01
, (2.4)

ie, sim(Ai, Aj ) is independent of c00. The trick of the min hash is to use a random permutation
of the vocabulary, and then, for each document, only record its first word under this permutation
ignoring all the words that do not occur in the document. This word is called a min hash. Consider
the following 4 permutations:
π1 = (dumpty, men, again, put, great, humpty, wall, horse, king, sat, fall, together, all)
π2 = (fall, put, all, again, dumpty, sat, men, great, wall, king, horse, humpty, together)
π3 = (horse, dumpty, wall, humpty, great, again, sat, all, men, together, put, king, fall)
π4 = (king, humpty, men, together, great, fall, horse, all, dumpty, wall, sat, again, put)

They give rise to the following min hashes:
A1 A2 A3 A4

π1 dumpty dumpty men again
π2 dumpty fall all put
π3 dumpty dumpty horse humpty
π4 humpty humpty king humpty
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The surprising fact is that the probability that the respective min hashes of two documents
coincide is equal to sim(Ai, Aj ); this means that sim(Ai, Aj ) can be estimated with a simple counting
exercise, namely how often their min hashes coincide under different permutations. In order to
understand why this is is the case, let w be the min hash of Ai ∪ Aj under a random permutation π ,
and without restriction of generality, assume w ∈ Ai implying that w is the min hash of Ai under
π . Then w coincides with the min hash of Aj under π if and only if w ∈ Ai ∩ Aj . As π is a random
permutation, w is chosen from Ai ∪ Aj with uniform probability. Consequently, the probability of
min hash of Ai coinciding with Aj is exactly the proportion |Ai ∩ Aj |/|Ai ∪ Aj |, ie, sim(Ai, Aj ).

Hence, the proportion of cases where the min hashes of Ai and Aj coincide while π varies
is a good approximation of sim(Ai, Aj ) provided the permutations are chosen independently and
uniformly. In above example, sim(A1, A2) is estimated to be 3/4 (the true value being 1/2), while
sim(A1, A4) is correctly estimated to be 1/4.

Broder (1997) uses the concept of shingles, ie, word sequences in documents, making the
representation even more sparse. This is not necessary for image matching as there is no natural
order of the visual words in an image. The other generalisation in the original paper is that each min
hash records the first s words of a document in the permutation vector.

For the purposes of near duplicate detection k independent min hashes of a document are
subsumed into what is called a sketch.The probability that two documents have an identical sketch is
sim(Ai, Aj )

k . Requiring coinciding sketches reduces the probability of a false positive considerably
and will only look at candidates that are highly likely to be very similar. As with LSH,L independent
sketches, which act as hash values, are stored for every document. At query time, the sketches of a
query document are used to retrieve L sets of documents with the same sketch and the requirement
for candidates of near duplicates is to coincide at least m times out of the L sketches.

2.6 EXERCISES

2.6.1 SEARCH TYPES CONTINUED

Coming back to Exercise 1.6.5 and Figure 1.6,what would be the most appropriate search technology
(piggy-back text search, feature classification, content-based, fingerprint) for each scenario?

2.6.2 INTENSITY HISTOGRAMS

Revisit Figure 2.6: why is it a good idea to record the proportion rather than the absolute value of the
number of pixels that fall into the intensity ranges? Explain why these histograms are normalised
with respect to the L1 norm.

2.6.3 FINGERPRINT BLOCK PROBABILITIES

Given a fingerprint block of 256 sub-fingerprints each of which has 32 bits assume the whole block
is subjected to an independent identically distributed bit errors at the rate of b. Show that the
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probability p(k, b) of having no more than k bit errors in one sub-fingerprint is

p(k, b) =
k∑

i=0

(
32
i

)
(1 − b)32−ibi .

Show that the probability that among 256 sub-fingerprints at least one survives with no more than
k bit errors is given by

1 − (1 − p(k, b))256.

Verify, using above formulas, the following claim on page 31: Even though a high bit error
rate of b = 0.3 causes the probability p(4) that no more than 4 bits were flipped to drop under 2%,
it is the case that when you look at 256 sub-fingerprints, at least one of them will have no more than
4 bit errors with more than 99% probability.

2.6.4 FINGERPRINT BLOCK FALSE POSITIVES
Assuming that the fingerprint block extraction process yields random, independent and identically
distributed bits,what is the probability that a randomly modified fingerprint block matches a different
random block in the database that consists of, say, 1011 overlapping fingerprint blocks (4 million
songs with around 5 minutes each)? The bit error rate for the random modification is assumed to
be 35%.

2.6.5 SHAZAM’S CONSTELLATION PAIRS
Assume that the typical survival probability of each 30-bit constellation pair after deformations
that we still want to recognise is p, and that this process is independent per pair. Which encoding
density, ie, the number of constellation pairs per second, would you need on average so that a typical
captured query of 10 seconds exhibits at least 10 matches in the right song with a probability of
at least 99.99%? Under these assumptions, further assuming that the constellation pair extraction
looks like a random independent and identically distributed number, what is the false positive rate
for a database of 4 million songs each of which is 5 minutes long on average?

2.6.6 ONE PASS ALGORITHM FOR MIN HASH
Rather than actually permuting the rows of the document-word matrix, one would create kL per-
mutation functions πl : {1, . . . , n} →{ 1, . . . , n}, l ∈ {1, . . . , kL}, where n is the size of the visual
vocabulary (ie, the number or words), k is the min hash sketch size, and L is the number of sketches
that are deployed.

a) Show that the following algorithm computes min hash values: let m be the number of
images in the repository. Initialise all elements of a kL × m matrix h to ∞. The document-word
matrix is scanned once in an arbitrary order: for each nonzero (j, i) element (meaning that word j

appears in image i) and for each l with 1 ≤ l ≤ kL set h[l, i] to πl(j) if πl(j) < h[l, i].
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b) Assume π is an array of n integers that is initialised so that π [l] = l. Show that by assigning
a random number to each array element and then sorting the array elements by the assigned random
number you create a random permutation with uniform probability.

c) Initialise π as above. Show that by scanning π from l = n down to l = 1 and, at each
step, computing a random index i drawn uniformly and independently between 1 and l and then
swapping the contents of π [i] with π [l] you create a random permutation with uniform probability.
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C H A P T E R 3

Content-based Retrieval in
Depth

As features and distances are the main two ingredients for content-based retrieval, we will devote a
whole section for each (3.2 and 3.3, respectively) and on tricks of the trade on how to standardise
features and distances (3.4). Before delving into these, let us look at the global architecture (3.1) of
how to use features and distances in principle. It will become apparent that the crux of the indexing
problem is to compute nearest neighbours efficiently (3.5). With all this in hand, we can then look
into the question of how to fuse evidence from the similarity with respect to different features that
multimedia objects exhibit and how to merge search results from multiple query examples (3.6).

3.1 CONTENT-BASED RETRIEVAL ARCHITECTURE
The query-by-example paradigm extracts features from the query, which can be anything from
a still image, a video clip, humming etc, and compares these with corresponding features in the
database. The important bit is that both the query example and the database multimedia objects
have undergone the same feature extraction mechanism. Figure 3.1 shows a typical architecture of
such a system. The database indexing and similarity ranking tasks in Figure 3.1 identify the nearest
neighbours in feature space with respect to a chosen distance function. It is sufficient to sort the
distances of the query object to all database objects and only present as results the nearest neighbours,
ie, the ones with the smallest distances to the objects in feature space.

The complexity of computing all distances and sorting them is O(N log(N)) in time with N

being the number of database objects. This can be brought down to O(N) if one is only interested
in the nearest, say, 100 neighbors. As such, this process is scalable in the sense that an increase of
the database size requires a corresponding increase in the resources1. This naïve approach is very
resource intense, though, as a single query requires a system to touch all feature vectors. This is
neither practical, nor desirable for large databases. Section 3.5 looks at the indexing problem to
compute nearest neighbours efficiently.

Both Figure 2.7 and the architecture sketch in Figure 3.1 suggest that there is only one
monolithic feature space. However, it makes more sense to compute different features independently
and in a modular fashion. Rather than one feature vector for a multimedia object m, one would have
a number r of low-level features f1(m), f2(m), . . ., fr(m), each of which would typically be a vector
or numbers representing aspects like colour distribution, texture usage, shape encodings, musical
timbre, pitch envelopes etc. Of course, one can always concatenate these individual feature vectors
1the technical definition of scalable is that the problem is O(N) or better in time and memory
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Figure 3.1: Content-based multimedia retrieval: generic architecture

to obtain a large monolithic one, but this is inelegant as different applications might want to focus
on different features of the multimedia objects, and different individual feature vectors might call
for different distance functions. Section 3.6 will look at ways to “fuse” query results from multiple
feature spaces and at how to fuse comparisons over multiple query examples.

The architecture presented here is a typical, albeit basic, one; there are many variations and
some radically different approaches that have been published in the past. A whole research field
has gathered around the area of video and image retrieval as exemplified by the ACM Multimedia
conference (ACM MM), the Conference on Image and Video Retrieval (CIVR), and Multimedia
Information Retrieval (MIR), which used to be a workshop at ACM MM, has later developed
into an ACM conference and is going to be merged with CIVR to form the ACM International
Conference on Multimedia Retrieval (ICMR) from 2011. The TREC video evaluation workshop
TRECVid has supported video retrieval research through independent, metric-based evaluation (see
Subsection 5.4.4), while ImageCLEF has had this role for image retrieval research (see 5.4.5).There
is another research field around music retrieval, as evidenced by the annual International Society for
Music Information Retrieval Conference (ISMIR2), which has grown out from a symposium to a
notable conference in 2003.

3.2 FEATURES
One common way of indexing multimedia is by creating summary statistics, which represent colour
usage, texture composition, shape and structure, localisation, motion and audio properties. In this
section, I discuss some of the widely used features and methods in more depth. Deselaers et al
(2008) compare a large number of different image features for content-based image retrieval and
give an overview of a large variety of image features. Features are not only relevant for retrieval
2http://www.ismir.net

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-032.jpg&w=226&h=154
http://kmi.open.ac.uk/people/stefan/mir-book/mmir-architecture2.jpg
http://www.ismir.net
http://www.ismir.net


3.2. FEATURES 43

tasks: Little and Rüger (2009) demonstrate how important the choice of the right features is for the
automated image annotation task.

3.2.1 COLOUR HISTOGRAMS
Colour is a phenomenon of human perception. From a purely physical point of view, light emitted
from surfaces follows a distribution of frequencies as seen in Figure 3.2. Each pure spectral frequency
corresponds to a hue, all of which create the rainbow spectrum. The human eye has three different
colour receptors that react to three different overlapping ranges of frequencies; their sensitivity peaks
fall into the red, green and blue areas of the rainbow spectrum. Hence, human perception of colour
is three-dimensional, and modelling colour as a mixture of red, green and blue is common. Virtually
all colour spaces are three-dimensional (except for ones that utilise a fourth component for black),
and so are colour histograms.

Figure 3.2: Spectral power of light emitted by different substances (imagined — not measured)

An example of a 3-dimensional colour histogram is depicted in Figure 3.3, which shows a
crude summary of the colour usage in the original image. Here each of the red, green and blue colour
axes in the so-called RGB space is subdivided into intervals yielding 4 × 4 × 4 = 64 3d colour bins;
the proportion of pixels that are in each bin is represented by the size of a circle, which is positioned
at the centre of a bin and coloured in correspondingly.

In general, the algorithm for computing histograms involves four steps as follows: (a) the
underlying space is partitioned into cells — these can be 3d cells as in Figure 3.3 or 1d intensity
intervals as in Figure 2.6; (b) each cell is associated with a unique integer, known as the histogram
bin number or as the index of the histogram; (c) the number of occurrences in each cell is recorded
using an integer counter each, eg, by sweeping over all pixels in the image, computing into which cell
the pixel falls, and incrementing the corresponding bin counter; (d) the histogram is then normalised
and, optionally, quantised: normalisation just requires to divide each bin counter hi by the number
n of image pixels (n = wh, where w is the width and h the height of the image). Quantisation is
often required for space efficiency and typically done by assigning a k-bit integer to each histogram
bin i through

i #→
⌊

2k hi

n + 1

⌋
.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-033.jpg&w=247&h=96
http://kmi.open.ac.uk/people/stefan/mir-book/spectral-pd.jpg
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#→

Figure 3.3: 3d colour histogram

We divide by n + 1 as opposed to n ensuring that hi/(n + 1) can never reach 1 (in which case i

were to be mapped to 2k , which is just outside the range of a k-bit integer).

3.2.2 STATISTICAL MOMENTS
Statistical moments are other ways to summarise distributions. If you wanted to express a quality of
an object, say the intensities p(i, j) of pixels at position (i, j), through one number alone you would
most likely chose its average

µ = 1
wh

w∑

i=1

h∑

j=1

p(i, j),

where w is the width and h the height of the image. The values

pk = 1
wh

w∑

i=1

h∑

j=1

(p(i, j) − µ)k (3.1)

with k > 1 are known as the central moments of the quantity p, Indeed, the knowledge of all central
moments and of µ is sufficient to reconstruct the distribution of p. p2 is also known as variance,
while p3 and p4, respectively, are used to define (but not equal to) skewness and kurtosis. Skewness
is a measure of the asymmetry of the probability distribution of the variable p: a negative value for a
bell-shaped unimodal (ie, one peak) distribution indicates a long left tail where the mean is farther
out in the left long tail than is the median; symmetric distribution bring about zero skewness, and
the mean coincides with the median; finally, a positive value indicates a long right tail.3 Kurtosis is
a measure of how fat the tails of the distribution are: a high value means that much of the variance
3These rules of thumb can fail for multimodal distributions or those where the shorter tail is correspondingly “fatter” as to
compensate the weight of the longer tail.
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is owed to infrequent extreme deviations (a thin long tail), as opposed to frequent modestly-sized
deviations.

In practical terms, the pk have a highly different typical range owing to the “to the power of
k” element in Equation 3.1. Hence, when using moments as parts of feature vectors, one normally
deploys the k-th root in order to make the values comparable in size:

mk = sign(pk)
k
√

|pk| (3.2)

The vector (µ, m2, . . . , ml) of l floating point numbers roughly describes the underlying distribution
and can be used as a feature vector. Note that pk can be negative if k is odd, which explains why
in Equation 3.2 the k-th root is applied to its absolute value. Nevertheless, mk receives the same
sign as pk in Equation 3.2, and it is noteworthy that the feature vector (µ, m2, . . . , ml) is neither
normalised nor non-negative in contrast to histogram feature vectors.

3.2.3 TEXTURE HISTOGRAMS
Of course, the features of Figures 2.6 and 3.3 are very simple, and the features that we compute
are normally more complex than that. For example, Howarth and Rüger (2005b) studied and de-
vised ways to extract texture descriptions from images. Tamura et al (1978) have found out through
psychological studies that we humans respond best to coarseness, contrast, and directionality as
visualised in Figure 3.4, and to a lesser degree to line-likeness, regularity and roughness.

coarseness contrast directionality

Figure 3.4: Textures

Unlike colour, which is a property of a pixel, texture is a property of a region of pixels, so
we need to look at an area around a pixel before we can assign a texture to that pixel. Figure 3.5
is an example, how we compute for each point in an image (by considering a window around this
point) a coarseness (C) value, a contrast value (N) and a directionality value (D). These values can
be assembled into a single false-colour image, where the red, blue and green channels of an ordinary
image are replaced by C, N and D, respectively. This expresses visually the use and perception of
texture in an image. From the false-colour texture image, we can then compute 3d texture histograms
exactly in the same way as we do for colour images.

Textures are normally computed from greyscale images — although there is nothing to prevent
one from extracting textures from colour channels or from studying the patterns that colours of similar
greyscale introduce.

We will first study in depth how Tamura texture features can be computed.
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coarseness contrast directionality

Figure 3.5: 3d texture diagram via false-colour images

Tamura Texture Features

Coarseness has a direct relationship to scale and repetition rates and was seen by Tamura et al (1978)
as the most fundamental texture feature. An image will contain textures at several scales; coarseness
aims to identify the largest size of these scales, even where a smaller regular pattern exists. First, we
take a moving average at every point over 2k × 2k windows, k < 6. This average at the point (x, y)

is

ak(i, j) =
i+2k−1−1∑

i′=i−2k−1

j+2k−1−1∑

j ′=j−2k−1

p(i′, j ′)
22k

,

where p(i, j) is the grey level at the image pixel coordinates (i, j). Then one computes the bigger
of the horizontal and vertical differences of ak at the edge of the window:

ck(i, j) = max( |ak(i − 2k−1, j) − ak(i + 2k−1, j)|,

|ak(i, j − 2k−1) − ak(i, j + 2k−1)|)

This value will differ with k, and the

k̂(i, j) = argmaxk ck(i, j)

that maximises ck indicates the biggest detected scale 2k̂(i,j) at the point (i, j). The coarseness value
for a whole picture is then averaged as

coarseness = 1
wh

∑

(i,j)

2k̂(i,j).
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When carrying out these calculations one has to be careful not to exceed the area of the
original image. The moving average ak can only be computed in a smaller area, and ck can only be
computed in a smaller area still, see Figure 3.6.

Figure 3.6: Domain over which coarseness can be computed

Contrast aims to capture the dynamic range of grey levels in an image together with the
polarisation of the distribution of black and white. The first quantity is measured using the variance

σ 2 = 1
wh

∑

(i,j)

(p(i, j) − p̄1)
2

of grey levels, while the second quantity is obtained by the

α4 = p̄4/σ
4 = 1

wh

∑

(i,j)

(p(i, j) − p̄1)
4/σ 4.

p̄1 stands for the average grey value. The contrast measure is defined as

contrast = σ/(α4)
n

Experimentally, Tamura found n = 1/4 to give the closest agreement to human measurements.
Directionality is a global property over a region. The feature described does not aim to differ-

entiate between different orientations or patterns, but it measures the total degree of directionality.
At each pixel, a gradient

g =
(

%h

%v

)
with

%h =
∑

k∈{−1,0,1}
p(i + 1, j + k) − p(i − 1, j + k) and

%v =
∑

k∈{−1,0,1}
p(i + k, j + 1) − p(i + k, j − 1)

is computed.The gradient computation corresponds to convolving the image with two simple masks
for edge detection, 


−1 0 1
−1 0 1
−1 0 1



 and




1 1 1
0 0 0

−1 −1 −1



 ,
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respectively. The gradient g is then transformed into bi-polar coordinates

(|g|,φ) =
( |%h| + |%v|

2
, tan−1

(
%v

%h

)
+ π

2

)
,

which reveal size and direction of the gradient.The next step is to compute a histogram over quantised
angles for those gradients with a size |g| larger than a certain threshold. The histogram bin hφ(k)

counts the proportion of those pixels above threshold for which

2k − 1
2n

< φ/π ≤ 2k + 1
2n

(mod 1).

n determines the granularity of the histogram of edge directions.This histogram reflects the degree of
directionality, see Figure 3.7.To extract a measure, the sharpness of the histogram peaks is computed
from their second moments.

Figure 3.7: Example image and directionality histogram

3.2.4 SHAPE
Shape is commonly defined as an equivalence class of geometric objects invariant under translations,
rotations and scale changes that keep the aspect ratio. Many retrieval applications require global
scale invariance, ie, relative sizes are still meaningful. Hence, I will not require scale invariance in
the following when looking at shapes. Strict scale invariance would imply that the sizes of objects
do not matter at all.

Shape representations can preserve the underlying information, so the shape can be recon-
structed or they can simply aim at keeping interesting aspects.The former type is used for compression
while the latter may be sufficient for retrieval. There are a number of boundary-based features than
can be extracted — these ignore the interior of shapes including holes in it. Other shape features
are region-based.

This section assumes that we have a representation of the shape to be analysed at hand. It is
normally non-trivial to separate background objects from foreground objects in pixel-images, and
this theme is outside the scope of this book. There are some cases, however, where this separation is

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-041.jpg&w=347&h=112
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easily possible because the shape objects already exist in parameterised form, for example, as vector
graphics, or in different layers owing to the production method of the multimedia object. Some
media, for instance, comic strips or cartoon movies, lend themselves to simple object separation.

Boundary-based Shape Features
The boundary of a 2d shape can be described mathematically in terms of a parameterised curve:

B: [0, 1] → R2

t #→ (x(t), y(t))

Normally, one would expect B to be continuous, and a continuous boundary B is called closed if
and only if B(0) = B(1).

Figure 3.8: Perimeter and area of a shape

The perimeter of a shape is the length

P =
∫ √

x′(t)2 + y′(t)2dt

of its boundary t #→ (x(t), y(t)). Here f ′ denotes the derivative ∂f/∂t of a function f with respect
to t . If you have a representation of a boundary in form of pixels, it is normally not good enough
to count the pixels in this representation, as the digitisation of the mathematical line consumes a
different amount of pixels at different angles and apparent line thicknesses, see Figure 3.8. This is
in stark contrast to the best way of determining the area of a shape that can easily be approximated
by counting the pixels that it fills.

The convexity of a shape is one important characteristics. A convex region is one, where the
connecting line between any two points of the region lies within it. It is always possible to construct
a convex hull from a region, see Figure 3.9. The ratio of the perimeter of the convex hull and the
perimeter of the original boundary is called convexity. It is 1 for convex shapes and less than 1 for
non-convex shapes.

A similar idea is behind the characteristics of the circularity of a shape, which is defined as

T = 4π
A

P 2 ,

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-042.jpg&w=234&h=107
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Figure 3.9: Convexity and convex hull

where A is the area of the shape and P is its perimeter. The circularity of a shape is 1 for a circle and
less than one for other shapes.

Corners in a parameterised curve are places with a high curvature

c = x′y′′ − y′x′′

(x′2 + y′2)3/2 .

The number of corners is another possible characteristics for a shape.
An early boundary representation with strings that can be used for recognition purposes is

that of chain codes proposed by Freeman (1961). They approximate curves with a sequence of vectors
lying on a square grid. In its simplest form, each pixel in a curve has eight neighbours, numbered
counter-clockwise from 0 to 7 starting with the neighbour to the right, see Figure 3.10. A line can
be encoded by following the pixels in the line one by one, each time making a note of the neighbour
number. Figure 3.10 illustrates this with the small circle-like contour. We begin encoding it at a
pixel in the middle-left, move up one position (2), move diagonally up to the right (1), then to
right (0), and so on. For closed curves the resulting chain code depends on where we started and in
which direction. One way out of this is to assign the representation with the smallest number, here
007765434321.

Figure 3.10: Freeman chain code

However, this representation is still not rotation invariant. To achieve the latter one can
transform a chain code (f1, f2, . . . , fn) into a difference chain code via a sequence of angles

ai = (fi+1 − fi) mod 8 (3.3)

rather than directions. Figure 3.11 illustrates the 8 different angles with their codes from 0 to 7 and
that the difference chain code of the rotated figure remains the same.

Finally, as seen in Figure 3.12, one can then summarise individual curves into histograms.
A well-established technique to describe closed planar curves is the use of Fourier descriptors

(Zahn and Roskies, 1972; Persoon and Fu, 1977). Using the Fourier descriptors one can achieve

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-044.jpg&w=186&h=34
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Figure 3.11: Difference chain codes are rotation invariant

Figure 3.12: Histogram of difference chain code

representational invariance with respect to a variety of affine transformations; Wallace and Wintz
(1980) have successfully used these descriptors for recognition tasks.

For the computation of Fourier descriptors, the contour pixels at coordinates (x, y) need to be
represented as complex numbers z = x + jy. For closed contours, we get a periodic function which
can be expanded into a convergent Fourier series. Specifically, let Fourier descriptor Ck be defined
as the kth discrete Fourier transform coefficient

Ck =
N−1∑

n=0

(zne
−2πjkn

N ),

−N/2 ≤ k < N/2, which we compute from the sequence of complex numbers z0, z1, . . . , zN−1

where N is the number of contour points. To characterise contour properties any constant number
of these Fourier descriptors can be used. The most interesting descriptors are those of the lower
frequencies as these tend to capture the general shape of the object.Translation invariance is achieved
by discarding C0, rotation and starting point invariance by further using only absolute values of the
descriptors, and scaling invariance is brought about by dividing the other descriptors by, say, |C1|.
The final feature vector has the form

( |C−L|
|C1|

, . . . ,
|C−1|
|C1|

,
|C2|
|C1|

, . . . ,
|CL|
|C1|

)T

,
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where L is an arbitrary constant between 2 and N/2 − 1. The thus derived feature vector has a good
theoretical foundation and a clear interpretation, which makes it easy to decide on granularity and
size of the vector to chose.

Region-based Shape Descriptors

We model a bounded region of a shape as a function

f : R2 → {0, 1}

(x, y) #→
{

1 if pixel at (x, y) is on
0 otherwise.

It turns out that the knowledge of all its 2d moments

Mij =
∑

(x,y)

xiyjf (x, y), i, j ∈ N,

is sufficient to reconstruct f and with it the region. Two useful entities are M00, which is the area of
the region, and

(x̄, ȳ) =
(

M10

M00
,
M01

M00

)
,

which is the centre of mass of the region, see Figure 3.13.

(x̄, ȳ)

Figure 3.13: Centre of mass expressed with 2d moments

The central moments

Cij =
∑

(x,y)

(x − x̄)i(y − ȳ)j f (x, y),

which are centred around (x̄, ȳ), are translation invariant by construction. If these moments are then
divided by the right power of the region’s area then the ensuing normalised central moments

cij = Cij /M
1+(i+j)/2
00

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-047.jpg&w=79&h=60
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are both translation and scaling invariant. It is possible to construct the following 7 descriptors,
which are rotation invariant in addition:

I1 = c02 + c20

I2 = (c20 − c02)
2 + 4c2

11

I3 = (c30 − 3c12)
2 + (3c21 − c03)

2

I4 = (c30 + c12)
2 + (c21 + c03)

2

I5 = (c30 − 3c12)(c30 + c12)((c30 + c12)
2 − 3(c21 + c03)

2)+
(3c21 − c03)(c21 + c03)(3(c30 + c12)

2 − (c21 + c03)
2)

I6 = (c20 − c02)((c30 + c12)
2 − (c21 + c03)

2)+
4c11(c30 + c12)(c21 + c03)

I7 = (3c21 − c03)(c30 + c12)((c30 + c12)
2 − 3(c21 + c03)

2)+
(3c12 − c30)(c21 + c03)(3(c30 + c12)

2 − (c21 + c03)
2)

These 7 numbers are called invariant moments. I2 is also known as eccentricity. Although they
are useful descriptors for shapes, invariant moments are not very expressive, and it is not clear how
one could use these to scale up complex shapes. One can compute other useful properties of shapes
with normalised central moments, though: the orientation of a shape, an angle indicating its main
axis, is given by

φ = 1
2

tan−1
(

2c11

c20 − c02

)
,

see Figure 3.14.

Figure 3.14: Bounding box computation via orientation angle φ

Rotating the shape by this angle φ
(

x′

y′

)
=

(
cos(φ) sin(φ)

− sin(φ) cos(φ)

) (
x

y

)

makes it easy to determine a minimal bounding box. Let (x′
min, y

′
min) and (x′

max, y
′
max) be the

extreme coordinates of the rotated bounding box, then you can identify the coordinates of the
minimal bounding box by rotating about −φ.

All of the above-mentioned shape representations have in common that they can be stored as
a simple vector. More elaborate shape representations have been introduced some of which are the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-048.jpg&w=377&h=62
http://kmi.open.ac.uk/people/stefan/mir-book/bounding-box.jpg


54 CHAPTER 3. CONTENT-BASED RETRIEVAL IN DEPTH

curvature scale space representation or the spline curve approximation which require sophisticated
shape matching techniques (del Bimbo and Pala, 1997).

Figure 3.15: The feature vector of tiled images

3.2.5 SPATIAL INFORMATION
Tiled Histograms

Histograms as in Figure 2.6 are useful instruments, but they are very crude indicators of similarity.
For example an eight-bin histogram of intensity values of an image is a simple approximation of its
brightness distribution, and many images do indeed share the same histogram. Figure 3.16 shows a
woman in the middle of bright column sculptures, but an image of a skier in snow is likely to have
the same intensity histogram.The other disadvantage of global histograms computed over the whole
image is that they lose all locality information. One simple solution is to tile an image into n × m

rectangles of the same size, each of which creates a histogram (see Figure 3.15). The full feature
vector is then the concatenation of the feature vectors of individual tiles and, in this case, contains
6 · 8 numbers.

Designing Different Areas of Importance

Different areas in images carry different importance: computing separate histograms for its centre
and the border region allows one to focus more on one than on the other. Figure 3.16 is an example
of a centre-border intensity histogram, where two histograms are computed: as the centre area is
much bigger than the border area the corresponding proportion of pixels that fall into centre area
intensity ranges is typically larger than for intensity ranges of the border area. This gives the centre
extra weight.

The photographic composition principle of the “rule of thirds” implies that lines or objects of
interest work best in a photograph if they are off-centre, roughly one third or two thirds into the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-049.jpg&w=227&h=159
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Figure 3.16: Centre-border intensity histogram of an image

image.A similar, but slightly more evolved aesthetic principle, suggests composing interesting objects
at points that divide the height or width of an image at the golden ratio of (

√
5 − 1)/2 ≈ 0.618 as

opposed to 2/3. It is a surprising fact that the 25% of the central area of an image still captures all
these points of interest with a generous margin. Figure 3.17 contrasts global histograms with three
other schemes that aim at recovering crude localisation information. Focal histograms only consider
the 25% interior of any image, while central histograms put much weight on the main histogram of
the central 50% area but retain some information about the background in four sub-histograms of
less weight. Finally, local histograms create five sub-histograms of equal weight, four of which are
around the possible four quadrants of interest, while the fifth caters for the background.

Figure 3.17: Different strategies to capture essential areas in photographs

Structure Histograms

The MPEG-7 colour structure histogram folds the frequency of a colour with information how con-
centrated or scattered it occurs in an image. In the same way as in global colour histograms, each
pixel is assigned a corresponding bin (either as 1d intensity or 3d colour bin). However, here a glid-
ing 8 × 8 window moves over the image, and each histogram bin counts the number of overlapping
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windows that contain at least one pixel of the corresponding bin. An image that has a concentrated
occurrence of blue in the top will have a smaller count for the blue cell than another image, where
the same number of blue pixels are peppered across the whole image. Messing et al (2001) claim
that, for this reason, the colour structure descriptor outperforms other colour descriptors. It should
be noted that the structuring element of the colour structure descriptor is applicable to all qualities
of spatial arrangements, eg, the false-colour texture representation above.

Normalisation is through dividing by the number of different window positions; each com-
ponent is thus between 0 and 1, but the sum can, in rare cases, be as large as 64, the number of pixels
in the gliding window.

Localised Features

One quite successful idea to exploit local structure is to compute points of interest. These are salient
points in images that give rise to encoding features in limited area. Figure 3.18 illustrates the idea,
but algorithms that compute points of interests normally compute many more regions.

Figure 3.18: Points and regions of interest

Lowe (1999, 2004) has developed a popular scale-invariant feature transform (SIFT) that
detects and encodes local features in images. The first step is to detect candidate points of interest
in an image by convolving a 2d Gaussian function of different scale σ with the image (basically a
smoothing or blurring of the image with different radius) and taking differences of the resulting
function (blurred image) at each point with respect to slightly different scales σ and kσ .The extrema
of this function, called difference of Gaussians, indicate candidate points of interest. From these key-
points are localised and orientations assigned, which serve as a local reference coordinate system.
The final features that are extracted from this area are computed relative to this local reference, so
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that they are encoded in a scale, rotation and location invariant manner. A typical image exhibits in
the order of 2000 key-points.

Using points of interests with localised features allows one to quantise the latter into so
called visual words. Being quantised one can deploy the same type of retrieval techniques that are
so successful for text retrieval: inverted-file indices. Localised features and quantisation is a very
powerful combination for duplicate detection.

3.2.6 OTHER FEATURE TYPES
There is a sheer abundance of different feature types. Above were a mere selection of features for
colour, texture and shape features that are useful for visual still image retrieval. They demonstrate
the type of processing from counting to Fourier transforms that is typical for low-level processing.

It should be noted that MPEG-7 (see Section 2.1 on page 16) has defined the following set
of features for low-level audiovisual content description:

• colour: colour space, colour quantization, dominant colour(s), scalable colour, colour layout,
colour-structure descriptor, GoF/GoP colour

• texture: homogeneous texture, texture browsing, edge histogram
• shape: region shape, contour shape, shape 3d
• motion: camera motion, motion trajectory, parametric motion, motion activity

I have described a single one of them, the colour-structure descriptor, just above.
A deep treatment of music and audio features is beyond the scope of this book. I refer to

Liu et al (1998), who reviewed a good range of audio features.

3.3 DISTANCES
Most of above features create real-valued vectors of a fixed dimension n, where distance computation
is straightforward. We will first introduce standard distance measures that work component-wise
such as the Minkowski distance, then distances that include cross-component correlations such as
the Mahalanobis distance between vectors, followed by statistical and probabilistic distance measures
including the popular mover’s distance between probability distributions, and those that work on a
string level.

3.3.1 GEOMETRIC COMPONENT-WISE DISTANCES
Let v, w ∈ Rn. The so-called Minkowski norm

Lp : Rn → [0, ∞)

w #→ |w|p =
(

n∑

i=1

|wi |p
)1/p
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induces a distance
dp(v, w) = Lp(w − v).

Lp is a norm for all real values p ∈ [1, ∞] meaning Lp(v) = 0 if and only if v = 0; Lp(av) =
|a| Lp(v) for all a ∈ R and v ∈ Rn, and Lp(v + w) ≤ Lp(v) + Lp(w) for all v, w ∈ Rn. The latter
is also known as triangle inequality. The induced distance fulfills corresponding axioms.

One special case for p = 2 is also known as the Euclidean norm, which is the length of a line
between points in space. Another special case, p = 1, yields the Manhattan norm, which corresponds
to the total length of a sequence of lines parallel to the coordinate axes from point v to point w.
d1(v, w) is called Manhattan distance,because cars in Manhattan can only go along the grid system of
perpendicular streets and avenues (ignoring the existence of the diagonal Broadway). As p increases
beyond 2, the sum in dp(v, w) is more and more dominated by the largest difference |vi − wi | of
components, and as p approaches infinity dp(v, w) will be identical to the maximum of all values
|vi − wi | over i. Hence L∞ is also called maximum norm or Chebyshev norm. However, this norm
is not particularly useful for multimedia retrieval as it implies that the distance between two media
representations v and w is solely determined by the biggest non-matching component, which may
as well be an outlier, and hence irrelevant to our perception of similarity. It turns out that a p at
the lower end of the spectrum normally give better retrieval results owing to a larger emphasis on
components that actually match.

This has led to exploring values of p in the area of (0, 1) for nearest neighbour search
(Aggarwal et al, 2001).Technically, Lp is no longer a norm for p < 1 as the triangle inequality is vio-
lated,but it is still possible to order the induced dissimilarity4 values accordingly.Howarth and Rüger
(2005a) have found best retrieval results for many feature vectors types with p values between 0.5
and 0.75.

A special dissimilarity measure for histograms, called partial histogram intersection, is given
by

dphi(v, w) = 1 −
∑

i min(vi, wi)

max (L1(v), L1(w))
.

In this context, v and w are not necessarily normalised histograms, but they ought to be in the same
range to make sense.The components of v and w are expected to be non-negative.This dissimilarity
measure is very popular for normalised histogram features, and for those equivalent to the Manhattan
distance (see Exercise 3.7.6).

There are other geometrically motivated distances between vectors, for example, the Canberra
distance

dCan(v, w) =
n∑

i=1

|vi − wi |
|vi | + |wi |

,

which is very sensitive for components near zero. Note that the term |vi − wi |/(|vi | + |wi |) needs
to be replaced by zero if both vi and wi are zero.
4we prefer the term dissimilarity when not all mathematical axioms for distances are valid
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A common dissimilarity measure in Information Retrieval is the cosine dissimilarity defined
as

dcos(v, w) = 1 − v · w

L2(v) L2(w)

named after the fact that the normalised scalar product v · w/L2(v) L2(w) between v and w is the
cosine of the angle between the vectors v and w. dcos is not a distance, as one cannot conclude from
dcos(v, w) = 0 that v = w.This is owing to the fact that the length of v and w is irrelevant and only
their direction is used for the computation.

The Bray-Curtis dissimilarity is derived from the Manhattan distance as

dBC(v, w) = d1(v, w)

d1(v, −w)
=

∑
i |vi − wi |∑
i |vi + wi |

and approaches infinity as v approaches −w.
A less usual measure is given by the squared chord dissimilarity,

dsc(v, w) =
n∑

i=1

(
√

vi − √
wi)

2,

which seems to have been used in paleontological studies and in pollen data analysis, both with little
theoretical justification. In comparative evaluation, the squared chord measure does remarkably well
though (Hu et al, 2008). Please note that the squared chord dissimilarity cannot work with negative
components; it should be replaced with a modified version

dmsc(v, w) =
n∑

i=1

(
sign(vi)

√
|vi | − sign(wi)

√
|wi |

)2

instead.

3.3.2 GEOMETRIC QUADRATIC DISTANCES
If two images only differ by lighting, then their respective colour histograms will be shifted. All
pixels that would end up in the white bin in one image might end up in the light-yellow bin in the
other image. Component-wise distance measures will not recognise that the light-yellow bin is not
so different from the white bin: they only see a mismatch, and the white pixels might as well have
ended up in the dark-blue bin.

One way to recognise the closeness of the feature components that the individual bins represent
is through a quadratic matrix A that maps two bins to a number that represents how similar their
underlying features are. In the case of colour histograms, Aij might be set to a similarity of the
colour triplets that represent the bins in, say, RGB colour space [0, 1]3 / (r, g, b):

Aij = 1 − |(ri, gi, bi) − (rj , gj , bj )|∞ = 1 − max(|ri − rj |, |gi − gj |, |bi − bj |)
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is one such example of how the matrix A could be created. The feature quadratic distance is then
defined as

dfq(v, w) =
√

(v − w)tA(v − w).

This distance measure is identical in form to the Mahalanobis distance between two random vectors
v and w of the same distribution with the covariance matrix S, only that A is replaced by S−1. If S

(or A) is the unit matrix then dfq collapses to the Euclidean distance d2. If the co-variance matrix S

is diagonal (or A is), then dfq is the so-called normalised Euclidean distance

dσ
2 (v, w) =

√√√√
∑

i

(vi − wi)2

σ 2
i

.

Since the histogram quadratic distance computes the cross similarity between features, it is
computationally more expensive than component-wise distance measures.

3.3.3 STATISTICAL DISTANCES
Histograms approximate distributions of the underlying quantity, and normalised histograms can
be interpreted as probability distributions themselves. There is a number of dissimilarity measures
that are derived from a statistical motivation. For example, the χ2 statistics

dχ2(v, w) =
∑

i

(vi − mi)
2

mi

with m = (v + w)/2 measures how different two frequency distributions are.
A whole raft of distances can be defined by converting normalised histograms v into cumulative

histograms v̂ via
v̂i =

∑

j≤i

vj .

Plugging cumulative histograms into Lp defines cumulative distances

d̂p(v, w) = dp(v̂, ŵ) = Lp(v̂ − ŵ).

d̂1 is also known as match distance, d̂2 is known as Cramér-von-Mises-type distance, while d̂∞ is also
known as Kolmogorov-Smirnov distance (Puzicha et al, 1997). Note, however, that cumulative his-
tograms — and hence cumulative distances — are only defined for histograms over a one-dimensional
space, i.e., histograms with bins that can be linearly ordered. 3d colour histograms, for example, do
not have a cumulative version, as it is not immediately clear how the two colours j and i could be
intrinsically ordered such that j ≤ i.

Another measure, derived from the Pearson correlation coefficient, is defined as

dpcc(v, w) = 1 − |r|,
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where the correlation coefficient

r = n
∑n

i=1 viwi −
(∑n

i=1 vi

) (∑n
i=1 wi

)
√[

n
∑n

i=1 v2
i −

(∑n
i=1 vi

)2
] [

n
∑n

i=1 w2
i −

(∑n
i=1 wi

)2
] .

is a number between −1 and 1, where −1 corresponds to a strong negative correlation (small vi

correspond to large wi and vice versa), r = 0 corresponds to uncorrelated distributions r and w,
while positive values for r indicate a positive correlation. Note that both strong positive and strong
negative correlation of v and w yield small distances.

3.3.4 PROBABILISTIC DISTANCE MEASURES
The Kullback-Leibler divergence expresses the degree of discrepancy between two probability distri-
butions v and w, and measures the extra information needed to express a sample from the “true”
distribution v when one encodes them with samples from an approximation distribution w. For
discrete random vectors v and w, their Kullback-Leibler divergence is defined as

dKL(v, w) =
∑

i

vi log
vi

wi
.

dKL is not a distance: it is not even symmetric and grows arbitrarily big for any component of w

approaching 0, which makes the Kullback-Leibler divergence unsuitable for many feature types that
tend to have vanishing components. This measure can be made symmetric through the definition
of the Jensen-Shannon divergence

dJS(v, w) = (dKL(v, m) + dKL(w, m))/2,

where m = (v + w)/2. The Jensen-Shannon divergence has the added benefit of being finite. It
needs to be re-emphasised that both the Kullback-Leibler and the Jensen-Shannon divergence
are only defined for probability vectors, ie, with non-negative components that sum to one. These
measures would not be suitable for a number of feature types, for example, those that describe
distributions with their central moments, as they can be negative.

Another intuitive distance measure between two probability distributions over a space D is
the earth mover’s distance: here, one distribution v is defined as an amount of earth piled up in regions
of D, while the other distribution w is defined as an amount of holes distributed in regions of D.
The earth mover’s distance between v and w is defined as the minimum cost of moving the piles of
earth into the holes, cost being defined as the amount of earth moved times the distance it is moved.

It is important to realise that the distributions are defined over some space D with a distance
called ground distance. For instance, v and w might be colour distributions over a colour space, say,
RGB, where the ground distance is defined as some distance between colours. In this sense, the earth
mover’s distance is similarly expressive as the feature quadratic distance, but it has the advantage
of not needing a fixed partition of the space D that histograms would give. Instead a distribution
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v can be defined as a list of nv cluster centres cv
i ∈ D and corresponding masses mv

i ∈ [0, 1] (eg,
proportion of pixels that fall into this cluster):

v = ((cv
1, mv

1), (c
v
2, mv

2), . . . , (c
v
nv , mv

nv ))

These lists are also known as signatures; note that they have variable length and generalise the notion
of histograms. Figure 3.19 illustrates two signatures v, w over D = R2 and shows the optimal way
of morphing v into w.

(cv
3, 0.15)

(cw
2 , 0.25)

f32 = 0.15
d32 = 18

(cv
2, 0.35)

f11 = 0.4
d11 = 25

(cw
1 , 0.75)

f21 = 0.35
d21 = 22

f12 = 0.1
d12 = 66

(cv
1, 0.5)

dEMD = ∑
i,j dij fij

= 0.40 · 25 + 0.1 · 66 + 0.35 · 22 + 0.15 · 18
= 27

Figure 3.19: Earth mover’s distance between two signatures
Although the earth mover’s distance can be defined where both signatures have a different

total mass, we restrict ourselves to signatures with a total mass of 1 each. A formal way of describing
the earth mover’s distance between any two such signatures v and w involves the definition of a
ground distance

dij = d(cv
i , c

w
j )

and a flow fij of mass between the i-th cluster centre of v and the j-th cluster centre of w. This
flow is subject to the constraints

fij ≥ 0 (3.4)

∑

j

fij = mv
i (3.5)

∑

i

fij = mw
j (3.6)

for all 1 ≤ i ≤ nv and all 1 ≤ j ≤ nw. (3.4) stipulates that mass can only flow in the direction from
v to w, ie, from the piles of earth into the holes, (3.5) that the total flow from a pile must be equal
its size, while (3.6) means that the total flow into a hole must be equal to the capacity of the hole.

http://kmi.open.ac.uk/people/stefan/mir-book/emd-signatures.jpg
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The earth mover’s distance is now defined as the minimum cost to shift all mass from v to w

with respect to all possible flows f that fulfill constraints (3.4)–(3.6):

dEMD(v, w) = min
f

∑

i,j

fij dij

Figure 3.19 illustrates one such cost computation. The problem of finding the flow f with
the minimal cost is also known as transportation problem for which efficient algorithms exist. Yossi
Rubner distributes a C programme5 based on an algorithm from Hillier and Lieberman’s textbook
(1990).

Rubner et al (2000) showed that dEMD applied to mass 1 signatures is a distance, ie, fulfills
the triangle inequality if the ground distance is a distance; they also examined the use of the earth
mover’s distance for image retrieval where it outperforms other distances. While the earth mover’s
distance is made for signatures it can, in theory, be applied to histograms as well. However, large
histogram bins bring about quantisation errors while small bins make the transportation algorithm
run slowly. It appears to be advantageous to apply the earth mover’s distance to signatures rather
than fixed-bin histograms.

3.3.5 ORDINAL AND NOMINAL DISTANCES
When feature values are non-numeric, ie, general strings, none of the above distance measures can
be used. An exception to this are ordinal labels, ie, those which can be ranked or have a numeric
rating scale attached. These labels can be mapped to numbers: for example, small, normal, large and
extra large can be mapped to their ranks 4, 3, 2, and 1, respectively.

In all other cases, the string attributes are a known as nominal labels and a matching coefficient

m(v, w) =
∑

i

δ(vi, wi) with δ(vi, wi) =
{

1 if vi = wi

0 otherwise

can be transformed into a distance measure

dmc(v, w) = 1 − m(v, w)

n
.

The matching coefficient simply m(v, w) counts the number of coordinates, whose strings match.
The same matching coefficient can be used with binary feature components. There is an

important case, though, where the binary data are asymmetric, ie, the outcome one expresses a
rare and important case while zero encodes a normal and frequent situation. This is the case in
sparse vector representations of “bags of words”, where a text document is represented as a vector
telling which words out of the whole repository vocabulary are present and which are not. In this
representation, dmc between two documents would decrease for each word that both do not contain.
5http://robotics.stanford.edu/˜rubner/emd/default.htm

http://robotics.stanford.edu/~rubner/emd/default.htm
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For example, the fact that two documents did not contain the word “antidisestablishmentarianism”
would make them less distant in the same way as if the word “electroencephalogram” did occur in
both. This is clearly not desirable! It is best to ignore matching frequent cases in those asymmetric
encodings as is done in the Jaccard distance

dJaccard(v, w) = 1 − m1(v, w)

n − m0(v, w)
,

where mb(v, w) counts the number of coordinates, whose binary value is both b:

mb(v, w) =
∑

i

δ(vi, b)δ(wi, b) with δ(a, b) =
{

1 if a = b

0 otherwise

3.3.6 STRING-BASED DISTANCES
The matching coefficient (3.3.5) takes into account how many of the feature vector’s strings match
literally. There are many other more fine-tuned distance functions, some working on a syntactic
character level, for example, the edit distance, and some working on a semantic level, for example,
using WordNet, web search engines or ontologies.

Levenshtein’s edit distance transforms one chain s = (s1, s2, . . . , sns ) of ns symbols si ∈ S

into another one t with potentially different length nt , and is defined as the minimum overall
transformation cost that arises through deletions (cost cd), insertions (cost ci) and exchanges (cost
cxδ(sj , ti)). Computing the minimum cost is normally done via dynamic linear programming that
computes an nt × ns matrix c:

1. c[0, 0] = 0
2. c[0, j ] = j · cd for all j ∈ {1, . . . , ns}
3. c[i, 0] = i · ci for all i ∈ {1, . . . , nt }
4. c[i, j ] = min(c[i − 1, j − 1] + cxδ(ti , sj ), c[i, j − 1] + cd, c[i − 1, j ] + ci)

for all (i, j) ∈ {1, . . . , nt } ×{ 1, . . . , ns} (small indices first)

The Levenshtein distance between s and t ends up in the matrix element c[nt , ns]. Figure 3.20
illustrates this process using the strings s = hello and t = halo with an insertion cost of ci = 1.01,
a deletion cost of cd = 1.1 and an exchange cost cx = 1 for different letters. The optimal path of
operations is marked with arrows from the top left matrix element c[0, 0] to the bottom right matrix
element c[nt , ns]. It involves replacing h with h (cost 0), replacing e with a (cost 1), replacing l with
l (cost 0), deleting l (cost 1.1) and replacing o with o (cost 0) totalling a cost of 2.1, which is the
smallest possible.

The algorithm is O(nsnt ) in time and can be made O(nt ) in memory by observing that the
algorithm only ever needs to have access to the preceding matrix row. Levenshtein (1966) introduced
a version of this distance for which cx = ci = cd = 1 (the so called edit distance) in the context
of transmitting binary codes over unreliable channels that delete, insert and invert bits. There are
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Figure 3.20: Levenshtein distance between hello and halo with cd = 1.1, ci = 1.01 and cx = 1

generalisations of this algorithm that include transpositions of characters (a common source of typos)
and general cost matrices over the set of symbols allowing to assign a smaller cost for easy-to-mix-up
letters (for example, c and k or those adjacent on the keyboard).

The Levenshtein distance has particular significance for our difference chain codes from
Equation 3.3. The individual symbols of a string have a semantic meaning in that the eight values
0, 1, . . . , 7 represent quantised angles 0 ◦, 45 ◦, . . . , 315 ◦. Here it makes sense to penalise exchanges
depending on how severe the direction encoded in the symbol has changed:

cx(sj , ti) = min((sj − ti) mod 8, (ti − sj ) mod 8). (3.7)

This cost of exchange is meant to compute the absolute difference of the angles reflecting the fact
that 7 and 0 are neighbouring angles in this quantisation scheme of 45 ◦.

The Hamming distance between two strings of the same length that counts the number of
positions at which letters differ can be seen as a trivial case of the Levenshtein distance for which
cd = ci = ∞ and cx = 1.

While the edit distance is purely based on the syntactic form of the words involved, looking
at co-occurrence at document level can yield a deeper insight into the semantic similarity of strings.
This co-occurrence can be computed from a training set of documents or taken from other external
knowledge sources such as the world wide web or the more structured sources that ontologies are.
We start by formalising co-occurrence counts.

Let a be a document-word matrix, where each row represents a document in form of a sparse
binary word vector. Then

b = ata

is a symmetric matrix, whose element bij contains the number of documents in which word i co-
occurs with word j . at denotes the transposed matrix for which (at )ij = aji . Each column bi• in
the co-occurrence matrix b describes how strongly the word i co-occurs with all the other words of
the repository vocabulary. The value

dco−occ(i, j) = 1 − bij

max(bii , bjj )
(3.8)

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-054.jpg&w=246&h=97
http://kmi.open.ac.uk/people/stefan/mir-book/levenshtein.jpg
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is just one possible dissimilarity measure for how far word j is from word i with respect to their
joint usage in documents. It changes with the granularity of what is considered to be a document (a
window of 10 words, a sentence, a paragraph, a section, a chapter, a book).

One of the biggest resources of word usage is the internet, of which web search engines have
indexed several billion web pages as of today. Most search engines tell you in how many web pages
a particular word i is mentioned (ci), and equally in how many web pages two different words i and
j both appear (cij ). Gracia and Mena (2008) named the expression

dnw(i, j) = max(log ci, log cj ) − log cij

log N − min(log ci, log cj )

the normalised web distance between words i and j ; here N denotes the number of web pages that this
particular web search engine has indexed. dnw was defined earlier by Cilibrasi and Vitányi (2007),
who meticulously justified it as an approximation to a normalised information distance. Despite
its name dnw violates strict positivity dnw(i, j) > 0 for i 1= j : imagine two different words i and
j that appear in exactly the same set of web pages; then ci = cj = cij and dnw(i, j) = 0 although
i 1= j . Even worse, it turns out that dnw violates the triangle inequality, too. As web search engines
sometimes return counts that are slightly inconsistent, it can happen in practice that they report
numbers with ci < cij , which will make dnw slightly negative.There may be the additional difficulty
to get a reliable estimate for N .

Despite all its shortcomings, dnw is very popular as it gives uncomplicated access to word
co-occurrence estimations in a vast corpus. Luckily its definition is scale-invariant, ie, if the number
N of indexed web pages multiplies by a factor f , and with it the numbers ci , cj and cij , then the
value for dnw(i, j) stays invariant. However, the world wide web corpus changes over time, and
as new words are introduced, phased out or change meaning, their normalised web distances will
change, too.

3.4 FEATURE AND DISTANCE STANDARDISATION
If one uses different feature types to describe a multimedia object, then it is desirable that these
features are comparable in size. For example, if you had encoded aspects of music in terms of pitch
frequency in Hz6 and beats-per-second, then typical feature vectors would look like (10, 000, 0.8).
While a difference of 0.2 in the second feature type effects a significant change in perception, a
difference of 20 in the first feature type is negligible.

While these differences can be absorbed in the distance functions that work on the features,
it is much better to standardise these feature values from the outset. Feature standardisation has
two different objectives: one is to make different components of a feature vector that have different
origin and meaning comparable in size; the other is to ensure that the size of the feature vector is
bounded, and hence distances between two feature vectors. The reason for the second objective is
6this is only an example: there is something else wrong with using frequency as a feature value in the first place, which is discussed
below
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that distances between feature vectors are used for result list ranking; if multimedia objects are to be
ranked with respect to different features, then it is desirable that their respective distances are in the
same range (see fusion section 3.6).

3.4.1 COMPONENT-WISE STANDARDISATION USING CORPUS STATIS-
TICS

For the first objective, features can be standardised component-wise using component mean val-
ues and their component-wise mean absolute deviation. Both are computed per component and
across the data set. Formally, let v

j
j be the i-th component of the j-th feature vector in a set

F = {v1, v2, . . . , vN ∈ Rn}. This corresponds to the situation where N multimedia objects are in-
dexed with N feature vectors v1, v2, . . . , vN ∈ Rn, where each feature vector has n components.
The data-set-mean vi of the i-th component of the feature vectors is defined as

vi = 1
N

N∑

j=1

v
j
i .

Using this value one can compute the mean absolute deviation per component i

si = 1
N

N∑

j=1

|vj
i − vi |,

which amounts to the “typical variation” of the feature component i. Replacing all feature vector
components with

ṽ
j
i = v

j
i − v

j
i

si

will create feature vectors ṽ1, ṽ2, . . . , ṽN ∈ Rn, whose components have a typical size of 1 and have
a mean of 0. This process creates feature vectors with negative components, which most distance
measures are oblivious to. Note though, that some distance measures do not allow for negative
components, for example, the squared chord distance or probabilistic distance measures. For these
it may be better to forgo centring the feature vectors about zero, and

ṽ
j
i = v

j
i /si

will be the far better transformation.

3.4.2 RANGE STANDARDISATION
If the feature components i are known to lie in the range [ai, bi] / v

j
i each, then the feature vectors

can be transformed according to

ṽ
j
i = v

j
i − ai

bi − ai
∈ [0, 1].
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One can determine suitable values ai, bi ∈ R easily through

ai =
N

min
j=1

v
j
i and bi = N

max
j=1

v
j
i .

This transformation is most useful for uniformly distributed features, but might suffer from
the effects of outliers, which adversely move the minimum and maximum boundaries.

3.4.3 RATIO FEATURES
Some feature components are not on a linear scale. For instance, frequency or loudness is perceived on
a logarithmic scale. One characteristic of these components is that they are so-called ratio variables
for which 1/(k + 1) and 1/k should have the same distance as k and k + 1. A commonly applied
transformation is to work with the logarithm

ṽ
j
i = log(v

j
i )

of the variable instead. Ratio features are a special case of features with non-linear response. For
example, one might consider using the square root of the file size of an image to approximate its
linear size.

3.4.4 VECTOR NORMALISATION
Standardisation makes components of a feature vector comparable in range. This is particularly
indicated for feature vectors that have different interpretations or even physical units for different
components, but may not be necessary at all in other cases. Even if feature vector components
are standardised, there is still the issue that some feature vectors will be typically large (ie, have a
large Lp norm) and others will be small. A feature vector that has 100 components, each of which
standardised across the data set, is expected to be

√
10 times larger under the Euclidean norm than

a component-standardised feature vector with 10 components. Vector normalisation

ṽj = vj/ Lp(vj ) (3.9)

ensures that all the feature vectors have the same Lp norm, which in turn limits the distance of any
two such vectors.

An alternative to vector normalisation is distance normalisation, where each vector is divided
by a constant cF that is the average pairwise distance over the feature set F

cF = 1
|F |2

∑

vi ,vj ∈F

d(vi, vj ).

It is often prohibitive to compute this number, and then a fixed random sample F ′ ⊂ F instead of
F will give a good estimate for cF . In any case, scaling the vectors

ṽj = vj/cF (3.10)
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yields distances of typical feature vector sizes of 1.
It is important to realise that Equation 3.10 uniformly scales all vectors by the same factor.

If only this particular feature is used for ranking, then the overall ranking will not change. Vector
scaling is useful to calibrate relative influence of feature vectors during a fusion of different features.
In contrast to this, vector normalisation (3.9) has a different effect on different vectors and may well
perturb the retrieval results under a particular feature vector, ie, the performance can get better or
worse with vector normalisation.

3.5 HIGH-DIMENSIONAL INDEXING

A significant bottleneck when searching any large database for nearest neighbours is the amount of
data that needs to be loaded from disk. In traditional relational databases, B-tree or hashing are the
predominant disk-based indexing mechanisms for single attributes (dimensions). These approaches
are useful for database accesses where each dimension is used independently to select entries. For
nearest-neighbour computation all dimensions of a feature vector contribute to its distance to the
query’s feature vector.

It turns out that indexing high-dimensional vectors efficiently is very challenging owing to the
curse of dimensionality. This term was first used by Bellman (1961)7 and refers to the phenomenon
that our understanding of the space in 2 or 3 dimensions breaks down as the dimensionality of the
space increases. Assume for a moment that our feature space is described by a n-dimensional unit
hypercube [0, 1]n containing uniformly distributed data points. Given a query point, how much of
the range of each dimension must we consider to capture a proportion p of the data? To enclose
a fraction p of the unit volume, the length l in each dimension is l = p1/n. If we are trying to
enclose only 1% of the data in 10 dimensions, this means we must consider 63% of the range of each
dimension, for 100 dimensions this increases to 95% and for 500 dimensions it is 99%. Conversely,
99% of the volume of a 500-dimensional unit hypercube is located in its surface skin of 0.005
thickness! In other words, if we lived in high dimensions we better not peel potatoes as little would
be left to eat.

Beyer et al (1999) showed with similar arguments to those above that, as dimensionality
increases, all points tend to exhibit the same distance from a query point.This has the ultimate effect
of making the nearest neighbour problem ill defined.

Real-world data, such as image features, are unlikely to be uniformly distributed and may exist
on a lower-dimensional manifold. This will alleviate some of the symptoms of the curse, however,
significant effects for nearest neighbour searching and indexing remain.

It is likely that a real feature space may have an intrinsic dimensionality lower than the
apparent data space. Dimensionality reduction methods aim to extract significant information into
lower dimensions. Principal component analysis is a common technique, and it is often used in
combination with other methods. PCA works well but has drawbacks for indexing. Its complexity

7illustrating the fact that a Boolean function of n arguments has 2n cases
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can make it impractical for very large datasets with high dimensionality, and there are difficulties
with incrementally adding data.

A significant class of methods partition the feature space or data points into tree structures.
The first of these for multi-dimensional space was the R-tree developed by Guttman (1984). There
have been many variants of this, and they have proved successful in certain circumstances. High-
dimensional feature spaces are sparsely populated, and so it becomes hard to partition the data
effectively. This is significant for tree-based structures. Indeed, Weber et al (1998) showed that all
tree structures are less effective than a linear scan of all data above a certain dimensionality. This
led them to develop a vector approximation technique called the VA-file. This accepts the fact that
the linear scan is inevitable and attempts to optimise it using compression. They achieve times of
12.5–25% of a linear scan.

Most approaches store and search each dimension of the feature separately. This is often
referred to as vertical decomposition, column store or decomposition storage model and gives a
very flexible approach as dimensions can be treated differently depending on their significance.
For instance, the inverted VA-file of Müller and Henrich (2004) stores each dimension at differ-
ent quantisation levels and only retrieves at the accuracy needed dependent on the query. The
BOND system developed by de Vries et al (2002) uses a branch-and-bound algorithm so that data
in later dimensions can be discarded. Finally, Aggarwal and Yu’s iGrid (2000) and bitmap indices
(Wu et al, 2004a; Sinha and Winslett, 2007) work with vertically decomposed features and use only
the part of each dimension close to the query point to generate a similarity value. In the same spirit,
Howarth and Rüger (2005c) suggest a new local distance function for only the objects close the
query point.

Approximate nearest neighbour approaches relax the constraint of finding exact results to
speed up search. Nene and Nayar’s method (1997) recovers the best neighbour if it is within ε of
the query point. Beis and Lowe (1997) developed a variant of the k-d tree using a best-bin-first
algorithm. They used this to efficiently retrieve the nearest or a very close neighbour in a shape
indexing context. In a more recent development, Muja and Lowe (2009) published an approach
that will take a given dataset and desired degree of precision and automatically determine the best
algorithm and parameter values for that. They also describe a new algorithm that applies priority
search on hierarchical k-means trees, which they have found to provide a good performance on many
datasets. Marius Muja distributes public domain code of their software library called FLANN8 (Fast
Library for Approximate Nearest Neighbours), which implements their ideas.

3.6 FUSION OF FEATURE SPACES AND QUERY RESULTS
3.6.1 SINGLE QUERY EXAMPLE WITH MULTIPLE FEATURES
In this subsection, we assume that there is a single query example q and that each multimedia
document m gives rise to a number of low-level features f1(m), f2(m), . . ., fk(m), each of which
would typically be a vector describing some aspect such as colour, texture, shape, timbre etc.
8http://people.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN

http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
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Combined Overall Distance

Most systems accumulate the distances of these features to the corresponding features of the query
q in order to define an overall distance

Dw(m, q) =
r∑

i=1

widi(fi(m), fi(q)) (3.11)

between multimedia documents m and a query q. Here di(·, ·) is a specific distance function between
the vectors from the feature i, and wi ∈ R is a weight for the importance of this feature.

Note that the overall distance Dw(m, q) is the number that is used to rank the multimedia
documents in the database, and that the ones with the smallest distance to the query are shown to
the user as query result, see Figure 3.1. Note also that the overall distance and hence the returned
results crucially depend on the weight vector w = (w1, . . . , wr). In most interfaces, the user can
either set the weights explicitly as in the interface shown in Figure 4.8, or the system can change
the weights implicitly if the user has given feedback on how well the returned documents fit their
needs. Section 4.4 covers more on relevance feedback.

Convex Combinations or not?

The weights wi in Equation 3.11 are arbitrary real numbers, and so is the range of distance functions
di . Often, however, the distances have been made to be in the same range, and the weights would
be restricted to be in the unit interval and to sum to 1:

∑

i

wi = 1 and 0 ≤ wi ≤ 1

If the weights are restricted in this way then the sum in Equation 3.11 is called a convex
combination. Some distances are already bounded owing to the nature of the underlying feature
vectors (eg, the Manhattan distance between two normalised histograms is always in the range
[0, 2]) and others can be forced to be bounded through a process called feature standardisation (see
Section 3.4). Convex combinations have the clear theoretical advantage that the ensuing overall
distance Dw(m, q) will then be bounded in the same way as the di(·, ·). This might be important if
the query consists of multiple query examples, and the distances of these examples are to be fused
later.The disadvantage of using convex weight combinations, however, is that they are less expressive.
For example, users might want to specify a query by music example requiring that the rhythm and
melody of the retrieved music piece should be the same as the query, only the timbre should not be
like that at all. In this case, a negative weight for the timbre feature vector would be desirable.

Truncated Result Lists

Taken at face value, Equation 3.11 is incompatible with efficient nearest-neighbour computations
in individual feature spaces: for one, the sets of nearest neighbours for the individual features are
almost certainly different, and, on the other hand, some features may have a small weight or exhibit



72 CHAPTER 3. CONTENT-BASED RETRIEVAL IN DEPTH

a small distance far down their nearest neighbour list for a particular query, so that a large proportion
of this particular feature’s index data are needed to determine a number, say k, of nearest neighbours
with respect to the overall measure Dw(m, q).

One possible way out is to approximatedi(fi(m), fi(q)), and hence Dw(m, q),using truncated
lists S

gk
i of, say, gk nearest neighbours for each individual feature i under di(·, fi(q)):

d̃i (fi(m), fi(q)) =
{

di(fi(m), fi(q)) if m ∈ S
gk
i

si otherwise

Here g ≥ 1 is a multiplier (say, g = 10), and si is a constant, for instance,

si = max
m∈S

gk
i

di(fi(m), fi(q)).

Basically si approximates the distance between q and any database object outside S
gk
i under feature

i. It can be chosen arbitrarily larger to penalise any m that is not in the intersection of S
gk
i over i.

Under this heuristic, the gk nearest neighbours for each feature i can be determined independently,
possibly on different computers. Then there is no need to access the feature vectors of any m that is
outside of the truncated lists S

gk
i .

CombSum, CombMin and CombMax
Rather than adding distances in Equation 3.11 one can also use the minimum of feature distances.
Here the smallest distance determines the overall distance thus in effect requiring that one of the
features be close for overall closeness. Alternatively, one can stipulate that the maximum of fea-
ture distances determines the overall distance, effectively requiring that all of the features be close
for overall closeness. These combination mechanisms are also known as CombSum, CombMin and
CombMax and can be extended to work with truncated lists of gk nearest neighbours.

Mc Donald and Smeaton (2005) compare these various fusion mechanisms on the TRECVid
(see Subsection 5.4.4) data sets and consistently find that Equation 3.11 is best for combining
multiple visual features over a single query. They also find that adding distances (scores) is best for
combining a single visual feature over multiple queries.

Merging Individual Ranked Lists
Alternatively, rather than combining individual distances under various features, one can combine
the ranked lists of nearest neighbours under the respective features. Rank-based methods largely
ignore the feature-induced distances once they have been used to determine the order of multimedia
objects. For example, by summing all the ranks that a multimedia object received under various
features, one arrives at a new sorting criterion, which is called Borda count . It is possible to give
preference to certain features using weights resulting in a weighted Borda count . Using the minimum
of the ranks of a multimedia object with respect to different features corresponds to a round-robin
method of merging ranks, basically interleaving ranked lists.
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Learning Weights in Distance-score Space

Once relevance judgements are available one can ask the question what the best combination strategy
is or even deploy machine learning algorithms to automatically determine weights or best fusion
strategies (Bartell et al, 1994).

Figure 3.21: Separating relevant from non-relevant distance-score vectors in distance-score space

One way of using relevance judgements to determine an optimal weight vector utilises dis-
tances under different feature spaces: each judged object j (ie, a multimedia object where you know
whether or not it is relevant to a particular query q), induces a vector i #→ di(fi(j), f (i)q) in a
r-dimensional distance-score space (r is the number of different features). Placing a separating hy-
perplane between the positive distance-score vectors and the negative distance-score vectors that
maximises the margin between these two groups immediately identifies the optimal weight vector
for this query: it is a vector perpendicular to the optimal hyperplane. The idealised Figure 3.21
illustrates this property: in this example, clearly Feature 2 is most important to separate relevant
from non-relevant vectors, as the separating hyperplane is nearly parallel to the 1 − 3 plane; the
weight vector’s 2nd component w2 is consequently the largest.

In practice, the two sets of vectors will not be clearly separable, as there are bound to be
relevant multimedia objects far away from the query and non-relevant ones close by.

3.6.2 MULTIPLE QUERY EXAMPLES
In the case of multiple query examples q1, q2, . . . , qs , it may either be that each example is of a
different importance or even that some of the examples are negative examples with the meaning
“but the query result should not be anything like these ones”. Some of the mechanisms rely on the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-055.jpg&w=275&h=192
http://kmi.open.ac.uk/people/stefan/mir-book/distance-space.jpg
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existence of both positive and negative examples. It is an ungrateful task for any user to come up
with negative queries just for the sake of it, so some approaches randomly select examples from a
large data set for this purpose assuming they will not be what the user wants.

Single Surrogate Query from Multiple Queries

If the examples are of the same kind (eg, all images or all music), then it is possible to average their
respective feature vectors and thus reduce the case to a single surrogate query example. However, this
makes the rather restrictive, and arguably unjustified, assumption that relevant database objects form
a convex subset in feature space. Convex subsets have the property that averages, or more generally
convex combinations, of its elements are still in the subset. Figure 3.22 illustrates why constructing
a single surrogate query q from multiple examples (square dots) does not work in general.

Figure 3.22: Constructing a single query q from multiple examples does not work

Combining Distances from Single Queries

In analogy to Equation 3.11, one can add up — and weight using numbers uj ∈ R — distances
brought about by the individual query examples qj ∈ Q:

DQ(m, Q) =
∑

j

ujD
j (m, qj ) (3.12)

Equation 3.12, which I nickname the parent of all distances, computes the most versatile of all
numbers that can be used to sort result lists from a set Q of query examples with positive or negative
weights uj . The distance functions Dj generally will follow Equation 3.11 but can be completely

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-056.jpg&w=275&h=191
http://kmi.open.ac.uk/people/stefan/mir-book/convex-feature-space.jpg
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different for each individual query qj , and involve different feature types, feature weights and distance
functions. In analogy with the fusion of features, each Dj(m, qj ) can be computed independently,
even on different computers. In the interest of efficiency, the same tricks of using truncated result
lists can be deployed here.

Merging Ranked Lists from Single Queries

In the same way as ranked lists from single features can be weighted and merged, this can be done
with ranked lists that result from individual query examples, see Subsection 3.6.1 on page 72.

Memory-based Learning

In order to cater for different query examples, each one possibly exhibiting a different desired
property, a distance averaging approach as in Equation 3.12 may be as undesirable as creating a
single surrogate query as depicted in Figure 3.22.

In this case, intuitively, a better approach would be to reward multimedia objects that are
close to any one of the positive query examples. This is what a distance-weighted k-nearest neighbours
approach (Mitchell, 1997) does. Let Q be the set of query examples of which we know whether they
are positive or negative. Q needs to have at least one positive example and one negative example,
but we can always pepper Q with unjudged examples from a large set and treat these as negative.

For each of the multimedia objects m that are to be ranked, we compute the set Qk of m’s k

nearest neighbours in Q and determine the subsets P, N ⊂ Qk of positive and negative examples,
respectively. Naturally, we have |P | + |Q| = k. The number

R(m) =

∑

p∈P

(
Dp(m, p) + ε

)−1

∑

n∈N

(
Dn(m, n) + ε

)−1 + ε
,

where ε is a small positive number to avoid division by zero, determines how the multimedia objects
should be sorted, given the query set Q.

Note that in this application, we compute nearest neighbour lists in the set of query examples
(of an arbitrary m in the repository), while before we have always computed nearest neighbours
in the full repository (of a query example). Although this way of combining evidence from a set
Q of query examples has been shown to give better results than the combination of distances
(Pickering and Rüger, 2003), it is rather resource-consuming. For large multimedia repositories, it
may only be feasible to use the distance-weighted k-nearest neighbours approach for re-ranking
candidate subsets rather than for ranking the full repository.

3.6.3 ORDER OF FUSION
Rather a lot of evidence has gone into the similarity ranking block of the simple diagram in Figure 3.1:
distances with respect to many different feature vector types and distances with respect to different
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query examples. Above subsections seem to be suggesting that one should fuse first wrt features and
then wrt query examples. In fact, this could be the other way round or with a flat structure where
all the evidence is combined at the same time. If one uses the parent of all distances, Equation 3.12,
then it does not matter as nested finite sums commute:

DQ(m, Q) =
∑

j

uj

∑

i

wid
j
i (f

j
i (m), f

j
i (qj ))

=
∑

i

wi

∑

j

ujd
j
i (f

j
i (m), f

j
i (qj ))

=
∑

i,j

wiujd
j
i (f

j
i (m), f

j
i (qj ))

If each step is approximated through truncated ranked lists — or merged, normalised, standardised,
combined or machine-learned in a non-linear way otherwise — then the order of these processes
will have an effect on the overall ranking.

3.7 EXERCISES
3.7.1 COLOUR HISTOGRAMS
Colour is perceived as a point (r, g, b) in a three-dimensional space. Each colour component (red,
green and blue) is usually encoded as an integer between 0 and 255 (1 byte); there are two principal
methods to create colour histograms: you can compute three 1d histograms of each of the r, g and b
components independently or you can compute one 3d colour histogram.

Figure 3.23: A striped colour test image

(a) If you divide each of the red, green and blue axes into nr , ng , nb equal intervals, respectively,
then the 3d colour cube [0, 255]3 is subdivided into nrngnb cuboids or bins. Show that by mapping
(r, g, b) to

⌊nrr

256

⌋
ngnb +

⌊ngg

256

⌋
nb +

⌊
nbb

256

⌋

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-057.jpg&w=207&h=121
http://kmi.open.ac.uk/people/stefan/mir-book/col-histogram.jpg
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you get an enumeration scheme 0, . . . , nrngnb − 1 for the cuboids. A 3d colour histogram of an
image is a list of the numbers of the pixels in an image that fall into each of the different cuboids in colour
space. In other words, you look at each pixel in an image, compute above index from its colour
(r, g, b) and increment the corresponding variable, which records the number of pixels that fall into
this colour cuboid.
(b) Compute both types of colour histograms for the image in Figure 3.23 (the colours of the stripes
are given by the table next to the image). Use 64 = 43 bin cubes for the 3d-bin-histogram and 22
bins for each of the three colour-component histograms (yielding 66 bins altogether), so that both
histogram types have a similar number of bins.
(c) Using the same visualisation method for 3d colour histograms as demonstrated in Section 3.2
yields Figure 3.24. Why are the colours in the visualisation different from the original colours of the
image?

Figure 3.24: 3d colour histogram for the striped colour test image

Visualise the three 1d histograms of the r, g and b components that you computed in (b).
Given these histograms which colours might have appeared in the original image?

Which of the two colour histogram methods has retained more information about the colour
distribution in the original picture? How did it come about that one of the two methods lost vital
information despite having roughly the same number of bins (64 vs 66)?

3.7.2 HSV COLOUR SPACE QUANTISATION
The HSV colour space is popular because it separates the pure colour aspects from brightness.
Figure 3.25 visualises the aspects of hue (H) that corresponds to a spectral frequency, saturation
(S) that expresses how pure the colour is, and value (V) that expresses the apparent brightness of
a colour. The hue values H are arranged on a circle and encoded from 0 ◦ to 360 ◦, which is again

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-058.jpg&w=208&h=177
http://kmi.open.ac.uk/people/stefan/mir-book/col-3d-solution.jpg
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the same as 0 ◦. Zero saturation S means that the colour is grey and the higher the saturation is the
less grey is mixed into it up to a value of 100% where the colour is deemed to represent a single
spectral frequency, ie, a rainbow colour. H and S are polar coordinates where H is an angle and S is
the radius. The pair (H, S) describes the chromaticity of a colour, while its apparent brightness V

is independent from chromaticity. One other advantage of HSV over RGB is that it appears more
intuitive to talk about colours in terms of their brightness and spectral names rather than the mixture
coefficients of R, G and B.

Figure 3.25: HSV coordinates

Show that all possible (H, S, V ) values make up a cylinder and that the grey values reside
on the central axis of the cylinder. Show that the conversion between RGB and HSV cannot be
continuous.

One natural way of subdividing the HSV space into bins is to subdivide each coordinate
linearly. Which of the so created different HSV bins will contain colour representations that are
almost certainly in one single bin in RGB space (this is the effect of above discontinuity)? Which
bins in HSV space do you need to merge, so that this discontinuity is no longer visible?

How would you need to subdivide HSV space so that its bins have the same volume as the
set of points in RGB space that are mapped into them?

3.7.3 CIE LUV COLOUR SPACE QUANTISATION

CIE9 LUV (International Commission on Illumination, 1986) describes the physical appearance of
colour, independent of the reproduction device, using the idea of a human standard observer. This
colour space strives to be perceptually uniform in the sense that the Euclidean distance between any
two points in colour space should resemble the human perception of the grade of colour difference.
As a consequence, the transformation from RGB to CIE LUV is highly non-linear and the resulting
colour space is not of a simple geometric form: Figure 3.26 depicts the chromaticity plane of CIE
LUV. How should the CIE LUV colour space be quantised?

9http://cie.co.at — Commission internationale de l’éclairage

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-059.jpg&w=288&h=80
http://kmi.open.ac.uk/people/stefan/mir-book/hsv.jpg
http://cie.co.at
http://cie.co.at
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Figure 3.26: Chromaticity plane of the CIE LUV colour space

3.7.4 SKEWNESS AND KURTOSIS

The third and fourth central moments are used to define skewness and kurtosis: skewness is defined
as

s = p3/
√

p2
3
,

while kurtosis is defined as

k = p4/p
2
2 − 3.

Verify that subtracting 3 in the definition above makes the kurtosis of any normal distribution
zero irrespective of its parameters. Show that the above definitions of skewness and kurtosis are
dimensionless (ie, if the underlying quantity p(i, j) had a physical dimension then s and k do not)
and scale invariant (ie, if the underlying quantity was multiplied by a constant c then the values of
s and c are not affected by this). Think of a way to define general standardised central moments
that are dimensionless and scale invariant and compare with a textbook definition of standardised
central moments (the textbook definition of the second standardised central moment is always 1).
Note that Equation 3.2 is neither dimensionless nor scale invariant — instead its aim is to generate
values that are on the same scale.

3.7.5 BOUNDARIES FOR TAMURA FEATURES

Determine the exact areas of an image in which coarseness, contrast and directionality can be
determined, see Figure 3.6.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-060.jpg&w=216&h=194
http://kmi.open.ac.uk/people/stefan/mir-book/cieluv-2.jpg
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3.7.6 DISTANCES AND DISSIMILARITIES

Show that the Bray-Curtis dissimilarity and the squared chord dissimilarity violate the triangle
inequality, while the Canberra distance is a true distance, ie, that d(v, w) = d(w, v), d(v, w) = 0 if
and only if v = w and d(x, z) ≤ d(x, y) + d(y, z).

Show that the Manhattan distance and the partial histogram intersection are equivalent, ie,
lead to the same ordering if the feature vectors are normalised with respect to the L1 norm and
non-negative.

Show that the Euclidean distance and the cosine dissimilarity are equivalent, ie, lead to the
same ordering if the feature vectors are normalised with respect to the L2 norm and non-negative.

Draw the unit balls Bp in R2 with respect to the Minkowski norm Lp for p ∈ {0.5, 1, 2, ∞}.
The formal definition is Bp = {x ∈ R2| Lp(x) ≤ 1}. Show that B0.5 is not convex, ie, points on a
straight line between 2 points within B0.5 are not necessarily in B0.5. Show that, as a consequence,
L0.5 violates the triangle inequality, ie, it does not induce a distance. Show that Lp induces a distance
for p ≥ 1.

3.7.7 ORDINAL DISTANCES — PEN-PAL MATCHING

The table below shows a number of people’s favourite writer, travel destination, colour, newspaper,
city, genre and means of communication. Work out who would make the best pair of pen-pals.
Which pair would be least compatible?

Ally V Woolf UK red Guardian London crime twitter

Bert L Carroll Canada green Times Tokyo poetry sms

Cris L Carroll Italy green Times NY drama sms

Doro V Woolf Spain blue Mirror London fiction e-mail

Enzo V Woolf Canada green Observer Tokyo drama sms

Fred M Proust Spain green Mirror London crime twitter

3.7.8 ASYMMETRIC BINARY FEATURES

The table below shows a number of people’s gender and character traits. Each of the traits occurs
rather infrequently in the population (ie, they are asymmetric binary features: P = present, N = not
present). Ignoring the gender, work out who would make the best pair of pen-pals. Which pair
would be least compatible?
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Name gender character

Ally F N P N N N N
Bert M N P P N N N
Cris F P P P N P P
Doro F P N N P N N
Enzo M P P N P P P
Fred M P N P P P P

3.7.9 JACCARD DISTANCE
Show that definition (3.3.5) for the Jaccard distance is identical to the definition (2.3) for resemblance
when applied to sparse vector encodings of bags of words.

Write the matching coefficient (3.3.5) in terms of cxy as in (2.4) and discuss the difference
to the Jaccard distance.

3.7.10 LEVENSHTEIN DISTANCE
It is easy to see that the general Levenshtein distance violates the symmetry requirement dL(s, t) =
dL(t, s) if the cost of deletion differs from the cost of insertion. However, prove that the edit distance
is a proper metric, where the cost of deletion, the cost of insertion and the cost of exchanging different
symbols are all 1.

3.7.11 CO-OCCURRENCE DISSIMILARITY
Compute the co-occurrence for the document word matrix of the “Humpty Dumpty” nursery rhyme
on page 35. In this setting, what are the distances between humpty and dumpty, and between king
and horse? What would change if Equation 3.8 used min instead of max in the denominator?

3.7.12 CHAIN CODES AND EDIT DISTANCE
Encode the pixel boundary of a 4 × 4 square and of a 3 × 5 rectangle as difference chain codes and
compute their edit distance.

3.7.13 TIME WARPING DISTANCE
Modify the Levenshtein distance for difference chain codes such that local stretching can happen
at no cost. Your solution should be scale invariant, for instance,

dLdcc(123, 111223333) = 0.

Figure 3.27 gives you an idea how this distance could be processed in the case of the two strings
000710 and 01700000020, but your solution may well look different.
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Figure 3.27: Time warping distance between curves represented by difference chain codes

3.7.14 FEATURE STANDARDISATION

Assume you have six feature vectors of the kind (age [year], height [m]) as follows: v1 = (10, 1.30),
v2 = (20, 1.70), v3 = (30, 1.60), v4 = (40, 1.80), v5 = (50, 1.70) and v6 = (60, 9.90). Note that
the last vector contains a deliberate outlier.

Compute standardised feature vectors according to Subsection 3.4.1.
si is a “typical range” of the component i; sometimes the empirical standard deviation

σi =
√√√√ 1

N − 1

∑

j

(v
j
i − vi)2

is used instead of si . In our case, σ1 = 18.7 and σ2 = 3.38 (rounded); argue why the standard
deviation is more susceptible to the outlier of 9.90m height than the mean absolute deviation.

One could also use the median absolute deviation (defined as the middle-ranked value of all
the absolute deviations sorted by size) instead of the mean absolute deviation. How would this affect
the standardisation process in the presence of outliers. How about using the median instead of the
mean (component-wise)?

Figure 3.28: Skin of a cube in different dimensions

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-062.jpg&w=202&h=74
http://kmi.open.ac.uk/people/stefan/mir-book/time-warp.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ndim-skin.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-061.jpg&w=247&h=111
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3.7.15 CURSE OF DIMENSIONALITY
Consider an n-dimensional feature space with a query vector at q = 0 and a hypercube Hn =
[−1, 1]n of volume 2n around it. Assume the hypercube contains uniformly distributed vectors, ie,
each component is independently and identically distributed with a random uniform distribution in
the range of [−1, 1]. The skin Sε

n of Hn with thickness ε is defined as

Sε
n = Hn \ [−1 + ε, 1 − ε]n,

ie, it contains all points x ∈ Hn that have at least one component xi close to the boundary of the
interval [−1, 1], see Figure 3.28.

What is the probability that a randomly chosen vector of Hn lies in the skin Sε
n? Plot this

probability as a function of n for ε = 0.01. Show that the maximum distance (induced by the
maximum norm L∞, see Subsection 3.3.1) of q to any point s in the skin Sε

n is bounded by

1 − ε ≤ d∞(q, s) ≤ 1,

ie, nearly every point in Hn has a distance to q of nearly 1.

3.7.16 IMAGE SEARCH
Sketch the block diagram of a colour-and-texture-based image search engine for curtain fabrics.
Explain the general workings of a content-based search engine and contrast it with the workings of
a text search engine in terms of retrieval and indexing technology.
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C H A P T E R 4

Added Services
4.1 VIDEO SUMMARIES

Even if the challenges of the previous section were all solved and if the automated methods of
Chapters 2 and 3 enabled a retrieval process with high precision (proportion of the retrieved items
that are relevant) and high recall (proportion of the relevant items that are retrieved), it would still
be vital to present the retrieval results in a way so that the users can quickly decide to which degree
those items are relevant to them.

Images are most naturally displayed as thumbnails, and their relevance can quickly be judged
by users. Presenting and summarising videos is a bit more involved. The main metaphor used for
this is that of a storyboard that contains keyframes with some text about the video. Several systems
exist that summarise news stories in this way, most notably Informedia (Christel et al, 1999) and
Físchlár (Smeaton et al, 2004). The Informedia system devotes much effort to added services such
as face recognition and speaker voice identification allowing retrieval of the appearance of known
people. Informedia also provides alternative modes of presentation, eg, through film skims or by
assembling ‘collages’ of images, text and other information (eg, maps) sourced via references from
the text (Christel and Warmack, 2001). Físchlár’s added value lies in the ability to personalise the
content (with the user expressing like or dislike of stories) and in assembling lists of related stories
and recommendations. Sheffield University’s Rich News system automatically annotates radio and
television news with the aid of resources retrieved from the world wide web by combining automatic
speech recognition with information extraction techniques (Dowman et al, 2005).

Our very own TV news search engine ANSES (Pickering et al, 2003) records the main BBC
evening news along with the sub-titles, indexes them, breaks the video stream into shots (defined as
those video sequences that are generated during a continuous operation of the camera), extracts one
key-frame per shot, automatically glues shots together to form news stories based on an overlap in
vocabulary in the sub-titles of adjacent shots (using lexical chains), and assembles a story-board for
each story. Stories can be browsed or retrieved via text searches. Figure 4.1 shows the interface of
ANSES. We use the natural language toolset GATE (Cunningham, 2002) for automated discovery
of organisations, people, places and dates; displaying these prominently as part of a storyboard as in
Figure 4.1 provides an instant indication of what the news story is about. ANSES also displays a
short automated textual extraction summary, again using lexical chains to identify the most salient
sentences. These summaries are never as informative as hand-made ones, but users of the system
have found them crucial for judging whether or not they are interested in a particular returned search
result.
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Figure 4.1: News search engine interface

Dissecting the video stream into shots and associating one keyframe along with text from
subtitles to each shot has another advantage: a video collection can essentially be treated as an image
collection, where each, possibly annotated, image acts as entry point into the video.

At this point, I would like to show how features from video frames can be used to split
videos into shots, ie, the segments that were used to edit the movie. Normally the change from
one shot to another would be either an abrupt change (a cut), or a gradual change, for exam-
ple, by fading in and out. In order to detect shots, it is useful to compare neighbouring frames
to see whether they are significantly different. For gradual transitions, it may be useful to addi-
tionally compare frames that are further apart (say, 4, 8 and 16 frames). I will demonstrate this
technique with a short movie that was made by Vlad Tanasescu, a PhD student at KMi. The movie

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-063.jpg&w=299&h=351
http://kmi.open.ac.uk/people/stefan/mir-book/anses-microsoft-africa.jpg
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is a science fiction trailer. First I invite you to watch the video by clicking on Figure 4.2 (or via
http://people.kmi.open.ac.uk/stefan/mir-book/Anticipation.mpg).

Figure 4.2: Sohan Jheeta in Anticipation, a video by Vlad Tanasescu (click frame to play)

This video stream is decomposed into single frames, and each frame is subdivided into a 3x3
grid of tiles. For each tile we compute a straightforward 3d colour histogram as in Figure 3.3. Then
we define the distance between any two frames as the median of the distances between corresponding
tiles. This has the effect of ignoring large changes in some tiles brought about by camera or object
movement rather than a change to a different scene. An averaging difference measure at time t n

frames apart (but also averaged over n frames) is defined as follows:

dn (t) = 1
n

n−1∑

i=0

d f (t + i, t − n + i) , (4.1)

where d f (i, j) represents the median block distance between frames i and j .
If the distance function d2 between two adjacent frames, between frames 4 frames

apart (d4) and between 8 frames (d8) peaks at the same frame, and the peaks are above a
certain threshold, then a cut boundary is called. Gradual transitions are detected through
coinciding peaks of d8 and d16 above another threshold. These two thresholds can be set
via a test set of known videos in order to adapt them to the type of material. Rapidly
changing MTV movies will need other thresholds than, say, the famously long scenes in a
typical movie of the Russian director Tarkovsky. The video of Figure 4.3 (or directly from
http://people.kmi.open.ac.uk/stefan/mir-book/anticipation-processed-2.mpg)
visualises the process by plotting the distances d2, d4, d8 and d16. The top row indicates a cut via a
| line and a gradual transition with a V sign. The movie itself is played at double speed, while the
3d texture false colour feature and the direct 3d colour histogram of the full frame are displayed for

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-064.jpg&w=240&h=164
http://people.kmi.open.ac.uk/stefan/mir-book/Anticipation.mpg
http://people.kmi.open.ac.uk/stefan/mir-book/Anticipation.mpg
http://people.kmi.open.ac.uk/stefan/mir-book/anticipation-processed-2.mpg
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further illustration (though neither of these are directly used by our video shot boundary detection
algorithm).

The shot boundary detection problem has attracted much attention as it is an essential pre-
processing step to virtually all video analysis.Smeaton et al (2009a) give an overview of theTRECVid
shot boundary detection task summarising the most significant of the approaches taken over the
years from 2001 to 2007.

Figure 4.3: Processing a video to detect shot boundaries (click frame for video)

This analysis gives rise to creating keyframes from the video shots, which give a clear automated
visual summary. Although there are sophisticated algorithms to identify the “best” frame from a shot
(eg, by considering the blurriness of an image, the size of dominating objects, variance of parameters
etc), we use the 10th frame into a shot for simplicity and in order to avoid overlaid frames that
tend to be present at the beginning or end of shots with gradual transitions. Figure 4.4 shows the
keyframes from our automated process.

4.2 PARADIGMS IN INFORMATION VISUALISATION
The last decade has witnessed an explosion in interest in the field of information visualisation,
(Hemmje et al, 1994; Ankerst et al, 1996; Card, 1996; Shneiderman et al, 2000; Börner, 2000;
Keim et al, 2004). Here we present three visualisation paradigms, based on our earlier design studies
(Au et al, 2000; Carey et al, 2003). These techniques all revolve around a representation of docu-
ments in the form of bag-of-words vectors, which can be clustered to form groups.We use a variant of
the buckshot clustering algorithm for this. Basically, the top, say, 100 documents that were returned
from a query are clustered via hierarchical clustering to initialise document centroids for k-means
clustering that puts all documents returned by a query into groups. Another common element of

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-065.jpg&w=241&h=180
http://people.kmi.open.ac.uk/stefan/mir-book/anticipation-processed-2.mpg
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Figure 4.4: Keyframes summary of Anticipation

our visualisations is the notion of keywords that are specific to the returned set of documents. The
keywords are computed using a simple statistic; for details see (Carey et al, 2003). A few visualisation
methods are described in the following subsections.

Sammon Cluster View

This paradigm uses a Sammon map to generate a two-dimensional screen location from a many-
dimensional vector representing a cluster centroid.This map is computed using an iterative gradient
search (Sammon, 1969) while attempting to preserve the pairwise distances between the cluster
centres. Clusters are thus arranged so that their mutual distances are indicative of their relationship.
The idea is to create a visual landscape for navigation. Figure 4.5 shows an example of such an
interface. The display has three panels, a scrolling table panel to the left, a graphic panel in the
middle and a scrolling text panel to the right that contains the traditional list of returned documents
as hotlinks and snippets. In the graphic panel, each cluster is represented by a circle and is labelled with
its two most frequent keywords. The radius of the circle represents the cluster size. The distance
between any two circles in the graphic panel is an indication of the similarity of their respective
clusters - the nearer the clusters, the more likely the documents contained within will be similar.
When the mouse passes over the cluster circle, a tool-tip box in the form of a pop-up menu appears
that allows the user to select clusters and drill down, ie, re-cluster and re-display only the documents
in the selected clusters. The back button undoes this process and climbs up the hierarchy (drill up).
The table of keywords includes box fields that can be selected. At the bottom of the table is a filter
button that makes the scrolling text window display only the hot-links and snippets from documents
that contain the selected keywords.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-066.jpg&w=240&h=166
http://kmi.open.ac.uk/people/stefan/mir-book/all-keyframes.jpg
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Figure 4.5: Sammon map for cluster-guided search

Dendro Map Visualisation

The Dendro Map visualisation represents documents as leaf nodes of a binary tree that is output
by the buckshot clustering algorithm, see Figure 4.6. With its plane-spanning property and pro-
gressive shortening of branches towards the periphery, the Dendro Map mimics the result of a
non-Euclidean transformation of the plane as used in hyperbolic maps without suffering from their
computational load. Owing to spatial constraints, the visualisation depth is confined to five levels of
the hierarchy with nodes of the lowest level representing either documents or subclusters. Different
colours facilitate visual discrimination between individual documents and clusters. Each lowest level
node is labelled with the most frequent keyword of the subcluster or document. This forms a key
component of the Dendro Map as it gives the user the cues needed for navigating through the tree.
As the user moves the mouse pointer over an internal node, the internal nodes and branches of the
associated subcluster change colour from light blue to dark blue while the leaf nodes, ie, document
representations, turn bright red. As in the Sammon Map, a tool-tip window provides additional
information about the cluster and can be used to display a table with a list of keywords associated
with the cluster. The user may drill down on any internal node. The selected node will as a result

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-067.jpg&w=412&h=284
http://kmi.open.ac.uk/people/stefan/mir-book/vishnu-sammon-brahms.jpg


4.2. PARADIGMS IN INFORMATION VISUALISATION 91

Figure 4.6: Dendro Map - A plane-spanning binary tree (query “Beethoven”)

replace the current root node at the center and the entire display is re-organized around the new
root. The multi-level approach of the Dendro Map allows the user to gain a quick overview over the
document collection and to identify promising subsets.

Radial Interactive Visualisation

Radial (Figure 4.7) is similar to VIBE (Korfhage, 1991), to Radviz (Hoffman et al, 1999) and to
Lyberworld (Hemmje et al, 1994). It places the keyword nodes round a circle, and the position of the
document dots in the middle depend on the force of invisible springs connecting them to keyword
nodes: the more relevant a keyword for a particular document, the stronger its spring pulls on the
document. Hence, we make direct use of the bag-of-words representation without explicit clustering.
Initially, the twelve highest ranking keywords are displayed in a circle. The interface lets the user
move the keywords, and the corresponding documents follow this movement.This allows the user to
manually cluster the documents based on the keywords they are interested in. As the mouse passes
over the documents, a bubble displays a descriptive piece of text. The location of document dots is
not unique owing to dimensionality reduction, and there may be many reasons for a document to
have a particular position. To mitigate this ambiguity in Radial, the user can click on a document
dot, and the keywords that affect the location of document are highlighted. A choice of keywords
used in the display can be exercised by clicking on two visible lists of words. Zoom buttons allow
the degree of projection to be increased or reduced so as to distinguish between documents around
the edges of the display or at the centre. The Radial visualisation appears to be a good interactive
tool to structure the document set according to one’s own preferences by shifting keywords around
in the display.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-068.jpg&w=255&h=190
http://kmi.open.ac.uk/people/stefan/mir-book/vishnu-dendrogram-beethoven.jpg


92 CHAPTER 4. ADDED SERVICES

Figure 4.7: Radial Visualisation

Unified Approach

The integration of the paradigms into one application offers the possibility of browsing the same
result set in several different ways simultaneously. The cluster-based visualisations give a broader
overall picture of the result, while the Radial visualisation allows the user to focus on subsets of
keywords. Also, as the clusters are approximations that highlight particular keywords, it may be
useful to return to the Radial visualisation and examine the effect of these keywords upon the
whole document set. The Radial visualisation will perhaps be more fruitful if the initial keywords
match the user’s area of interest. The Sammon Map will let the user dissect search sets and re-
cluster subsets, gradually homing in on target sets. This interface was developed within the joint
NSF-EC project CHLT1; it was evaluated from a human-computer-interaction point of view with
encouraging results (Chawda et al, 2005) and has proven useful in real-world multi-lingual scholarly
collections (Rydberg-Cox et al, 2004).

1http://www.chlt.org

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-069.jpg&w=412&h=285
http://kmi.open.ac.uk/people/stefan/mir-book/vishnu-chopin-radial-doc.jpg
http://www.chlt.org
http://www.chlt.org
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(a) Query by example (left panel) with initial results in the right panel

(b) A new query made of three images from (a) results in many more dark-door images

Figure 4.8: Visual search for images of dark doors starting with a bright-door example

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-071.jpg&w=371&h=235
http://kmi.open.ac.uk/people/stefan/mir-book/ubase-dark-door-search-1-cut.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ubase-dark-door-search-2-cut.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-070.jpg&w=371&h=235
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4.3 VISUAL SEARCH AND RELEVANCE FEEDBACK
Implicit and Explicit Relevance Feedback

Visual search faces the problem of “polysemy”, which means that images submitted as query (rather
than words) normally are ambiguous and allow many different interpretations. It is widely ac-
knowledged that visual search engines that incorporate feedback from the user either by explic-
itly rating suggested first results or gathered implicitly, eg, by looking at the user’s behaviour or
actions. This so called relevance feedback has been, and still is, in the centre of many studies:
Heesch and Rüger (2003) evaluated a specific explicit relevance feedback mechanism for image-
retrieval, while White et al (2004) deployed a simulation-centric evaluation methodology to mea-
sure how well known implicit feedback models learn relevance and improve search effectiveness.
Following this White et al (2006) later developed an implicit feedback approach for interactive In-
formation Retrieval. Hopfgartner et al (2007) model implicit information for interpreting the user’s
actions with the search engine’s interface.
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Figure 4.9: A relevance feedback model

Ruthven et al (2003) present five user experiments on incorporating behavioral information
into the relevance feedback process in information retrieval, concentrating on ranking terms for
query expansion and selecting new terms to add to the user’s query. Oyekoya and Stentiford (2004)
have proposed one particularly interesting device for implicit feedback during the image search
process: an eye-tracking device. Their use for visual search was studied by Yang et al (2002) in terms
of psychophysical models. Clough and Sanderson (2004) simulated user interaction with a cross-
lingual image retrieval system, and in particular the situation in which a user selects one or more

http://kmi.open.ac.uk/people/stefan/mir-book/aetos-rf-model.jpg
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relevant images from the top n; using textual captions associated with the images, relevant images
are used to create a feedback model in the Lemur language model for information retrieval, and they
show that feedback is beneficial, even when only one relevant document is selected.

Query Point vs Weight Space Moving

The visual query-by-example paradigm discussed in Chapter 2 gives rise to relatively straightforward
interfaces; an image is dragged into a query box, or, eg, specified via a URL, and the best matching
images are displayed in a ranked list to be inspected by the user, see Figure 4.8(a). A natural extension
of such an interface is to offer the selection of relevant results as new query elements. This type of
relevance feedback, a.k.a. query point moving , is shown in Figure 4.8(b).

One other main type of relevance feedback, weight space movement, assumes that the relative
weight of the multitude of features that one can assign to images (eg, structured metadata fields such
as author, creation date and location; low-level visual features such as colour, shape, structure and
texture; free-form text) can be learned from user feedback. Of the methods mentioned in Chapter 2,
our group chose analytic weight updating as this has a very small execution time. The idea is that
users can specify the degree to which a returned image is relevant to their information needs. This
is done by having a visual representation; the returned images are listed in a spiral, and the distance
of an image to the centre of the screen is a measure of the relevance that the search engine assigns
to a specific image. Users can now move the images around with the mouse or place them in the
centre with a left mouse click and far away with a right click. Figure 4.9 shows this relevance
feedback model. We evaluated the effectiveness of negative feedback, positive feedback and query
point moving, and found that combining the latter two yields the biggest improvement in terms of
mean average precision (Heesch and Rüger, 2003).

4 Factor Interaction Model

Liu et al (2009c) propose a visual content-based image retrieval system - uInteract (see Figure 4.10),
which is a relevance feedback system based on a four-factor user interaction model based on relevance
region, relevance level, time and frequency (Liu et al, 2009b). This system focuses on improving the
user interaction. The key features of the visual interface are:
(1) The query image panel is a browsing panel. The user browses the query panel and selects one or
more images from the provided query images as initial query image(s) to start the search with.
(2) Users can provide both positive and negative examples to a search query, and further expand or
reformulate the query. This is a way to deliver the ‘relevance region’ factor.
(3) By allowing the user to override the automatically generated ranking (integer 1-20) of positive
and negative query images, we enable the user to directly influence the importance level of the
feedback. The optional ‘relevance level’ factor is generated by the ranking functionality.
(4) The display of the results in the interface takes a search-based linear display format but with the
addition of showing not only the best matches but also the worst matches. This functionality aims
to enable users to control the model directly.



96 CHAPTER 4. ADDED SERVICES

Figure 4.10: The uInteract interface

(5) The query history not only provides users with the ability to reuse their previous queries, but
it also enables them to expand future search queries by taking previous queries into account. The
positive and negative history panels together with the current query feed the ‘time’ and ‘frequency’
factor of the four-factor user interaction model.

Social Context

A new and relatively unexplored area of relevance feedback is the exploitation of social context
information. By looking not only at the behaviour and attributes of the user, but also his past
interactions and also the interactions of people he has some form of social connection with could
yield useful information when determining whether search results are relevant or not. Browsing
systems could recommend data items based on the actions of a social network instead of just a single
user, using more data to yield better results.

The use of such social information is also becoming important for multimedia meta data
generation, particular in the area of folksonomies where the feedback of users actively produces the
terms and taxonomies used to describe the media in the system instead of using a predetermined,
prescribed dictionary (Voss, 2007). This can be seen being effectively used in online multimedia
systems such as Flickr2 and del.icio.us3.

2http://www.flickr.com
3http://del.icio.us

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-073.jpg&w=340&h=193
http://kmi.open.ac.uk/people/stefan/mir-book/uInteractScreenShot-withnumber1.jpg
http://www.flickr.com
http://del.icio.us
http://www.flickr.com
http://del.icio.us
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(a) Initial visual summary of the database (right panel) from which the user chooses the falcon, its
nearest lateral neighbours are then displayed in the left panel

(b) Clicking on any image will make it the centre of the nearest neighbours panel and display its
associated lateral neighbours around it

Figure 4.11: Lateral browsing for an image “from behind the pitcher in a baseball game. . .”

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-076.jpg&w=177&h=180
http://kmi.open.ac.uk/people/stefan/mir-book/ubase-falcon-baseball-large-nnk-2.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-falcon-baseball-large-nnk-3-window.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-falcon-baseball-large-nnk-4-window.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-074.jpg&w=363&h=272
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-075.jpg&w=178&h=180
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Starting with the football image (upper left) from the database overview, one of its lateral neighbours is
an image of a lawn with a sprinkler; when this is made the focal image (upper right), there are already
images from baseball scenes. Clicking on one of them (lower left) reveals that there are more of this
kind; they can be enlarged and the corresponding video played in the “viewer tab” (lower right).

Figure 4.12: Alternative ways to browse for images “from behind the pitcher . . .”

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-080.jpg&w=178&h=142
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-football-baseball-large-nnk-2-window.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-football-baseball-large-nnk-3-window.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-football-baseball-large-nnk-4-window.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/ibase-football-baseball-large-nnk-5-viewer-window.jpg
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-077.jpg&w=178&h=180
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-078.jpg&w=178&h=180
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-079.jpg&w=178&h=180
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4.4 BROWSING

Some of the research puts the user in the loop to facilitate the bridging of the semantic gap that is
inherent in machine-interpretations of audio-visual media: some of this is covered by the notion of
relevance feedback in the previous section. In this section, I cover research on alternative resource
discovery methods — these focus mainly on browsing and the presentation of the results of the
resource discovery mission, be it from searching or browsing.

The idea of representing text documents in a nearest-neighbour network was first presented
by Croft and Parenty (1985), albeit, as an internal representation of the relationships between doc-
uments and terms, not for browsing. Document networks for interactive browsing were identified
by Cox (1992, 1995). Attempts to introduce the idea of browsing into content-based image re-
trieval include Santini and Jain’s El niño system (2000) attempt to combine query-based search with
browsing. The system tries to display configurations of images in feature space such that the mutual
distances between images are preserved as well as possible. Feedback is given in the same spirit as
in Figure 4.9 by manually forming clusters of images that appear similar to the user. This in turn
results in an altered configuration with potentially new images being displayed. Urban et al (2006)
is another example of introducing browsing for image discovery; their work is based on Campbell’s
(2000) ostensive model that retains the basic mode of query based retrieval but in addition allows
browsing through a dynamically created local tree structure.

Other network structures that have increasingly been used for information visualisation and
browsing are Pathfinder networks (Dearholt and Schvaneveldt, 1990). They are constructed by re-
moving redundant edges from a potentially much more complex network. Fowler et al (1992) use
Pathfinder networks to structure the relationships between terms from document abstracts, between
document terms and between entire documents. The user interface supports access to the browsing
structure through prominently marked high-connectivity nodes.

Our group (Heesch and Rüger, 2004) determines the nearest neighbour for the image under
consideration (which we call the focal image) for every combination of features. This results in a set
of what we call lateral neighbours. By calculating the lateral neighbours of all database images, we
generate a network that lends itself to browsing. Lateral neighbours share some properties of the
focal image, but not necessarily all. For example, a lateral neighbour may share text annotations with
the focal image, but no visual similarity with it at all, or it may have a very similar colour distribution,
but no structural similarity, or it may be similar in all features except shape, etc. As a consequence,
lateral neighbours are deemed to expose the polysemy of the focal image. Hence, when they are
presented, the user may then follow one of them by making it the focal image and explore its lateral
neighbours in turn. The user interaction is immediate, since the underlying network was computed
offline.

We provide the user with entry points into the database by computing a representative set
of images from the collection. We cluster high-connectivity nodes and their neighbours up to a
certain depth using the Markov chain clustering algorithm (van Dongen, 2000), which has robust
convergence properties and allows one to specify the granularity of the clustering. The clustering
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result can be seen as a image database summary that shows highly-connected nodes with far-reaching
connections. The right panel of Figure 4.11(a) is such a summary for our TRECVid 2003 database.
The user may select any of these images as an entry point into the network. Clicking on an image
moves it into the centre around which the lateral neighbours are displayed, see the nearest-neighbour
panel on the left side of Figure 4.11(a). If the size of the lateral-neighbour set is above a certain
threshold, the actual number of images displayed is reduced to the most salient ones.

If a user wanted to find “video shots from behind the pitcher in a baseball game as he throws
a ball that the batter swings at”4, then they might explore the database in Figure 4.11 by clicking
on the falcon image. The hope is that the colour of a baseball field is not far off from the green
colour of that image. The resulting lateral neighbours, displayed in the left panel of Figure 4.11(a),
do not contain the desired scene. However, there is an image of a sports field. Making that the focal
image, as seen in the left part of Figure 4.11(b), reveals it has the desired scene as a lateral neighbour.
Clicking that will unearth a lot more images from baseball fields, see the right side of Figure 4.11(b).
The network structure, a bit of lateral thinking and three mouse clicks have brought the desired
result.

In the same way, and again with only three clicks, one could have started from the football
image in the database overview to find “video shots from behind the pitcher in a baseball game
as he throws a ball that the batter swings at”. Heesch (2005) has shown that this is no coinci-
dence; lateral-neighbour networks computed in this way have the so-called small world property
(Watts and Strogatz, 1998) with only 3–4 degrees of separation even for the large TRECVid 2003
database that contains keyframes from 32,000 video shots. Lateral browsing has proven eminently
successful for similar queries (Heesch et al, 2003).

4.5 GEO-TEMPORAL ASPECTS OF MEDIA
4.5.1 IMPORTANCE OF GEOGRAPHY AS CONTEXT
Geography is an important query element. Sanderson and Kohler (2004) identified that almost 20%
of all queries in a 2001 Excite query log contained geographic elements. There is a fantastic cartoon
by Saul Steinberg from the cover of the 29 March 1976 edition of the New Yorker that superbly
expresses the prime role of location as contexts. In this sketch, called “View of the world from 9th
Avenue”, you see a map with details of the 9th and 10th Avenue; then East Manhattan and the
Hudson river; behind that Jersey followed by the rest of the US, which takes up less space than the
area between 9th and 10th Avenue; then the Pacific Ocean as big as the Hudson River with a few
indiscernible stretches of tiny land labelled as China, Japan and Russia.

We may think Steinbergs cartoon in Figure 4.13 is funny, because it alludes to what some de-
scribe as the self-centric nature of New Yorkers.Wait a minute and read on: there is something else to
it. When one of my former PhD students, Simon Overell, and I wanted to disambiguate placenames
in free text, we decided to build a model of how placenames occur in text (Overell and Rüger, 2008).

4Topic 102 of TRECVid 2003
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Figure 4.13: View of the world from 9th Avenue, drawing by Saul Steinberg, The New Yorker 29 March
1976, © 2010 The Saul Steinberg Foundation/Artists Rights Society (ARS), New York, and © Condé
Nast Publications

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-081.jpg&w=341&h=460
http://www.cartoonbank.com/1976/New-Yorker-Cover-3291976/invt/124544
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One of the best resources to study this is wikipedia, an on-line collaborative encyclopedia, where ev-
eryone can contribute articles about everything. When authors mention locations, they usually link
to an article about that location. This serves to disambiguate the location. Overell (2009) identified
a way to find out which articles are about locations and also which specific latitude and longitude
this would be. By looking at the 2 million articles with 100 million internal links in the English
language wikipedia, we obtained a large corpus of how placenames are used in the encyclopedia.The
methods are language independent, and we can do the same analysis for any of the 252 languages
for which wikipediae exist.

As a side effect of this pre-requisite for further research, we could visualise which locations are
talked about how much in which language. It turns out that what people write about in wikipedia
is strongly language dependent! Figure 4.14 shows a heat map of locations that are talked about in
English.

Figure 4.14: Heat map of locations referred to in the English-language wikipedia

Overell also created a video for extracted events from the year 1 CE to 2000 CE. Click at
Figure 4.15 or directly at http://mmis. doc.ic.ac.uk/inaugural/events-en-sp-world.mpg to see for
yourself how they compare in the English-language and Spanish-language wikipedia: watch out for
the discovery of America and how the Spanish and the English maps compare at this time. I find this
absolutely fascinating: it is almost as if there were two completely different worlds. Our hypothesis
is that we all, not only the New Yorkers, behave, think and act like Saul Steinberg’s cartoon suggests:
very local, indeed!

We have created maps like these for English, Chinese, German, French, Spanish and Por-
tuguese, which we visualised as cartograms. These are distorted world maps, see Figure 4.16: the
higher the density of references to locations in a particular country (in comparison to what you
would expect given the population of that country), the bigger the exaggeration of the area of that
country. Yellow is an indicator for under-representative, orange for about right and red for an over-
representative number of references. The Spanish and Portuguese cartograms are my favourites.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-082.jpg&w=371&h=155
http://kmi.open.ac.uk/people/stefan/mir-book/english-heat-2.jpg
http://mmis.doc.ic.ac.uk/inaugural/events-en-sp-world.mpg
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Figure 4.15: Events from 1 CE to 2000 CE of the English (top) vs the Spanish (bottom) wikipedia
(click frame for video)

The “view of the world according to the Chinese wikipedia” in Figure 4.16 has the most even
distribution, presumably because access to wikipedia is blocked from time to time in China and
has been systematically blocked for more than a year. Hence, it is a high proportion of expatriates
everywhere in the world, who contribute to wikipedia making it appear to be the most unbiased. To
make it absolutely clear, this analysis is about languages, not countries! Remember, too, that most
languages are spoken in more than one country and that the majority of children in the world grow
up with at least two languages.

These maps convince me that we are all “little Steinbergs” be it with respect to location, our
field of study, our expertise or otherwise. Hence, geography is one of the most important context
factors for any kind of search engine and information provider.

4.5.2 GEO-TEMPORAL BROWSING AND ACCESS
Geo-temporal browsing takes the idea of timelines and automatically generated maps, eg as offered in
the Perseus Digital Library5, a step further. It integrates the idea of browsing in time and space with
a selection of events through a text search box. In this way, a large newspaper or TV news collection
can be made available through browsing based on what happened where and when as opposed to by
keyword only.

The interface in Figure 4.17 is a design study in our group that allows navigation within a large
news event dataset along three dimensions: time, location and text subsets.The search term presents
a text filter. The temporal distribution can be seen in lower part. The overview window establishes
5http://www.perseus.tufts.edu

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-083.jpg&w=255&h=191
http://mmis.doc.ic.ac.uk/inaugural/events-en-sp-world.mpg
http://www.perseus.tufts.edu
http://www.perseus.tufts.edu
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English Chinese

German French

Spanish Portuguese

Figure 4.16: Cartograms (distorted world maps)

a frame of reference for the user’s region of interest. In principle, this interface could implement
new zooming techniques, eg speed-dependent automatic zooming (Cockburn and Savage, 2003),
and link to a server holding a large quantity of maps such as National Geographic’s MapMachine6

with street-level maps and aerial photos.

4.6 EXERCISES
4.6.1 INTERFACE DESIGN AND FUNCTIONALITY
The NewsRoom interface in Figure 4.18 — developed on top of the ANSES technology of Sec-
tion 4.1 — aims at returning the gist of the result set to the user via Information Landmarks. It
lists a set of topics that were found in the search result set with the tag cloud paradigm emphasising
more salient topics. At the same time, users are allowed to exclude search topics by unchecking the

6http://plasma.nationalgeographic.com/mapmachine as of May 2005

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-089.jpg&w=203&h=92
http://kmi.open.ac.uk/people/stefan/mir-book/english.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/chinese.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/german.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/french.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/spanish.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/portuguese.jpg
http://plasma.nationalgeographic.com/mapmachine
http://plasma.nationalgeographic.com/mapmachine
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-084.jpg&w=202&h=92
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-085.jpg&w=203&h=92
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-086.jpg&w=418&h=96
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-086.jpg&w=418&h=96
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-088.jpg&w=204&h=92
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Figure 4.17: Geo-temporal browsing in action

adjacent box. News stories are put into stable categories in an attempt to help the user to browse
news in a faceted way. Mousing over a story will bring up thumbnails of related videos.

Contrast the two interfaces ANSES (Figure 4.1) and NewsRoom (Figure 4.18) in terms of
workflow, presented information and clarity.

4.6.2 SHOT BOUNDARY DETECTION FOR GRADUAL TRANSITIONS

Compute and plot the distance functions d2(t), d4(t), d8(t) and d16(t) from Equation 4.1 for a
sequence of frames as depicted in Figure 4.19. You can assume the “feature values” f(t) for the frames
to be . . . , 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, . . ., and the frame-distance is assumed to be d f (t, s) =
|f (t) − f (s)|.

Do these functions dn(t) exhibit co-inciding peaks as predicted for gradual transitions?

4.6.3 RELEVANCE FEEDBACK: OPTIMAL WEIGHT COMPUTATION

The relevance feedback model in Figure 4.9 displays the returned images on a spiral such that their
distances to the centre are commensurate with the distances Dw(mi, q) of the returned images mi

to the query q. By moving one or more of the returned images either closer to the centre or farther
away, the user effectively provides some real-valued feedback Du(mi, q) as alternative to Dw(mi, q).

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-090.jpg&w=412&h=231
http://kmi.open.ac.uk/people/stefan/mir-book/geo-temporal-example.jpg
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Figure 4.18: NewsRoom interface

Figure 4.19: Gradual transition of film frames

This gives rise to the squared sum of errors

E(w) =
∑

i

(Du(mi, q) − Dw(mi, q))2.

Using Equation 3.11 provide an analytic solution for the optimal weight vector w such that E(w)

becomes minimal with respect to w.

4.6.4 RELEVANCE FEEDBACK: LAGRANGIAN MULTIPLIER
Solve the previous exercise under the constraint of convex weights.

4.6.5 GEOGRAPHIC ATTRIBUTES
You would like to attach geographic features to multimedia objects and decide to consult the
CIA world factbook https://www.cia.gov/library/publications/the-world-factbook
to add information about the history, people, government, economy, geography, communications,
transportation, military, and transnational issues beyond the trivial latitude and longitude coordi-

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-092.jpg&w=206&h=40
http://kmi.open.ac.uk/people/stefan/mir-book/newsroom.jpg
http://kmi.open.ac.uk/people/stefan/mir-book/gradual-transition.jpg
https://www.cia.gov/library/publications/the-world-factbook
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-091.jpg&w=298&h=200
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nates. Explain which features you select, how you standardise them, and which distance measures
you suggest for these.

4.6.6 VIEW OF THE WORLD — RETRIEVAL AND CONTEXT
Our gifted lab artist Jon Linney created an analogous version of Steinberg’s cartoon (Figure 4.13)
for London’s Piccadilly Circus, see Figure 4.20. Make a similar sketch for were you live. Incorporate
all places that are important to you.Think about other context variables, for example, related to your
music taste or your daily work. In your mind, does IR stand for infrared, information retrieval or
International Rectifier (a company producing products for power management)? Which variables
describe context and how could they be incorporated into multimedia retrieval?

Figure 4.20: View of the world from Piccadilly Circus

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00244ED1V01Y200912ICR010&iName=master.img-093.jpg&w=354&h=242
http://kmi.open.ac.uk/people/stefan/mir-book/london-view-of-the-world.jpg




109

C H A P T E R 5

Multimedia Information
Retrieval Research

In this chapter, we look at a number of current, cutting-edge research projects in the wider area of
multimedia information retrieval and at the visions that drive the state of the art. It is organised by
the following key research themes:

• Multimedia representation and management as the basis of any retrieval technology
• Digital libraries to utilise existing metadata and to integrate multimedia in conventional digital

libraries other than via traditional metadata library cards
• Metadata and automated annotation to bridge the semantic gap in multimedia information

retrieval
• User needs and evaluation to put the user at the centre of the tasks requiring multimedia

information retrieval
• Multimedia search and mining systems how to find and access multimedia for a given resource

discovery mission
• Browsing and presentation of multimedia data for publishing and consuming multimedia infor-

mation

5.1 MULTIMEDIA REPRESENTATION AND MANAGEMENT
In this section, I make a distinction between data-driven multimedia representation and knowledge-
based methods. For the former, the media itself are the focus of attention, while the latter look more
at applications that process knowledge in one form or another.
Data-driven methods. Current research in multimedia data management spans a variety of problems
including handling of duplicates and document overlaps for multimedia (see also the fingerprinting
techniques of Section 2.5) and meta-search engines (Wu et al, 2004b); optimising the indexing of
high-dimensional feature spaces (see Subsection 3.5), which are very typical for content-based multi-
media retrieval; combining and selecting low-level visual features for retrieval (Howarth and Rüger,
2005b; Hilaire and Jose, 2007); indexing photograph collections in the form of simple relations be-
tween concepts as opposed to keyword indexing (Martinet et al, 2003); developing visual attention
algorithms for region of interest coding that produce an “interest ordered” progressive bit-stream
in JPEG2000 so that the regions highlighted by the algorithm are presented first in bit-stream
(Bradley and Stentiford, 2003); generating motion vectors for scalable video coding (Mrak et al,
2004); preserving privacy for video-based applications (Cavallaro, 2004); supporting retrieval on
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small devices through hierarchical-query biased summaries (Sweeney and Crestani, 2004); repre-
senting and retrieving images from a collection of scientific articles using the text encapsulated
in their XML structure (Kong and Lalmas, 2007); analysing and treating semantic relations be-
tween terms (Cai and van Rijsbergen, 2005); and creating eminently browsable graphical networks
between multimedia objects to represent semantic and content-based facets of their respective sim-
ilarity (Heesch and Rüger, 2005).

Calic et al (2005) carried out a critical survey of the methods for video representation tar-
geting semantic analysis and outlining the importance of multimodal approaches for multimedia
information retrieval.

There have been attempts to add self-management to multimedia servers, for example, in au-
tonomic systems (Huebscher and McCann, 2008); for news-like sites their system is able to measure
user context and system trends to decide how best to serve the multimedia artefact to the user.

This wide cross-section of research activity is also mirrored and supported by formal projects
such as the UK-funded GATE project, see Subsection 5.1.1, a framework architecture for text engi-
neering; AXMEDIS (5.1.2) that aims to speed up and optimise content production and distribution
for production-on-demand; NM2 (5.1.3) that develops new interactive media forms; 3DTV (5.1.4),
a research network to further 3d television; and VISNET II (5.1.5), a EU network of excellence in
the area of audiovisual media technologies.

All these projects are engaged to further the state of the art in one or more of the dimensions
of standards, automation, intelligent handling of data and supporting creativity.
Knowledge-based methods. Most of the work in knowledge-based multimedia management is
rather recent, and some noticeable projects have made progress in this area: X-Media studied knowl-
edge that is distributed in different media (images, documents and data) in complex distributed
environments, see Subsection 5.1.6); MediaCampaign automated the detection and tracking of ad-
vertisement campaigns on television, internet and in the press, for example, via logo tracking (5.1.7);
SALERO looked at reusing media objects across media to improve production of games, movies and
broadcast (5.1.8); LUISA developed content management system for learning objects using a se-
mantic web services architecture (5.1.9); SEMEDIA developed a collection of audiovisual tools such
as video browsing tools, tag exploration tools for Flickr, video tagging games that were integrated
into a post-production data repository and a broadcast data archive (5.1.10).

Knowledge-based multimedia representation involves a wide spectrum of approaches. Some,
eg, Chakravarthy et al (2006), develop strategies and interfaces for cross-media knowledge cre-
ation and sharing that make references between text and images in multimedia documents explicit
with a view to increasing the value of the document itself. In a similar spirit Liu et al (2007) and
Magalhães and Rüger (2007) deploy automated classification and machine learning of concepts to
add knowledge to image descriptions. Gardoni et al (2005) developed a groupware tool that sup-
ports asynchronous work on industrial drawings and sketches. The significance of this work is the
possible re-use of sketches after they have been created. Later (ie, asynchronous) re-use is normally
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very difficult as the meaning of symbols and elements in sketches depends on the (synchronous)
agreement amongst the users of the sketch at creation time.

On the other end of this spectrum, Potter et al (2007) developed and analysed an integrated
system that applies recent ideas and technologies from the fields of Artificial Intelligence and Se-
mantic Web research to support sense- and decision-making at the tactical response level. They
demonstrate their approach with reference to a hypothetical large-scale emergency scenario.

5.1.1 GATE
GATE1 (General Architecture for Text Engineering) is a programming environment, which enables
users to develop and deploy language engineering components and resources in a robust fashion
(Cunningham et al, 2002). The GATE architecture supports a number of applications for language
processing tasks such as information extraction. The framework can be used to develop applications
and resources in multiple languages, based on its Unicode support throughout. GATE is open source
Java software under the GNU library licence, and it is a robust and scalable infrastructure, which
allows users to build and customise language processing components, while everyday tasks like data
storage, format analysis and data visualisation are handled by GATE. The system is bundled with
components for language analysis, and is in use for information extraction, information retrieval,
natural language generation, summarisation,dialogue, semantic web and digital libraries applications.
GATE-based systems have taken part in the all the major quantitative evaluation programmes for
natural language processing since 1995. Nowadays, GATE is a popular choice for both the handling
and analysis of text in multimedia projects and applications.

5.1.2 AXMEDIS
AXMEDIS2 (Automating Production of Cross Media Content for Multi-channel Distribution) was
an EU-funded integrated project (2004–2008), led by Università di Firenze, Italy. It built methods
and tools to speed up and optimise content production and distribution for production-on-demand
situations.The project specifically looked at automation for integrating content management systems
with distribution systems. The content model and manipulation exploits and expands MPEG-4,
MPEG-7 and MPEG-21 and other real and de-facto standards. AXMEDIS objects are specific
MPEG-21 objects. The project created demonstrators, validated through activities with end-users
in the area of content production, for both business-to-business distribution and for i-TV-PC, PCs,
mobiles and PDAs.

During its lifetime, the project organised an annual conference on Automated Production of
Cross Media Content for Multi-Channel Distribution.AXMEDIA’s web site continues to distribute
tools to manipulate AXMEDIA objects such as editors, media players, content processing tools, legal
peer-to-peer sharing tools based on the BitTorrent protocol, digital rights management tools, and
portals that demonstrate AXMEDIS content and distribution.

1http://gate.ac.uk
2http://www.axmedis.org

http://www.axmedis.org
http://gate.ac.uk
http://www.axmedis.org
http://gate.ac.uk
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5.1.3 NM2
NM23 (New Media for the New Millennium) was an EU-funded integrated project (2004–2007),
led by BT Group, UK, in which creative and technology experts participated to develop new media
forms that take advantage of the unique characteristics of broadband networks. The project was
about creating a new media genre using all of the facilities of interactive terminals, for example,
shows where viewers are able to interact directly with the medium and influence what they see and
hear according to their personal tastes and wishes.

Sussner et al (2006) discuss a multimedia 3d interface for the NM2 interactive movie Gor-
menghast Explore that enables viewers to reconfigure personalised video sequences in real-time. This
production is a re-edit of 4 hours of footage of the BBC Millennium series Gormenghast that was tele-
vised in January 2001. Altogether, four NM2 pilot productions (Gods in the Sky Choice, Cambridge
City Symphony, Gormenghast Explore, and RuneCast) were demonstrated at the 27th Cambridge
International Film Festival in 2007.

5.1.4 3DTV
3DTV4 (Integrated Three-Dimensional Television — Capture, Transmission, and Display) was an
EU-funded network of excellence (2004–2008), with a consortium of 20 organisations led by the
Bilkent University, Turkey. 3DTV was about the development towards a more realistic television
experience by capturing three-dimensional real-life scenes and re-creating a visual representation at
a remote site. The primary goal of this network was to deal with all aspects of 3d television, such
as the capture and representation of 3d scene information, the definition of digital 3d TV signals,
their storage and transmission, and finally, the display of the reproduced 3d scene, in an integrated
manner. As part of this project Onural et al (2006) gave an overview of 3d TV technologies.

5.1.5 VISNET II
VISNET II5 (Networked audiovisual media technologies) was an EU-funded network of excellence
(2006–2009) that was comprised of 12 European organisations in the field of networked audiovi-
sual media technologies. The project was coordinated by the Centre for Communication Systems
Research (CCSR), a part of an academic school at the University of Surrey. VISNET II consor-
tium members conducted integration, research and dissemination activities in three main topics:
video coding, audiovisual media processing and multimedia security. Video coding techniques enable
rich visual services with scalable formats, coding efficiency, and error resilience and scalability with
emphasis on quality optimisation even under adverse networking conditions. Audiovisual content
analysis enhances the personalised and seamless access to audio visual content, covering topics such
as metadata extraction techniques, automated annotation, human body detection and tracking, face
recognition as well as music, audio and speech analysis. Distributed and secure access platforms utilise

3http://www.ist-nm2.org
4http://www.3dtv-research.org
5http://www.visnet-noe.org

http://www.visnet-noe.org
http://www.ist-nm2.org
http://www.3dtv-research.org
http://www.visnet-noe.org
http://www.ist-nm2.org
http://www.3dtv-research.org
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middleware layers and provide the architectural support for interoperability and context-aware,
adaptable services, and cross-network delivery of audio visual content via low power terminals and
low-complexity techniques.

5.1.6 X-MEDIA

X-Media6 (Large Scale Knowledge Management across Media) was an EU-funded integrated
project (2006–2009) led by the University of Sheffield. It studied knowledge management in complex
distributed environments, researched, developed and implemented large-scale methodologies and
techniques for knowledge management with a view to supporting sharing and reuse of knowledge
that was distributed in different media (images, documents and data) and repositories (data bases,
knowledge bases, document repositories, etc). X-Media put a focus on seamless integration with
current work practices emphasising usability and ease of customisation for new applications. Its
goal was to improve access to, sharing of and use of information by humans as well as by and
between machines. The work was driven by real world requirements taken from case studies at Rolls
Royce (jet engines) and Fiat (cars). Rolls Royce tested life cycle monitoring, and Fiat carried out
competitor analysis.The multimedia in this project are data from sensors and cameras that need to be
interpreted. Its textual documents complement, describe, and help interpreting the multimedia data,
while ontologies describe the domain and the application.Petrelli et al (2009) demonstrated in a case
study within X-Media how a visualization of semantic data according to some easy dimensions such
as space and time provides effective sense-making of data. They looked holistically at the interaction
between users and semantic data, and proposed multiple visualization strategies and dynamic filters
to support the exploration of semantic-rich data.

5.1.7 MEDIACAMPAIGN

MediaCampaign7 (Discovering, inter-relating and navigating cross-media campaign knowledge)
was a EU-funded specific targeted research project (2006–2008) coordinated by Joanneum Research,
Austria.The project’s main goal was to automatically detect and track media campaigns on television,
internet and in the press. For the pilot system developed within the project, the focus was on
advertisement campaigns, for example, the tracking of logos and their exposure at car races. This
is currently a manual process. Scientifically the project was focused on the creation of a knowledge
model for the semantic description of media campaigns; the automated identification and tracking
of new media campaigns in different media; and modelling of domain-specific ontologies, which
relate media campaigns over different media and countries.

6http://www.x-media-project.org
7http://www.media-campaign.eu

http://www.media-campaign.eu
http://www.x-media-project.org
http://www.media-campaign.eu
http://www.x-media-project.org
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5.1.8 SALERO
SALERO8 (Semantic AudiovisuaL Entertainment Reusable Objects) was an EU-funded integrated
project (2006–2009). It aimed at making cross-media production for games, movies and broadcast
faster, better and cheaper by combining computer graphics, language technology, semantic web
technologies as well as content based search and retrieval. SALERO defined and developed content
for media productions, consisting of multimedia objects with context-aware behaviours for self-
adaptive use and delivery across different platforms. This content should enable the creation and
re-use of complex media by artists who do not need to know the technical aspects of these tools
(Thallinger et al, 2009).

5.1.9 LUISA
LUISA9 (Learning Content Management System Using Innovative Semantic Web Services Ar-
chitecture) was an EU-funded specific targeted research project (2006–2008), coordinated by Atos
Origin, Spain. LUISA developed a reference semantic architecture for search, interchange and de-
livery of learning objects in a service-oriented context. More specifically, the project developed a
semantic web service-based architecture for discovery, selection, negotiation, composition and se-
mantic annotation of learning resources. Dietze et al (2007) show how to deploy this and mappings
between different learning metadata standards as well as ontological concepts for e-learning. They
later (2009) go one step further and propose Situation-driven Learning Processes (SDLP), which
describe learning processes semantically from two perspectives: the user perspective that considers
them as a course of learning goals, whereas the system perspective utilizes Semantic Web Ser-
vices (SWS) technology to semantically describe necessary resources for each learning goal within a
specific learning situation.

5.1.10 SEMEDIA
SEMEDIA10 (Search Environments for Media) was a specific targeted research project of the EU,
led by Fundacio Barcelona Media Universitat Pompeu Fabra (2007–2009). It developed a collection
of audiovisual search and navigation tools that are generic enough to be applicable to the different
fields of broadcasting production, cinema post-production and social web. Two example techniques
from this project include diversifying image search with user generated content (van Zwol et al,
2008) and Flickr tag recommendation based on collective knowledge (Sigurbjörnsson and van Zwol,
2008).

5.2 DIGITAL LIBRARIES
Digital libraries raise the amount, availability, accessibility, assortment and authority of information.
Museums, film and music archives are increasingly turning towards digital versions of their artifacts,
8http://www.salero.info
9http://www.luisa-project.eu

10http://www.semedia.org

http://www.semedia.org
http://www.salero.info
http://www.luisa-project.eu
http://www.semedia.org
http://www.salero.info
http://www.luisa-project.eu
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partly for keeping digital records, partly for preservation and partly for increasing access. Hence,
multimedia digital libraries become increasingly more important.

Distinctive institutions to further the development, implementation and uptake of
(multimedia) digital libraries are the US National Science Foundation that created a US
online library for education and research in Science, Technology, Engineering and Mathematics11;
the British Library12 with its British Library Research and Innovation Centre13; and UKOLN14, a
centre of excellence in digital information management, providing advice and services to the library,
information and cultural heritage communities.

Digital libraries mainly provide three things: preservation of digital objects, an infrastructure
to ingress material, and access to content.
Preservation. PrestoSpace15 (Preservation towards storage and access) was an EU-funded project
(2004–2008) that contributed to technical solutions and integrated systems for digital preservation
of all types of audiovisual collections in the domain of restoration, storage and archive management,
content description, delivery and access. Some further examples for work on digital preservation
include the US National Digital Information Infrastructure and Preservation Programme16, the UK
Digital Curation Centre17, as well as other European projects such as Digital Preservation Europe18,
PLANETS19 and CASPAR20.
Infrastructure. This decides how easy it is to adapt existing digital library software to build digital
collections, ingress multimedia objects and distribute the collections. One of the most versatile and
widely used platforms for this is the open-source Greenstone digital library software described in
Subsection 5.2.1.
Access. The Open Archives Initiative21 (OAI) aims to provide low-barrier interoperability for dig-
ital libraries and archives. The main point is to allow service providers to harvest metadata, so
they can provide value-added services, which can be as simple as combining different repositories.
Lagoze and Van de Sompel, both serve as the OAI executive, review the history of the OAI and
describe how the protocol for metadata harvesting came about (2003).

The most salient and earliest of the multimedia digital library research projects for access
is Informedia (see Subsection 5.2.2) at Carnegie Mellon University. Other notable large projects
are SCULPTEUR that specialised in 3d models of museum objects (5.2.3); CHLT that created
tools for studying and understanding ancient languages (5.2.4); DELOS, a network of excellence
concerned with developing a digital library Reference Model (see 5.2.5); BRICKS, which was a

11http://nsdl.org
12http://www.bl.uk
13http://www.ukoln.ac.uk/services/papers/bl
14http://www.ukoln.ac.uk
15http://prestospace.org
16http://www.digitalpreservation.gov
17http://www.dcc.ac.uk
18http://www.digitalpreservationeurope.eu
19http://www.planets-project.eu
20http://www.casparpreserves.eu
21http://www.openarchives.org
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concerted effort to create a shared digital library of distributed resources from museums and archives
(5.2.6). StoryBank, which was a UK-funded digital library project that aimed to share stories across
digital divides (5.2.7).

eChase22 (Electronic Cultural Heritage made Accessible for Sustainable Exploitations) was
a European project with a different mission altogether, namely to investigate sustainable business
models to commercialise and exploit content in museums and archives (Sinclair et al, 2005).

A series of projects on use and usability of digital libraries have been based at University
College London. The most recent of these projects are User-Centred Interactive Search (UCIS,
2004–2008) and Making Sense of Information (MaSI, 2006–2009). The UCIS project has been
investigating the practices and needs of Humanities scholars, including understanding the rela-
tionships between physical and digital media (Rimmer et al, 2008) and how people find and work
with information in different formats. The MaSI project has studied how people make sense of
information, integrating information from multiple sources and in multiple formats. It has investi-
gated novel visualization techniques for representing and working with information. Earlier work,
eg by Blandford et al (2004), investigated analytical usability evaluations for digital libraries, ie, as-
sessing these by usability professionals using established theories and methods. In another study,
Blandford and Stelmaszewska (2002) evaluated four web-accessible music libraries, focusing par-
ticularly on features that are specific to music libraries, such as music retrieval mechanisms and
modalities. A framework for planning evaluation studies for such systems has been presented by
Blandford et al (2008).

5.2.1 GREENSTONE

The principal research output of the Digital Libraries Research group23 at the University of Waikato,
NZ, is called Greenstone24, which is an open source, multilingual digital library toolkit. It enables
you to create collections of digital content straight away, which are then accessed and searched in a
web browser. Greenstone can be configured to work either over the Internet, an intranet, or stand-
alone from DVDs (or similar). It runs on all major platforms, and it is mobile and screen-aware for
hand-held devices such as the iPod.

Various UN agencies and other Non-Government Organisations use Greenstone to pro-
vide self-contained fully searchable CD-ROMS on humanitarian aid to developing countries.
Regional workshops and tutorials25, partly run by UNESCO, take place all over the world as far-
flung away as Micronesia.Greenstone is downloaded 200 times/day,70,000/year, and it has user bases
in every continent. Through UNESCO sponsorship the software is fully documented in English,
French, Spanish, and Russian. In addition, its web interface has been translated into 55 languages
by enthusiastic volunteers. The project’s positive social impact has been acknowledged through the

22http://www.echase.org
23http://nzdl.sadl.uleth.ca/cgi-bin/library
24http://www.greenstone.org
25http://www.greenstone.org/map
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the biennial Namur award26, which recognizes recipients for raising awareness internationally of the
social implications of information and communication technologies.

Countless digital libraries have been built with Greenstone since its public release on Source-
Forge in 2000: from historic Māori newspapers to a collection of WHO documents for disasters;
from first aid in pictures to curated first editions of works by Chopin; from scientific institutional
repositories to personal collections of photos and other document formats.

Witten and Bainbridge’s textbook (2002) on how to build a digital library — the two authors
lead the Greenstone project — has just been published in a second edition (Witten et al, 2010).

5.2.2 INFORMEDIA
Informedia27 is an umbrella for a number of digital video library research projects, most of which
deal with video understanding in the widest sense, including search, retrieval, visualisation and
summarisation for videos, both digitally born or digitised. The first of these projects, now called
Informedia I28 (1994-1999),built base technologies to process digital videos: it performed automated
speech recognition and combined speech, image and natural language understanding to automatically
transcribe, segment and index linear video for search and image retrieval.

The Informedia suite of projects has brought about much original research: Hauptmann
(2005) gave an overview of 10 years of Informedia research, while Hauptmann et al (2007) speculate
on how many semantic concepts would be needed to bridge the semantic gap in broadcast news
retrieval, and how they should be selected and used. They examined extreme video retrieval that
relates to video retrieval as extreme programming related to programming (Hauptmann et al, 2006),
while Lin and Hauptmann (2008) attempt to determine news broadcasters’ ideological perspective.
The Informedia team have applied their technologies in applications spanning from oral history
digital libraries Christel et al (2006) to pervasive audiovisual analysis in nursing care homes in their
CareMedia project (Hauptmann et al, 2004).

5.2.3 SCULPTEUR
SCULPTEUR29 (Semantic and content-based multimedia exploitation for European benefit) was
a EU-funded project (2002–2006) that aimed to help create, manage and present cultural archives
of 3d models and associated multimedia objects (Addis et al, 2003, 2005). SCULPTEUR creates
3d object representations and stores them in an object relational database together with multime-
dia objects, which enrich the information associated with the cultural objects. 3d object retrieval
algorithms have been developed along with a semantic layer of ontologies. Multimedia objects and
objects derived from them are associated with concepts in this semantic layer. In SCULPTEUR,
browsing, retrieval and navigation are enabled through the use of integrated content and concept-
based queries. Users are allowed to access the information from the museum partners collaborating

26http://www.info.fundp.ac.be/˜jbl/IFIP/award.html
27http://www.informedia.cs.cmu.edu
28http://www.informedia.cs.cmu.edu/dli1/index.html
29http://www.SCULPTEURweb.org
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in the project structured through a common ontology. All these have been integrated into an existing
image digital library system to create a robust, scalable and distributed multimedia digital library
infrastructure.

5.2.4 CHLT

CHLT30 (Cultural Heritage Language Technologies) (Carey et al, 2003; Rydberg-Cox, 2005;
Rydberg-Cox et al, 2004) was a collaborative joint US-EU project (2002–2005) to create com-
putational tools for the study of Ancient Greek, Early Modern Latin and Old Norse texts in a
network of affiliated digital libraries.

The CHLT project has provided access to rare and fragile source materials by creating corpora
of Early-Modern Latin and Old Icelandic texts; transcriptions, images and hand-coded texts of over
60,000 words of Newton manuscripts in fully searchable form; and a digital library environment
that allows for high resolution images of pages from rare and fragile printed books and manuscripts
to be presented alongside these automatically generated hypertexts so that users can read the texts
and see the pages on which they originally appeared.

The project helped readers understand texts written in difficult languages by creating parsers
for Old Norse and Early-Modern Latin that automatically identify the grammatical identity of
a word; by integrating these parsers into a digital library reading environment that automatically
generates hypertexts where a user can click on a word, see its identity and look it up in a dictionary;
and by building a multi-lingual information retrieval tool that allows users to enter queries in English
and search texts written in Greek and Latin.

CHLT enabled scholars to conduct new types of scholarship by developing an innovative
visualization tool that clusters these search results in conceptual categories; using computational
techniques to build a word-profile tool that integrates statistical data, information from different
reference works and citations of passages into a single interface; and by creating tools that allow for
the computational study of style.

5.2.5 DELOS

DELOS31 was a network of excellence on digital libraries, funded by the EU between 2004–2007.
The main objective of DELOS was to coordinate a joint programme of activities of 55 European
teams working in digital library related areas. The network developed a Digital Library Reference
Model, which has the needs of next-generation systems in mind, and implemented a globally inte-
grated prototype of a Digital Library Management System, called DelosDLMS, which serves as a
partial implementation of the reference model.

30http://www.chlt.org
31http://www.delos.info
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5.2.6 BRICKS

BRICKS32 (Building Resources for Integrated Cultural Knowledge Services) was an integrated
project funded by the EU during 2004–2007, which was coordinated by Engineering Ingegneria
Informatica SpA, an Italian IT integrator. BRICKS aimed at integrating the existing digital re-
sources into a common and shared digital library covering Digital Museums and Digital Archives.
It researched and implemented open-source software solutions for sharing and exploiting digital
cultural resources. The project established a community of cultural heritage institutions, research
organisations, technological providers and other players in the field of digital libraries services.

5.2.7 STORYBANK

StoryBank33 was a UK-funded project, which started in 2006. It has allowed village communities
in the developing world to create and share audiovisual information easily. This information could
range from health or agricultural advice to reporting personal local news. Camera phones and digital
library software were used to create and share short audiovisual stories meaning any spoken report,
illustrated with still or moving images. StoryBank’s main rationale was to give a stronger voice and
role to people who cannot read, write or use text on the internet. By setting up a repository and
connecting that to the internet, StoryBank has allowed people to share locally and across the digital
divide. Jones et al (2008) provided a first prototype of the system.

5.3 METADATA AND AUTOMATED ANNOTATION

Two recent EU-funded networks of excellence have been concerned with bridging the seman-
tic gap: MUSCLE34 (Multimedia Understanding through Semantics, Computation and Learning
2004–2008) and K-Space35 (Knowledge Space of Semantic Inference for automated annotation and
retrieval of Multimedia Content 2006–2008). Another EU integrated project, aceMedia (see 5.3.1)
has the specific aim of generating automated annotations from content to make it easier to find and
re-use content.

Some of the fundamental tasks for generating metadata automatically are rooted in machine
learning tasks of classification and pattern analysis. One notable current EU-funded network of
excellence in this area is PASCAL2 (Pattern Analysis, Statistical Modelling and Computational
Learning), which builds on the PASCAL36 network of excellence that pioneers principled methods
of pattern analysis, statistical modelling, and computational learning (Rousu et al, 2006; Lodhi et al,
2002a; Shawe-Taylor and Cristianini, 2002). Two other EU projects that deploy machine learning
for object recognition and classification are LAVA, see Subsection 5.3.2, and KerMIT, see Subsec-

32http://www.brickscommunity.org
33http://cs.swan.ac.uk/storybank
34http://www.muscle-noe.org
35http://kspace.qmul.net
36http://www.pascal-network.org
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tion 5.3.3. The books by Cristianini and Shawe-Taylor (2000) and Shawe-Taylor and Cristianini
(2004) provide a summary of a much of the PASCAL, KerMIT and LAVA orientations.

POLYMNIA (5.3.4) is a recently finished EU project that allows museum visits to be shared
with friends and family via live video stream and recorded on a DVD.

The Humanities Advanced Technology and Information Institute (HATII), University of
Glasgow, has been examining methods of achieving automated semantic metadata extraction from
digital documents as a crucial step in realising automated ingest, selection and management of
digital material. As a step in this direction, Kim and Ross have been looking at automated genre
classification as an essential area of study that will bind efforts in genre-specific automated metadata
and provide structural classification of unstructured text for mining, both from a digital library
perspective (2007) and from a language processing perspective (2008).

The recent UK-funded project ANAWIKI37 (Creating anaphorically annotated resources
through semantic wikis, 2007–2009) attempts to create metadata on a large scale using the commu-
nity. These metadata complement a linguistic corpus with vital information on the correct reference
of words such as he, she, it, which etc. Their meaning in sentences such as The monkey took the
banana into the tree-house and ate it are eminently clear to humans, but state-of-the-art automated
natural-language processing still struggles with the so-called problem of anaphora resolution: does
it refer to the tree-house or the banana? In some sense, anaphora resolution is one of the semantic
gaps in natural-language processing, and building large-scale annotated corpora are undoubtedly a
vital contribution to the research field.

The ANAWIKI project at the University of Essex adopts the idea of “games for a purpose”
of von Ahn and Dabbish (2004) discussed in 2.4 and tries to turn the chore of annotation into
an enjoyable experience by amateurs. The project has developed tools to allow and encourage large
numbers of volunteers over the Web to collaborate in the creation of semantically annotated corpora.

5.3.1 ACEMEDIA

aceMedia38 (Integrating knowledge, semantics and content for user-centered intelligent media ser-
vices) was an EU-funded integrated project (2004–2007) coordinated by Motorola Ltd, UK. The
project aimed at integrating knowledge, semantics and content for user-centred intelligent media
services. aceMedia has focussed on developing a system to extract and exploit meaning inherent to
the content in order to automate annotation and to add functionality that makes it easier for all users
to create, communicate, find, consume and re-use content. aceMedia targets knowledge discovery
and embedded self-adaptability to enable content to be self organising, self annotating, self associ-
ating; more readily searched (faster, more relevant results) and adaptable to user requirements (self
reformatting).

37http://www.anawiki.org
38http://www.acemedia.org
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5.3.2 LAVA

LAVA39 (Learning for Adaptable Visual Assistants, 2002–2005) created fundamental enabling tech-
nologies for cognitive vision systems and extended our understanding of the systems- and user-level
aspects of their applications (Lodhi et al, 2002b; Cristianini et al, 2002; Vinokourov et al, 2002).
Technologically, the objectives were the robust and efficient categorisation and interpretation of large
numbers of objects, scenes and events, in real settings, and automatic online acquisition of knowledge
of categories, for convenient construction of applications. Categorisation is fundamentally a general-
isation problem, which was addressed using measures of distance between visual descriptors known
as “kernels". The project improved generalisation performance by incorporating prior knowledge
about the behaviour of descriptors within kernels and by exploiting the large amounts of unlabelled
data available to vision systems.

5.3.3 KERMIT

KerMIT40 (Kernel Methods for Image and Text) developed and tested intelligent research proto-
types for document classification, filtering, ranking and clustering for a massive multi-lingual, multi-
media data collection through the application of novel statistically well-founded machine learning
methods (Hardoon et al, 2004; Farquhar et al, 2005; Hardoon et al, 2006). This EU project (2001–
2004) was coordinated by Royal Holloway, University of London, and involved two commercial
and four university partners. The kernel-based techniques were applied to text, images and general
multi-media data to demonstrate how the kernel provides an interface between the data specifics
and the particular algorithmic demands. Hence, the main objectives fell into three headings: de-
velopment of (1) adaptive document filtering and categorisation, (2) adaptive document ranking,
(3) document clustering. In order to achieve these objectives, there was technical development of
specific kernels for different languages and data types, semantic refinement of kernels, kernel-based
algorithm development, and its statistical analysis.

5.3.4 POLYMNIA

POLYMNIA41 was an EU-funded specific targeted research project between 2004 and 2007, which
was coordinated by the Institute of Communication and Computer Systems, Greece. POLYMNIA
is an intelligent cross-media platform for the production of custom video souvenirs for visitors to
leisure and cultural heritage venues. Visitors are visually tracked by cameras as they enjoy a venue.
Live video stream channels are constantly available to friends and family so they can share in the
visitors experience at the venue. A personalized DVD, or a less expensive eCard, is produced at the
end of a visitor’s stay as a souvenir,which can be purchased, allowing visitors to relive their experiences
at the park well after the initial visit. POLYMNIA technology scales well to large venues, such as

39http://www.ecs.soton.ac.uk/research/projects/LAVA
40http://www.euro-kermit.org
41http://polymnia.pc.unicatt.it
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theme parks or museums, and has been installed and tested in a real theme park as part of the final
project evaluation.

5.4 USER NEEDS AND EVALUATION

User needs. Cooniss et al (2000, 2003) carried out two widely noted studies of the needs, charac-
teristics, and actions of end users of visual information in the workplace (called VISOR 1 and 2).
VISOR 2 created a user-oriented evaluation framework for the development of electronic image
retrieval systems in the workplace during a one year project in 2000. One of the useful distinctions
in their reports is the one between searching for oneself and searching as an intermediary, eg, for a
journalist on the other side of the phone.

Smeulders et al (2000) identified three types of search, labelled ‘target search’, aiming at a
specific multimedia object identified by title or other metadata; ‘category search’, where the user has
no specific object in mind but can describe which features they would like; and ‘search by association’
where the user is less specific and happy to browse in order to retrieve multimedia by serendipity.

For archival collections one would expect that most requests are likely to be for target searches,
which reflects the nature of curated collections and their users. One of the earliest studies that
confirmed this expectation analysed some 2,700 requests to the Hulton Deutsch collection, now
part of Getty Images42 (Enser and McGregor, 1992; Enser, 1993). A number of other studies have
reported a relatively high proportion of requests for specific and named features (Armitage and Enser,
1997; Chen, 2001), and, in the particular context of requests by journalists to newspaper picture
archives (Ornager, 1995; Markkula and Sormunen, 2000).The user studies reported by Hollink et al
(2004), Choi and Rasmussen (2002), Frost and Noakes (1998), Hastings (1995), and Keister (1994)
support the general observation that the further one moves away from specialist archival collections
towards less constrained environments the more pronounced becomes the emphasis on search by
association and category searches for more generic multimedia. Jörgensen and Jörgensen (2005)
studied the search behaviour of image professionals for advertising, marketing and graphic design,
by analysing search logs from a commercial image subscription service. Here a very low proportion
of the requests were for specifically named features; instead, there was a preference for thematic
terms and browsing.

At the non-professional end of the spectrum for image search Goodrum and Spink (2001)
analysed transaction logs of over 33,000 image requests submitted to the Excite search engine by
10,000 searchers with otherwise unknown characteristics: they found a high rate of search modifi-
cation, with sexual or adult content terms dominating the hundred most frequently occurring terms.
In a more general user study (Tombros et al, 2005) investigated the criteria used by online searchers
when assessing the relevance of web pages for information-seeking tasks.

Adapt and VIRAMI, described in Subsections 5.4.1 and 5.4.2, are two projects concerned
with user needs: the first one technology driven, the other one application driven.

42http://www.gettyimages.com
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Evaluation. Since its early conception information retrieval as a subject has always placed great
emphasis on system evaluation. Real user needs are simulated in a laboratory setting with three in-
gredients: large test collections, information need statements and relevance judgements.The test collection
contains a large number of potentially interesting documents from a repository; each information
need statement details the type of document that the user would like to retrieve, what the user hopes
to see or hear and criteria for how the relevance of documents should be judged. The relevance
judgements, also known as ground truth, tell us whether a particular document of the collection is
relevant for a particular information need. The value of an evaluation setting like this is that the
effectiveness of a particular retrieval method can be measured in a reproducible way. Although this
approach has been criticised for its lack of realism and its narrow focus on the pure retrieval aspect
of presumably much bigger real tasks, system evaluations are still the main basis on which retrieval
algorithms are judged, and on the back of which research flourishes.

In this respect evaluation conferences such as INEX for structured XML retrieval (see Subsec-
tion 5.4.3),TRECVid for video retrieval (5.4.4), ImageCLEF for image retrieval (5.4.5), GeoCLEF
for geographic retrieval (5.4.6) and MIREX for music retrieval (5.4.7) have a significant and lasting
impact on science through reproducibility and comparisons.

5.4.1 ADAPT
The UK-funded Adapt43 (Adaptive Search Models for Information Retrieval) project (2005–2006)
at the University of Glasgow has created search models that adapt to the information needs of the
searcher (Joho and Jose,2008).These models use implicit methods to unobtrusively monitor searcher
interaction, make inferences about what constitutes relevant material, create new queries and choose
appropriate retrieval strategies. The search models Adapt has created are based on implicit feedback
by incorporating the role of context and the development of structured presentation techniques.

5.4.2 VIRAMI
VIRAMI44 (Visual Information Retrieval for Archival Moving Imagery) systematically analysed
client information need for heritage film and video, together with a survey of subject content represen-
tation and cataloguing practice in film archives.VIRAMI also considered the role that content-based
image retrieval techniques might play in simplifying some of the metadata construction. The survey
revealed a marked lack of consistency in cataloguing and indexing practice and at the same time
a common need to address the emphasis that clients place on retrieving footage with specifically
named persons, objects, places and events, and combinations of these facets (Enser and Sandom,
2002). This finding substantiated the view expressed by all the survey participants that content-
based techniques did not, at the time, offer a generally effective alternative to the textual subject
description for accessing the videos.

43http://www.dcs.gla.ac.uk/˜jj/projects/adapt
44http://www.brighton.ac.uk/cmis/research/groups/vir
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5.4.3 INEX XML MULTIMEDIA TRACK

In 2002, the INEX45 Initiative for the Evaluation of XML Retrieval started to provide a test-bed
for evaluation of effective access to structured XML content.The organisation of INEX passed from
the University of Duisburg to Otago University46 in the year 2008.

Van Zwol et al (2005) set up an XML multimedia track that was repeated as part of INEX
until 2007. It provided a pilot evaluation platform for structured document retrieval systems that
combine multiple media types. While in 2005 the collection was made up from Lonely Planet travel
guides, the 2006 evaluations used the much larger Wikipedia collection from the INEX main track
(Westerveld and van Zwol, 2006). Both collections contain a range of media, including text, image
speech, and video — thus modelling real life structured documents.The goal of the multimedia track
was to investigate multimedia retrieval from a new perspective, using the structure of documents as
the semantic and logical backbone for the retrieval of multimedia fragments.

In contrast to other evaluation fora, INEX’s multimedia track was to retrieve relevant docu-
ment fragments based on an information need with a structured multimedia character, ie, it focused
on the use of document structure to estimate, relate, and combine the relevance of different multi-
media fragments. One big challenge for a structured document retrieval system is to combine the
relevance of the different media types and XML elements into a single meaningful ranking that can
be presented to the user.

5.4.4 TRECVID

The TREC Video Retrieval Evaluation initiative (TRECVid47) is an independent evaluation forum
devoted to research in automatic segmentation, indexing, and content-based retrieval of digital
video. It started out in 2001 as a video track of the TREC48 conference series and became an
independent 2-day workshop of is own in 2003. TRECVid is sponsored by the NIST49 (National
Institute of Standards and Technology) with additional support from other US government agencies.
Participation in TRECVid has been rising since its early days, and in 2007 54 teams from all over
the world took part. Smeaton et al (2006) give an overview of the TREC Video Retrieval Evaluation
initiative.

Figure 5.1 shows a typical audiovisual topic of the 2003 TRECVid Interactive Track. Its
information need is described as “Find shots from behind the pitcher in a baseball game as he
throws a ball that the batter swings at”. The images in Figure 5.1 visualise this information need
and can be used for a query by example. Other search topics may be exemplified by short video clips
or a combination of video clips and images. The 2003 TRECVid test collection repository consists
of video shots from mainly US news programmes.

45http://inex.is.informatik.uni-duisburg.de
46http://www.inex.otago.ac.nz
47http://trecvid.nist.gov
48http://trec.nist.gov
49http://www.nist.gov
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Figure 5.1: Example pictures supporting TRECVid topic 102: Find shots from behind the pitcher in a
baseball game as he throws a ball that the batter swings at

Every year 25 topics are released to all participating groups, who would have pre-processed
and indexed the test collection prior to this.The rules for the interactive task of the search track allow
searchers to spend 15 minutes per topic to find as many relevant shots as possible; they are free to
create a search engine query from the given topic in any way they see fit, modify their query, and
collect shots that they deem relevant. Each participating group returns the results of their searches
to NIST, who are then responsible for assessing the returned shots from all the participating groups.
The assessors, often retired intelligence workers, would look at a pool of results for each topic and
assess the relevance of each shot in the pool for a topic. In order to be resourceful with the assessors’
time, only the union of the top n, say 100, of all the results from different groups for a particular topic
is put into this pool.The explicitly assessed shots for each topic form the relevance judgements. Shots
that were not assessed during this procedure are those that none of the many participating systems
reported in their respective top n results, and the implicit assumption is that these unassessed shots
are not relevant. The reason for this is the prohibitive cost of assessing all shots against all topics.

This ground truth is then the basis on which participating retrieval systems can be compared.
It is possible to use this setting for later evaluation outside the TRECVid programme: the only slight
disadvantage is that the assessed algorithm would not have contributed to the pooling process; hence,
if the new algorithm uncovered many relevant shots that no other algorithm of the participating
groups has reported in their top n results, then these would be treated as irrelevant.

The interactive task is only one task amongst many.There are manual tasks where the searchers
are allowed to formulate and submit a query once for each topics without further modification; there
is an automated task where the generation of the computer query from a search topic such as in
Figure 5.1 is fully automated without any human intervention. These three tasks form the search
track of the TRECVid evaluation conference, which is one of typically three to five tracks, each year.
Over the years other tracks have included:

Shot segmentation, ie, the sectioning of a video into units that result from a single operation of
the camera, is a basic but essential task that any video processing unit has to carry out. Hard cuts,
where adjacent shots are basically edited by simply concatenating the shots,are relatively easy to detect
as the frames of a video change abruptly. Modern editing techniques deploy gradual transmissions,
though, eg, fade out/in, which provide continuity between shots and thus are harder to detect. Shot
segmentation algorithms vary widely in their efficiency, ie, how much faster (or slower) they are than
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playing the video. Generally, algorithms that need to decode the video stream into frames tend to
be slower than algorithms that operate on the compressed video format.

The story segmentation track meant to identify the (news) story boundaries with their time. A
news story is defined as a segment of news broadcast with a coherent focus. While a story can be
composed of multiple shots (eg, an anchorperson introduces a reporter, who interviews someone in
the field and uses archive material to explain background), a single shot can contain story boundaries,
e.g. an anchorperson switching to the next news topic. Although this track is non-trivial, it has only
been part of TRECVid for a couple of years.

In 2007 TRECVid introduced new video genres taken from a real archive in addition to its
previous focus on news: news magazine, science news, news reports, documentaries, educational
programming and archival video. The idea was to see how well the video retrieval and processing
technologies apply to new sorts of data.

In addition to that, the BBC Archive has provided about 100 hours of unedited material (also
known as rushes) from five dramatic series to support an exploratory track of rushes summarisation:
systems should construct a very short video clip that includes the major objects and events of the
original video. A dedicated workshop at ACM Multimedia (Over and Smeaton, 2007) presented
the results of these efforts.

The Surveillance event detection track is a more recent addition to TRECVid that operates on
around 150 hours of UK Home Office surveillance data at London Gatwick International Airport.

The Content-based copy detection track tries to identify modified segments of a video under a
variety of transformations such as a change of aspect ratio, colour, contrast, encoding,bit rate, addition
of material, deletion of material, picture in picture in the video part or bandwidth limitation and
variate mixing with other audio content in the audio part. Real world applications would be copyright
control, de-duplication in large data repositories, grouping of video results in large video repositories
or advertisement tracking.

Feature extraction tracks have played an important role throughout the lifetime of TRECVid.
Many requests for archival video contain requests for specific features (see above discussion in this
section). One of the frequently required aspects is that of a specific camera motion. In the low-
level feature extraction version, camera motions such as pan (left or right) or tilt (up or down) had
to be detected. Generally, owing to the semantic gap, high level feature extraction tasks are more
difficult. They concern semantic concepts such as indoor, outdoor, people, face, text overlay, speech etc.
These concepts can be very useful additional search criteria to home in on many real-world requests.
Smeaton et al (2009b) have summarised the work done on the TRECVid high-level feature task
and show the progress made across the spectrum of various approaches.

5.4.5 IMAGECLEF
ImageCLEF50 is an evaluation workshop, which is part of the Cross-Language Evaluation Forum
(CLEF, pronounce cle after the French word for key). The main objective of ImageCLEF is to

50http://ir.shef.ac.uk/imageclef
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advance the field of image retrieval through a sound, metric-based independent evaluation for image
information retrieval tasks. The evaluation procedure is modelled after NIST’s TREC, possibly
owing to the fact that CLEF itself originated from the cross-lingual track of the TREC in 1999.

ImageCLEF started as a new track for the CLEF 2003 edition led by University of Sheffield.
Its original task was a pure cross-language retrieval task based on image captions: “given a user
need expressed in a language other than English, find as many relevant images as possible”. The
ImageCLEF tasks changed over the years. In 2004, a medical retrieval task started, in which an
example image was used to perform a search against a medical image database consisting of images
such as scans and X-rays. The first automatic image annotation task was carried out on medical
images, and in 2006 the annotation task was extended to include a photographic collection. The
ImageCLEF photo track is also of interest to Geographic Retrieval (see Subsection 5.4.6 below).
Since 2006 it has used the IAPR-TC12 corpus51 containing 20,000 colour photos with associated
metadata supplied by Viventura, a holiday company. As the images are all travel photos, the locations
that the pictures were taken in is integral to these multimedia documents. There are 60 queries with
relevance judgements including 24 queries with geographic constraints.

In 2009 retrieval and annotation tasks over photographic and medical image collections were
carried out as well as an image retrieval task over wikipedia images. One new robotic image visual
task was introduced, in which participants should determine the location of a robot based on images
acquired with a perspective camera mounted on it. Another novelty of the 2009 edition of Image-
CLEF was the use of a hierarchical vocabulary, a so-called ontology, together with a new hierarchical
evaluation metric for the automatic image annotation task.

5.4.6 GEOCLEF
The GeoCLEF52 track was introduced to the CLEF workshop in 2005 as an ad-hoc TREC style
evaluation for geographic Information Retrieval systems; this provided a uniform evaluation for
the growing GIR community and is becoming the de facto standard for evaluating GIR systems.
GeoCLEF has moved its home to the University of Hildesheim53.

The GeoCLEF 2005-08 English corpus consists of approximately 135,000 news articles, taken
from the 1995 Glasgow Herald and the 1994 Los Angeles Times; the overall corpus also includes
German, Spanish and Portuguese documents. There are 100 GeoCLEF queries from 2005–08 (25
from each year). These topics are generated by hand by the four organising groups. Each query is
provided with a title, description and narrative. The title and description contain brief details of the
query, while the narrative contains a more detailed description including relevance criteria.The 2005
queries have additional fields for concept, spatial relation and location. However, these fields were
discarded in later years as unrealistic. Typical topics of GeoCLEF include Shark Attacks off Australia
and California (Topic 001) or the rather more difficult Wine regions around rivers in Europe (Topic
026). Mandl et al (2008) present an overview of GeoCLEF 2007.

51http://www.imageclef.org/photodata
52http://ir.shef.ac.uk/geoclef
53http://www.uni-hildesheim.de/geoclef
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5.4.7 MIREX
The MIREX54 (Music Information Retrieval Evaluation eXchange) is a TREC-style evalu-
ation effort organised by the International Music Information Retrieval Systems Evaluation
Laboratory (IMIRSEL55) at the Graduate School of Library and Information Science, of the
University of Illinois at Urbana-Champaign.It is a community-based evaluation conference for Mu-
sic Information Retrieval systems and algorithms. Downie (2008) looks at the background, structure,
challenges, and contributions of MIREX and provides some insights into the state-of-the-art in
Music Information Retrieval research as a whole.

5.5 MULTIMEDIA SEARCH AND MINING SYSTEMS
The state-of-the-art in multimedia indexing is still very much a text-based business, for example,
piggy-back search of text that is associated with multimedia: all the modern available tools for
building platforms for indexing are centred around text: the C++ library Lemur56 for language
modelling and text search, the open-source JAVA Lucene57 text search engine are two examples.

Yet, specifically for content-based multimedia search (exemplified by the search by example
paradigm) the uptake in industry has been very low. A notable exception is Virage58, a project suite
owned by Autonomy.Virage brings together complementary technologies from multimedia, security
and infrastructure specialists.Virage make the claim to offer a product set capable of television, video,
audio and CCTV challenges of any kind, ie, from making television content fully searchable and
accessible via IPTV to supplying and managing complex security systems.

In an attempt to overcome boundaries to market for multimedia analysis (as opposed to text
analysis), the Commission of the European Communities invited consortia at the end of 2005 to
bid for joint projects specifically in the area of audio-visual search engines. This section presents
PHAROS (5.5.1), VITALAS (5.5.2) and TRIPOD (5.5.3), all projects that started early 2007.

5.5.1 PHAROS
PHAROS59 (Platform for searching of audiovisual resources across online spaces) is an EU-funded
integrated project (2007–2009), coordinated by Engineering Ingegneria Informatica SpA of Italy.
The PHAROS project builds a next generation audiovisual search platform, to be designed, devel-
oped and applied jointly by a consortium of 13 academic and industrial players, including 3 small
and medium enterprises.

The PHAROS mission (Debald et al, 2006; Bozzon et al, 2009) is to move business scenarios
in the audiovisual domain from a point-solution search engine paradigm to an integral search plat-
form paradigm taking future user and search requirements as key design principles. The platform

54http://www.music-ir.org/mirex
55http://music-ir.org/evaluation
56http://www.lemurproject.org
57http://lucene.apache.org
58http://www.virage.com
59http://www.pharos-audiovisual-search.eu
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allows modular application development, enables knowledge sharing and technology integration,
code and skill reuse. PHAROS has advanced the state of the art in the audiovisual domain, includ-
ing novel content-publishing mechanisms, automated semantic annotation, advanced query broker-
ing integrating schema-agnostic and content-based search, context-awareness and personalization,
innovative user interfaces, content protection and spam detection.

5.5.2 VITALAS

VITALAS60 (Video and image Indexing and Retrieval in the Large Scale) is an EU-funded in-
tegrated project (2007–2009), led by GEIE ERCIM, France. VITALAS is an innovative project
designed to provide advanced solutions for indexing, searching and accessing large scale digital audio-
visual content. The focus of this initiative is the application of advanced technology to real use-cases
that reflect the expectations and concerns of major European multimedia archives. VITALAS ad-
dresses three main challenges: cross-media indexing (automated annotation) and retrieval; large scale
search techniques; and visualisation and context adaptation (personalized services considering both
online and offline).

5.5.3 TRIPOD

TRIPOD61 (TRI-Partite multimedia Object Description) is an EU-funded integrated project, coor-
dinated by the University of Sheffield (2007–2009).TRIPOD aims to develop a series of techniques,
which significantly and rapidly advance both the quality and breadth of search results returned from
image collections. The project assumes that location plays a key role in image retrieval. Another key
aspect is the creation of a large and diverse collection of geo-referenced photographs, which are used
for testing. TRIPOD automatically builds rich multi-faceted text and semantic descriptions of the
landscape and permanent man-made features pictured in a photograph, builds captions in a range
of different languages and automatically updates captions when new information about a location
becomes available.

5.6 BROWSING AND PRESENTATION

Even when a world of information has been reduced to a subset that is appropriate to a particular
need or query, there still remains the problem of presenting the data to a user in a meaningful and
useful way. A number of active projects are looking at new ways to organise and present data with the
aim of helping the user to quickly digest the relevant information, and to combine it with additional
sources where appropriate.

60http://vitalas.ercim.org
61http://tripod.shef.ac.uk
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5.6.1 ÜBASE
The aim of üBase62 (Heesch et al, 2004) is to create a web-based image and video browser for
content-based retrieval that integrates the current research into browsing and searching into a unified
interface. The resulting browser provides the user with the power to browse a large image collection
quickly and accurately.

The project’s main focus was on the important issues of integrating the searching and browsing
mechanisms, thereby improving the user experience.The browser seamlessly integrates the following
main features: search with relevance feedback, browsing results by rank; hierarchical browsing; lateral
browsing using NNk networks; temporal browsing; historical browsing and image/video viewer.

5.6.2 SPIRIT
SPIRIT63 (Spatially-Aware Information Retrieval on the Internet) (Jones et al, 2002) was a research
project funded by the EU for the period of 2002–2005. It was a collaborative effort with six European
partners, coordinated by Cardiff University, UK. The project has been engaged in the design and
implementation of a search engine to find documents and datasets on the web relating to places or
regions referred to in a query. The project has created software tools and techniques that can be used
to produce search engines and websites that display intelligence in the recognition of geographical
terminology. In order to demonstrate and evaluate the project outcomes, a spatially-aware prototype
search engine has been built and is serving as the platform for testing and evaluation of new techniques
in geographical information retrieval.

5.6.3 MSPACE
The mSpace64 project at the University of Southampton. mSpace is an interaction model and soft-
ware framework to help people access and explore information (schraefel et al, 2006) thereby helping
to build knowledge from exploring those relationships. mSpace does this by offering several pow-
erful tools for organizing an information space to suit a person’s interest: slicing, sorting, swapping,
infoViews and preview cues. mSpace presents several associated categories from an information
space, and then lets users manipulate how many of these categories are presented and how they are
arranged. In this way, people can organize the information to suit their interests, while concurrently
having available to them multiple other complementary paths through that information.

5.7 IMAGINATION IS THE ONLY LIMIT
The project discussed above are not in any way fully representative of all the research and development
that goes on in multimedia information retrieval. New and noteworthy ideas and applications come
up all the time.

62http://ubase.open.ac.uk
63http://www.geo-spirit.org
64http://mspace.fm
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For example, Kitamura et al (2008) analyse food images with a view to estimate and log the
balance of food in the photo in terms of grains, vegetables, mean & beans, fruit and milk. The same
research team was amongst one of the first who took an interest in life-long recording of one’s life.
Aizawa et al (2001) experimented with video cameras attached to the clothes that record all the time.
One of the big research questions here is how to summarise 80 years of video, as it is impossible
to watch it all. Puangpakisiri et al (2008) experimented with wearing and logging two devices: a
SensCam, which frequently takes pictures (some 1000 per day), and a WiFi positioning device,
eg, through a mobile phone. They were able to classify many activities, such as walking, shopping,
travelling, eating with a high precision.

There are interesting ideas using multimedia to connect children with cultural heritage, re-
quiring a browsing and access system without using keywords: Yamada et al (2006) developed such
a system which they named CEAX65 (across cultures, educational scenes and digital archives).

Music information retrieval has its own set of fascinating work from drum pattern retrieval
through voice percussion (Nakano et al, 2004) to thumbnailing music with colour pattern according
to acoustic features (Yoshii and Goto, 2008) or building active-listening interfaces that allow you
to display virtual dancers that are synchronised with the music; to change the timbre of instrument
sounds on CD recordings; to browse large music collections; to change drum sound and patterns
during music playback and more (Goto, 2007).

These few examples demonstrate that imagination is the only limit of research in multimedia
information retrieval.

5.8 EXERCISES
5.8.1 SEARCH TYPES CONTINUED
Coming back to Exercises 1.6.5 and 2.6.1, pick a few research projects in this chapter that interest
you most and determine which search modes of Figure 1.6 on page 6 have been deployed there.

5.8.2 OVERVIEW DIAGRAM OF PROJECTS
In this chapter, I have categorised and discussed interesting multimedia information retrieval projects
along the dimensions multimedia representation and management ; digital libraries; metadata and au-
tomated annotation; user needs and evaluation; multimedia search and mining systems; and browsing and
presentation of multimedia data. Some projects show aspects of more than component, though.

Look through the projects and determine whether or not they have an important aspect in (m)
multimedia-specific search and representation, (d) digital libraries and metadata or (u) user-centric
approaches (eg, through browsing or recognition of workflow needs). Each project can cover one to
three aspects. Draw an intersecting Venn diagram of the three overlapping project sets (m), (d) and
(u). Which areas are over-represented, which ones under-represented?

65http://ceax.nii.ac.jp
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C H A P T E R 6

Summary
This book has introduced basic concepts of multimedia information retrieval technologies for a
number of different query and document types; these were the piggy-back text search, automated
annotation, content-based retrieval and fingerprinting. The discussed paradigms include summaris-
ing complex multimedia objects such as TV news, information visualisation techniques for document
clusters, visual search by example, relevance feedback and methods to create browsable structures
within the collection. These exploration modes share three common features: they are automatically
generated, depend on visual senses and interact with the user of the multimedia collections.

Multimedia information retrieval has its very own challenges mainly in the semantic gap and
in the polysemy that is inherently present in under-specified query-by-example scenarios. I have
given some examples of user-centred methods that support information retrieval in multimedia
digital libraries. Each of these methods can be seen as an alternative mode to the traditional digital
library management tools of metadata and classification. The new visual modes aim at generating
a multi-faceted approach to present digital content: video summaries as succinct versions of media
that otherwise would require a high bandwidth to display and considerable time by the user to
assess; information visualisation techniques help the user to understand a large set of documents
that match a query; visual search and relevance feedback afford the user novel ways to express their
information need without recourse to verbal descriptions that are bound to be language-specific;
alternative retrieval modes such as lateral browsing and geo-temporal browsing will allow users to
explore collections using lateral associations and geographic or temporal filters rather than following
strict classification schemes that seem more suitable for trained librarians than the occasional user
of multimedia collections. The cost for these novel approaches will be low, as they are automated
rather than human-generated.

Multimedia information retrieval is by far not a closed area as is demonstrated by the selection
of recent research projects in Chapter 5. I envisage that the constant progress of research in this area
will make accessible digital multimedia resources with less metadata and at lower cost. I predict
that multimedia information retrieval will bring about a much closer interlinked digital and physical
world, for example, through applications that use images or recordings from the real world to link
to digital resources: a snippet of a song will be a viable way to the opening times of movies that
feature the song; a picture of leaves will be an easy path to information about the corresponding
plant from a database; a snapshot of a building as query on a camera mobile phone will result in
tourist information about its significance.
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Figs 4.8 and 4.9: Thumbnails from royalty-free images from Corel Gallery 380,000, © Corel Cor-

poration, all rights reserved
Fig 4.10: uInteract interface by Haiming Liu and Srdan Zagorac; images from ImageCLEF 2007

competition http://www.clef-campaign.org (Grubinger et al, 2006)
Figs 4.11 and 4.12: üBase see Fig 4.8; thumbnails and full frame in the (partial)

screenshots from videos of the TREC Video Retrieval Evaluation 2003 dataset,
http://trecvid.nist.gov

Fig 4.13: View of the world from 9th Avenue, drawing by Saul Steinberg, The New Yorker 29 March
1976, © 2010 The Saul Steinberg Foundation/Artists Rights Society (ARS), New York,
and © Condé Nast Publications

Figs 4.14 and 4.15: Heat world map video and images, Simon Overell using wikipedia and NASA
maps from Blue Marble: Next Generation, NASA’s Earth Observatory

Fig 4.16: Cartograms, Simon Overell using the application MAPresso from
http://www.mapresso.com

Fig 4.17: Geotemporal browsing screenshot by Simon Overell
Fig 4.18: NewsRoom interface by Abdigani Diriye, 2009, based on a back-end by Eric Fernandez,

2006
Fig 4.20: View of the world from Piccadilly Circus with kind permission from Jon Linney, May 2008,

free after Saul Steinberg’s New Yorker cover of 29 March 1976
Fig 5.1: images reproduced from TREC Video Retrieval Evaluation 2003,

http://trecvid.nist.gov
Page 157: Photograph by Chris Valentine, processed by Harriett Cornish

http://www.clef-campaign.org
http://trecvid.nist.gov
http://www.mapresso.com
http://trecvid.nist.gov
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