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Image segmentation is the first stage of image processing and analysis. The

result of image segmentation is used for image post-processing. In computer vision,

segmentation refers to the process of partitioning a digital image into multiple segments,

called phases (or classes). The goal of segmentation is to simplify and/or change

the representation of an image into something that is more meaningful and easier to

analyze.

An important task of image segmentation is to distinguish objects from background

without (or least) affected by noise, intensity-inhomogeneity and artifacts. Based on

the classification policy that each pixel is classified to only one phase exclusively, or

each pixel can partly belong to more than one phase, image segmentation methods are

divided into two categories: hard segmentations and soft segmentations. Variational

methods are powerful in hard segmentation. Roughly speaking, variational models

for hard segmentations contain region-based methods and edge-based methods.

The level-set technique is extensively used in the implementation of these models.

However, the non-convexity of the energy functional in the level-set formulation is an

inherent drawback of the level-set method. As a result, many level-set-based variational

segmentation models are sensitive to initial values. This problem is more difficult to

deal with for multiphase image segmentation. Another problem of hard segmentation

is its applications to some real world problems. For example, in MRI brain image
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segmentation, each voxel (3-D pixel) may contain more than one type of matter due

to limited spatial resolution of imaging equipment. The effect is called partial volume.

Instead of labeling each image voxel with a unique tissue type [31], partial volume

segmentation aims to estimate all the percentage of each voxel that belongs to each

tissue-type.

The second problem mentioned above produces the need directly to develop

soft segmentation methods, while for the problem of non-convexity of variational hard

segmentation models, it has been found that for some of them, the problems can be

solved by relaxing the characteristic functions of interested regions to membership

functions (also called ownership functions).

In this research, after reviewing the existing image segmentation methods in

Chapter 1, we developed three models based mainly on stochastic theory. In all these

models, we assume that the intensity of the image at each pixel is a random variable

with Gaussian distribution (or mixed Gaussian distribution). Chapter 2 - 5 describe

these models. In Chapter 2, we extend the Sine-Sinc model to Gaussian-distribution-like

image. Moreover, we choose a normalization of the original image as an initialization

of the iterations so that it helps converge to the “true segmentation”. Furthermore,

we replaced the sinc function by the exponential function. With this change, the new

model is more adaptable, and can still be implemented using convex-concave procedure

(CCCP) which is guaranteed to converge to a local minimum or saddle point. In Chapter

3, we define a piecewise function h(x) ∈ C 1 to replace the exponential function

in the first model and the Sinc function in Sine-Sinc model(discussed in Chapter

2). The advantage of this change lies in the fact that the constructed function has a

sum of 1 at each point over all phases. This makes the set of composition functions

{hk (x) = h(z(x) − k)}k=1K be essentially a set of membership functions. Another

advantage of this function is that only the nearest neighbor branches can have an

overlap of their supports. This property is similar to the partial volume effect in MRI
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partial volume segmentation where, approximately, different types of matter, called white

matter, gray matter and CSF overlap only at their border. This similarity motivated us

to apply our model to partial volume segmentation for MRI brain images. In Chapter

4, we start from considering the piecewise constant Mumford-Shah model for images

with intensity-inhomogeneity and develop a stochastic variational soft-segmentation

model with mixed Gaussian distribution. The model is more robust to noise and robust

to intensity-inhomogeneity too. The problem is formulated as a minimization problem to

estimate the mixture coefficients, spatially varying means and variances in the Gaussian

mixture. The optimized mixture coefficients lead to a desirable soft segmentation,

as well as a hard segmentation. We apply the primal-dual-hybrid-gradient (PDHG)

algorithm to our model for iterations of membership functions and use a novel algorithm

for explicitly computing the projection from RK to simplex �K−1 for any dimension K

using dual theory. Our algorithm is more efficient in both coding and implementation

than existing projection methods.

Unsupervised image segmentation models are usually efficient only for a specific

kind of image. For example, intensity-based unsupervised models usually assumes

images to be smooth. It usually fails to work on textured images. Another example

is in medical images. When the interested part of some tissue in the image has the

same or similar intensity as other tissues, the segmentation will lead to an incorrect

result. On the other hand, supervised image-segmentation methods take a learning

procedure with a labeled training set to form a classifier. Although supervised methods

are likely to give a better result than unsupervised methods, marking the training set

is very time-consuming. Semi-supervised segmentation can save the time of machine

learning while still utilizing the advantage of unsupervised methods. So far, most of the

semi-supervised segmentation methods are developed for two-phase case. Only a few

papers have dressed this topic for multiphase segmentation. In Chapter 5, we develop

a framework for semi-supervised image segmentations based on the model in Chapter
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4. The frame work can be implemented interactively, and can actually be applied to

many static image-segmentation models. By using semi-supervised and interactive

image segmentation framework developed in this chapter, people can expected more

meaningful segmentation results.

All the three models and the semi-supervised frame work are demonstrated with

experimental results. In Chapter 6, we give a short prospectus of our anticipated future

work related to the aforesaid models and methods.
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CHAPTER 1
INTRODUCTION TO IMAGE SEGMENTATION

Image segmentation is at the first stage of image processing and analysis. The

result of image segmentation will be used for image post-processing such as feature

extraction, pattern recognition, volume analysis and some other statistics and analysis.

In computer vision, segmentation refers to the process of partitioning a digital image into

multiple segments (sets of pixels). Each of the segment or set is called a phase or class.

The goal of segmentation is to simplify and/or change the representation of an image

into something that is more meaningful and easier to analyze [85]. Image segmentation

is typically used to locate objects and boundaries (lines, curves, etc.) in images. More

precisely, image segmentation is the process of assigning a label to every pixel in an

image such that pixels with the same label share certain visual characteristics or some

reasonable meaning. In this case each pixel belongs exclusively to exactly one phase.

The segmentation is called hard segmentation. In some applications, such as medical

image processing, hard segmentation is not enough for post-processing. For example,

in Magnetic Resonance Imaging (MRI), a voxel (3D pixel) may contain more than one

tissues (white matter, gray matter or cerebrospinal fluid)due to limited resolution, i.e., a

voxel partly belongs to more than one phases. The goal of soft segmentation is to find

all the probabilities that each pixel belongs to all phases. This probability is also called

membership (or ownership) in the literatures. Since soft segmentation allows each

pixel to belong to several phases with certain probabilities, it provides a more flexible

mechanism, and thereby keeps more options available for post-processing steps.

For convenience of statement, in this whole work, we suppose that the image used

for segmentation is always two dimensional one. However, most of the methods we

developed can also applied to three dimensional case or can be easily extended to three

dimension spaces. Let 
 ⊂ R2 be an open and bounded domain with Lipschitz domain.

A digital image on 
 is a bounded function I : 
 → R. Each point x ∈ 
 is called a
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pixel for two dimensional case and voxel for three dimensional case. The segmentation

problem in computer vision (as formulated by Mumford and Shah (1989)) can be defined

as follows: given an observed image I , find a decomposition 
k , (1 ≤ k ≤ K ) of 
 and

an optimal piecewise smooth approximation f of I , such that the features of f varies

smoothly within each 
k , and rapidly or discontinuously across the boundaries of 
k ,

where 
k is called a segment, class or phase and K is the number of segments of the

image we want to find. When K = 2, the segmentation means to distinguish or extract

an object (one phase) from the image background (another phase), called two phase

segmentation. When K > 2, the segmentation is called multiphase segmentation.

Based on the notations above, a hard segmentation is to find a partition of 
, i.e.,

to find connect sub-domains 
k , (1 ≤ k ≤ K ) of 
 such that (1) 
 =
⋃K

k=1 
k and


i
⋂


j = ∅ for i 6= j and (2) in each 
k the pixels share some similar features. So each

pixel belongs exclusively to one phase, and related to one label k . Different from hard

segmentation, in soft segmentation, a pixel x ∈ 
 may partly belongs to more than one

phases, and is therefore associated to a set of ownerships pk (x), 1 ≤ k ≤ K (or called

memberships) such that pk (x) ≥ 0 for all 1 ≤ k ≤ K and
∑K

k=1 pk (x) = 1 for all x ∈ 
.

Through all the thesis, except for especially stated, 
 denotes image domain, pk (x)

denotes k-th membership function, and K denotes the number of all phases.

1.1 Some Topics in Image Segmentation

In image segmentation, there are a lot of interesting topics that are still open or

need to be further investigated. For instance, how well can we expect to segment

images without recognizing objects? What determines a segment? How can we pose

the problem mathematically? How do we solve the specified problem(s)? How can we

evaluate the results? These questions are actually too large to be answered in detail. In

this section, we only list some specific topics that are closely related to this thesis.

1. Presence of Noise. One of the most basic topics in image segmentation is
how to avoid or minimize the interference of noise during segmentation, namely
denoising. Early image segmentation employed data clustering techniques
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in the field of pattern recognition which are under discrete setting. One of the
most famous data-clustering methods is c-means clustering algorithm using
least-square-method. The original c-mean clustering algorithm has no immunity
to noise. Later on, the method was extended by adding neighborhood information
into the model[9, 39], which is much more robust to noise compared with the
original algorithm. Under continuous setting, noises can be easily restrained by
introducing variation[83]. One typical example is the well-known Mumford-Shah
model [74] which assumes images to be piecewise smooth. ROF model is a
representative of variational denoising model [83]. Compared with discrete setting,
variational models under continuous setting are theoretically more strict and more
beautiful.

2. Presence of Intensity-Inhomogeneity. In order to be simple for implementation,
many image segmentation models have been developed for piecewise constant
images. However, even if in the very ideal case where the actual image is
piecewise constant, there may still be intensity inhomogeneity and artifacts
presented in the image due to non-uniform illumination, or non-uniform imaging
procedure, which can mislead the intensity/brightness-based image segmentation.
One way to overcome the intensity-inhomogeneity interference is to utilize spatially
non-local information of images [14, 15], called non-local (NL) segmentation.
The NL model is capable of integrating semi-local and global image information
simultaneously through a specific graph, and thus improve the original model that
does not work efficiently with images having local intensity inhomogeneities. Most
other approaches to dealing with intensity inhomogeneity focus on bias correction
[1, 53, 63, 81, 102]. Such methods are usually integrated into soft segmentation
schemes.

3. Hard-Segmentation versus Soft-Segmentation. Traditional image segmentation
methods are always hard segmentation. Good examples are level-set methods
[29, 77] under continuous setting and graph-cut methods [13, 14, 48, 56] under
discrete setting (Recently, J. Yuan et al. developed a framework that discussed
graph-cut methods under continuous setting [6]). These methods always assume
that there exists a boundary separating two spatially neighboring phases. Each
point belongs exclusively to only one phase. So, the segmentation is equivalent
to find the boundary between different phases. Different from hard segmentation,
the soft segmentation [34, 87, 92] is to find all the ownerships (or memberships)
of all pixels. Compared with hard segmentation, soft segmentation has many
advantages. For example, each pixel in an image may not belong to only
one class due to limited resolution. A typical application is the partial volume
segmentation for MRI brain images [42, 60], where near the boundary between
white matter and gray matter, each pixel usually contains part of white matter
and part of gray matter. Simply assigning a pixel to one pure matter may cause
a significant accumulated error. In addition, even if in some applications, soft
segmentation has to be converted to hard segmentation at the final stage by using
the maximum membership classification (In this case, x belongs to i -th phase if
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i = argmaxj{pj (x)}), it provides a more flexible mechanism, thereby keeping more
options available for post-processing steps.

4. Globally Optimal Solution. Given a segmentation model, the solution is
usually non-unique. Among all the solutions, globally optimal solutions are
usually more attractive. From theoretical perspective, a globally optimal solution
makes a model more beautiful. From the perspective of implementation,
globally optimal solution is always preferred because of their potentially better
stability. Under discrete settings, graph-cut methods can guarantee to achieve
a global solution[13, 14, 47]. Under continuous setting, it is usually hard to find
global solutions for hard-segmentation methods. For instance, it is impossible
to obtain global solutions directly from a level-set based method due to the
non-convexity of the model. However, by relaxing a hard-segmentation model
to a soft-segmentation model, it is possible to find a global solutions for the
original hard-segmentation model. For instance, in two-phase case, the active
contour model or snake model can be solved globally [16]. For multi-phase case,
there have been several papers addressing such topic [5, 17, 18, 52]. However,
compared with two-phase case, the implementation is much more complicated and
the cost is much more expensive.

5. Multi-Phase Segmentation versus Two-Phase Segmentation. The relation
between two-phase image segmentation and multi-phase image segmentation is
similar to one-variable analysis and multi-variable analysis. As we mentioned at
the very beginning, the segmentation of an image I (x) defined in 
 is a process of
partitioning the image domain 
 under some rule. In two-phase case, one phase
is the object or foreground 
F while another phase is the background 
B . As long
as the foreground is found, the background is also found. Therefore, there is only
one variable 
F (or 
B) in the problem that intrinsically needs to be distinguished.
On the other hand, when the problem is a multi-phase segmentation, there are
at least two different objects to be determined except for background. Therefore,
multiphase image segmentation is more complicated than two-phase image
segmentation. Some methods that work very efficient for two-phase image
segmentation may not be efficient for multiphase segmentation and some of them
cannot be simply extended to multiphase image segmentation. For instance, in
level-set based two-phase image segmentation [29], the initial zero-level-set can
be randomly chosen. When the level-set method was extended to multiphase
image segmentation, however, the initial zero-level-set must be chosen properly
in order for the iterations to converge to a feasible solution. Another example is
the relaxation of hard segmentation. As mentioned above, the two-phase active
contour model can be relaxed to a soft segmentation model so that a global
solution of original hard segmentation can be exactly recovered from a global
solution of the soft segmentation model. However, when this procedure is applied
to multiphase segmentation, it is hard to achieve such a similar result. This is
because there are more than one membership functions in the functional. Although
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the functional is convex with respect to each membership function pi (x), it may not
be convex with respect to the vectorial function ~p(x) = (p1(x), ..., pK (x)).

6. Supervised Segmentation versus Unsupervised Segmentation. Among all
image segmentation methods, one can simply divide them into two categories.
One is unsupervised methods, another is supervised methods. Fully supervised
segmentation models use assigned features as reference for classification. The
assigned features are obtained by training a large set of samples. Unsupervised
segmentations usually don’t assign the features for each class. Only after
segmentation, the features of each class can be found. By a trade-off, semi-supervised
segmentation models classify pixels by assigning some pixels to each class before
or at the very beginning of each implementation of the model. Those assigned
pixels will take the role of seed and will be used partly as a kind of reference for
the segmentation. Unsupervised methods are theoretically beautiful. However, an
unsupervised method cannot deal with all kinds of situations due to the complexity
of images. Some prior knowledge of images is sometime necessary for obtaining
an ideal segmentation. In some extreme cases, repeated human interactions are
needed to take in order to achieve an ideal segmentation.

1.2 Introduction to Existing Techniques

1.2.1 Level-Set Based Segmentations

The task of image segmentation is either to find subregions corresponding to

different objects or to find the boundaries of those objects. In recent two decades, one of

the most advanced segmentation models is called active contour model or snake model,

which is first introduced by M. Kass, A.Witkin, and D. Terzopoulos [51]. The motivation of

this model is to find an optimal contour of the object in an image by evolving an initially

given contour. Figure 1-1 shows how this model works, where (A) is the original object,

(B) shows that the contour moves (shrinks) in when it is out of the object, and (C) shows

that the contour moves out (expands) when it is inside the object.

The existing active contour models can be broadly classified as either parametric

active contour models or geometric active contour models according to their representation

and implementation. In particular, the parametric active contours[51, 104] are represented

explicitly as parameterized curves in a Lagrangian framework, while the geometric active

contours [22, 23, 66] are represented implicitly as level sets of a two-dimensional

function that evolves in an Eulerian framework.

18



Geometric active contours are independently introduced by Caselles et al. [22] and

Malladi et al. [66], respectively. These models are based on curve evolution theory [58]

and level-set method [78]. Geometric active contours present several advantages [86]

over the traditional parametric active contours. First, the contours represented by the

level-set function may break or merge naturally during the evolution, and the topological

changes are thus automatically handled. Second, the level-set function always remains

a function on a fixed grid, which allows efficient numerical schemes.

Early geometric active contour models [22, 23, 66] are typically derived using a

Lagrangian formulation that yields a certain evolution PDE of a parametrized curve.

This PDE is then converted to an evolution PDE for a level-set function using the related

Eulerian formulation from level-set methods. As an alternative, the evolution PDE of the

level-set function can be directly derived from the problem of minimizing a certain energy

functional defined on the level-set function. This type of variational methods are known

as variational level-set methods [29, 97, 106].

(A) (B) (C )

Figure 1-1. Level-set evolution.

Figure 1-2. Comparison between 2-D evolvement and 3-D evolvement with level-set.
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The level-set approach was introduced by Osher and Sethian[76, 77] which is

used to model curve evolution implicitly by introducing a higher dimensional function

and made the original contour (for example, 2-D contour) a zero-level-set of the

higher dimensional function (3-D function). The evolvement of the 2-D contour is

then implemented by the evolvement of the higher dimensional surface. As shown in

Figure 1-2, the left one shows the evolvement of the curve in 2-D case while the right

one shows the evolvement of the surface as well as the evolvement of zero-level-set.

The 2-D topological restriction can be therefore solved by such a dimension lifting.

Compared with pure PDE driven level-set methods, the variational level set methods

are more convenient and natural for incorporating additional information, such as

region-based information [29] and shape-prior information [97], into energy functionals

that are directly formulated in the level-set domain, and therefore produce more robust

results. For examples, Chan and Vese [29] proposed an active contour model using a

variational level-set formulation. By incorporating region-based information into their

energy functional as an additional constraint, their model has much larger convergence

range and flexible initialization. Vemuri and Chen [97] proposed another variational

level-set formulation. By incorporating shape-prior information, their model is able to

perform joint image registration and segmentation.

In implementing the traditional level-set methods, it is numerically necessary

to keep the evolving level set function close to a signed distance function [78, 80].

Re-initialization, a technique for periodically re-initializing the level set function to a

signed distance function during the evolution, was extensively used as a numerical

remedy for maintaining stable curve evolution and ensuring usable results. C. Li et al.

presented another variational formulation for geometric active contours that forces the

level-set function to be close to a signed distance function, and therefore completely

eliminates the need of the costly re-initialization procedure [62].
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All above mentioned active contour methods are explored for two-phase image

segmentations. The extension of level-set method from two-phase to multiphase is

not trivial. L. Vese and T. Chan proposed a multiphase level set framework for image

segmentation using the Mumford-Shah model, for piecewise constant and piecewise

smooth optimal approximations [98]. The proposed method is also a generalization

of [29] for two-phase segmentation. The method used log n level set functions for n

phases in the piecewise constant case. G. Chung and L. Vese applied level set method

to multiphase image segmentation in another way for piecewise constant segmentation

of images [36]. They represented the set of boundaries of the segmentation implicitly

using a multilayer of level lines of a continuous function. In the standard approach of

front propagation, only one level line is used to represent the boundary. Later on, X.-C.

Tai, et al., proposed a variant of the level set formulation for identifying curves separating

regions into different phases. Compared with aforesaid multiphase level-set methods,

the novelty in this method is to introduce a piecewise-constant-level-set function and use

each constant value to represent an unique phase. If 2n phases should be identified,

the level-set function must approach 2n predetermined constants. The method also only

needs one level set function to represent 2n unique phases. However, the re-initialization

procedure required in classical level set methods is superfluous using such approach.

The minimization functional is convex and differentiable and thus avoid some of the

problems with the non-differentiability of the heaviside functions.

1.2.2 Graph Based Methods

Recall that a graph G = (V, E) consists of a finite set V of vertices (or nodes) and a

set E ⊂ V × V of edges. An edge e := (u, v ) ∈ E is said to be from vertex u to vertex v .

An undirected graph is one in which all edges go both ways: (u, v ) ∈ E iff (v , u) ∈ E .

The idea of graph based image segmentation is to represent an image I by an

undirected graph G = (V, E) with V being the set of pixels. For each edge e = (u, v ) ∈ E ,

define a cost c(e) to reflect the similarity between the linked vertices. The more similar
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Figure 1-3. Minimum cut segmentation.

two pixels are, the larger the cost is. Moreover, in order to apply graph theory to image

segmentation, two special nodes are added to the graph, i.e. s (the source: object) and

t (the sink: background), called terminal nodes, and an edge from each terminal to each

node in V is also added. The new formulated graph is denoted by a triple (G, s, t) and

called an s-t graph. An s-t cut is a subset of edges C ⊂ E such that the terminals S and

T become completely separated on the induced graph G(C ) = (V, E \ C ). Then for a

given cut, the total cost of the cut is defined as

∑

e∈C

c(e) (1–1)

The task of an image segmentation is therefore to find a cut with minimum total cost,

called minimum cut. See Figure 1-3, where a pixel having a thick edge with S means

that the pixel most probably belongs to the object, and a pixel having a thick edge with T

means that the pixel most probably belongs to the background.

Consider a graph G = (V, E) with a function c defined on V×V such that c(u, v ) = 0

if (u, v ) /∈ E . Such a function is called a capacity function of graph G. Let the triple

(G , s, t) be the s-t graph, still denoted by (V, E). A flow with respect to the s-t graph is a

function f : V × V → R such that:

• f (u, v ) ≤ c(u, v ) for all u, v ∈ V ;

• f (u, v ) = −f (v , u) for all u, v ∈ V;

• ∑
v∈V f (u, v ) = 0 ∀ u ∈ V \ {s, t}

22



The value |f | of a flow f is defined as |f | =
∑

v∈V f (s, v ). A max-flow problem is to find a

flow f with maximum value |f |.
In 1993, Z. Wu and R. Leahy applied graph-theory based data-clustering method

to image segmentation [103]. Clustering is achieved by removing edges of G to form

mutually exclusive subgraphs such that the largest inter-subgraph maximum flow is

minimized. The method was implemented using combinatorial optimization algorithms.

A globally optimal segmentation can be computed efficiently in low-order polynomial

time using max-flow/min-cut algorithms on graphs [37, 44, 46]. Such a method was

then extensively studied by many other people [43, 55, 96]. J. Shi and J. Malik used

a different way called normalized cuts for image segmentation [89]. The key idea of

such methods is a completely automatic high-level grouping of image pixels. Typically,

this means that they divide an image into blobs or clusters using only generic cues of

coherence or affinity between pixels. Y. Boykov and M.-P. Jolly [12] are first ones that

demonstrated how to use binary graph cuts to build efficient object extraction tools

for N-dimensional applications for any positive integer N based on a wide range of

model-specific (boundary and region-based) visual cues, contextual information, and

useful topological constraints. In 2006, Boykov et al. showed a very strong connection

between graph-cuts and level-sets [14]. In particular, they developed a novel integral

approach to solving surface propagation PDEs based on combinatorial graph-cut

algorithms.

The max-flow min-cut theorem (by Ford and Fulkerson) states that a maximum

flow from s to t saturates a set of edges in the graph dividing the nodes into two disjoint

parts {S , T} corresponding to a minimum cut. Thus, min-cut and max-flow problems are

equivalent. In fact, the maximum flow value is equal to the cost of the minimum cut.

In 2003, H. Ishikawa extended graph-cut methods to multiphase image segmentation

using Markov Random Field (MRF) [56]. He introduced a method to solve exactly a first

order Markov Random Field optimization problem with the MRF having a prior term
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that is convex in terms of a linearly ordered label set. The method maps the problem

into a min-cut problem for a directed graph, for which a globally optimal solution can be

found in polynomial time. The convexity of the prior function in the energy is shown to be

necessary and sufficient for the applicability of the method.

In 2010, E. Bae et al. extended the graph-cut method under continuous setting

using dual method. They proposed a continuous analogue of Ishikawa’s graph

construction [56] by formulating continuous max-flow and min-cut models over a

specially designed domain. These max-flow and min-cut models are equivalent under a

primal-dual perspective, which can be seen as exact convex relaxations of the original

problem and can be used to compute global solutions.

1.2.3 Supervised Segmentations

Unsupervised methods explore the intrinsic data structure to segment an image into

regions with different statistics. The segmentation procedure can be implemented using

some assigned algorithm automatically without human beings’ interaction or interfering.

Different from unsupervised segmentation methods, supervised image segmentation is

a technique that classifies images using some assigned features for each class. These

features usually obtained by machine learning due to the complexity of images. When

image features are simple and be able to be distinguished easily, supervised methods

are not really necessary. However, when the image is much complicated and hard to be

classified, unsupervised methods often fail to achieve the desired result, especially if a

desired segmentation includes regions with very different characteristics. On the other

hand, supervised image segmentation methods take a learning procedure with a labeled

training set to form a classifier. Although supervised methods are likely to give a better

result than unsupervised methods, marking the training set is very time consuming.

The terms ”supervised” or ”unsupervised” comes from machine learning in

computer vision. One typical example of unsupervised method is k-mean clustering.

By only using image statistics, clustering algorithms partition the image in coherent
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groups without using labeled information. Therefore, they are appealing because they

avoid users’ supervision and ground surveys to define the classes of interest. However,

clustering algorithms are much more difficult to calibrate than supervised methods,

especially because the final aggregation is still need to be decided by the user, either

by finding an appropriate number of clusters or by deciding the level of pruning of a

hierarchical similarity tree [59]. For both cases, few robust criteria are available and the

user typically turns to heuristic solutions. Moreover, the outputs of clustering methods

are often difficult to interpret since there is no explicit link between the clusters found by

the model and the classes desired by the user. The former describes data similarities

and the latter are semantic interpretations of the objects of interest. Thus, the resulting

clusters may represent mixed semantic properties of the scene, harming the labeling of

the final classification map. Most of the model based segmentation methods mentioned

above belong to unsupervised methods.

Semi-supervised methods take a trade-off between supervised methods and

unsupervised methods by inferring the classification from partially labeled data.

The key difference between supervised learning and semi-supervised learning is

that semi-supervised methods utilize the data structure in both the labeled and

unlabeled data points [27]. Hence, the main advantage of semi-supervised image

segmentation methods is that they take advantage of the user markings to direct the

segmentation, while minimizing the need for user labeling. There are several general

approaches towards semi-supervised learning, but recent developments have focused

on graph-based methods [27], probably because the graph-based representation

naturally copes with nonlinear data manifolds. In this formulation, data are represented

by nodes in a graph, and the edge weights are given by some measure of distance

or affinity between the data. Then, the labels for the unlabeled points are found by

propagating the labels of labeled points through the graph. Based on this methodology,

a number of methods have been proposed [7, 50, 100, 107, 110, 111]. However, these
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methods are all for general data classification. There is no one of these papers being

applied to general image segmentations, probably because of their discrete settings.

Although in some papers, authors didn’t strictly distinguish semi-supervised

methods and supervised methods, strictly supervised segmentation methods are

actually quite different from semi-supervised segmentation methods. Generally

speaking, the supervised segmentation means to set up a learning machine before

segmentation is carried out. The learning process is performed at a large training

set of the similar kind of data. Therefore, a strict supervised segmentation model is

usually designed for a specific kind of image segmentation, such as cell segmentations,

spine-segmentations, prostate segmentation, and so on. The learning procedure is

usually carried out before all such kind of segmentations are performed. As soon

as the learning procedure is finished, the features obtained will be used for all such

kind of segmentations. Different from supervised segmentation, semi-supervised

segmentation methods or interactive segmentation methods are carried out by

interfering segmentation each time before an automatic segmentation procedure is

performed.

Except for discrete settings, supervised image segmentation technique has

also been embedded in continuous models. G. Gilboa and S. Osher [45] proposed

a supervised segmentation model based on non-local information. N. Houhou et al.

proposed a semi-supervised image segmentation method that relies on a non-local

continuous version of the min-cut algorithm and labels or seeds provided by a user [50].

The segmentation process is performed via energy minimization. The proposed energy

is composed of three terms. The first term defines labels or seed points assigned to

objects that the user wants to identify. The second term carries out the diffusion of

object and background labels and stops the diffusion when the interface between the

object and the background is reached. The diffusion process is performed on a graph

defined from image intensity patches. The graph of intensity patches is known to better
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deal with textures because this graph uses semi-local and non-local image information.

The last term is the standard total variation (TV) term that regularizes the geometry of

the interface.

Image matting is another class of supervised segmentation. In an image matting,

a foreground element is extracted from an image by estimating a color and opacity

for the foreground element at each pixel. The opacity value at each pixel is typically

called its alpha, and the opacity image, taken as a whole, is referred to as the alpha

matte (between 0 and 1) or key. Matting is used in order to composite the foreground

element into a new scene. Matting and composition were originally developed for film

and video production. The classic image matting methods contain Poisson Matting [90],

Bayesian Matting [35] and Spectral Matting [61]. More precisely, image matting is a

semi-supervised soft image segmentation. The opacity alpha is actually the membership

of the foreground. The method assigns some pixels to be foreground and some other

pixels to be background by heuristic. The classification is then propagated by some

algorithm.

Among these semi-supervised segmentations mentioned above, all are for

two-phase image segmentation except for [45].

1.2.4 Soft Segmentations

Soft segmentation is motivated by insufficiency of hard segmentation. It is well

known that MRI brain images contain white matter, gray matter and cerebrospinal fluid

(CSF). Accurately estimating the volumes of different matters and finding their change

can help diagnose some brain diseases. However, due to limited resolution of imaging

equipments, a voxel may contain more than one matters, especially near the border

of two different matters. Simply classifying a voxel into one matter may cause a large

accumulated error. The better way for MRI brain image segmentation is to find all the

percentages of a voxel belonging to all matters. Corresponding to soft segmentation,
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this means to find all the membership functions. This kind of brain image segmentation

is called partial volume (PV) segmentation.

Soft segmentation is also motivated by non-convexity of some hard segmentation

models. One of the extensively studied approaches for hard segmentation is the

variational method. Many effective variational models have been developed, for

instance, the Mumford-Shah model [74], geodesic active contour [23], geodesic active

region [79], and region competition [109]. Level-set technique [76] has been proved to

be powerful in the implementation of variational models. In two-phase segmentation the

composition of the heaviside function with the level set function is used to represent the

regions of the object and background. In [98, 106], the authors extended the level-set

method to multiphase segmentation by using multiple level-set functions, while in

[36, 65], the authors proposed another way to extend the level-set method by using

multiple layers for each level-set function. With carefully choosing the initial values,

these methods can work very well. However, the non-convexity of the energy functional

in the level-set formulation is an inherent drawback. As a result, many level-set based

variational segmentation models are sensitive to initial values and may converge to an

undesirable local minimum. This problem is more difficult to deal with for multiphase

segmentation.

To overcome the non-convexity problem mentioned above, one approach is

to replace the composition of the heaviside function with the level-set function in

level-set formulation by a weight/membership function (or more generally replace

the characteristic functions with membership functions in region-based models). This

relaxation provides a possibility to make the energy convex with respect to membership

functions and so convenient to find a global minimizer. For example, Chan et al [30]

and Bresson et al [10] restated certain non-convex minimization problems for image

segmentation and denosing as equivalent convex minimization problems by using

membership functions to replace characteristic functions. These new models allow to
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find global minimizers via standard convex minimization schemes. In particular in [10]

efficient and fast numerical schemes to globally minimize the variational segmentation

models were proposed. These algorithms are based on a dual formulation of the TV

(total variation) norm proposed and developed in [4, 21, 25, 26, 28].

Some approaches of soft segmentation are directly extended from the corresponding

hard segmentation methods. For example, fuzzy region-competition method [71, 72] is

extended from region-competition method [109]; fuzzy c-mean and adaptive fuzzy

c-mean method are developed from c-mean clustering method; soft Mumford-Shah

model[87] is developed from Mumford-Shah model [74], et al. There are also other

approaches of soft segmentation that are not simply derived from hard segmentation

methods, such as maximum-likelihood (ML) [38], maximum-a-posteriori probability

method (MAP) [64, 102], Markov-random-field (MRF) [64] method and other stochastic

methods [57, 87].

Mory and Ardon extended the original region-competition model to a fuzzy

region-competition method [71, 72]. The technique generalizes some existing supervised

and unsupervised region-based model. The proposed functional is convex, which

guarantees a global solution in the supervised case. Unfortunately, this method

only applies to two-phase segmentation and is hard to be extended to multiphase

segmentation. Fuzzy C-mean (FCM) [31, 64, 81] is a method developed for pattern

classification and pattern recognition. It is also applicable to image segmentation. The

standard FCM model partitions a data set {xk}N
k=1 ⊂ Rd into M clusters by the following

objective function [9, 39]

JFCM =
N∑

i=1

M∑

k=1

uik‖xi − vk‖2
2 (1–2)

where uik is the membership value of datum xi for class k with
∑M

k=1 uik = 1, and vk

stands for the cluster centers. The original FCM method is very sensitive to noise. An

adaptive fuzzy c-means (AFCM) was proposed by Pham et.al [81], where the constant

cluster centers vk used in the FCM model are substituted by spatially varying functions.
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The energy functional can be written as

JAFCM =
N∑

i=1

M∑

k=1

uik‖xi − bi vk‖2
2 + R(b) (1–3)

where b is the bias field and R(b) is the regularity term for the bias field b. AFCM is

more robust to noise than the standard FCM. The soft segmentation model developed in

[31] used a different similarity measure from that in [81]. Their objective functional reads

as

JAFCM =
N∑

i=1

M∑

k=1

uik (1− Kσ(xi − vk )) +
α

|Nk |
N∑

i=1

M∑

k=1

uik

∑

r∈Nk

(1− Kσ(xr − vk )) (1–4)

where

Kσ(x , y ) = exp(
−‖x − y‖

σ2 ). (1–5)

Another class of soft segmentations are based on stochastic approaches [64, 87].

In these approaches the intensity of pixels are assumed to be random variables which

are either independent or somehow dependent. Let I (x) be an image defined on an

open bounded domain 
 containing N classes. Let w be the class label variable,

w = 1, · · · , N. At each pixel x ∈ 
, both w (x) ∈ {1, ..., N} and I (x) are viewed

as random variables indexed by x . The probability that x belongs to the i-th phase is

represented by the ownership functions pi (x), 1 ≤ i ≤ N. Denote by Prob(I (x)|w (x) = i)

the probability density function (pdf) of the random variable I (x) belonging to the i-th

pattern. Then the pdf of the image I (x) at each x ∈ 
 is a mixed distribution given by

N∑

i=1

Prob(I (x)|w (x) = i)pi (x). (1–6)

The optimal segmentation of the image is deduced to maximize the likelihood, the

joint pdf of {I (x) : x ∈ 
}. With these analysis, maximum-likelihood (ML) [38] and

maximum-a-posteriori (MAP) [64, 102] principle based techniques have been widely

used in soft segmentation. The ML methods find the optimal parameters in the joint pdf

such that the likelihood function is maximized [38]. However, simply using likelihood to
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model an image is not enough since it ignored the prior knowledge of an image. In [64],

a segmentation framework based on MAP principle was proposed for partial volume

(PV) segmentation of MRI brain images. A mixture of the probability density functions

is considered to address the PV effect. A Markov Random Field (MRF) model is used

to define the prior distribution of the mixture coefficient field imposing a smoothness on

the mixture coefficients (ownerships). The fuzzy c-mean model is extended to define the

likelihood function of the observed image. J. Shen [87] proposed a general multiphase

stochastic variational fuzzy segmentation model combining stochastic principle. The

intensity of images was modeled as a mixed Gaussian distribution. The assumption in

the model that membership functions should be either close to 1 or close to 0 simplified

the model itself but limited its application. For example, it’s not reasonable to apply

the model to partial volume segmentation since in that case the membership functions

usually evaluated neither close to 1 nor close to 0 at the border of different matters.

Another feature of Shen’s paper is that it utilized Modica-Mortola’s phase-transition

theory. The similarities between image segmentation and phase transition theory in

material sciences and fluid mechanics have inspired people to borrow some ideas in

contemporary material sciences, e.g., the diffuse interface model of Cahn-Hilliard [20],

and its rigorous mathematical analysis in the framework of �-convergence approximation

by Modica and Mortola [70, 73]. The authors in [57] presented a model for image

segmentation based upon the phase transition theory of Modica and Mortola and

discussed its connections to the Mumford-Shah segmentation model and some related

works.

Another way to improve the implementation efficiency of variational models is

to reduce a model to a piecewise constant one [29]. Under piecewise constant

assumption, the implementation can be simplified since the total variation of an

object is exactly its perimeter. Piecewise constant assumption is reasonable in

many cases. However, due to non-uniform illumination, or non-uniform imaging
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procedure, intensity-inhomogeneity and artifacts can be produced, which will mislead

the intensity based segmentation. One way to overcome the intensity-inhomogeneity

is to utilize spatially non-local information of the image [14, 15], called non-local (NL)

segmentation. The NL model is able to integrate simultaneously semi-local and global

image information through a specific graph, and thus improve the original model that

does not work with images with local intensity inhomogeneities.

Most other approaches dealing with intensity inhomogeneity focus on bias

correction [1, 53, 63, 81, 102]. These methods are usually integrated into soft segmentation

schemes. For example, Wells et al. proposed an expectation-maximization (EM)

algorithm to solve the bias correction problem and the tissue classification problem

[102]. The EM algorithm was used to iteratively estimate the posterior tissue class

probabilities when the bias field is known, and to estimate the MAP of the bias field

when tissue class probabilities are known. The disadvantage of this method is that

the directly computed bias field is not smooth which will lead to a poor bias correction

and segmentation results. Pham et al. in their AFCM method replaced the constant

cluster centers by spatially varying functions [81], which are product of bias field and the

constant clustering centers. Smoothness of the bias field is ensured by penalizing its

first and second order derivatives, which leads to a computationally expensive procedure

for the smoothing of the bias field. Ahemd et al. proposed to add a neighborhood

term that enabled the class membership of a pixel to be influenced by its neighbors

[1]. The neighborhood effect acts as a regularizer and forces the solution toward a

piecewise homogeneous labeling. This approach proved tolerant to salt and pepper

noise, resulting in smoother segmentation. Li et al. proposed a variational level-set

based method for medical image segmentation and bias correction [53], the smoothness

of the bias field is intrinsically ensured by the data term in the variational formulation,

but the scheme is computationally expensive. F. Li et al. proposed a variational fuzzy

Mumford-Shah model for multi-phase segmentation [63]. The model is based on the
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assumption that an image can be approximated by the product of a smooth function and

a piecewise constant function. The energy functional is as follow.

E (p, b, c) =
K∑

i=1

λ

∫




(
(I (x)− b(x)ci )2 + w

∫



(I (x)− ci )2

)
pi dx + µR(b) + R(p) (1–7)

where I is the given image, b is the bias field, ci is the ideal mean of i -th class, pi is the

i -th class membership function, R(b) and R(p) are regularization terms for bias field b

and membership functions respectively, and λ and µ are parameters used to balance

the weight of fitting term penalty and regularity term penalty. Since the model is convex

in membership functions, the iterations are guaranteed to converge for arbitrary initial

value. In [64], a segmentation framework based on MAP principle was proposed for

partial volume (PV) segmentation of MRI brain images. The model is developed from

a stochastic point of view. The final energy functional is in fact equivalent to Paper [63]

with a discrete form.

1.3 Our work

In this research, after reviewing the existing image segmentation methods in

Chapter 1, we developed three models based mainly on stochastic theory. In all these

models, we assume that the intensity of the image at each pixel is a random variable

with Gaussian distribution (or mixed Gaussian distribution). In Chapter 2, we extend

the Sine-Sinc model to Gaussian-distribution-like image. Moreover, we choose a

normalization of the original image as an initialization of the iterations so that it helps

converge to the “true segmentation”. Furthermore, we replaced the sinc function by

the exponential function. With this change, the new model is more adaptable, and can

still be implemented using convex-concave procedure (CCCP) which is guaranteed

to converge to a local minimum or saddle point. In Chapter 3, we defined a piecewise

function h(x) ∈ C 1 to replace the exponential function in the first model and the

Sinc function in Sine-Sinc model(discussed in Chapter 2). The advantage of this
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change lies in the fact that the constructed function has a sum of 1 at each point

over all phases. This makes the set of composition functions {hk (x) = h(z(x) −
k)}k=1K be essentially membership functions. Another advantage of this function is

that only the nearest neighbor branches can have an overlap of their supports. This

property is similar to the partial volume effect in MRI partial volume segmentation

where approximately, different matters only overlap at their border, called white-gray

matter and gray-CSF matter. This similarity motivated us to apply the model to partial

volume segmentation for MRI brain images. In Chapter 4, we started from considering

the piecewise constant Mumford-Shah model for images with intensity-inhomogeneity

and developed a stochastic variational soft segmentation model with mixed Gaussian

distribution. The model is more roust to noise and robust to intensity-inhomogeneity

too. The problem was formulated as a minimization problem to estimate the mixture

coefficients, spatially varying means and variances in the Gaussian mixture. The

optimized mixture coefficients lead to a desirable soft segmentation, as well as a hard

segmentation. We applied the primal-dual-hybrid-gradient (PDHG) algorithm to our

model for iterations of membership functions and used a novel algorithm for explicitly

computing the projection from RK to simplex �K−1 for any dimension K using dual

theory, which is more efficient in both coding and implementation than existing projection

methods.

Unsupervised image segmentation models are usually only efficient for a specific

kind of images. For example, intensity-based unsupervised models usually assumes

images to be smooth. It usually fails to work on texture images. Another example is in

medical images. When the expected part of some tissue in the image has a same or

similar intensity with other tissues, the segmentation will lead to an incorrect result. On

the other hand, supervised image segmentation methods take a learning procedure

with a labeled training set to form a classifier. Although supervised methods are likely

to give a better result than unsupervised methods, marking the training set is very time
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consuming. By trade-off, semi-supervised segmentation can save the time of machine

learning while still utilizing the advantage of unsupervised methods. So far, most of the

semi-segmentation methods are developed for two-phase case. There are few papers

dressed this topic for multiphase segmentation. In Chapter 5, we developed a frame

work for semi-supervised image segmentations based on the model we developed

in Chapter 4. The frame work can be implemented interactively, and can actually be

applied to many static image segmentation models. By using semi-supervised and

interactive image segmentation frame work developed in this chapter, people can obtain

any desired segmentation results.

All the three models and the semi-supervised frame work are demonstrated with

experimental results. In Chapter 6, we give a short prospect on our future work related

to the aforesaid models and methods.
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CHAPTER 2
MULTI-PHASE IMAGE SEGMENTATION BASED ON PHASE-TRANSITION THEORY

The similarities between image segmentation and phase transition theory in

material sciences and fluid mechanics have inspired people to borrow some ideas in

contemporary material sciences, e.g., the diffuse interface model of Cahn-Hilliard [20],

and its rigorous mathematical analysis in the framework of �-convergence approximation

by Modica and Mortola [70, 73]. The phase-field relaxation consists in approximating the

perimeter using a Cahn-Hilliard type penalization functional [20], with the form

Pε(υ) =
ε

2

∫



|∇υ|2dx +

1
ε

∫



W (υ)dx , (2–1)

where W : Rp → R ∪ +∞ is a scalar function with exactly two minimizers at 0 and 1

satisfying W (0) = W (1) = 0. The second term of the penalty functional ensures that the

values of the material density υ converges to 0 or 1 as ε → 0, while the first term controls

the perimeter. The parameter ε can be interpreted as the width of the diffused edge

representation in υ. The phase-field approach has been used in topological optimization

problems [11, 19, 101]. In [84], the authors used the phase field to approximate sharp

edges and a variational phase field model is derived to compute a shape average of

a given number of shapes. In [19], the authors used the phase transition theory in a

Cahn-Hilliard impainting model.

In paper [87], J. Shen proposed a general multiphase stochastic variational

fuzzy segmentation model combining stochastic principle and the Modica-Mortola’s

phase-transition theory. Applying phase-transition theory into the model can enhance

pattern separation and make boundaries smooth. The stochastic variables are used to

represent the ownerships of all classes. The regularization is made using a double well

potential borrowed from the phase-transition theory. By assuming that all patterns are

Gaussian distributions with mean fields ui (i = 1, ...N), and a fixed variance σ2, the pdf
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of the mixed Gaussian is given by

Prob(I (x)|P(x), U(x)) =
N∑

i=1

g(I |ui (x), σ)pi (x), (2–2)

where

g(I |µ, σ) =
1√
2πσ

exp(−(I − µ)2

2σ2 ) (2–3)

defines the Gaussian probability density function. The model is to solve the following

minimization problem:

min ES (P, U) =λ

N∑

i=1

∫



(ui − I )2pi + α

N∑

i=1

∫



|∇ui |2

+
N∑

i=1

∫




(
9ε|∇pi |2 +

(pi (1− pi ))2

ε

) (2–4)

with constraints

0 ≤ pi ≤ 1 and

N∑

i=1

pi (x) = 1, (2–5)

where pi (x) are the ownerships and ui (x) are called patterns. Unlike the original

Mumford Shah model, the energy of each channel is defined on the entire domain 


instead of on a specific subregion 
i .

The authors in [57] presented another model for image segmentation based

upon phase-transition theory and discussed its connections to the Mumford-Shah

segmentation model and some related works. The method uses a sine-sinc model

which can also be thought to be motivated by the Mumford-Shah model. However,

instead of using a target image u(x), the new model uses a signature function z(x)

that is supposed to take value 0, 1, ..., K − 1 (suppose there are totally K phases in

the image). With the theory of �-convergence and the convex-concave procedure

(CCCP) [8, 20, 105], the iteration scheme can guarantee converge to a local minimum or

a saddle point.
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Despite of the success of the method, there are still some shortcomings in it. First,

it supposed the image to be piecewise constant. This is not the general case in real

applications. For instance, objects and background may not behavior to be intensity

constant but show some distribution property. Second, based on the theorem on

convex-concave procedure (CCCP), although it can guarantee the iteration scheme

converge to a local minimum or saddle point, it can not guarantee the iteration to

converge to a required segmentation. For example, during an implementation, it may

sometime converge to two phases when three or more phases are expected.

On the first point, we extended the model to be suitable for those images having

Gaussian distribution intensities, which is somehow motivated by the idea of soft-segmentation [88].

On the second point, unlike in paper [87] where the author recommend to use random

value as the initialization of the target function, we choose the initialization of the

signature function z(x) based on the original image(see Section 3). The advantage of

our method is that in most cases, it can push the iterations to converge exactly to the

required number of phases. The rest of this chapter is organized as follows. In Section

2.1, we first review on the sine-sinc model. Then develop our improved model. Section

2.2 is the implementation and some considerations, where we choose a normalization of

the original image as the initialization of the signature function z(x). In Section 2.3, we

exhibit experiment results for different kind of images, synthetic image and human brain

image. We especially take a comparison between our model and the sine-sinc model.

Finally, the chapter is closed with a short conclusion.

2.1 Model Development

In this section, we first take a short review on the sine-sinc model. Then we develop

our new model in two steps. At the first step, we replace sinc(x) by e−αx2 (α > 0). At

the second step, we extend the model to be suitable for those images obeying Gaussian

distribution.
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2.1.1 Review on Sine-Sinc Model

Let 
 be a bounded Lipschitz domain, and u0 : 
 → R be a given image. Suppose

the image contains K phases which correspond to regions 
0, 
1, ...
K−1. Define a

signature function z by

z(x) = k , if x ∈ 
k , k = 0, 1, ..., K − 1. (2–6)

The model is to minimize the following energy function

Eε[z |u0] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx + λ

K−1∑

k=0

∫



(ck − u0)2sinc2(z − k)dx , (2–7)

where ε is a parameter and sinc function is defined by

sinc(x) =
sinπx
πx

. (2–8)

To be consistent with the paper, we also use Fε[z ] to denote the first part of (2–7),

and use G [z |u0] to denote the second part of (2–7), i.e.,

Fε[z ] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx (2–9)

and

G [z |u0] =
K−1∑

k=0

∫



|ck − u0|2sinc2(z − k)dx . (2–10)

Now, we have

Eε[z |u0] = Fε[z ] + λG [z |u0]. (2–11)

In paper [69], Modica and Mortola established that

∫



[ε|∇z |2 +

1
ε

sin2πz ]dx (2–12)
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γ-converges to 4
π

∫

 |Dz(x)| in L1(R) for phase fields that ultimately only take integer

values. It is easy to see that

K−1∑

k=0

|∂
k | ≤
∫



|Dz(x)| ≤ K

K−1∑

k=0

|∂
k |. (2–13)

Thus, Fε[z ] takes a role similar to the length of the edge of all phases when ε being small

enough. On the other hand, if we replace sinc(z − k) by 1
k , the characteristic function

of 
k , then G [z |u0] is a difference of the original image u0(x) and the piecewise constant

image u(x) defined by

u(x) = ck if x ∈ 
k . (2–14)

So, G [z |u0] in Equation (2–7) is an approximation of the difference of the original image

u0(x) and the piecewise constant image u(x). Since the energy function is non-convex

in z , the author adopted the convex-concave procedure (CCCP) [105]. We have a short

review on this procedure in Section 3.

2.1.2 New Model

To be convenient for statement, from now on, we call the aforesaid model Model

1. As we talked in Section 1, Model 1 assumed the image to be piecewise constant.

In this section, we extend the model in two steps. At the first step, we replace sinc(x)

by e−αx2, where α is a positive parameter that can be chosen elastically. We do so for

two considerations. First, we think that the exponential function e−αx would be better in

approximating a characteristic function than sinc function when we adjust the parameter

α; second, as we will see in the implementation, for our new model, it is then easier to

estimate the upper bound of G (z |u0) so that we can still apply the CCCP algorithm (see

Section 3). After this change, the energy function becomes

Eε[z |u0] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx + λ

K−1∑

k=0

∫



|ck − u0|2e−α(z−k)2

dx . (2–15)

We call this model Model 2.
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At the second step, we assume that, the intensity u0(x) at each pixel x is a random

variable which obeys Gaussian distribution, and for each area 
k (k = 1, 2, ..., K − 1),

the set of random variables {u0(x)|x ∈ 
k} share the same mean ck and the same

variance σ2
k . Then the pdf of u0(x) for fixed x in area 
k is denoted by

P(u0(x)|ck , σk ) =
1√

2πσk
e
− (u0(x)−ck )2

2σ2
k (k = 0, 1, ..., K − 1). (2–16)

In further, let c = (c0, c1, ..., cK−1) and σ = (σ0, σ1, ..., σK−1). We want to maximize the

likelihood, joint pdf of {u0(x), x ∈ 
}

L(c , σ) = P({u0(x), x ∈ 
}|c , σ) =
K−1∏

k=0

P({u0(x)|x ∈ 
k}|ck , σk )

=
K−1∏

k=0

∏

x∈
k

P(u0(x)|ck , σk ) =
K−1∏

k=0

∏

x∈
k

1√
2πσk

e
− (u0(x)−ck )2

2σ2
k

(2–17)

or equivalently, to minimize the negative log-likelihood

−logL(c , σ) =
K−1∑

k=0

∫


k

(log(
√

2πσk ) +
(ck − u0)2

2σ2
k

)

=
K−1∑

k=0

∫



(log(

√
2πσk ) +

(ck − u0)2

2σ2
k

)1
k

(2–18)

where 1
k is the characteristic function of 
k . Similar to step 1, we now use e−α(z(x)−k)2

to approximate the characteristic function 1
k . Then Equation (2–18) becomes the

following form
K−1∑

k=0

∫



(log(

√
2πσk ) +

(ck − u0)2

2σ2
k

)e−α(z(x)−k)2
(2–19)

We use this expression to replace the second part G [z |u0] of Eε[z |u0] in Model 2. The

new energy function is as follows.

Eε[z |u0] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx +λ

K−1∑

k=0

∫



[log(

√
2πσk ) +

(ck − u0)2

2σ2
k

]e−α(z−k)2
dx (2–20)

We call this final model Model 3. In case that no confusion will be caused, we still use

G [z |u0] to denote the second part of (2–20). In this paper, we can simply denote the
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energy function by

Eε[z |u0] = Fε[z |u0] + λG [z |u0]. (2–21)

Note that if we take all σk (k = 0, 1, ...K −1) to be 1√
2π

, and change e−αx2 back to sinc(x),

it is exactly Model 1.

2.1.3 Existence of Solution

In the following, 
 always denotes a bounded open set with smooth boundary

∂
. W 1,q(
) (1 < q < ∞) denotes the Sobolev space. K is a positive integer.

c = (c0, c1, ..., cK−1) ∈ RK and σ = (σ0, σ1, ..., σK−1) ∈ RK
+ . ε > 0 and λ ∈ R are

parameters.

Definition 1. We say that a functional J[·] is weakly lower semicontinuous on W 1,q(
),

provided

J[u] ≤ lim inf
k→∞

J[uk ] (2–22)

whenever

uk ⇀ u weakly in W 1,q(
). (2–23)

Theorem 2.1. Assume that L is smooth, bounded below, and in addition, the mapping

p 7→ L(p, z , x)

is convex with respect to p for each z ∈ R and x ∈ 
. Then the functional

J[w ] :=
∫



L(Dw (x), w (x), x)dx (2–24)

is weakly lower semicontinuous on W 1,q(
), 1 < q < ∞.

To be convenient for statement, we denote the energy functional in (2–20) by

I [z ] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx

+ λ

K−1∑

k=0

∫



[log

√
2πσk +

(ck − u0)2

2σ2
k

]e−α(z−k)2
dx .

(2–25)
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and denote by A the following family of functions

A := {z ∈ W 1,2(
)| z = g on ∂
 in the trace sense}. (2–26)

Theorem 2.2. Suppose min{0≤i≤K−1}σi ≥ a for some constant a > 0. Then there exists a

function z0(x) ∈ A solving

I [z0] = minz∈AI [z ]. (2–27)

Proof.

Step 1: Show that there exists a sequence zl converging to infz∈AI [z ].

It is easy to see that

I [z ] ≥ λ

K−1∑

k=0

∫



[log(

√
2πσk )]e−α(z−k)2

dx . (2–28)

If σk ≥ 1√
2π

, then log(
√

2πσk ) ≥ 0, and so

∫



[log(

√
2πσk )]e−α(z−k)2

dx ≥ 0. (2–29)

If σk < 1√
2π

, then log
√

2πσk < 0, and so

∫



[log(

√
2πσk )]e−α(z−k)2

dx ≥ |
|log(
√

2πσk ) (2–30)

since e−α(z−k)2 ≤ 1. To sum up, we have in general,

∫



[log(

√
2πσk )]e−α(z−k)2

dx ≥ min{0, |
|log(
√

2πσk )} (2–31)

It follows that

I [z ] ≥ λ

K−1∑

k=0

min{0, |
|log
√

2πσk} ≥ c > −∞ (2–32)

since min{0≤k≤K−1}σk ≥ a > 0. So, I (z) is bounded below. Set m := infz∈AI [z ]. Then m is

finite. Select a minimizing sequence {zl}∞l=1 satisfying

I [zl ] → m. (2–33)
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Step 2: Show that there is a subsequence zkj converging to z0 ∈ A.

By the same argument as in Step 1, we have

I (z) ≥ ε

∫



|∇z |2dx + λ

K−1∑

k=0

∫



[log(

√
2πσk )]e−α(z−k)2

dx

≥ ε

∫



|∇z |2dx + λ

K−1∑

k=0

|
|log(
√

2πσk )

(2–34)

So, the fact that {I [zl ]}∞l=1 is bounded implies that {∫
 |∇zl |2dx}∞l=1 is also bounded,

i.e., {||Dzl ||2}∞l=1 is bounded. Choose fixed z ∈ A. Then ul = zl − z ∈ W 1,2
0 , and

{‖Dul‖2} = {||Dzl −Dz ||2} is bounded in W 1,2
0 (
). By Poincare’s inequality, we have

‖zl − z‖ ≤ c‖Dzl −Dz‖ ≤ C (2–35)

which means that ul = zl − z is bounded in L2(
), and thus bounded in W 1,2(
). Since

both zl and z are in W 1,2(
), it follows that ul ∈ W 1,2
0 (
). Now by weak compactness of

reflexive Banach spaces, there is a subsequence of {ul = zl − z}, denoted by ulj = zlj − z

such that

ulj = zlj − z ⇀ v (2–36)

weakly for some v ∈ W 1,2
0 (
), or equivalently,

zlj ⇀ z0 (2–37)

for some z0 ∈ A.

Step 3: Show that I [z0] = m = minz∈AI [z ].

Note that if we define

L(p, z , x) = [εp2 +
1
ε

sin2πz ]+

λ

K−1∑

k=0

[log(
√

2πσk ) +
(ck − u0(x))2

2σ2
k

]e−α(z−k)2
(2–38)
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then we have I [z ] =
∫


 L(Dz , z , x)dx . It is easy to see that L is smooth and bounded

below. In fact, we have

L(p, z , x) ≥ λlog
√

2πa > −∞. (2–39)

Moreover, L(p, z , x) is convex in p. By Theorem 2.1,

I [z0] ≤ liminfj→∞I [zlj ] = m (2–40)

But since z0 ∈ A, we also have I [z0] ≥ m. Therefore,

I [z0] = m. ¥

2.2 Implementation and Considerations

Like Model 1, the main challenge for our model comes from the non-convexity of

the energy function Eε[z |u0] with respect to z . So, we also adopt the CCCP method.

Before presenting our implementation scheme, we first give a short review on CCCP. We

only describe the basic result that is necessary to understand this paper. Details can be

found in [88].

2.2.1 Convex-Concave Procedure (CCCP)

The convex-concave procedure is a convex splitting method in optimization which

was explored by Yuille and Rangarajan [105].

Theorem 2.3. Consider an energy function which is bounded below and is an addition

of convex and concave functions:

E (~x) = Econvex (~x) + Econcave(~x).

Then, the discrete iterative CCCP algorithm given by

∇Econvex (~x n+1) = −∇Econcave(~x n), n = 0, 1, ... (2–41)

is guaranteed to monically decrease the energy E (~x) as a function of time and to

converge to a local minimum or a saddle point of E (~x).
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Proposition 2.1. Let F (u) =
∫


 f (u(x))dx , where f ∈ C 2(R).

Case 1. f���� ≤ γ for some γ ≥ 0. We define the splitting

F (u) =
∫




γ

2
u2dx −

∫



(
γ

2
u2 − f (u))dx := F 1(u)− F 2(u); (2–42)

Case 2. f���� ≥ −γ for some γ ≥ 0. We define the splitting

F (u) =
∫



(
γ

2
u2 + f (u))dx −

∫




γ

2
u2dx := F 1(u)− F 2(u). (2–43)

Then in either case, both F 1(u) and F 2(u) are convex.

The proof is trivial since in Case 1,

(F 2)����(u) =
∫


(γ − f����(u))dx ≥ 0

if f���� ≤ γ for some γ ≥ 0. And in Case 2,

(F 1)����(u) =
∫


(γ + f����(u))dx ≥ 0

if f���� ≥ −γ for some γ ≥ 0.

2.2.2 Iteration Scheme

In our scheme, there are three group of stuffs to be determined, the means c =

(c0, c1, ..., cK−1), the variances σ = (σ0, σ1, ..., σK−1), and the signature function z(x). We

compute Eε[z , c, σ|u0] regarding z , c, and σ as independent variables. This allows the

application of the alternating minimization (AM) scheme, i.e., to alternatingly optimize

the three conditional energies Eε[z |c, σ, u0], Eε[c|σ, z , u0], and Eε[σ|c, z , u0], under the

iterations of z n → cn → σn → z n+1 given by

cn = argminEε[c|σn, z n, u0] (2–44)

σn = argminEε[σ|cn, z n, u0] (2–45)

z n+1 = argminEε[z |cn, σn, u0]. (2–46)

It is well known (see Vogel [99]) that the AM scheme is monotone:

Eε[z n+1, cn+1, σn+1|u0] ≤ Eε[z n, cn, σn|u0].
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For equation (2–44) and (2–45), one can simply have at pixel level,

ck =
∑

i
∑

j u i ,j
0 e−α(zi ,j−k)2

∑
i
∑

j e−α(zi ,j−k)2 , k = 0, 1, ..., K − 1 (2–47)

and

σ2
k =

∑
i
∑

j (u i ,j
0 − ck )2e−α(zi ,j−k)2

∑
i
∑

j e−α(zi ,j−k)2 , k = 0, 1, ..., K − 1, (2–48)

where z n
i ,j denotes computational phase field on the Cartesian image domain. To find

argminEε[z |cn, σn, u0], we now apply the CCCP algorithm. For functional Fε[z ], since

d2

dz2 sin2πz ≥ −2π2, we split Fε[z ] as

Fε[z ] = (Fε[z ] +
π2

ε

∫



z 2dx)− π2

ε

∫



z 2dx := F 1

ε [z ]− F 2
ε [z ]. (2–49)

Similarly, since d2

dz2 e−α(z−k)2 ≤ 4αe−1.5, we split G [z |u0] as

G [z |u0] =
K−1∑

k=0

∫



2αe−1.5[log

√
2πσk +

(ck − u0)2

2σ2
k

](z − k)2dx

−(
K−1∑

k=0

∫



2αe−1.5[log

√
2πσk +

(ck − u0)2

2σ2
k

](z − k)2dx − G [z |u0]).

(2–50)

We simply denote it by

G [z |u0] := G 1[z |u0]− G 2[z |u0]. (2–51)

By Proposition 1, F 1
ε [z ], F 2

ε [z ], G 1[z |u0] and G 2[z |u0] are all convex. By Theorem 1, we

can then use the CCCP iteration scheme via Frechet derivative, i.e.,

(F 1 + λG 1)�(z n+1) = (F 2 + λG 2)�(z n).(2–52)

47



Under integration by parts, the above equation is equivalent to the following PDE.

[−2ε4z n+1 +
π

ε
sin2πz n+1] +

2π2

ε
z n+1

+ λ

K−1∑

k=0

4αe−1.5(log
√

2πσk +
|ck − u0|2

2σ2
k

)(z n+1 − k)

=
2π2

ε
z n + [λ

K−1∑

k=0

2αe−α(zn−k)2
(log

√
2πσk +

|ck − u0|2
2σ2

k
)(z n − k)]

+ λ

K−1∑

k=0

4αe−1.5(log
√

2πσk +
|ck − u0|2

2σ2
k

)(z n − k).

(2–53)

Here the terms in the square brackets come from the Euler-Lagrange equation of Eε. We

use the following numerical approximation:

4z n+1 ∼ z n
i−1,j + z n

i ,j−1 + z n
i ,j+1 + z n

i+1,j − 4z n+1
i ,j (2–54)

and

sin2πz n+1 ∼ sin2πz n

z n z n+1 (2–55)

The corresponding iteration scheme is as follows.

(
8ε +

π

ε
(

sin2πz n
i ,j

z n
i ,j

+ 2π)
)

z n+1
i ,j

+

(
4e−1.5λα

K−1∑

k=0

(log
√

2πσk +
|ui ,j − Ck |2

2σ2
k

)

)
z n+1

i ,j

= 2ε(z n
i−1,j + z n

i ,j−1 + z n
i+1,j + z n

i ,j+1) +
2π2

ε
z n

i ,j

+ λα

K−1∑

k=0

(log
√

2πσk +
|ui ,j − Ck |2

2σ2
k

)(4e−1.5z n
i ,j + 2(z n

i ,j − k)e−α(zn
i ,j−k)2

).

(2–56)

Now we have all the three minimizations (2–44), (2–45) and (2–46). We can use the

alternating minimization scheme. Although one can treat ck and σk as an independent

variable in image segmentation [92], we update ck and σk in every alternating step, as in

any usual AM scheme.

48



2.2.3 Initialization

Since the energy functional may not be convex we may be only able to find a local

minimum or saddle point, which is guaranteed by Theorem 1. Therefore, the choice of

the initial function z0 can affect the segmentation result greatly. Sometimes, it would

be even worse since the local minimum may be two phases when it is expected to be

three or more phases. To avoid this phenomenon, we would like to choose an initial z0

that is not “too far” from the expected segmentation results. In this paper, we choose

z0(x) = ũ0(x)−m
M−m K as the initialization of z(x), where ũ0(x) is a smooth version of u0(x),

K is the number of phases, and M = maximum(ũ0(x)) and m = minimum(ũ0(x)),

respectively. We do so for two reasons. First, we want to set the range of z0(x) to be

[0, K ] if we want to partition the image into K regions, since the optimal z(x) is a smooth

version of a piecewise constant function ranging from zero to K . The smaller range

of z0(x) can lead to a segmentation with less numbers of phases as desired. Second,

note that ũ0(x)−m
M−m K is just a shift and rescaling of the smoothed image u0, which fully

reflects the feature of the original image u0 for segmentation. Hence, our choice of z0 is

somehow close to the expected optimal solution.

2.2.4 Segmentation Decision

Finally, once the iteration is stable, we apply the hard thresholding decision rule:

k − 1
2 ≤ z < k + 1

2 for each individual k-th phase. A simple morphological transformation

can also be employed to remove any spurious dots due to the hard thresholding.

2.3 Experiment and Discussions

In our experiments, we use two different kind of images: an artificial synthetic image

and a human brain image. We exhibit our experiment results in a comparison way in two

groups. Group 1 are “clean” images, while Group 2 are the same images as in Group 1

but added with Gaussian noise. In order to compare the three models as precise as we

can, we did not apply any post-processing in our experiments after hard thresholding,

such as morphological transform.
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Since for different models, the iterations approximate their “best” results at different

parameters, the results shown in our experiments are chosen as good as we can for

all models. From the segmentation results, we see that, for “clean” images, all three

models are segmented almost same good (See Fig. 2-1, where (A) is the original

artificial synthetic image, (B) is the segmentation using Model 1(λ = 150), (C) is the

segmentation using Model 2(λ = 150, α = 5), and (D) is the segmentation using

Model 3 (λ = 150, α = 5)). However, for noisy images, both Model 2 and Model 3 are

better than Model 1 (See Fig. 2-2 and Fig. 2-4). In Fig. 2-2, (A) is the original Artificial

synthetic image with Gaussian noise (m = 0, σ = 0.02), (B) is the segmentation using

Model 1(λ = 150), (C) is segmentation using Model 2(λ = 150, α = 5), and (D) is the

segmentation using Model 3 (λ = 150, α = 5). From the result, we can see that there

are more spurious dots in Fig. 2-2(B) than in Fig. 2-2(C) and in Fig. 2-2(D). Meanwhile,

comparing Fig. 2-2(C) and Fig. 2-2(D), the edge of Fig. 2-2(D) is damaged less than

Fig. 2-2(C). Fig. 2-3 is the segmentation for a real MRI brain image, where (A) is the

original human brain image without noise, (B) is segmentation using Model 1 (λ = 150),

(C) is the segmentation using Model 2(λ = 150, α = 5), and (D) is the segmentation

using Model 3 (λ = 5000, α = 15). Fig. 2-4 shows the result for the image in Fig. 2-3

added some Gaussian noise. In Fig. 2-4 where ε = 2, K = 3, we can also see that

Model 3 is better than Model 1 and Model 2 in that spurious dots can hardly be found

from the white matters in Fig. 2-4(D), while in Fig. 2-4(B) and Fig. 2-4(C), there are still

many spurious dots in the white matters.

2.4 Conclusions

In this chapter, we improved the sine-sinc model in two aspects. First, we replace

sinc function by exponential function. Second, we extend the model to fit those images

not necessarily piecewise constant but close to Gaussian distribution with different

parameters. The experiments show that our new model is more efficient when the image
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(A) (B) (C ) (D)

Figure 2-1. Segmentations for clean image.

(A) (B) (C ) (D)

Figure 2-2. Segmentations for noisy image.

(A) (B) (C ) (D)

Figure 2-3. Segmentations of real MRI brain image.

(A) (B) (C ) (D)

Figure 2-4. Segmentations of real MRI brain image with noise.

51



is noisy. We also recommended a normalized initialization of the signature function,

which helps the iteration converge to the “true” result.
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CHAPTER 3
MULTIPHASE SOFT SEGMENTATION USING CONSTRUCTED MEMBERSHIP

FUNCTIONS

There is a common point for piecewise constant variational models. They all contain

a regularity term and a fidelity term, and assume that the image is piecewise constant or

smooth enough, which makes them vulnerable to noise. Although we can choose large

weight for the fidelity term to restrain noise, the segmentation result is sensitive to the

choice of the weights between the regularity term and the fidelity term. If the weight of

the regularity term is much bigger than that of the fidelity term, then the edge and fine

structure can be preserved very well but the noise may not be removed ideally. On the

other hand, if we choose the contrary, i.e., the weight of fidelity term is much bigger than

that of the regularity term, noise will be removed very well but edge may be damaged

and some fine structure may be lost. To avoid this dilema, there have been some studies

in recent years aiming at employing non-local information of images, such as graph-cut

based method (discrete case) [14] and non-local variation based method (continuous

case) [15]. In these methods, whether a point is an edge depends not only on the local

intensity difference, but also on finding how often the similar features of the point have

been repeated in the whole domain. By taking non-local information, the edge can be

well preserved while the noise is smoothed.

Different from using non-local information, the framework in this paper uses

stochastic theory to restrain noise and improve segmentation. It can be thought

an extension of piecewise constant Mumford-Shah kind models mentioned above.

More precisely, we assume that the intensity of each point is a Gaussian distributed

random sample. In each phase 
k , the points follow a same Gaussian distribution with

mean ck and variance σk . We assume that the clean true image u(x) is still piecewise

constant (i.e., inside each phase, the intensities are always a constant equal to ck )

but contaminated by a Gaussian noise n(x), i.e., I (x) = u(x) + n(x). As a result, the

intensities of points in a same phase will not be a constant, but a family of samples from
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a same Gaussian distribution. By maximizing the likelihood ( joint PDF) of all random

samples, the fidelity term becomes the following form (see detail in Section 3).

K−1∑

k=0

∫



(logσk +

(ck − I (x))2

2σ2
k

)pk (x)dx , (3–1)

where 0 ≤ pk (x) ≤ 1 is a smooth approximation of characteristic function of k-th phase,

and ck and σk are mean and standard variation respectively. In application, pk (x) are

usually chosen in such a way that
∑K−1

k=0 pk (x) = 1 holds in the whole domain. So, the

model becomes a standard soft segmentation with pk (x) as membership functions.

Compared with those piecewise constant models [32, 33, 36, 40, 65, 87, 88, 98, 106]

where variants are not involved, for point x where (ck − I (x))2 is relatively larger than

(ci − I (x))2 for some i 6= k due to noise, the model with fidelity term (3–1) can still

classify it to k-th phase (the correct phase) and the noise can therefore be restrained.

The reason is that the effect of large (ck − I (x))2 will be partly counteracted by the

variance. On the other hand, based on probability theory, we know that the probability

that |Ik (x) − ck | > ε for some ε > 0 and all x ∈ S in a connected area S ⊂ 
k is much

smaller than the probability that |Ik (x) − ck | > ε for one isolated point x . This fact can

guarantee that the model based on (3–1) can preserve small structure while removing

isolated noise.

In this chapter, we do not introduce membership functions as an approximation

of characteristic function. Instead, we introduce a constructed function h(x) so that

the composite function h ◦ (z(x) − k) has the property of membership function

pk (x). As a result, the model itself is still a soft segmentation. The advantage of

applying constructed function in the model lies in the fact that there will be less

variables introduced in the model which makes the discussion and the implementation

easier. For example, as long as we know z(x), the probability pk (x) is followed by

pk (x) = h ◦ (z(x)− k).
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In MRI brain image, there are three tissues, i.e., white matter, gray matter and

cerebrospinal fluid (c.s.f). Due to limited resolution and non-regularity of the boundaries

of pure matters, there are some partial volumes formed by overlaps of pure matters.

Those partial volumes are hard to be classified to pure matters. We assume each

partial volume follows a mixed Gaussian distribution generated by two Gaussian

distributions which correspond to pure matters. The proposed frame work can then be

applied to partial volume segmentation. The rest of the paper is organized as follows.

In Section 3.1, we develop the framework of multiphase segmentation by combining

phase transition theory and Gaussian distribution. Section 3.2 is the implementation and

some considerations. Then in Section 3.3, we apply the frame work to partial volume

segmentation. Experiments are carried out in Section 3.4. We show by examples the

advantage of the proposed model by comparing with other multiphase segmentation

models. Finally, the chapter is closed with a short conclusion.

3.1 Framework Development

In this section, we develop a framework of multiphase soft segmentation with

constructed functions and phase-transition theory. In order to be self-included,

something discussed in last chapter is still stated here. Let I ∈ L2(
) be an image

defined in a bounded, smooth and open domain 
 ⊂ R2. Suppose the image contains K

phases and we take the image as a random field with the following assumptions:

(a) At each point x ∈ 
, the intensity I (x) is a random variable;

(b) All the random variables {I (x)|x ∈ 
} are independent;

(c) In each phase I |
k , 0 ≤ k ≤ K − 1, all the random variables {I (x) : x ∈ 
k} are
identically distributed as a Gaussian distribution with same mean ck and same
variance σ2

k (which are to be determined).

We want to maximize the likelihood, joint pdf of {I (x), x ∈ 
}, which is equivalent to

minimize the following energy (the detail can be found in [34]):
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−logL(c , σ) =
K−1∑

k=0

∫


k

(logσk +
(ck − I )2

2σ2
k

) =
K−1∑

k=0

∫



(logσk +

(ck − I )2

2σ2
k

)1
k , (3–2)

Second, we borrow the length term from [88] which is based on phase transition

theory. Let I be the image defined above. The signature function z(x) is defined by

z(x) = k , if x ∈ 
k , k = 0, 1, ..., K − 1. (3–3)

Then the total variation of z(x) is
∫


 |Dz |, where Dz denotes the vectorial Radon

measure of the total variation (TV) of z . We have the following relation:

K−1∑

k=0

|∂
k | ≤
∫



|Dz(x)| ≤ K

K−1∑

k=0

|∂
k |, (3–4)

where ∂
k is the boundary of 
k . Thus,
∫


 |Dz(x)| works as the length of the edges of

all phases. The ideal model is to minimize the sum E [z , c , σ|I ] of the length term and the

negative log-likelihood (3–2).

E [z , c , σ|I ] =
∫



|Dz(x)|+ λ

K−1∑

k=0

∫



(logσk +

(ck − I )2

2σ2
k

)1z=k . (3–5)

Note that when σ0 = σ1 = ... = σK−1 6= 0, the model is equivalent to piecewise

constant Mumford-Shah model. However, this model has intrinsic drawback due to the

discreteness of the signature function z(x) and the characteristic function 1z=k , which

will impede the application of PDE based method. So, we need to use some relaxed

version. For the signature function, we introduce its relaxed version via the celebrated

model of Modica and Mortola on phase transitions in material science and fluid

mechanics. We refer the authors to papers [20, 69, 70, 88] for further understanding to

phase transition theory.

Let ~z(x) be a smoothed version of the signature function z(x), which is called

phase fields. To be simple, we still use the same notation z(x) to denote the phase field.
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Mortola [69] established that

∫



[ε|∇z |2 +

1
ε

sin2πz ]dx (3–6)

γ-converges to 4
π

∫

 |Dz(x)| in L1(R) for phase fields z(x) that ultimately only take

integer values. Now we replace the length term in (3–5) by (3–6) when ε is small

enough. For the characteristic function 1z=k , we can use any smooth function hk (x) as

an approximation if only 0 ≤ hk (x) ≤ 1 and
∑K−1

k=0 = 1 for all x ∈ 
. The ideal smooth

function hk (x) should have the following properties.

(a) At each point x ∈ 
 where z(x) = k , hk (x) is close to 1;

(b) At each point x ∈ 
 where |z(x)− k | > 0.5, hk (x) is close to 0.

If we can choose h(x) satisfying that h(x) is close to one at small neighborhood of 0 and

close to zero elsewhere, then hk (x) can be denoted as h(z(x) − k) since z(x) is almost

integer. Then, the fidelity term (3–2) becomes

K−1∑

k=0

∫



(logσk +

(ck − I )2

2σ2
k

)h(z(x)− k). (3–7)

Now, as the final step, we integrate the relaxed length term (3–6) and the relaxed

fidelity term (3–7). The new energy functional is

Eε[z , c , σ|I ] =
∫



[ε|∇z |2 +

1
ε

sin2πz ]dx + λ

K−1∑

k=0

∫



(logσk +

(ck − I )2

2σ2
k

)h(z − k)

:=Fε[z ] + G [z , c, σ|I ].

(3–8)

This is the proposed framework of multiphase segmentation. Compared with most

existing models, the proposed model is robust to noise and more applicable; Moreover,

since the phase function z(x) is involved in the model, segmentation can be directly

derived from the phase function.
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3.2 Implementation and Considerations

In our framework (3–8), there are three groups of parameters to be determined,

the means c = (c0, c1, ..., cK−1), the variances σ2 = (σ2
0, σ2

1, ..., σ2
K−1), and the phase

field z(x). We compute Eε[z , c, σ|I ] regarding z , c, and σ as independent variables. This

allows the application of the alternating minimization (AM) scheme, i.e., to alternatingly

optimize the three conditional energies.

Eε[z |c, σ, I ], Eε[c|σ, z , I ], and Eε[σ|c, z , I ], under the iterations of z (n) → c(n) → σ(n) →
z (n+1) given by

c(n) = argminEε[c|σ(n), z (n), I ] (3–9)

σ(n) = argminEε[σ|c(n), z (n), I ] (3–10)

z (n+1) = argminEε[z |c(n), σ(n), I ]. (3–11)

It is well known (see Vogel [99]) that the AM scheme is monotone:

Eε[z (n+1), c(n+1), σ(n+1)|I ] ≤ Eε[z (n), c(n), σ(n)|I ].

For equation (3–9) and (3–10), one can simply have at pixel level,

c (n)
k =

∑
i
∑

j I i ,j h(z (n)
i ,j − k)

∑
i
∑

j h(z (n)
i ,j − k)

,

k = 0, 1, ..., K − 1

(3–12)

and

(σ(n)
k )2 =

∑
i
∑

j (I i ,j − c (n)
k )2h(z (n)

i ,j − k)
∑

i
∑

j h(z (n)
i ,j − k)

,

k = 0, 1, ..., K − 1,

(3–13)

where z (n)
i ,j denotes the computational phase field on the Cartesian image domain at

step n.

For argminEε[z |c (n), σ(n), I ], since the model is not an active contour model (the

integral of the fidelity term can not be separated by boundaries), it is not proper to
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use level set method for implementation. Besides, our purpose is not to find the rough

segmentation of z(x) but the exact value of z(x) so that we can estimate pure matters

form the partial volume in MRI brain images using the composition h ◦ (z(x) − k) for

0 ≤ k ≤ K − 1. Note that the Euler-Lagrange equation of Eε[z |c (n), σ(n), I ] with respect to

z is

−2ε�z(x) +
π

ε
sin(2πz(x)) + λ

K−1∑

k=0

h�(z(x)− k)(logσk +
|ck − I |2

2σ2
k

) = 0. (3–14)

As for most multiphase segmentation models, the energy functional Eε[z , c , σ|I ]

is not convex with respect to z . Thus, simple iteration scheme obtained directly from

the Euler-Lagrange equation may not converge. In our application, we adopt the

convex-concave procedure (CCCP). Before apply CCCP to our model, we first give a

short review on CCCP. We only describe the basic result that is necessary to understand

this paper. For more details, we refer the readers to [87, 105]. We also recommend the

reader to use selected initial value to help converge (but not guaranteed).

We recall the following theorem on CCCP.

Theorem 3.1. Consider an energy function which is bounded below and is an addition

of convex and concave functions:

E (~x) = Econvex (~x) + Econcave(~x).

Then, the discrete iterative CCCP algorithm given by

∇Econvex (~x (n+1)) = −∇Econcave(~x (n)), n = 0, 1, ... (3–15)

is guaranteed to monotonically decrease the energy E (~x) as a function of time and to

converge to a local minimum or a saddle point of E (~x).
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Proposition 3.1. Let F (u) =
∫


 f (u(x))dx , where f ∈ C 2(R). If f���� ≥ −γ for some

γ ≥ 0. We define the splitting

F (u) =
∫



(
γ

2
u2 + f (u))dx −

∫




γ

2
u2dx := F 1(u)− F 2(u). (3–16)

Then both F (u) and F 2(u) are convex.

The proof is trivial since

(F 1)����(u) =
∫


(γ + f����(u))dx ≥ 0

if f���� ≥ −γ for some γ ≥ 0.

3.2.1 Iteration Scheme for phase function z(x)

To find argminEε[z |c (n), σ(n), I ], we now apply the CCCP algorithm. In this section,

we will temporally suppose the parameters ck , σk , 1 ≤ k ≤ K are all known for the

purpose of statement.

Note that d2

dz2 sin2πz ≥ −2π2, we split Fε[z ] as

Fε[z ] =
{

Fε[z ] +
π2

ε

∫



z 2dx

}
− π2

ε

∫



z 2dx := F 1

ε [z ]− F 2
ε [z ]. (3–17)

Similarly, suppose d2

dz2 h(z − k) ≥ −γ, where γ depends on function h(.). We split

G [z |I ] as

G [z |I ] := G 1[z |I ]− G 2[z |I ]. (3–18)

where

G 1[z |I ] =
K−1∑

k=0

∫



[logσk +

(ck − I )2

2σ2
k

]h(z − k)dx +
K−1∑

k=0

∫




γ

2
[logσk +

(ck − I )2

2σ2
k

](z − k)2dx

(3–19)

G 2[z |I ] =
K−1∑

k=0

∫




γ

2
[logσk +

(ck − I )2

2σ2
k

](z − k)2dx . (3–20)

We simply denote it by

Eε[z |I ] = {F 1
ε [z ] + G 1[z |I ]} − {F 2

ε [z ] + G 2[z |I ]}. (3–21)
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By Proposition 3.1, F 1
ε [z ], F 2

ε [z ], G 1[z |I ] and G 2[z |I ] are all convex. In order to apply

CCCP, we still need the the functional to be bounded below. To do that, we must assume

that the image is not constant for any phase. Or in detail, we suppose each variance

σ2
k 6= 0. Then

min{σk , 0 ≤ k ≤ K − 1} > 0. (3–22)

Thus, the functional Eε[z |c (n), σ(n), I ] is lower bounded.

Remark This assumption is true for most applications since if the image has been

piecewise constant, we do not need to do any segmentation. Even if some phases are

exactly constant, the assumption can still be true by adding some noise or spurious dots

in the phases.

By Theorem 3.1, we can now use the CCCP iteration scheme via Frechet derivative,

i.e.,

(F 1 + λG 1)�(z (n+1)) = (F 2 + λG 2)�(z (n)).(3–23)

Under integration by parts (see (3–14)), the above equation is equivalent to the following

PDE.

[−2ε4z (n+1) +
π

ε
sin2πz (n+1)] +

2π2

ε
z (n+1) + λ[

K−1∑

k=0

(logσk +
|ck − I |2

2σ2
k

)h�(z (n+1) − k)]

+λγ

K−1∑

k=0

(logσk +
|ck − I |2

2σ2
k

)(z (n+1) − k)

=
2π2

ε
z (n) + λγ

K−1∑

k=0

(logσk +
|ck − I |2

2σ2
k

)(z (n) − k),

(3–24)

where the terms in the square brackets come from the Euler-Lagrange equation of Eε.

Then we can use any existing method to solve zn+1 such as Gauss-Seidel method.

Now we have all the three minimizations (3–9), (3–10) and (3–11). We can use the

alternating minimization scheme as discussed at the beginning of this section.
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3.2.2 Construct approximation function h(x)

We construct hδ(x) in such a way that hδ(z(x) − k) forms an ownership function of

k-th phase, where hδ(x) is defined as follows.

hδ(x) =





1 + δ

2
+

x
2
− δ

π
cos

π(x + 1)
2δ

, if |x + 1| ≤ δ

1 + x , if − 1 + δ < x < −δ

2δ

π
cos

xπ

2δ
+ 1− δ, if |x | ≤ δ

1− x , if δ < x < 1− δ

1 + δ

2
− x

2
− δ

π
cos

π(x − 1)
2δ

, if |x − 1| ≤ δ

0, otherwise

(3–25)

where δ is a parameter theoretically satisfying 0 < δ < 0.5 and should be small enough.

Fig. 3-1 shows different branches of hδ ◦ (z(x)− k) for k = −1, 0, 1, 2, 3, where δ = 0.2 in

(A) and δ = 0.02 in (B). In Fig. 3-2, a three phase example shows that

hδ(x + 1) + hδ(x) + hδ(x − 1) = 1 (3–26)

holds only for x ∈ [−1 − δ, 1 + δ]. In application, we define hδ(x) := 1 for x ∈
(−∞,−δ) ∪ (K − 1 + δ,∞). Then

∑K−1
k=0 hδ(x − k) ≡ 1, and so our model is a standard

soft segmentation model.

Note that although the function hδ(x) itself is not a good approximation of 1z=k

based on its graph, the composition hδ ◦ (z(x)− k) is actually a very good approximation

of 1z=k for the reason that, with the length term (3–6), the phase function z(x) will

ultimately only takes integer values which makes the composition hδ ◦ z(x) mostly

evaluated only based on the piece 2δ
π

cos xπ
2δ

+ 1− δ since |z(x)− k | ≤ δ for x belonging to

phase k . Thus, hδ ◦ (z(x)− k) will ultimately takes the value 2δ
π

+ 1− δ which approximate

1 very well when δ is small enough. At the end, we want to mention that as hδ(x) is

62



(A) (B)

Figure 3-1. Different branches of the constructed function.

Figure 3-2. Branches of the construction functions and their sum.

defined in an explicit way, its derivative can be calculated easily. So we can finally use

the iteration scheme CCCP developed in above section.

3.2.3 Segmentation Decision

Finally, once the iterations are stable, we have two ways to determine the segmentation.

One way is hard segmentation, i.e., we apply to z(x) the following hard thresholding

decision rule:

x ∈






0, if z(x) < 0.5


K−1, if z(x) ≥ K − 1.5


k−1, if k − 1.5 ≤ z(x) < k − 0.5, otherwise

(3–27)
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When the choice of h(x) makes hδ ◦ (z(x) − k) an ownership function, the model is

a soft segmentation. Which scheme (hard segmentation or soft segmentation) should

be chosen depends on the purpose of application. If we only want to know the pieces of

segments, we should use the hard segmentation. However, in the application to partial

volume estimation, we should choose the soft segmentation scheme.

3.3 Applied to Partial Volume Segmentation

Since our model is a soft segmentation and the membership functions can be

viewed as ownership, we can apply our framework to partial volume estimation.

3.3.1 Introduction to Partial Volume Segmentation

One important application of multiphase segmentation is MRI brain image

segmentation. There are three different tissues in human brains, i.e., the white matter,

the gray matter and the cerebrospinal fluid (c.s.f). It is well known that the volume of

gray matter has a close relation to some intelligence diseases. Precisely computing the

volume of white matter and gray matter can help to diagnose those disease earlier. On

the other hand, due to the limited spatial resolution of imaging equipment, not all voxels

in the image contain a same type of tissue, especially the voxels near the tissue borders,

which are highly likely contain more than one tissue types, called partial volume (PV).

Fig.(3-3) shows the principle of partial volume formulation (which is originally used by

[60]). The left image contains two phases with higher resolution. Due to lower resolution

(half of the left image in each dimension), four squares in the left image contribute to

one square in the right image. As a result, the right image contains more phases (for

this example, it contains four different phases). When all four subsquares with a same

phase in the left image contribute to one square in the right image, the resulted square

with lower resolution will be still the same phase as original one, called pure matter.

However, when the four subsquares contain different phases, the resulted square will

present a phase looks like between the original two phases. In this case, the resulted

square is called partial volume. The intensity of the partial volume is a weighted average
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Figure 3-3. Formulation of Partial volume.

of original pure matters with combination ratios depending on the number of subsquares

of each pure matter in the original image forming the partial volume.

This kind of partial volume may cause a big error in the estimation of pure tissue

volumes. The error is sometimes as big as 40-60 percent [75]. Thus, partial volume

segmentation of MRI images has now received considerable attention. The ideal partial

volume segmentation should contain two aspects: finding partial volume and deciding

its combination ratio of different pure matters. Most recent work on partial volume

segmentation are based on statistical principal, e.g., the expectation-maximization (EM)

method [42, 60]. These methods improved the precision of pure matter estimation.

However, they do not contain length term, which makes them sensitive to noise. In [93],

the author applied a reparameterized level set algorithm to partial volume segmentation.

The method does include the length term. It takes the partial volume part as separated

classes that are composition of pure tissues. The drawback of the paper is to use fixed

ratios (e.g., 50%) of combinations for partial volumes.

3.3.2 Apply the framework to Partial Volume Segmentation

We can now apply the proposed framework to partial volume segmentation for brain

MR images with mixed Gaussian distribution. In order to apply the proposed framework

to partial volume segmentation, we treat the brain image as three different phases: white

matter, gray matter and pure c.s.f. We calculate the pure matter volumes in a natural
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way:

Volume(phase(k)) =
∫



pk (x)dx =

∫



hδ(z(x)− k))dx (3–28)

3.4 Experiments and Discussion

Since this paper focus on soft segmentation and applications to partial volume

segmentation, our experiments are mostly applied to MRI brain images although a

natural image is also presented which is not very close to piecewise constant. Because

this work is related to the Sine-Sinc model [88] (where the author proposed a multiphase

segmentation model based on phase-transition theory but it is not a soft model), we first

give a comparison between our model and the Sine-Sinc model in Fig. 3-4 with synthetic

image and MRI brain image, where (A) is the original artificial synthetic image with

Gaussian noise (m = 0, σ = 0.02), (B) is the segmentation using the Sine-Sinc model

(λ = 150), (C) is segmentation using the proposed model (λ = 150, δ = 0.2), (D) is the

original brain MR image with Gaussian noise(m = 0, σ = 0.005), (E) is the segmentation

using the Sine-Sinc model (λ = 150), and (F) is the segmentation using the proposed

model (λ = 150, δ = 0.2). Then in Fig. 3-5, we show three membership functions of a

natural image, where (A) is the original image and (B)-(D) are membership functions,

whose value is between 0 and 1.

The rest of the examples give a comparison between adaptive fuzzy c-mean

method [81] and the proposed model. Fig. 3-6 is the segmentations for a synthetic

biased image which is first used by X. Bresson and T. Chan[15]. The contour of

segmentations in the third column is obtained by thresholding the membership functions

(same thing is true for next two figures). First line is of AFCM model; second line is of

the proposed framework. Middle column shows the soft segmentations. Right column

shows the hard segmentations. Fig. 3-7 and Fig. 3-8 show different results for MRI brain

images in a similar way to Fig.(3-5).

Finally, we apply our model to partial volume segmentation using simulated brain

images. Then compare the ground truth of pure matters and our segmentation results.
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(A) (B) (C )

(D) (E ) (F )

Figure 3-4. Comparison with noisy image.

(A) (B) (C ) (D)
Figure 3-5. Soft segmentation.

We calculate the errors of partial volume estimation in two ways. One way is based on

hard segmentation. Another way is based on soft segmentation.

Fig. 3-9 is a comparison between the ground truth of the original simulated brain

MR image and the membership functions obtained using the proposed framework. Fig.

3-9(A) is the original simulated noised image. The corresponding ground truth of white

matter, gray matter, and C.S.F are shown in Fig. 3-9(B), Fig. 3-9(C), and Fig. 3-9(D),

respectively. Phase membership functions are shown in Fig. 3-9(E)-(G),

We carried out the experiment with 35 consecutive 2D slices of a 3D simulated

brain MR image. Then compare the errors between the Sine-Sinc model and the

proposed model. As an average, the errors are shown in Table 1.
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(A) (B) (C )

(D) (E ) (F )
Figure 3-6. Robustness to bias: synthetic image.

(A) (B) (C ) (D)

(E ) (F ) (G ) (H)
Figure 3-7. Comparison of MRI Brain image segmentation.

Table 3-1. Error Comparison
methods white matter gray matter

.Old Model 6.83% 7.22%

.New Model 4.68% 2.73%

Finally, we add series of Gaussian noises to the images with zero mean and

different variances. Then compare their errors among the AFCM model, the proposed

model with hard segmentation by thresholding, and the proposed model with soft

segmentation. The errors are shown in Fig. 3-10(A). From the graph, we can see that as
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(A) (B) (C ) (D) (E )

(F ) (G ) (H) (I ) (J)
Figure 3-8. Comparison of MRI Brain image segmentation.

(A) (B) (C ) (D)

(E ) (F ) (G )

Figure 3-9. Comparison with ground truth image.

the variance of the noise rises, the error will also rise for all the three cases. However,

compared with the AFCM model, the errors using the proposed model rises much more

slowly as the variance of the noise rises.

We also compared the influence on the errors as the parameter δ in function hδ(x)

changes. This is shown in Fig. 3-10(B). From the graph, pure matter estimation based

on phase function z(x) looks a little better than the estimation based on the ownership

function hδ(z(x) − k) when δ is bigger, while the pure matter estimation based on the
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(A) (B)
Figure 3-10. Error comparison.

ownership function hδ(z(x) − k) is a little better than the estimation based on the phase

function z(x) when δ is smaller.

3.5 Conclusions

A critical problem in energy based multiphase segmentation is the non-convexity

of the energy functional. The problem is more difficult to handle than two phase case.

Level set based method is proved very successful in multiphase segmentation based

on hard segmentation, but they don’t work for soft segmentation since the area of

different phases may be overlapped and so no clear boundaries between different

phases. The soft segmentation is more useful in partial volume segmentation for brain

MR images. This paper borrowed the ideas from phase transition based methods [33,

87, 88]. The key point of this paper is to construct an approximation function so that the

membership functions can be obtained by its composition with phase function. With this

constructed function, we can avoid to add new variables for membership functions and

so it saves memory space and promotes efficiency. Moreover, since the composition

of the constructed function and phase functions forms membership functions, we also

avoid the general constraint problem for soft segmentation in implementation. The

framework is then applied to partial volume segmentation. The future contains choosing

better constructed function h(x), and better discretization scheme and iteration scheme.
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CHAPTER 4
A STOCHASTIC VARIATIONAL MODEL FOR MULTI-PHASE SOFT SEGMENTATION

IN THE PRESENCE OF INTENSITY INHOMOGENEITY

There have been many soft segmentation methods [31, 64, 71, 72, 81, 87]. Mory

and Ardon extended the original region competition model [109] to a fuzzy region

competition method [71, 72]. The technique generalizes some existing supervised

and unsupervised region-based models. The proposed functional is convex, which

guarantees the global solution in the supervised case. Unfortunately, this method

only applies to two phase segmentation and is hard to be extended to multiphase

segmentation. Fuzzy C-mean (FCM) is a method developed for pattern classification

and recognition, and has been applied to image segmentation [31, 64, 81]. The standard

FCM model partitions a data set {xk}N
k=1 ⊂ Rd into M clusters by the following objective

function

JFCM =
N∑

i=1

M∑

k=1

uik‖xi − vk‖2
2 (4–1)

where uik ≥ 0 is the membership value of datum xi for class k with
∑M

k=1 uik = 1, and

vk stands for the cluster centers [9, 39]. The original FCM method is very sensitive to

noise. Pham et.al proposed an adaptive fuzzy C mean (AFCM) model [81] which is

more robust to noise than the standard FCM, where the constant cluster centers vk used

in the FCM model (4–1) are substituted by functions that are smooth enough and close

to the corresponding cluster centers.

Another class of soft segmentations are based on stochastic approaches [34, 64,

87]. In these approaches, pixel intensities are considered as samples of one or several

random variables. The advantage of stochastic method is its stronger ability to deal with

random noise. In most stochastic segmentation models, the likelihood functions are

used to represent the fitting term in an energy functional. It starts from the assumption

that reasonable segmentation should maximize the likelihood. The method is called

Maximum Likelihood (ML) method [38]. An expectation-maximization (EM) algorithm is
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usually employed to solve it when data is incomplete. However, simply using likelihood

to model an image is not enough since it ignored the prior knowledge of an image. In

[64], a segmentation framework based on maximum a posteriori principle (MAP) was

proposed for partial volume (PV) segmentation of MRI brain images, which is a classic

application of soft segmentation.

J. Shen proposed a general multiphase stochastic variational fuzzy segmentation

model combining stochastic principle and Modica-Mortola’s phase-transition theory [87].

The intensity of images was modeled as a mixed Gaussian distribution. The model

assumed that membership functions should be either close to 1 or close to 0, which

simplified the model but limited its application. For example, it’s not reasonable to apply

the model to partial volume segmentation since in that case the membership functions

are usually neither close to 1 nor close to 0 at the boundary of different matters.

Bias correction is an important mean in soft segmentation to deal with intensity

inhomogeneity [1, 53, 81, 102]. For example, Wells et al proposed an expectation-maximization

(EM) algorithm to solve the bias correction problem and the tissue classification problem

[102]. The EM algorithm was used to iteratively estimate the posterior tissue class

probabilities when the bias field is known, and to estimate the MAP of the bias field

when tissue class probabilities are known. The disadvantage of this method is that the

directly computed bias field may not be smooth which will lead to a poor bias correction

and segmentation results. Pham and Prince proposed an adaptive fuzzy C-means

algorithm which is formulated by modifying the objective function in the fuzzy C-means

algorithm to include a multiplicative bias field, which allows the centroids of each class

to vary across the image. Smoothness of the bias field is ensured by penalizing its first

and second order derivatives, which leads to a computationally expensive procedure

for the smoothing of the bias field. Ahmed et al proposed to add a neighborhood term

that enabled the class membership of a pixel to be influenced by its neighbors [1]. The

neighborhood term acts as a regularizer and forces the solution toward a piecewise
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homogeneous labeling. Li et al. proposed a variational level set based method for

medical image segmentation and bias correction [53], the smoothness of the bias field is

intrinsically ensured by the data term in the variational formulation.

In this chapter, we proposed a stochastic variational model for multi-phase soft

segmentation in the presence of noise and intensity inhomogeneity, where the image

intensity at each point is modeled as a mixed Gaussian distribution with means and

variances to be optimized. Different from J. Shen’s work [87], our model does not set

the assumption that membership functions must be close to either 1 or 0. So, our model

are more suitable for soft segmentation and application to partial volume analysis.

Since our model is developed based on the assumption that the image intensity is a

mixed Gaussian distribution with possibly different variances for different phases, it

is also different from [64, 81] in that our model adaptively corrects bias of intensities

and removes noise by finding optimized means and variances. It is demonstrated by

experiments that our model is not only robust to noise, but also robust to bias. The rest

of the chapter is organized as follows. The new model is developed in Section 4.1. The

numerical implementation scheme is presented in Section 4.2. In Section 4.3, we show

some experiment results and also give some explanation and analysis. Both synthetic

images and authentic images are used.

4.1 Model Development

Let I (x) be a 2-D image defined on an open bounded domain 
 containing K

phases. Let w be phase label variable (i.e., w (x) ∈ {1, · · · , K} for all x ∈ 
). At

each pixel x , both w (x) and I (x) are viewed as random variables indexed by x . The

probability that x belongs to the i -th phase is represented by the ownership functions

pi (x), 1 ≤ i ≤ K . If we denote the probability density function (PDF) of the random

variable I (x) given that x belongs to the i -th phase by Prob(I (x)|w (x) = i), then the
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random variable I (x) follows a mixed distribution with the following PDF:

K∑

i=1

Prob(I (x)|w (x) = i)pi (x). (4–2)

Suppose in further that Prob(I (x)|w (x) = i) is a Gaussian PDF for each i = 1, ..., K and

all random variables {I (x) : x ∈ 
} are independent. Then the likelihood (joint PDF) is

∏

x∈


K∑

i=1

g(I |ui (x), σi )pi (x). (4–3)

where

g(x |µ, σ) =
1

(
√

2πσ)
exp(−(x − µ)2

2σ2 ). (4–4)

The negative log-likelihood is

E [I |P, U, σ] = −
∫



log

(
K∑

i=1

g(I |ui (x), σi )pi (x)

)
, (4–5)

where P = [p1, p2, ..., pK ], U = [u1, u2, ..., uK ], and σ = [σ1, σ2..., σK ]. We assume that

is a constant inside each phase, i.e., ui (x) = ci , which leads to the following energy

functional

EF (p, c , σ) = λ

∫



−log[

K∑

i=1

1√
2πσi

exp(−(I (x)− ci )2

2σ2
i

)pi ]dx . (4–6)

By adding the total variation of pi (x) to EF (p, c , σ) to enforce smoothness of

membership functions pi (x), we have

EFR(p, c , σ) =λ

∫



−log[

K∑

i=1

1√
2πσi

exp(−(I (x)− ci )2

2σ2
i

)pi ]dx +
K∑

i=1

∫



|∇pi |dx

,− λ

∫



log(

K∑

i=1

fi (x)pi (x))dx +
K∑

i=1

∫



|∇pi |dx

(4–7)

Remark. We want to mention that our model is not the first time to use Gaussian

distribution. On the contrary, the Gaussian distribution has been introduced to many
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segmentation models, such as graph cut [14] and soft Mumford-Shah model [87]. The

difference between the proposed model and other models lies in the fact that all other

models assume different Gaussian distributions sharing a same variance which is

usually fixed. However, in our model, different Gaussian distributions can be different,

which makes the model more flexible.

4.2 Numerical Implementation

Note that the energy functional is convex with respect to all its variables except for

variances. For fixed variances, global minimization can be achieved for any initialization.

With gradient descend method, the means and variances’ iteration scheme is as follows.

c (n+1)
i = c (n)

i + tc

[
λ

σ2
i

∫




fi pi (I − ci )∑
fi pi

dx
](n)

(4–8)

σ(n+1)
i = σ(n)

i + tσλ

[∫




fi pi ((I − ci )2 − σ2
i )

2σ4
i
∑K

i=1 fi pi
dx

](n)

(4–9)

The challenge in the implementation is the optimization of membership functions

pi (x) because of the constraints

1 ≥ pi (x) ≥ 0 and
K∑

i=1

pi (x) = 1 (4–10)

which requires p = (p1, p2, ..., pK ) lies in the simplex �K−1. There have been two ways

to deal with the simplex constraint. One is to use Lagrangian multiplier method (or

augmented Lagrangian multiplier method) for
∑K

i=1 pi (x) = 1, and add an exact penalty

term for each 0 ≤ pi (x) ≤ 1 (see [10], [30] and [95]). The drawback of Lagrangian

multiplier method is its low convergence rate. The so-called exact penalty term is exact

only under some constraint and is not differentiable at end points, and must be replaced

by a smoothed version for approximation which will affect the exactness. Another

way to deal with the simplex constraint is to use the Euler-Lagrangian equation of the

unconstraint problem for iterations and then project the result to simplex �K−1 at each
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iteration step [87]. The drawback of this method is that no general analytic expression

can be written for all dimensions. For different dimensions, the projection functions

are different, and need to be written in a different way. Especially, when the dimension

is greater than three, the projection function becomes complicated, which leads to a

low efficiency in both coding and implementation. In this paper, we give a novel way of

projection using dual method. The projection can be expressed explicitly and uniformly

for all dimensions, and the analytic property is guaranteed due to dual theory.

Dual method has been extensively studied to deal with total variation which is

not differentiable at points where the first order variation is zero. One of the popular

example is Chambolle dual method [25]. Recently, M. Zhu and T. F. Chan developed

a new algorithm combining the gradient decent method and dual method, called

Primal-Dual-Hybrid-Gradient method (PDHG) (see [108] for details). The method

integrates the advantages of both gradient method and dual method, and thus faster

than using either method. It is proved to be faster than using dual method only and

its modified iteration form is guaranteed to converge when step size satisfies some

condition (see [18], [41] and [82]). In our application, we adopted the ideal of PDHG and

apply it to our model with constraint on simplex �K−1.

4.2.1 Primal Dual Hybrid Gradient Algorithm

In order to make the paper self-contained and easy to read, we give a review on the

PDHG algorithm. Let f be the given image defined in a rectangular domain 
 with size

m × n, and u be the restored image. Then the ROF model to find an optimal restored

image is to solve the following minimization problem

min
u

∫



|∇u|+

λ

2
‖u − f ‖2 = TV (u) +

λ

2
‖u − f ‖2 (4–11)

where TV (u) is the total variation of u. The discrete form of the TV(u) can be written as

TV (u) =
m∑

i=1

n∑

j=1

‖∇u(i , j)‖2 (4–12)
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where ‖u(i , j)‖2 =
√

(∇u1(i , j))2 + (∇2u(i , j))2 and

∇u1(i , j) =





u(i + 1, j)− u(i , j) if i < m

0 if i = m
(4–13)

∇u2(i , j) =





u(i , j + 1)− u(i , j) if j < n

0 if j = n
(4–14)

Equation (4–11) is called primal ROF model. Reordering the image matrix u (resp.

f ) row-wisely into a vector y (resp. z) and using the matrix Al for the gradient operator at

element l , we get the following discrete form of the primal ROF model

min
y∈Rmn

mn∑

l=1

‖AT
l y‖+

λ

2
‖y − z‖2 (4–15)

Using the dual form of the TV norm

mn∑

l=1

‖Al y‖ = maxx∈X

mn∑

l=1

〈y , Al x〉 (4–16)

Then the primal-dual ROF model reads as

min
y∈Rmn

max
x∈X

�(y , x) :=y T Ax +
λ

2
‖y − z‖2

= max
x∈X

min
y∈Rmn

y T Ax +
λ

2
‖y − z‖2

(4–17)

where x = [x1, ..., xmn]T , Ax = 〈A1x , A2x , ..., Amnx〉. The equality holds because of

min-max theorem. The primal dual hybrid gradient algorithm can be described as

follows.

1. Dual Step

Fix y = y k , apply one step of (projected) gradient ascent method to the maximization

problem

max
x∈X

�(y k , x). (4–18)
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The ascent direction is ∇x �(y k , x) = AT y k , so we can update x as

x k+1 = PX (x k + τkλAT y k ) (4–19)

where τk is the (dual) stepsize and PX denotes the projection onto the set X :

PX (z) = arg min
x∈X

‖x − z‖ (4–20)

In this case, it can be calculated simply as (for each l)

(PX (z))l =
zl

max{‖zl‖, 1} (4–21)

2. Primal Step

Fix x = x k+1, apply one step of gradient descent method to the minimization

problem

y k+1 = min
y∈Rmn

�(y , x k+1) (4–22)

The descent direction is −∇y �(y , x k+1) = −(Ax k+1 +λ(y k −z)) and therefore the update

is

y k+1 = y k − θk (
1
λ

Ax k+1 + λ(y k − z)) (4–23)

where θk is the (primal) step size.

4.2.2 Optimize membership functions using PDHG

By the principle of PDHG, to minimize (4–7) with respect to membership functions

pi (i = 1, ..., K ) under constraint (4–10), it is equivalent to solve the following discrete

min-max problem

max
q∈X K

min
p∈�K−1

−〈p, Dq〉 − H(p) (4–24)

where p = (p1, ..., pK ), q = (q1, ..., qK ) and

H(p) = λ

m,n∑

i ,j=1

log〈f (i , j), p(i , j)〉 = λ

m,n∑

i ,j=1

log
K∑

k=1

fk (i , j)pk (i , j).
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The descent direction for minp∈RK − 〈p, Dq〉 − H(p) is Dq + ∇pH(p). So, the evolution of

membership p (primal step) is

p(n+1) = P�K−1(p(n) + τn(Dq(n) +∇H(p(n)))) (4–25)

where P�K−1(v ) is the projection to the simplex defined by

P�K−1(x) , minz∈�K−1‖z − x‖ (4–26)

for ∀x ∈ RK , where ‖ · ‖ denotes the Euclidean distance. We will see a novelty method

for the projection to simplex in the next section.

Since the first variation of (4–24) with respect to qi is Dpi , the dual step is

q(n+1)
i = PX K (q(n)

i + θ(n)Dp(n)
i ) (4–27)

where PX K is the projection to space T defined by

[PX K (x)]l =
xl

max{‖x‖2, 1} . (4–28)

where l denotes the number of component of a vector.

Therefore, the bi-direction projected PDHG algorithm for minimizing energy

functional (4−−7) is given by




p(n+1) =P�K−1(p(n) + τn(Dq(n) +∇H(p(n))))

q(n+1) =PX K (q(n) + θ(n)Dp(n))
(4–29)

where the projection to simplex �K−1 is given explicitly in next section.

4.2.3 Projection to simplex �K−1

Now, we want to deduce the explicit solution for P�K−1(x). Let x∗ denote the

solution. Define

��K−1(x) =





0 if x ∈ �K−1

∞ otherwise
(4–30)
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Then by Moreau’s Identity, we have

x∗ = P�K−1(x) , minz∈�K−1‖z − x‖ = arg minx∈RK

{
1
2
‖x − y‖2 + ��K−1(x)

}

=y − arg minz∈RK

{
�∗

�K−1
(z) +

1
2
‖z − y‖2

} (4–31)

where �∗
�K−1

(z) is the Legendre-Fenchel transform of ��K−1. By definition, we have

�∗
�K−1

(z) =supx∈RK

{〈x , z〉 − ��K−1(x)
}

=supx∈�K−1〈x , z〉 = max1≤i≤K zi , t
(4–32)

So, we finally get the solution

x∗i = y − z∗i = max (yi − t, 0), i = 1, 2, , ..., K (4–33)

which is simple and very fast.

4.3 Results

Since the proposed model is an extension of [64], we present all experiment results

compared with the model developed in paper [64] (We temporarily call this model

MAP-AFCM model).

The first experiment aims at testing robustness to noise. In Fig. 4-1, the original

image contains obviously three phases. We added a mixed Gaussian noise with zero

mean and an overall variance 0.03. First, we applied MAP-AFCM model. We choose

λ1 = 5, and stop iterations using criterion max1≤i≤3{|c(i)new − c(i)old |} < 0.001,

where c(i)old denotes the old mean before each iteration, and c(i)new denotes the new

mean after each iteration (the same for the rest experiments). Then we applied our

model (4–7) to the image. Obviously, the result of the new model is much better, where

the first line shows the segmentation using MAP-AFCM, the second line shows the

segmentation using the proposed model. For each line, from left to right are original

image, three membership functions and hard segmentation after thresholding.
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Figure 4-1. Experiment 1: Robustness to noise.

Discussion: This big difference comes from the difference of the fitting terms in

two models. Note that in MAP-AFCM model, to make the fitting term small enough,

the image intensity at each point must be very close to the mean of its phase. Thus it

is sensitive to noise. Comparatively, in Model (4–7), the effect of isolated noise to the

energy functional can be counteracted by the variances appeared in the denominators

of the fitting term. So the new model is more robust to noise.

The second experiment aims at comparing robustness to bias. In Fig. 4-2, the

first line is the original biased image and its ground truth of all three membership

functions. The second line and the third line show the soft segmentations obtained using

MAP-AFCM model and the proposed model, respectively. Obviously, the proposed

model gives more precise result compared with the ground truth since there is no bias in

the segmentation.

Our third experiment aims to give a comparison between variances fixed and

variances updated in the new model. For all the five lines, from left to right are the

original image, three membership functions and hard segmentation, respectively.

From the first line to the fourth line are the results with variances fixed. For example,

we set σ2
i = 0.005 for all (1 ≤ i ≤ 3) in the first line, and we set σ2

i = 0.010 for all

(1 ≤ i ≤ 3) in the second line, and so on. However, the last line is the result where

variances are updated, and we obtained the final variances for the three phases, which

are σ1 = 0.0069, σ2 = 0.0193, and σ3 = 0.0135, respectively. Obviously, the last row
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Figure 4-2. Experiment 2: Robustness to bias.

gives the best result. This experiment shows that updating variances is better than fixing

variances and assuming all of them are equal. Since FCM (fuzzy c-mean) model is a

special case when all variances are fixed and the same, this experiment shows that the

proposed model outperforms FCM model.

Finally, we test our model using real images. In Fig. 4-4, the liver is not very clear

due to the existence of bias. Using MAP-AFCM leads to a wrong result where a big

part of the liver was incorrectly classified to background as shown in the first line. This

can be easily seen from the hard segmentation. However, using the proposed model

can get much better result as shown in the second line. This is because the fitting term

in the model contains bias, as well as variance. By calculating the variances of the

three phases, they are 0.013, 0.011 and 0.002, respectively. This fact also proves that

it is reasonable to assume that different phases may have different variances as in our

model. In the figure, the first line shows the segmentation using MAP-AFCM model,

the second line shows the segmentation using the proposed model. From left to right:

original image, three membership functions and hard segmentations, respectively.
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Figure 4-3. Comparison between variances fixed and updated.

Figure 4-4. MRI liver segmentation.
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As we mentioned at the beginning of the paper, one of the most important

application of soft segmentation is partial volume segmentation of MRI brain images.

Fig. 4-5 gives a comparison in MRI brain image soft segmentation, where the first

line shows the segmentation using MAP-AFCM model, the second line shows the

segmentation using the proposed model. From left to right: original image, three

membership functions (white matter, gray matter and CSF (cerebrospinal fluid))

and hard segmentations, respectively.. There is a big difference between the soft

segmentations (the membership functions). By using MAP-AFCM model, most pixels

are classified to be partial volume, i.e., its intensity is neither close to 1, nor close to

0 (In the figure, brightness of intensity means close to 1, darkness means close to 0,

and intensity between brightness and darkness means partial volume). However, this is

not true because it is well known that partial volume of MRI brain image should appear

mostly often at the boundary of different tissues. Comparatively, using the proposed

model can get more reasonable results, where the partial volume only appears at the

boundary of different tissues.

We also present some natural images for comparison. In Fig. 4-6, the left image is

the original image, and the middle one and the right one are hard segmentations after

thresholding using MAP-AFCM model and the proposed model, respectively, where

from left to right: original image and three phases of hard segmentations. Line 1 is of

MAP-AFCM model and Line 2 is of the proposed model. In Fig. 4-7, we present all

three phases of hard segmentations after thresholding using different models. In Fig.

4-8, the first column is the original image. We present all membership functions and

hard segmentations for readers to compare. Line 1 is the membership functions using

MAP-AFCM model, Line 2 is the membership functions using the proposed model,

Line 3 is the hsrd segmentations using MAP-AFCM model, and Line 4 is the hard

segmentations using the proposed model. For all three examples, the results using our

model are all better than using AFCM model.
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Figure 4-5. MRI brain image segmentations.

Figure 4-6. Natural image segmentation after thresholding.

Figure 4-7. Natural image segmentation after thresholding.
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Figure 4-8. Natural image segmentation after thresholding.
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CHAPTER 5
SEMI-SUPERVISED MULTIPHASE IMAGE SEGMENTATION

In a supervised segmentation model, the features obtained by learning procedure is

a significant input, while in a semi-segmentation model or an unsupervised segmentation

model, the input data of the model can only be the given image. Supervised segmentation,

although takes a lot of time for training a large selected set of data, can perform a

segmentation very fast as long as the learned features are good enough. A supervised

segmentation model usually works efficiently for a specific kind of images, while a

semi-segmentation model can work out a good result for any kind of images but takes

more time for each implementation.

Interactive image segmentation is a technique using human interfering, usually

combined with semi-supervised image segmentation. Since at each time of semi-supervised

segmentation, some regions must be assigned to specific classes before each

implementation is carried out. The performance of the segmentation is hereafter

depends on the assignment significantly. Under the assumption that the assignment to

each class at the beginning is correct, it is generally true that the more the regions are

assigned , the better the result should be. Therefore, a good semi-segmentation model

is such one that needs less assignment of the region but still gives a good enough

result. Meanwhile, since we can’t guarantee that if the result will be good enough or not

during an assignment, an interactive interfering is usually needed in such a procedure to

improve the result. Such a technique is called interactive image segmentation.

Image matting is a 2-D interactive semi-supervise image segmentation technique. It

belongs to soft segmentations. In digital matting, a foreground element is extracted from

an image by estimating a color and opacity for the foreground element at each pixel. The

opacity value at each pixel is typically called its alpha, and the opacity image, taken as

a whole, is referred to as the alpha matte (between 0 and 1) or key. Matting is used in

order to composite the foreground element into a new scene. Matting and compositing
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Figure 5-1. Image matting.

were originally developed for film and video production. The most popular image matting

methods contain Poisson Matting [90], Bayesian Matting [35] and Spectral Matting [61].

Formally, image matting methods take as input an image I , which is assumed to

be a composite of a foreground image F and a background image B. The color of the

i-th pixel is assumed to be a linear combination of the corresponding foreground and

background colors,

Ii = αi Fi + (1− αi )Bi (5–1)

where αi is the pixels foreground opacity. In natural image matting, all quantities

on the right hand side of the equation are unknown. Obviously, this is a severely

under-constrained problem, and user interaction is required to extract a good matte.

Most recent methods expect the user to provide a trimap as a start. Such an example is

shown in Figure 5-1. The trimap is a rough (typically hand-drawn) segmentation of the

image into three regions: foreground (shown in white), background (shown in black) and

unknown (shown in gray). Given the trimap, these methods typically solve for F, B, and

α simultaneously. This is typically done by iterative nonlinear optimization, alternating

the estimation of F and B with that of α. In practice, this means that for good results the

unknown regions in the trimap must be as small as possible.

Just like image matting, other supervised semi-supervised image segmentations

are mostly developed for two-phase images. In this chapter, we developed a new

semi-supervised multi-phase image segmentation frame work based on the model

studied in Chapter 4.
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5.1 From Unsupervised Segmentation to Semi-Supervised Segmentation

In this section, we introduce a semi-supervised image segmentation framework

based on piecewise smoothed soft Mumford-Shah model.

Given a source image I (x), we assume the image contains N classes. Let

ui (x) denote the i -th pattern and pi (x) be the i -th membership function. A piecewise

smoothed soft Mumford-Shah model is defined as follow:

E (u; p) =
N∑

i=1

1
2

∫



(I (x)− ui (x))2pi (x)dx

+
N∑

i=1

λ

∫



|∇ui (x)|dx +

N∑

i=1

µ

∫



|∇pi (x)|dx

(5–2)

The iterations based on fast gradient-descent method are




∂E
∂ui

=− λdiv (
∇ui

|∇ui |) + (ui − I )pi

∂E
∂pi

=− µdiv (
∇pi

|∇pi |) + (ui − I )2
(5–3)

The primal-dual form of (5–2) with respect to u is

min
u

max
|v |≤1

E (u, v ; p) =
N∑

i=1

1
2

∫



(I (x)− ui (x))2pi (x)dx +

N∑

i=1

λ

∫



ui (x)div vi dx (5–4)

The primal-dual form of (5–2) with respect to p is

min
p∈�N−1

max
|q|≤1

E (u; p, q) =
N∑

i=1

1
2

∫



(I (x)− ui (x))2pi (x)dx +

N∑

i=1

λ

∫



pi (x)div qi dx (5–5)

The iteration on u and v is




∂ui

∂t
=− [(ui − I )pi + λdiv vi ]

∂vi

∂t
=− λ∇ui

(5–6)
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The iteration on p and q is




∂pi

∂t
=− [(ui − I )2 + µdiv qi ]

∂qi

∂t
=− µ∇pi

(5–7)

In an interactive semi-supervised image segmentation, an image is assumed to

include two parts: the known part 
i , i = 1, 2, ..., N and the unknown part 
U . Only the

unknown part needs to be applied for segmentation. The above model is then to find

segmentation only for domain 
U , i.e., to minimize the following energy functional:

E (p) =
N∑

i=1

1
2

∫


U

(I (x)− ui (x))2pi (x)dx

+
N∑

i=1

λ

∫


U

|∇ui (x)|dx +
N∑

i=1

µ

∫


U

|∇pi (x)|dx

(5–8)

If we solve this problem still using previous procedures (5–6) and (5–7), then it

is not a supervised segmentation since we didn’t use known information to instruct

segmentation for unknown area. The key point of our work is to update each pattern ui

based on the nearest point principle, i.e.,

ui (x) = average{ui (y )| y = arg min
y
{|x − y |, y ∈ 
i}} (5–9)

wihch is referred from the third step of Poisson Matting [90].

With initially given patterns ui (x) and under smoothness constraint of pi (x), the

objective energy functional becomes

E (p) =
N∑

i=1

1
2

∫


U

(I (x)− ui (x))2pi (x)dx

+
N∑

i=1

µ

∫


U

|∇pi (x)|dx

(5–10)

where each ui (x) is determined by (5–9).
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Considering that the close relation of points when they are near to each other and

the loose relation when they are far away, we add a distance factor to the fitting term.

The energy functional is therefore becomes

E (p) =
N∑

i=1

1
2

∫


U

(I (x)− ui (x))2pi (x)eαdi (x)dx

+
N∑

i=1

µ

∫


U

|∇pi (x)|dx

(5–11)

where α is a parameter and di (x) is the nearest distance obtained from 5–9. The factor

eαdi (x) will force the influence to be ignored when the distance of two points is far away.

Correspondingly, we rewrite the energy with indication functions and replace the

total variation by weighted total variation, we get the final energy functional

E (p) =
N∑

i=1

∫



(I (x)− ui (x))2pi (x)eαdi (x)χ
U (x)dx

+
N∑

i=1

µ

∫



|∇pi (x)|g(∇~I (x))χ
U (x)dx

(5–12)

where ~I is a smoothness of I and g(x1, x2) is an edge function usually defined as
1

1 + x 2
1 + x 2

2
.

5.2 Solve Semi-Supervised Multiphase Image Segmentation

The primal-dual form of (5–12) is

E (p) =
N∑

i=1

∫



(I (x)− ui (x))2pi (x)eαdi (x)χ
U (x)dx

+
N∑

i=1

µ sup
|qi |≤1,qi∈C 1

c (
,R2)

∫



pi (x)div (g(∇~I (x))χ
U (x)qi (x))dx

(5–13)

So, the iteration on p and q are, respectively,




∂pi

∂t
=− [(ui − I )2eαdi (x)χ
U (x) + µ div (g(∇~I (x))χ
U (x)qi (x))]

∂qi

∂t
=− µ(∇pi )g(∇~I (x))χ
U (x)

(5–14)

91



In our framework, the new memberships pi (x) obtained from above iterations

are actually a temporary one. We still need to update the memberships based on the

following rule: if pi (x) > 0.95 and I (x) ≈ ui (x) for some 1 ≤ i ≤ N and x ∈ 
U , then put x

to 
+
i . So, the known parts are updated by


i = 
i ∪
+
i . (5–15)

Corresponding, the unknown part is updated according to the following equation


U = 
−
N⋃

i=1


i (5–16)

We now describe the complete algorithm. Given an image I defined in a domain 
,

if the image contains N classes, then the complete algorithm for our semi-supervised

multiphase image segmentation is given as below.

1. Initialization.

(a) Initialize known parts 
0
i using brush;

(b) Initialize unknown part by 
0
U = 
−⋃N

i=1 
0
i ;

(c) Initialize memberships: For each 1 ≤ i ≤ N and x ∈ 
0
i , set p0

i (x) = 1 and
p0

j (x) = 0 for j 6= i ; for x ∈ 
0
U , set pi (x) randomly.

(d) Initialize patterns: For each 1 ≤ i ≤ N and x ∈ 
0
i , set u0

i (x) = I (x); For any
x ∈ 
0

U , set u0
i (x) in terms of the nearest point principle as (5–9);

2. Iterations.

(a) Update memberships pk
i (x) by (5–14);

(b) Update known areas 
k
i by (5–15);

(c) Update unknown area 
k
U by (5–16);

(d) Update patterns uk
i (x) by (5–9);

3. Termination The iterations will be terminated if 
U = ∅.
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(A) (B) (C )
Figure 5-2. Comparison with synthetic image.

5.3 Experiments

In Figure 5-2, we show how semi-supervised algorithm works differently from

general unsupervised segmentation. The original image contains two objects with

same intensities as shown in Figure 5-2(B). Suppose that only the left one is the object

that we need to separate. Under unsupervised segmentation, the segmentation of the

foreground will be exactly the same as shown in Figure 5-2(B). However, if we circle

a green mask as the seed for the background and circle a red mask as the seed for

the foreground as shown in Figure 5-2(A), then the segmentation of the foreground

is shown as in Figure 5-2(C), which is the desired one. Figure 5-3 and Figure 5-4

show the segmentation results of a flower and a MRI medical image respectively

with a comparison between using unsupervised segmentation and using supervised

segmentation. In Figure 5-3, (A1) is the original image, (A2) is the original image with

assigned class masks, (B1) and (C1) are the unsupervised segmentation, and (B2) and

(C2) are supervised segmentation. The differences are obvious. In Figure 5-4, (A1) is

the original image, (A2) is the original image with assigned class masks, (B1)-(D1) are

unsupervised segmentation, and (B2)-(D2) are supervised segmentation.
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(A1) (B1) (C 1)

(A2) (B2) (C 2)
Figure 5-3. Comparison with flower.

(A1) (B1) (C 1) (D1)

(A2) (B2) (C 2) (D2)
Figure 5-4. Comparison with MRI brain image.
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CHAPTER 6
FUTURE WORK

In our first model in Chapter 2, we used the same numerical implementation method

as in Sine-Sinc model. The method can guarantee to converge to a local minimum or a

saddle point. That means, we can not find a global minimum for that model. The future

work is to find a better numerical method so that better result can be expected, or find

a way to convert the model to a convex functional, so that a global minimizer can be

guaranteed.

In Chapter 3, the constructed function h(x) can still be improved. Actually, the

particular function h(x) in our implementation satisfy
∑K

k=0 h(z(x)− k) = 1 for all x in the

domain only when the domain is infinite. When the domain is finite, cutting-off must be

used to make the equation hold at the ends of the domain. Therefore, how to overcome

this problem is still an open problem.

In Chapter 4, we noticed the energy functional is convex with respect to all variables

except for the variances. This hinds to find a global minimizer when alternating iterations

are carried out. One way is to fix the variances based on prior knowledge of the given

image. However, how to choose the variances is still a problem. If variances are not

fixed, how to guarantee the numerical method converge to an ideal solution is another

work to do.

In Chapter 5, the frame work of semi-supervised image segmentation is still based

on intensity. When the image contains some texture features, the frame work does

not work very efficiently. In this case, feature-based model must be used in the frame

work. Let F : 
 ⊂ Rn → Z ⊂ Rm be a function which maps an n-dimensional image

domain to a multi-dimensional (m-dimensional) space of contextual features Z . For

each point x ∈ 
, F (x) is a vector containing image statistics or features. Such features

can encode contextual knowledge about the region of interest and its neighboring

structures (e.g., size, shape, orientation, relationships to neighboring structures, etc.).
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Feature-based image segmentation is extensively used in texture segmentation and

some medical image segmentation. Therefore, an immediate future work is to develop a

feature-based semi-supervised multiphase image segmentation frame work.

In addition, an important application of soft segmentation is partial volume

segmentation. How to combine non-local information into 3-D soft segmentation to

improve partial volume segmentation is a big issue. Further work also includes how to

convert some existing multiphase segmentation models for hard segmentation to soft

segmentation so that a global minimizer can be found.
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