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Lunar exploration architecture can be made more flexible and reliable with the support of a low-Earth orbit (LEO) space station.
This study therefore evaluated a proposed hybrid optimization scheme to design the entire trajectory of a reusable spacecraft
starting from trans-Earth injection (EI) at the perilune and ending at an LEO space station. As such a trajectory has multiple
constraints and multiple dynamical models, it is divided into the trans-Earth phase, aerocapture phase, and postatmospheric
phase. The optimization scheme is performed at two levels: sublevel and top level. At the sublevel, two novel pseudo rules are
proposed to optimize the trans-Earth trajectory so that it satisfies the coplanar constraints of the space station. Then, in the
aerocapture phase, the bank angle is optimized to satisfy the mission constraints, and in the atmospheric phase, the one-
impulsive maneuver is performed and optimized to insert the spacecraft into the target space station orbit. The multiple phases
are connected to each other by boundary conditions where the terminal state of the previous phase is transformed into the
initial state of the following phase. At the top level, the vacuum perigee height is selected as the mission design variable based on
problem characteristics analysis and a hybrid optimization scheme is conducted to minimize the total velocity increment. The
simulation results demonstrate that the proposed hybrid optimization method is effective for the design of an entire trajectory
with acceptable velocity cost which is less than that in the previous study. The coplanar constraints of the space station and
other mission constraints in each phase are also satisfied. Furthermore, the proposed trajectory design method is shown to be
applicable to a reusable spacecraft returning to an LEO space station parked in any arbitrary orbital plane.

1. Introduction

In January 2019, the Chang’e-4 lunar probe of China
became the first spacecraft to land on the far side of the
Moon, marking a milestone in the history of space explo-
ration [1]. The Moon is the nearest celestial body to the
Earth, and it is an important destination for human visita-
tion because of its abundant resources and its potential as
the foundation of future deep space exploration. In recent
years, lunar exploration missions have been scheduled by
ISRO [2], NASA [3], and other space agencies [4] around
the world. Indeed, the next step in the third phase of
China’s lunar exploration program is to return samples
from the Moon to the Earth [5], providing a good founda-
tion for manned lunar missions in the future. Thus, it is
important to develop a suitable mission planning method
for the lunar returning mission.

The flight mode of the lunar exploration architecture
plays a key role in the successful implementation of the lunar
mission. Wang et al. [6] proposed a mission architecture
matrix to assist in the analysis and selection of the optimal
flight mode. With the support of the space stations in differ-
ent orbits, Peng and Yang [7] found that lunar exploration
architecture would be more flexible and reliable with the sup-
port of an LEO space station. Particularly for the lunar
returning mission, Murtazin [8] pointed out that instead of
returning to the Earth ground, the lunar returning spacecraft
could perform an aerocapture maneuver near the Earth and
then dock with the space station in LEO. The resulting reu-
sage could help to reduce the mission cost and improve the
utilization of the space station. The reusable spacecraft could
also be used for future missions after propellant supplement.
Therefore, it is meaningful to develop a trajectory design
method for travel from the Moon to an LEO space station.
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One of the key technical issues in reusing a lunar return
spacecraft by employing an LEO space station is the Moon-
to-Earth trajectory design method in the cislunar space. Li
et al. [9] proposed a modified patched conic model to generate
trans-Earth trajectories from high-latitude lunar landing sites.
Gao et al. [10] studied two-impulse transfer trajectories from a
lunar orbital station to the Earth. An iterative algorithm was
combined with the patched conic approximation, and the
orbital windows were also analyzed. Yang et al. [11] improved
the multiconic method to design the Moon-to-Earth with
good convergence and found that the velocity increment
decreased with the transfer time. Another type of Moon-to-
Earth trajectory is the point return orbit, in which the space-
craft directly enters the Earth’s atmosphere to land at a desired
destination. Shen et al. [12] proposed a serial design method
for fixed-point return orbits, beginning with an initial value
design using patched conic equations and ending with a preci-
sion solution obtained using numerical perturbation models.
Zheng and Zhou [13] presented an efficient iterative method
to determine trans-Earth trajectories for direct reentry into
the Earth’s atmosphere. Most of the previously published
research work above focused on how to return a manned or
unmanned spacecraft safely to Earth. In contrast, few studies
proposed appropriate trajectory optimization strategies to
return a reusable spacecraft to an LEO space station. It is chal-
lenging to design such trajectories because not only the reentry
corridor conditions but also the coplanar constraints of LEO
space station rendezvous have to be considered.

In order to realize the reuse of the lunar returning space-
craft by an LEO space station, aerocapture should be
employed to slow the spacecraft while reducing propellant
consumption. Specifically, aerocapture refers to a maneuver
in which an interplanetary spacecraft flies into a planet’s
atmosphere in order to reduce its entry velocity and reach a
specified orbit around the planet [14]. This kind of atmo-
spheric trajectory optimization of the reentry spacecraft has
been widely studied. Lu et al. [15] developed a two-phase
numerical predictor–corrector guidance algorithm to place
a spacecraft in a given-altitude orbit by employing aerocap-
ture. Chai et al. [16] proposed a violation learning differential
evolution algorithm that provided a good initial guess to the
optimization atmospheric trajectory. A new three-layer-
hybrid optimal control solver was designed to optimize the
constrained trajectory of space maneuver vehicles [17], and
a chance-constrained optimal control mode is established
considering both deterministic and probabilistic constraints
[18]. Sagliano [19] combined the pseudospectral and convex
optimization methods to solve the optimal control problem
in the descent phase of the NASA Mars Science Laboratory.
It shows good advantage of high-accuracy and real-time con-
trol compared with the standard convex methods. Sagliano
[20] further proposed a generalized hp method that provided
a good trade-off between accuracy and computation effi-
ciency. Chen et al. [21] established an aerocapture maneuver
model to allow a reusable human spacecraft returning from a
lunar mission to reach a given space station orbit. The trajec-
tory was designed using a modified particle swarm optimiza-
tion algorithm, and the vehicle mass architecture was also
analyzed. The previous studies presented above primarily

focused on the control optimization algorithm but neglected
the coupling effect of the aerocapture phase and the trans-
Earth phase in the cislunar space. So far, to the best of the
author’s knowledge, there is no adequate work that has been
reported to investigate the multiphase trajectory optimiza-
tion including the trans-Earth phase, aerocapture phase,
and postatmospheric phase.

Compared with the traditional lunar return trajectory,
the optimization of this multiphase trajectory has the follow-
ing challenges: (1) The trajectory is composed of multiple
phases with different dynamics and coupling constraints
[21–23], and it is difficult to apply the standard algorithms
to optimize the entire trajectory. The connection conditions
between the phases must be considered, and an adaptive tra-
jectory optimization method should be developed to design
the entire trajectory. (2) The motion of the spacecraft is influ-
enced by different dominant perturbative forces in different
phases [24]. The flight time in the cislunar space is usually
3 to 5 days. This is quite long compared with the duration
of the atmospheric trajectory near the Earth of approximately
hundreds of seconds, which amplifies the nonlinear charac-
teristics of the problem. (3) The mission design variables
are complex, and the trajectory sensitive parameters vary
with time which could cause convergence difficulty. To over-
come the above challenges, in this study a corresponding tra-
jectory optimization method is proposed to optimize each
segment and to analyze the connection conditions between
phases that are linked to each other. Then, based on problem
characteristic analysis, a hybrid trajectory optimization
method is established to optimize the entire trajectory of
the reusable spacecraft returning to an LEO space station
with sufficient robustness and good convergence. The main
contributions of the presented work are as follows:

(1) Analytical methods are proposed to estimate the orbital
transfer window and to provide good initial values for
optimizing the trans-Earth trajectory returning to an
LEO space station, which satisfies the LEO coplanar
constraints and reentry corridor conditions

(2) A hybrid optimization scheme is proposed for design-
ing the multiphase trajectory of the reusable spacecraft.
The connection nodes between different phases are
carefully analyzed, and the top-level design variable is
selected according to the problem characteristics

The remainder is organized as follows. Section 2 restates
the problem and divides the entire trajectory into three seg-
ments. Section 3 establishes the corresponding optimization
models for each phase according to their dynamic characteris-
tics. Section 4 presents a hybrid optimization method used to
solve the entire trajectory. Section 5 provides the simulation
results and verifies the effectiveness of the proposed method.
Finally, Section 6 states the major conclusions of this study.

2. Problem Statement

The manned lunar mission architecture employing an LEO
space station is shown in Figure 1. The Lunar Module
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(LM), Crew Module (CM), consisting of a Reentry Module
and a Propulsion Module (PM), and Orbit Transfer Module
(OTM) are delivered into LEO where they dock with the
space station for in-orbit assembly. Then, the OTM performs
an impulsive maneuver to transfer the LM and CM into the
Earth-to-Moon transfer orbit. At the perilune, the LM and
CM perform orbital injection into LLO. After the lunar sur-
face tasks have been completed, the PM performs an impul-
sive maneuver to take the CM into the Earth transfer orbit
(ETO). Upon arriving at the Earth’s atmosphere, the PM
undocks from the Reentry Module, which directly returns
the crew to the Earth, touching down on land. The PM then
travels through the atmosphere to reduce its reentry speed
and attain a specific postatmospheric orbit that enables the
PM to enter the space station orbit with an acceptable veloc-
ity increment and dock with the space station. This proce-
dure allows the PM to be reused after propellant
supplement, reducing the rocket launch costs in future mis-
sions. This paper accordingly concentrates on how to design
the trajectory of the PM from theMoon to the LEO space sta-
tion, as described in Section 2.2.

The return trajectory of the PM is a multiphase process
that begins at trans-Earth injection (TEI) and ends at the
LEO space station. As shown in Figure 2, the entire trajectory
of this mission is separated into three phases: trans-Earth
phase, aerocapture phase, and postatmospheric phase.

2.1. Trans-Earth Phase. After completing its lunar surface
task, the LM docks with the CM parked in a circular orbit
around the Moon. At the appropriate time tprl, an impulse
vprl parallel to the velocity of the parking orbit is executed
by the PM, transferring the spacecraft to trans-Earth orbit.

2.2. Aerocapture Phase. The spacecraft enters the Earth’s
atmosphere at a geocentric height h, using the aerodynamic
lift and drag forces to reduce its reentry speed and achieve

the desired postatmospheric LEO station orbit, requiring
only a small amount of propellant. Note that during the aero-
capture phase, the thermal projection and overload con-
straints should be considered.

2.3. Postatmospheric Phase. The spacecraft exits the atmo-
sphere and enters the specified postatmospheric orbit. In this
orbit, the spacecraft transfers to the target space station LEO
using a single- or double-impulse maneuver. The objective of
this phase is to minimize the insertion velocity increment.

The entire trajectory of the reusable spacecraft is a multi-
phase process with different dynamic models and nonlinear
features. For the trans-Earth phase, the trajectory of the reus-
able PM is mainly influenced by the Moon gravity and the
Earth gravity. The Sun also has a perturbative effect on PM
dynamics. However, in the aerocapture phase and postatmo-
spheric phase near the Earth, the motion of the PM is mainly
determined by the Earth’s gravity. Particularly for the
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Figure 1: The lunar mission architecture employing a space station in LEO.
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Figure 2: Entire trajectory consisting of three phases.
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aerocapture phase, the aerodynamic forces could not be
neglected.

An underlying idea is to establish a hybrid optimization
methodology at the subproblem level and top-problem level.
At the subproblem level, each trajectory is solved in sequence
by employing the appropriate optimization algorithm
according to the dynamic features and mission constraints.
After the sublevel problems are solved, the entire trajectory
is optimized at the top level using the system design param-
eters. Note that the total mission goal can be obtained after
each iteration at the sublevel. Therefore, in the next section,
the specific optimization algorithm for each subproblem is
introduced first and then a hybrid optimization framework
is presented to select the top-level design variables and opti-
mize the entire trajectory of the PM.

3. Optimization Model for Trajectory in
Each Phase

There are different dynamic models and constraints in each
different phase of the entire trajectory of the PM. In this sec-
tion, the optimal models and connection node boundary
conditions are presented for the three considered phases.

3.1. Trans-Earth Phase Optimization in Cislunar Space.
When the spacecraft arrives at the Earth’s atmosphere, the
orbital inclination and right ascension of the ascending node
(RAAN) is determined according to the ETO. The orbital
plane of the ETO should be nearly the same as the plane of
the station LEO owing to the high cost of orbital plane
changes near the Earth. Therefore, a novel trans-Earth trajec-
tory design method is proposed to satisfy the coplanar con-
straints between ETO and LEO.

3.1.1. Moon-to-Earth Trajectory Optimization Method. The
station LEO should be near-circular with a geocentric alti-
tude of hS, orbital inclination of iS, and RAAN of ΩS. The
vacuum perigee (VCP) is defined as the perigee without con-
sidering atmospheric perturbations, as shown in Figure 3.
Supposing that ivcp = iS and Ωvcp =ΩS, the coplanar con-
straint can be satisfied. Therefore, the design variables of
the ETO are selected as

x = vvcp, uvcp, tvcp, Δtperi‐vcp
� �

, ð1Þ

where vvcp is the velocity, uvcp is the argument of latitude, Δ
tperi‐vcp is the transfer time, and tvcp is the time at VCP. Given
these four parameters and the VCP height hvcp, the position

vector rvcp and the velocity vector vvcp at VCP can be
obtained by

rvcp =
cos ΩS cos uvcp − sin ΩS cos iS sin uvcp

sin ΩS cos uvcp + cos ΩS cos iS sin uvcp

sin iS sin uvcp

2
664

3
775 hvcp + RE

� �
,

ð2Þ

vvcp =
−cos ΩS sin uvcp − sin ΩS cos iS cos uvcp
−sin ΩS cos uvcp + cos ΩS cos iS cos uvcp

sin iS cos uvcp

2
664

3
775vvcp,

ð3Þ
where RE is the radius of the Earth. The rvcp and vvcp deter-
mine the ETO through the backward numerical integral
method using the high-fidelity model. At TEI, the radius
and inclination constraints are considered as follows:

rprl = h∗LLO + RM ,
iprl = i∗LLO,

(
ð4Þ

where r∗LLO and i∗LLO are the selenocentric radius and orbital
inclination of LLO, respectively, rprl and iprl are the perilune
altitude and inclination of ETO, respectively, and RM is the
radius of the Moon.

In the trans-Earth phase, the objective function is to min-
imize TEI velocity increment as follows:

J1 = min Δvprl
� �

: ð5Þ

The sequential quadratic programming (SQP) algorithm
has a good advantage of computation efficiency [25], and it is
employed to perform this optimization. However, the perfor-
mance of the algorithm depends closely on the initial guesses
for the design variables. Thus, in Section 3.1.2, the Earth-
centered Moon-to-Earth plane coordinate (ECMEPC) sys-
tem is proposed to help estimate the orbital returning win-
dow and provide appropriate initial guesses for the design
variables by two proposed pseudo rules.

3.1.2. Trans-Earth Window Estimation by Analytical
Methods. The geocentric relationship between the Earth,
the Moon, ETO, and LEO is illustrated using the ECMEPC
in Figure 4. The Earth center is located at point O, TEI at
point B, and VCP at point A. The ETO intersects the

tprl

treen

tvcp

Vacuum perigee (VCP)

Atmospheric entry

Figure 3: Moon-to-Earth trajectory and vacuum perigee.
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Moon-to-Earth plane at point E and the Earth equatorial
plane at point D. At TEI time tprl, the angle between OE
and the Moon position OM is ∠MOE = λprl, which is called
the pseudo perilune longitude. For the returning orbit in cis-
lunar space, the spacecraft is primarily influenced by the
Earth’s gravity for most of the flight time. The orbital plane
of the ETO and the station LEO could be considered to be
approximately coplanar, yielding

λprl = 180∘: ð6Þ

Similarly, for the preliminary analysis, the position of the
VCP on the Moon-to-Earth plane can be estimated by

AE = 0∘, ð7Þ

which is called the pseudo argument of latitude relative to the
Moon-to-Earth plane.

Then, the initial values of the design variables can be
computed based on Equations (6) and (7) as follows. First,
define the frame O‐xyz, where the x-axis increases from O
to C, the z-axis increases along the direction of the Moon’s
angular momentum, and the y-axis is arranged to complete
a right-handed Cartesian coordinate system with the other
two axes. In this coordinate system, the RAAN and inclina-
tion of the space station LEO are ΩL and iL, respectively,
while in the Earth-centered J2000 inertial coordinate system,
the RAAN and inclination of the Moon orbit are ΩM and iM ,
respectively.

In the spherical triangle ΔCDE, CE =ΩM −ΩS, ∠CDE
= π − iS, and ∠CED = iL. The inclination iL can then be
obtained using the cosine formula as follows:

cos iL = cos iM cos iSð Þ + sin iM sin iS cos ΩM −ΩSð Þ: ð8Þ

Applying the sine formula to the spherical triangle ΔCDE
yields

sin ΩL

sin π − iSð Þ =
sin ΩM −ΩSð Þ

sin iL
= sin DE

sin iM
: ð9Þ

By substituting iL into Equation (9), the ΩL can be
obtained by

ΩL = arcsin sin iSð Þ sin ΩM −ΩSð Þ
sin iL

� �
: ð10Þ

In the ECMEPC, the longitude of the Moon at TEI is

Ωprl = π −ΩL: ð11Þ

Therefore, the perilune time tprl can be computed by inter-
polation using Ωprl and the VCP point time tvcp as follows:

tvcp = tprl + Δtprl‐vcp: ð12Þ

In Figure 4, uA is expressed by DA and uL is expressed by
EA, which satisfiesDA + AE =DE. Combining Equations (9)
and (10), the argument of latitude at VCP is

uvcp =DE = − arcsin sin iM sin ΩL

sin iSð Þ
� �

: ð13Þ

The velocity vvcp is mainly decided by the Moon-to-Earth
distance dM and can be estimated by

vvcp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE

1
rvcp

−
1
dM

 !vuut : ð14Þ

In the above analysis, the initial values of tvcp and uvcp can
be estimated based on Equations (12) and (13), which consti-
tute the pseudo perilune longitude rule and the pseudo argu-
ment of latitude rule, respectively. Once the parameters in
Equation (1) are optimized by the algorithm, the returning
orbit from the Moon to the Earth is determined by backward
integration. The orbital elements at the Earth entry surface
(EI) can then be obtained to serve as the initial condition of
the aerocapture phase, as presented in Section 3.2.

3.2. Aerocapture Phase Optimization near the Earth. Before
arriving at VCP, the PM enters the Earth’s atmosphere, where
the atmospheric perturbation is an important factor influenc-
ing its dynamics. Therefore, a different dynamic equation and
optimization method that is employed for the trans-Earth tra-
jectory optimization is proposed to solve this subproblem.

3.2.1. Dynamic Equation in the Atmosphere. When the PM
enters the Earth’s atmosphere, the six-degree-of-freedom
equations of motion are given as [26]

A
C

B

D

E

O

M

Equatorial plane

Moon-to-Earth plane

Moon orbit

LLO

LEO

ETO

x

y
z

Figure 4: Sketch of ETO in the Earth-centered Moon-to-Earth
plane coordinate system.
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dr
dt

=V sin γ,

dθ
dt

= V cos γ sin ψ

r cos φ ,

dφ
dt

= V cos γ cos ψ
r

,

dV
dt

= −
D
m

− g sin γ + ω2r cos φ sin γ cos φð
− cos γ sin φ cos ψÞ,

dγ
dt

= 1
V

L cos σ
m

+ V2

r
− g

� �
cos γ + 2ωV cos φ sin ψ

	
+ ω2r cos φ cos γ cos φ + sin γ sin φ cos ψð Þ�,

dψ
dt

= 1
V

L sin σ

m cos γ + V2

r
cos γ sin ψ tan φ

	
− 2ωV cos φ tan γ cos ψ − sin φð Þ

+ ω2r
cos γ sin φ cos φ sin ψ

i
,

ð15Þ

where r is the radial distance from the Earth’s center to the
PM, θ and φ are the longitude and geocentric latitude, respec-
tively, V is the relative velocity of the Earth, γ is the flight-path
angle of the relative velocity vector, ψ is the heading angle of
the relative velocity vector measured clockwise from the north
in the local horizontal plane, g is the gravitational acceleration,
and m is the PM mass. Geometric descriptions of these six
parameters are shown in Figure 5. Note that the term σ in
Equation (15) denotes the bank angle, which is the rotation
angle about the relative velocity vector. By appropriately con-
trolling σ, the spacecraft can take advantage of the aerody-
namic lift force L and drag force D in order to decrease its
velocity. In most aerocapture missions, the bank angle is used
as the control variable and optimization problems have been
widely studied accordingly. The state and control variables
are discretized at a series of Legendre-Gauss points, and then,
the Gauss pseudospectral optimization method is employed to
optimize the aerocapture trajectory.

The L and D can be obtained by

L = 1
2 ρV

2CLS,

D = 1
2 ρV

2CDS,
ð16Þ

where CD is the drag coefficient, CL is the lift coefficient, S is
the reference area, and ρ is the atmospheric density.

Several typical trajectory constraints must be considered
during the flight in the Earth’s atmosphere. The maxima of
the dynamic pressure q, load factor n, and heat rate _Q should
not exceed the corresponding extreme values defined for the
safe entry of the PM. Furthermore, the minimum geocentric
altitude h should be greater than the extreme value hmin. All
these constraints are formulized as

q = 1
2 ρv

2 ≤ qmax,

n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 +D2

p

mg
≤ nmax,

_Q = C1ffiffiffiffiffi
Rd

p ρ

ρ0

� �0:5 v
vc

� �3:15
≤ _Qmax,

h ≥ hmin,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

where C1 is a constant coefficient based on the PM characteris-
tics, Rd is the nose radius of the PM, ρ0 is the density of the
atmosphere at sea level, and vc is the reference velocity of a cir-
cular orbit with an altitude equal to the Earth’s radius. In a lunar
explorationmission, qmax, nmax, _Qmax, and hmin are usually set to
30kPa, 4.5g, 2.6MW/m2, and 40km, respectively [17].

In order to prevent the spacecraft’s heating shield system
from being burned, the integrated heat QS should be mini-
mized as follows:

J2 = min QS =min
ðt2, f
t2,0

Q
·
dt, ð18Þ

where t2,0 and t2,f are the starting and ending times, respec-
tively, of the aerocapture phase.

3.2.2. Boundary Conditions of the Aerocapture Phase. The
boundary conditions in the aerocapture problem comprise
two factors: the initial states and the terminal states. For the
initial states, the boundary conditions are given by the reen-
try states of the trans-Earth trajectory as follows:

r2,i = rreen,
θ2,i = θreen,
φ2,i = φreen,
v2,i = vreen,
γ2,i = γreen,
ψ2,i = ψreen,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

r

z y

Z

X

𝜃
𝜑

𝛾
𝜓 Y

M

V

x

Figure 5: Parameters of three-dimensional dynamics in the Earth’s
atmosphere.
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where the subscript “reen” denotes the reentry orbital states
of the trans-Earth trajectory. The initial states are specified
as follows.

In the trans-Earth trajectory, the true anomaly f reen at the
atmospheric reentry point is obtained by

f reen = arccos
rvcp/rreen
� �

1 + eð Þ − 1
e

" #
: ð20Þ

The corresponding eccentric anomaly Ereen is

Ereen = 2 arctan
ffiffiffiffiffiffiffiffiffi
1 − e
1 + e

r
tan f reen

2

 !
: ð21Þ

The flight time between VCP and the reentry injection,
Δtreen‐vcp, can be obtained by

Δtreen‐vcp =
ffiffiffiffiffiffiffiffiffi
a3reen
μE

s
Ereen − e sin Ereenð Þ, ð22Þ

where areen is the semimajor axis of ETO and e the eccentric-
ity. The reentry time treen is

treen = tvcp − Δtreen‐vcp: ð23Þ

By backward integrating ðrvcp, vvcpÞ in Equations (2) and
(3), ðrreen, vreenÞ can be obtained and should then be trans-
formed into the initial states of the aerocapture phase in
Equation (19).

The terminal boundary is given by

r2,f = r3,i,
θ2,f = θ3,i,
φ2,f = φ3,i,
v2,f = v3,i,
γ2,f = γ3,i,
ψ2,f = ψ3,i,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ

where the subscript “2, f ” denotes the terminal states of the
atmospheric trajectory and the subscript “3, i” denotes the
initial orbital states of the postatmospheric trajectory, which
is discussed in Section 3.3.

3.3. Postatmospheric Phase. In the postatmospheric phase,
the optimization objective is to minimize the velocity incre-
ment that the spacecraft must accommodate when transfer-
ring from postatmospheric orbit into space station orbit.
This objective function is formulized as

J3 = min vpost‐atm: ð25Þ

At the atmospheric exit point, let r2,f and v2,f be the posi-
tion and velocity vectors, respectively, of the aerocapture tra-

jectory. It should be noted that these two vectors are relative
to the rotating Earth, and given t2,f , they can be transformed
into the inertial vectors rexit and vexit in the Earth-centered
inertial coordinate system.

The semimajor axis of the postatmospheric orbit is

aexit =
μE

2μE/rexit − v2exit
, ð26Þ

and the apoapsis and periapsis radius is

ra = aexit 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2exitr

2
exit cos2 γð Þ
μaexit

s0
@

1
A,

rp = aexit 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2exitr

2
exit cos2 γð Þ
μaexit

s0
@

1
A:

ð27Þ

To reach the space station LEO, two engine burns are
planned that are similar to a Hohmann transfer. The first
tangential impulse is applied at ra to raise rp to r∗p = ðra + rS
Þ/2. The second impulse is applied at r∗p to circularize the
orbit and bring the apoapsis radius to rS.

The total two-velocity increment is

vpost‐atm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μE

2
ra

−
2

ra + rp

 !vuut −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μE

2
ra

−
1

aexit

� �s

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μE

2
rs

−
2

ra + rp

 !vuut −
ffiffiffiffiffi
μE
rs

r












:

ð28Þ

From Equation (28), it can be found that vpost‐atm is min-
imized when ra = rS, indicating that the apoapsis altitude
after the aerocapture phase is equal to the orbital radius of
the space station, which is the objective of the apoapsis-
targeting problem. Therefore, the velocity increment in
Equation (28) can be rewritten as

vpost‐atm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μE

2
ra

−
2

ra + rp

 !vuut −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μE

2
ra

−
1

aexit

� �s
: ð29Þ

Another set of boundary conditions in atmospheric flight
is given by

ra r3,i, θ3,i, φ3,i, v3,i, γ3,i, ψ3,i
� �

= rS: ð30Þ

Substituting Equation (29) into Equation (25), the mini-
mum velocity increment of the objective function can be
specified.
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4. Algorithm Design for Multiphase
Trajectory Optimization

The entire trajectory optimization scheme proposed in this
paper is actually a typical multiphase optimization problem.
It is difficult to apply the standard algorithms to optimize
the entire trajectory directly because of the different dynam-
ics and coupling constraints in each phase. In the trans-Earth
phase, the spacecraft is mainly influenced by solar, lunar, and
Earth gravities, whereas in the atmospheric phase, the atmo-
spheric forces must be considered. Furthermore, the flight
time in the cislunar space is usually several days and it is quite
long compared with the duration of the atmospheric phase
near the Earth, which amplifies the nonlinearity of the prob-
lem. An underlying idea is to introduce a hybrid optimization
scheme at the sublevel and top level to solve such a problem
[23, 24].

Let xi denote the optimization variable in phase i. Each
subproblem is then solved in sequence as follows:

Ji =min f i X, xið Þ,
xi
· = gi X, xið Þ,
s:t: eqi X, xið Þ = 0,
ieqi X, xið Þ ≤ 0,

8>>>>><
>>>>>:

ð31Þ

where Ji is the goal function, gi is the dynamic equation, eqi
is the equality constraint, and ieqi is the inequality constraint
in phase i.

The terminal states of each previous phase are used as
the initial states of each following phase and are referred
to as the phase connection conditions. The linkage con-
straint of such phase connection conditions is formulated
as follows:

rk+1,i = rk,f ,
vk+1,i = vk,f ,

(
ð32Þ

where the subscript “k + 1, i” denotes the initial states in
the k + 1 phase, the subscript “k, f ” denotes the final states
in the k phase, and r and v are the position and velocity
vectors of the PM, respectively.

The top optimization level of the proposed method deals
with the phase connection nodes and combines the phases
with each other. The mission design variable X is defined to
minimize the total mission objective function J as follows:

J =min F X, xð Þ =min F f 1 X, x1ð Þ,⋯, f n X, xnð Þð Þ, ð33Þ

where n represents the number of phases.
By splitting the entire trajectory into the trans-Earth

phase, aerocapture phase, and postatmospheric phase, each
of them can be regarded as a subproblem and optimized sep-
arately in sequence as described in Section 3. For the trans-
Earth phase trajectory, two pseudo rules are proposed to esti-
mate the orbital transfer window and the SQP algorithm is
used to optimize the orbital design parameters to satisfy the

coplanar constraints of the space station orbit. For the aero-
capture phase trajectory, the bank angle is used as the control
variable and is discretized at a series of Legendre-Gauss
points. This is an optimal control problem, and the Gauss
pseudospectral optimization is employed to solve it through
conversion into a nonlinear programming problem. For the
postatmospheric phase trajectory, the impulse Δvpost‐atm that
inserts the spacecraft into the target station orbit is optimized
which is determined by the terminal orbital states of the aero-
capture phase and the phase is similar to a Hohmann
transfer.

The general objective of the top-level optimization of the
entire trajectory is to minimize the total velocity increment
by

J =min 〠
N

i=1
Δvi, ð34Þ

where N is the number of maneuver times and Δvi is the
velocity increment in each phase. The objective function J
includes the impulse Δvperi at the perilune in the first phase
and Δvpost‐atm at the apoapsis in the third phase.

At the top level, there are many mission design vari-
ables that can be selected to optimize the entire trajectory.
For the multiphase problem addressed in this paper, the
VCP height hvcp is selected as the design parameter for
the top-level optimization according to problem character-
istic analysis. Firstly, it strongly couples the first and sec-
ond subproblems. Indeed, the VCP height hvcp not only
serves to determine the trans-Earth phase trajectory in
Equation (2) and to influence the size of the first velocity
impulse at the perilune but also influences the initial states
of the aerocapture phase. The relationship between hvcp
and γ can be estimated as

tan γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r2reen 1 + eð Þ + 2rvcprreen − r2reen 1 − eð Þ

q
rreen 1 + eð Þ : ð35Þ

Secondly, it has been found that the reentry angle γ
also influences the aerocapture phase and can result in
an unacceptable velocity increment [15]. Therefore, the
VCP height is selected as the mission design variable in
the top level and this kind of problem could be optimized
by the golden section method. This algorithm is very suit-
able for searching without derivative for the extrema of
unimodal objective functions [27, 28].

The entire optimization scheme is illustrated in Figure 6.
The detailed implementation process is described as follows.

Step 1. According to the ðiS,ΩSÞ of the space station, the
trans-Earth window is estimated based on the pseudo peri-
lune longitude rule in Equation (6) and the pseudo argument
of latitude rule in Equation (7).

Step 2. Set the initial value of hvcp randomly between 0
and 100 km.
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Step 3. Estimate the initial values of the design variables
fvvcp, f vcp, tvcp, Δtperi‐vcpg, employing the SQP algorithm to
optimize the trans-Earth phase in cislunar space.

Step 4. Determine the Earth entry interface and the initial
states ðr, θ, φ, v, γ, ψÞ2,i of the aerocapture phase.

Step 5. In the aerocapture phase, the Gauss pseudospec-
tral optimization method is employed to optimize the bank
angle σ and to minimize the integrated total heat flux in
Equation (18).

Step 6. In the postatmospheric phase, calculate the initial
states ðr, θ, φ, v, γ, ψÞ3,i and optimize the insertion velocity
increment vpost‐atm to the target space station LEO which is
similar to a Hohmann transfer.

Step 7. Apply the golden section method to optimize hvcp
according to the total velocity increment J =min ðΔvprl +
vpost‐atmÞ and repeat Steps 3–7 until the mission constraints
are all satisfied and the algorithm at the top-level is converged.

5. Simulation

5.1. Optimization Results for the Entire Trajectory

5.1.1. Trans-Earth Trajectory in Cislunar Space. The TEI
departure time tpri is set between 15 April 2028 08:00:00
and 15 May 2028 08:00:00. The orbital elements of the LEO

space station are assumed as given in Table 1. Using the
pseudo perilune longitude rule, the initial value of tpri is
determined to be 19 Apr 2028 15:29:1252. The altitude and
inclination constraints of LLO are set to h∗LLO = 200 km and
i∗LLO = 90∘. A desktop PC with a 3.6GHz Intel Core i7-4790
and 4GB of RAM was used to run this simulation.

Figure 6: Flow chart of the hybrid optimization algorithm.

Table 1: Orbital elements of an LEO space station.

hS kmð Þ e iS
oð Þ ΩS

∘ð Þ
343.0 0 42.4 30.0

Table 2: Solutions for ETOs.

Design parameter Optimal value

vvcp m/sð Þ 11030.9310

uvcp
∘ð Þ 39.2871

uL
∘ð Þ -0.6291

tpri 19 April 2028 19:8:31.3362

λprl
∘ð Þ 181.96

Δtperi‐vcp dayð Þ 3.20

Table 3: Orbital parameters at TEI.

Design parameter Optimal value

iLLO
∘ð Þ 89.96

ΩLLO
∘ð Þ 354.10

hLLO kmð Þ 199585.42

uLLO
∘ð Þ 50.31

vB m/sð Þ 837.20
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The four design parameters are constrained by the fol-
lowing inequality:

10500m/s < vvcp < 11500m/s,
−10∘ < Δuvcp < 10∘,
−10 h < Δtvcp < 10 h,
2:8 day < Δtperi‐vcp < 3:2 day:

8>>>>><
>>>>>:

ð36Þ

For the top level in the optimization scheme, the optimal
VCP height is determined to be hvcp = 76:08 km with a total
velocity increment of 914.8666m/s. It consists of 837.20m/s
at the perilune and 77.66m/s in the postatmospheric inser-
tion. The total computation time is 261.68 s. The other
numerical results of the trans-Earth subproblem are listed
in Tables 2 and 3. A three-dimensional demonstration of
the trans-Earth trajectory in cislunar space is given in
Figure 7.

It can be observed in the optimization results in Table 2
that the pseudo perilune longitude is λprl = 181:96∘ and the
pseudo argument of latitude is uL = −0:63∘, which verifies
the assumption of the initial values in Equations (6) and
(7). The flight time Δtpri‐peri is determined to be 3.2 days,
reaching the upper boundary of the time constraint because
the velocity cost at TEI decreases with flight time for a
Moon-returning orbit [11].

5.1.2. Aerocapture Trajectory near the Earth. The initial states
of the aerocapture phase at the atmospheric entry injection
point are listed in Table 4. Taking the Apollo spacecraft as
the reference [29], the drag coefficient is set to 1.2891 and
the lift coefficient to 0.3877. The radius of the reference area
is 3.0m. The other spacecraft parameters are listed in Table 4.
The initial states of the aerocapture process are shown in
Table 5. The time history of the altitude, speed, longitude, lat-
itude, heading angle, and flight path angle is shown in
Figures 8–10.

It can be observed in Figure 8 that the altitude of the PM
decreases sharply to h = 67:48 km at t = 100:2 s, satisfying the
altitude constraint in Equation (17), and then increases mod-
estly to h = 122 km. The velocity v increases by approxi-
mately 50m/s at the beginning of the airbrake but then
consistently decreases to a minimum of 7.888 km/s before
the PM exits the atmosphere. The total deceleration is
approximately 2.7517 km/s. The entire flight time of the
aerocapture phase is about 782.8 s.

The geocentric longitude λ and latitude φ are shown in
Figure 9 to both increase with time. The longitude increases
from 18:96∘ to 43:52∘ following a nearly logarithmic trend
whereas the latitude increases almost linearly from −52:31∘
to 12:51∘.

In Figure 10, the heading angle ψ increases steadily from
50:00∘ at t = 0 s to 87:22∘ at t = 100:2 s. The flight-path angle
γ first increases sharply from −5:33∘ to 0:57∘ prior to t =
107:3 s, preventing the PM from hitting the Earth, then varies
modestly from 0:57∘ to 0:85∘ at the end of the flight to achieve
the postatmosphere apoapsis.
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Figure 7: Three-dimensional demonstration of ETO in cislunar space.

Table 4: Aerocapture parameters for the PM.

Parameter Optimal value

Mass m (kg) 6000

Reference area radius S (m) 3.0

Lift coefficient CL 0.3877

Drag coefficient CD 1.2891

Reentry altitude h (km) 122

Nose radius Rd (m) 2.5

Table 5: Initial states of the aerocapture phase.

h2,i mð Þ θ2,i
∘ð Þ φ2,i

∘ð Þ v2,i m/sð Þ γ2,i
∘ð Þ ψ2,i

∘ð Þ
122241.8236 -52.3105 18.9580 10639.7154 -5.3379 49.9770
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The optimization result of the bank angle profile σ is
shown in Figure 11. The PM moves with a bank angle of σ
= 0∘ during the early part of its flight. At t = 108:9 s, the angle
switches from 0∘ to 90∘ before immediately switching from
90∘ to −90∘ following a “bang-bang” profile. Note that it
was theoretically proven in [15] that an optimal solution with
such a “bang-bang” profile is reflective of the aerocapture
problem.

The time histories of the constraint parameters including
the load factor n, heat rate Q·, and dynamic pressure q are
shown in Figure 11, in which it can be observed that all three
constraints initially increase rapidly but then slowly decrease
with time. The maximum values of all three constraints are
within the allowable range, with a load factor of 2.5024 g, heat
rate of 708.2966 kw/m2, and dynamic pressure of
5566.9255 kPa as demonstrated in Figure 12. Furthermore,

the integrated heat minimized in Equation (18) by the opti-
mization process is 123.4263MJ/m2.

5.1.3. Postatmospheric Trajectory. At its atmospheric exit
point, the spacecraft reaches a postatmospheric orbit with
an apoapsis altitude ha = 343:00 km and a periapsis altitude
hp = 78:95 km. After a flight time of 1966.88 s, the spacecraft
transfers from its atmospheric exit point to its apoapsis.
Using Equation (29), the velocity increment that inserts the
spacecraft into the station LEO is about vpost‐atm = 77:66m/s
, which is less than the result vpost‐atm = 95:9623m/s obtained
in Ref. [21]. The resulting three-dimensional trajectory of the
postatmospheric orbit is shown in Figure 13.

After the transfer of the trans-Earth phase, aerocapture
phase, and postatmospheric phase, the mission constraints
are recalculated to determine whether the spacecraft could
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return to the target LEO space station. The errors of the
coplanar constraint and orbital height are ΔiS = 0:0020∘,
ΔΩS = 0:0022∘, and ΔhS = 0:51m, respectively, which are
acceptable for the engineering requirements. It can be con-
cluded that the proposed algorithm is effective and satisfies
the nonlinear constraints in the whole mission.

5.2. Performance of the Hybrid Optimization Algorithms. To
validate the trajectory design method based on the “perilune”
and “argument” pseudo estimation rules shown in Equations
(6) and (7), respectively, 1000 space station LEOs with ran-
dom inclinations and RAANs were generated and optimized.
The results of the subsequent convergence analysis are shown
in Table 6. It can be observed that all 1000 generated orbits
optimized using the proposed orbit design method based
on the combined perilune and argument pseudo estimation
rules converge to corresponding optimal solutions, a conver-
gence rate of 100.0%. However, note that if no good initial

value is provided to the algorithm, none of these orbits will
converge. It can also be observed that the pseudo perilune
rule plays a more important role than the pseudo argument
of latitude rule, as they exhibit convergence rates of 87.5%
and 21.9%, respectively. The results in Table 6 thus show that
the proposed orbital design method provides good conver-
gence and can effectively solve the ETO to a space station
in LEO with an arbitrary orbital plane.

The variation in the velocity increment vpost‐atm with the
reentry angle γreen can be observed in Figure 14 to be uni-
formly dispersed between −6:5∘ and −4:3∘. It is interesting
that vpost‐atm decreases dramatically from 900m/s to
100m/s for γreen < −6:0∘ and that vpost‐atm is greater than
100m/s when γreen > −4:5∘. According to the relationship
between the VCP height and reentry angle shown in
Figure 15, it can be determined that the preliminary VCP
height corresponding to a velocity increment of less than
100m/s is 50–80 km, which is acceptable from the perspec-
tive of the propellant consumption of the reusable PM.

6. Conclusions

This paper presented an entire flight trajectory design
method for a reusable spacecraft flying from the Moon to
an LEO space station. A hybrid optimization scheme was
proposed to solve the problem by minimizing the total veloc-
ity increment from a propellant consumption perspective. It
was determined that the trans-Earth phase design method is
effective in satisfying the LEO coplanar constraints of the
space station and that the two pseudo estimation rules evalu-
ated in this study produced good initial guesses of the design
variables. In the aerocapture phase, the maximum value of
the heat rate and dynamic pressure are all within the given
mission constraints, and in the postatmospheric phase, the
maneuvering impulse required for the spacecraft to enter
the station LEO is approximately 77.66m/s, which is less
than that of the previous study. Additionally, a robustness
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analysis indicated that the proposed hybrid optimization
method is appropriate for an LEO space station with arbi-
trary orbital planes. Finally, it was found that the selection
of VCP height should be limited to within 50–80 km to save
propellant consumption. The conclusions of this study are
intended to be used as a reference for the design of the future
Chinese manned lunar mission.
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