Multiple-Choice Answer Key

The following contains the answers to the multiple-choice questions in this exam.

Answer Key for AP Calculus AB Practice Exam, Section I

Question 1: D	Question 24: A
Question 2: B	Question 25: C
Question 3: B	Question 26: E
Question 4: E	Question 27: D
Question 5: D	Question 28: B
Question 6: B	Question 76: D
Question 7: C	Question 77: E
Question 8: C	Question 78: A
Question 9: D	Question 79: C
Question 10: A	Question 80: E
Question 11: D	Question 81: A
Question 12: E	Question 82: E
Question 13: E	Question 83: B
Question 14: A	Question 84: D
Question 15: C	Question 85: C
Question 16: D	Question 86: E
Question 17: B	Question 87: E
Question 18: B	Question 88: D
Question 19: B	Question 89: E
Question 20: D	Question 90: A
Question 21: A	Question 91: B
Question 22: E	Question 92: A
Question 23: B	

Free-Response Scoring Guidelines

AP ${ }^{\circledR}$ CALCULUS AB
 2013 SCORING GUIDELINES

Question 1

Let R be the shaded region in the first quadrant enclosed by the y-axis and the graphs of $y=1-x^{3}$ and $y=\sin \left(x^{2}\right)$, as shown in the figure above.
(a) Find the area of R.
(b) A horizontal line, $y=k$, is drawn through the point where the graphs of $y=1-x^{3}$ and $y=\sin \left(x^{2}\right)$ intersect. Find k and determine whether this line divides R into two regions of equal area. Show the work that leads to your conclusion.
(c) Find the volume of the solid generated when R is revolved about the line $y=-3$.

The graphs of $y=1-x^{3}$ and $y=\sin \left(x^{2}\right)$ intersect in the first quadrant at the point $(A, B)=(0.764972,0.552352)$.
(a) Area $=\int_{0}^{A}\left(1-x^{3}-\sin \left(x^{2}\right)\right) d x$

$$
=0.533(\text { or } 0.534)
$$

(b) $k=B=0.552352$
$\int_{0}^{A}\left(1-x^{3}-k\right) d x=0.257($ or 0.256$)$
$\int_{0}^{A}\left(k-\sin \left(x^{2}\right)\right) d x=0.277$ (or 0.276)
The two regions have unequal areas.
(c) Volume $=\pi \int_{0}^{A}\left(\left(1-x^{3}+3\right)^{2}-\left(\sin \left(x^{2}\right)+3\right)^{2}\right) d x$ $=11.841$ (or 11.840)
$1:$ correct limits in an integral in (a), (b), or (c)
$2:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { integral(s) with } k \text { value } \\ 1: \text { value(s) of integral(s) } \\ 1: \text { conclusion tied to part (a) } \\ \text { or comparison of two integrals }\end{array}\right.$
Note: Stating k value only does not earn a point.
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 2

The penguin population on an island is modeled by a differentiable function P of time t, where $P(t)$ is the number of penguins and t is measured in years, for $0 \leq t \leq 40$. There are 100,000 penguins on the island at time $t=0$. The birth rate for the penguins on the island is modeled by

$$
B(t)=1000 e^{0.06 t} \text { penguins per year }
$$

and the death rate for the penguins on the island is modeled by

$$
D(t)=250 e^{0.1 t} \text { penguins per year. }
$$

(a) What is the rate of change of the penguin population on the island at time $t=0$?
(b) To the nearest whole number, what is the penguin population on the island at time $t=40$?
(c) To the nearest whole number, what is the average rate of change of the penguin population on the island for $0 \leq t \leq 40$?
(d) To the nearest whole number, find the absolute minimum penguin population and the absolute maximum penguin population on the island for $0 \leq t \leq 40$. Show the analysis that leads to your answers.
(a) $P^{\prime}(0)=B(0)-D(0)=1000-250=750$ penguins per year
(b) $P(40)=100000+\int_{0}^{40}(B(t)-D(t)) d t$

$$
=100000+33057.56459
$$

There are 133,058 penguins on the island.
(c) $\frac{1}{40} \int_{0}^{40}(B(t)-D(t)) d t=826.439$

> OR
> $\frac{P(40)-P(0)}{40-0}=\frac{133058-100000}{40}=826.45$

The average rate of change is 826 penguins per year.
(d) $B(t)-D(t)=0$
$1000 e^{0.06 t}=250 e^{0.1 t} \Rightarrow t=A=\frac{\ln 4}{0.04}=34.657359$
The absolute minimum and absolute maximum occur at a critical point or at an endpoint.

$$
P(0)=100000
$$

$$
P(A)=100000+\int_{0}^{A}(B(t)-D(t)) d t=139166.667
$$

$P(40)=133058$
The minimum population is 100,000 and the maximum population is 139,167 penguins.

1 : answer
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$

1: answer
$4:\left\{\begin{array}{l}1: B(t)-D(t)=0 \\ 1: \text { solves for } t \\ 1: \text { minimum value } \\ 1: \text { maximum value }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 3

t (days)	0	10	22	30
$W^{\prime}(t)$ (GL per day)	0.6	0.7	1.0	0.5

The twice-differentiable function W models the volume of water in a reservoir at time t, where $W(t)$ is measured in gigaliters (GL) and t is measured in days. The table above gives values of $W^{\prime}(t)$ sampled at various times during the time interval $0 \leq t \leq 30$ days. At time $t=30$, the reservoir contains 125 gigaliters of water.
(a) Use the tangent line approximation to W at time $t=30$ to predict the volume of water $W(t)$, in gigaliters, in the reservoir at time $t=32$. Show the computations that lead to your answer.
(b) Use a left Riemann sum, with the three subintervals indicated by the data in the table, to approximate $\int_{0}^{30} W^{\prime}(t) d t$. Use this approximation to estimate the volume of water $W(t)$, in gigaliters, in the reservoir at time $t=0$. Show the computations that lead to your answer.
(c) Explain why there must be at least one time t, other than $t=10$, such that $W^{\prime}(t)=0.7 \mathrm{GL} /$ day.
(d) The equation $A=0.3 W^{2 / 3}$ gives the relationship between the area A, in square kilometers, of the surface of the reservoir, and the volume of water $W(t)$, in gigaliters, in the reservoir. Find the instantaneous rate of change of A, in square kilometers per day, with respect to t when $t=30$ days.
(a) An equation of the tangent line is $y=0.5(t-30)+125$. $W(32) \approx 0.5(32-30)+125=126$
(b) $\int_{0}^{30} W^{\prime}(t) d t \approx(10)(0.6)+(12)(0.7)+(8)(1.0)=22.4$
$W(0)=W(30)-\int_{0}^{30} W^{\prime}(t) d t=125-22.4=102.6$
(c) W^{\prime} is differentiable $\Rightarrow W^{\prime}$ is continuous.
$W^{\prime}(30)=0.5<0.7<1.0=W^{\prime}(22)$
By the Intermediate Value Theorem, there must be at least one time $t, 22 \leq t \leq 30$, such that $W^{\prime}(t)=0.7$.
(d) $\frac{d A}{d t}=(0.3) \frac{2}{3} W^{-1 / 3} \cdot \frac{d W}{d t}=\frac{0.2}{\sqrt[3]{W}} \cdot \frac{d W}{d t}$
$\left.\frac{d A}{d t}\right|_{t=30}=\frac{0.2}{\sqrt[3]{125}} \cdot 0.5=0.02$

1: answer
$3:\left\{\begin{array}{l}1: \text { left Riemann sum } \\ 1: \text { approximation } \\ 1: \text { answer }\end{array}\right.$

2 : explanation
$3:\left\{\begin{array}{l}2: \frac{d A}{d t} \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 4

Let f be the function given by $f(x)=\left(x^{2}-2 x-1\right) e^{x}$.
(a) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
(b) Find the intervals on which f is increasing. Show the analysis that leads to your answer.
(c) Find the intervals on which the graph of f is concave down. Show the analysis that leads to your answer.
(a) $\lim _{x \rightarrow \infty} f(x)=\infty$ or does not exist
$\lim _{x \rightarrow-\infty} f(x)=0$
(b) $f^{\prime}(x)=(2 x-2) e^{x}+\left(x^{2}-2 x-1\right) e^{x}$

$$
=\left(x^{2}-3\right) e^{x}
$$

$f^{\prime}(x)=0$ when $x=-\sqrt{3}, x=\sqrt{3}$
$f^{\prime}(x)>0$ for $-\infty<x<-\sqrt{3}$ and $\sqrt{3}<x<\infty$.
f is increasing on the intervals $-\infty<x \leq-\sqrt{3}$ and $\sqrt{3} \leq x<\infty$.
(c) $f^{\prime \prime}(x)=2 x e^{x}+\left(x^{2}-3\right) e^{x}$

$$
=\left(x^{2}+2 x-3\right) e^{x}=(x+3)(x-1) e^{x}
$$

$f^{\prime \prime}(x)<0$ for $-3<x<1$
The graph of f is concave down on the interval $-3<x<1$.

1: answers
$4:\left\{\begin{array}{l}2: f^{\prime}(x) \\ 1: \text { analysis } \\ 1: \text { intervals }\end{array}\right.$
$4:\left\{\begin{array}{l}2: f^{\prime \prime}(x) \\ 1: \text { analysis } \\ 1: \text { interval }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 5

The graph of the continuous function f, consisting of three line segments and a semicircle, is shown above. Let g be the function given by
$g(x)=\int_{-2}^{x} f(t) d t$.
(a) Find $g(-6)$ and $g(3)$.
(b) Find $g^{\prime}(0)$.
(c) Find all values of x on the open interval $-6<x<3$ for which the graph of g has a horizontal tangent. Determine whether g has a local maximum, a local minimum, or neither at each of these values. Justify your answers.

(d) Find all values of x on the open interval $-6<x<3$ for which the graph of g has a point of inflection. Explain your reasoning.
(a) $g(-6)=\int_{-2}^{-6} f(t) d t=-\int_{-6}^{-2} f(t) d t=-\frac{1}{2} \cdot 4 \cdot 5=-10$
$g(3)=\int_{-2}^{3} f(t) d t=\frac{1}{2} \pi \cdot 2^{2}-\frac{1}{2} \cdot 1 \cdot 2=2 \pi-1$
(b) $g^{\prime}(0)=f(0)=2$
(c) The graph of g has a horizontal tangent at $x=-2$ and $x=2$ where $g^{\prime}(x)=f(x)=0$.

The graph of g has neither a local maximum nor a local minimum at $x=-2$ because $g^{\prime}(x)=f(x)$ does not change sign at $x=-2$.

The graph of g has a local maximum at $x=2$ because $g^{\prime}(x)=f(x)$ changes sign from positive to negative at $x=2$.
(d) The graph of g has a point of inflection at $x=-4, x=-2$, and $x=0$.
$g^{\prime}(x)=f(x)$ changes from increasing to decreasing at $x=-4$ and $x=0$, and changes from decreasing to increasing at $x=-2$.

OR
$g^{\prime \prime}(x)=f^{\prime}(x)$ changes from positive to negative at $x=-4$ and $x=0$, and changes from negative to positive at $x=-2$.
$2:\left\{\begin{array}{l}1: g(-6) \\ 1: g(3)\end{array}\right.$
$1: g^{\prime}(0)$
$3:\left\{\begin{array}{c}1: \text { horizontal tangent at } x=-2 \\ \quad \text { and } x=2 \\ 2: \text { answers with justifications }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { values of } x \\ 1: \text { explanation }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 6

Let f be a function with $f(2)=-8$ such that for all points (x, y) on the graph of f, the slope is given by $\frac{3 x^{2}}{y}$.
(a) Write an equation of the line tangent to the graph of f at the point where $x=2$ and use it to approximate $f(1.8)$.
(b) Find an expression for $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=\frac{3 x^{2}}{y}$ with the initial condition $f(2)=-8$.
(a) Slope $=\frac{(3)(4)}{-8}=-\frac{3}{2}$

An equation for the tangent line is $y=-\frac{3}{2}(x-2)-8$.
$f(1.8) \approx-\frac{3}{2}(1.8-2)-8=-7.7$
(b) $\int y d y=\int 3 x^{2} d x$
$\frac{1}{2} y^{2}=x^{3}+C$
$\frac{1}{2}(-8)^{2}=2^{3}+C \Rightarrow C=24$
$y^{2}=2\left(x^{3}+24\right)=2 x^{3}+48$
$y=-\sqrt{2 x^{3}+48}$
Note: This solution is valid for $x>-\sqrt[3]{24}$.
$3:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent line equation } \\ 1: \text { approximation }\end{array}\right.$
$6:\left\{\begin{array}{l}1: \text { separation of variables } \\ 2: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } y\end{array}\right.$
Note: $\max 3 / 6[1-2-0-0-0]$ if no constant of integration

Note: $0 / 6$ if no separation of variables

