Multiple Choice

Identify the choice that best completes the statement or answers the question. To receive full credit, please SHOW ALL WORK. ©

1. Use the rectangles in the graph given below to approximate the area of the region bounded by $y=4 / x, y=0, x=1$, and $x=4$ Round your answer to three decimal places.

a. $\quad 2.481$ units 2
b. $\quad 6.500$ units 2
c. $\quad 3.585$ units 2
d. 7.872 units 2
e. 6.903 units 2
\qquad 2. Consider the length of the graph of
$f(x)=5 / x$ from $(1,5)$ to (5,1) Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places.

a. $\quad 6.05$
b. $\quad 8.12$
c. $\quad 5.66$
d. $\quad 8.49$
e. $\quad 7.11$
\qquad 3. Complete the table and use the result to estimate the limit.

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-16 x+39}
$$

x	2.9	2.99	2.999	3.001	3.01	3.1
$f(x)$						

a. $\quad 0.525000$
b. 0.275000
c. -0.100000
d. 0.400000
e. -0.475000
_ 4. Complete the table and use the result to estimate the limit.
$\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{3 x}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

a. -1
b. -0.5
c. 0
d. 0.5
e. 1
__ 5. Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim _{x \rightarrow 1}(5-x)$

a. 6
b. 1
c. 5
d. 4
e. does not exist

- 6. Let $f(x)=\left\{\begin{array}{ll}4-x, & x \neq 1 \\ 0, & x=1\end{array}\right.$.

Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim f(x)$
$x \rightarrow 1$
a. 5
b. 4
c. 3
d. 0
e. does not exist

- 7. Let $f(x)=\left\{\begin{array}{ll}x^{2}+5, & x \neq 1 \\ 1, & x=1\end{array}\right.$.

Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim f(x)$
$x \rightarrow 1$

a. 6
b. 25
c. 1
d. 5
e. does not exist.

[^0]8. Determine the following limit. (Hint: Use the graph to calculate the limit.)
$\lim _{x \rightarrow 2} \frac{1}{x-2}$

a. -2
b. 0
c. -4
d. 2
e. does not exist
9. Find the limit.
$\lim _{x \rightarrow \pi} \tan \left(\frac{x}{3}\right)$
a. $\frac{-1}{\sqrt{3}}$
b. $\sqrt{3}$
c. $-\sqrt{3}$
d. $\frac{1}{\sqrt{3}}$
10. Find the following limit (if it exists). Write a simpler function that agrees with the given function at all but one point.
$\lim _{x \rightarrow-4} \frac{8 x^{2}+40 x+32}{x+4}$
a. 40
b. -24
c. 24
d. -40
e. does not exist
11. Find $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ where $f(x)=4 x-2$.
a. 1
b. 4
c. -3
d. 0
e. Limit does not exist.
12. Use the graph as shown to determine the following limits, and discuss the continuity

(i) $\lim _{x \rightarrow 3^{+}} f(x)$
(ii) $\lim _{x \rightarrow 3^{-}} f(x)$ (iii) $\lim _{x \rightarrow 3} f(x)$

a. 1,1,1, not continuous
b. 2, 2, 2, continuous
c. $4,4,4$, not continuous
d. $2,2,2$, not continuous
e. $1,1,1$, continuous
13. Find the limit (if it exists). You may use your calculator to help you, but please show this analytically as well.
$\lim _{x \rightarrow 11^{+}} \frac{11-x}{x^{2}-121}$
a. $\frac{1}{22}$
b. 0
c. Limit does not exist.
d. $-\frac{1}{22}$
e. $\frac{1}{242}$
14. Find the limit (if it exists). You may use your calculator to help you, but please show this analytically as well.
$\lim _{x \rightarrow 36^{-}} \frac{\sqrt{x}-6}{x-36}$
a. 0
b. $-\frac{1}{12}$
c. $\frac{1}{72}$
d. $\frac{1}{12}$
e. Limit does not exist.
15. Find the x-values (if any) at which the function $f(x)=13 x^{2}-15 x-15$ is not continuous. Which of the discontinuities are removable?
a. $x=4$, removable
b. $x=0$, removable
c. $x=\frac{15}{26}$, not removable.
d. continuous everywhere
e. $x=\frac{15}{26}$, removable.

16. Discuss the continuity of the function $f(x)=\frac{x^{2}-4}{x-2}$.

a. $f(x)$ is discontinuous at $x=-2$.
b. $f(x)$ is discontinuous at $x=-2,2$.
c. $f(x)$ is discontinuous at $x=2$.
d. $f(x)$ is continuous for all real x.
e. $f(x)$ is continuous at $x=4$.
17. Find the x-values (if any) at which the function $f(x)=\frac{x+2}{x^{2}+6 x+8}$ is not continuous. Which of the discontinuities are removable? You may use your calculator to help you, but please show this analytically as well.
a. no points of discontinuity
b. $\quad x=-2$ (not removable), $x=-4$ (removable)
c. $x=-2$ (removable), $x=-4$ (not removable)
d. no points of continuity
e. $x=-2$ (not removable), $x=-4$ (not removable)
18. Find all vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}+4 x+3}{x^{3}-4 x^{2}-x+4}$. You may
use your calculator to help you, but please show this analytically as well.
a. $\quad x=4,1$
b. $x=4,1,-1$
c. $x=-4,-1$
d. $x=3$
e. $x=-3$
19. Find the limit. You may use your calculator to help you, but please show this analytically as well.

$$
\lim _{x \rightarrow-10} \frac{x^{2}+10 x}{\left(x^{2}+100\right)(x+10)}
$$

a. $\frac{1}{20}$
b. $-\frac{1}{20}$
c. 20
d. -10
e. -20
__ 20. Find the limit. You may use your calculator to help you, but please show this analytically as well.
$\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{1}{x}\right)$
0
a. 0
b. -1
c. $-\infty$
d. ∞
e.

Bonus: Find the limits. You may use your calculator to help you, but please show this analytically as well.

1. $\lim _{x \rightarrow 1} \frac{\frac{1}{\sqrt{x}}-1}{x-1}$
2. $\lim _{\theta \rightarrow 0} \frac{\theta^{2}+2 \theta}{\sin 2 \theta}$

54 Chapter 1: Limits and Their Properties

56 Chapter 1: Limits and Their Properties

58 Chapter 1: Limits and Their Properties

60 Chapter 1: Limits and Their Properties

62 Chapter 1: Limits and Their Properties

64 Chapter 1: Limits and Their Properties

66 Chapter 1: Limits and Their Properties

Multiple Choice
 Identify the choice that best completes the statement or answers the question.

70 Chapter 1: Limits and Their Properties

72 Chapter 1: Limits and Their Properties

74 Chapter 1: Limits and Their Properties

76 Chapter 1: Limits and Their Properties

Multiple Choice

Identify the choice that best completes the statement or answers the question.

78 Chapter 1: Limits and Their Properties

80 Chapter 1: Limits and Their Properties

[^0]: © 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

