Problem #5 – 3-Story Steel Special CBF ($T < T_s$)	
Problem #6 – 5-Story Reinforced Concrete SMF ($T > T_s$)	2-10
Problem #7 – 2-Story Wood Structural Panel Shear Walls ($T < T_s$)	2-12
Problem #8 – <u>5</u> -Story Dual System (Steel EBF & Steel SMF, $T \leq T_s$)	
Problem #9 – Vertical Distribution of Seismic Force (F_x) , Story Shear (V_x) , Overturning Moment (OTM_x) & Diaphragm Design Force (F_{px})	
Problem #10 – Maximum Period (T) & Minimum Seismic Base Shear (V)	2-19
Problem #11 – <i>Design Story Drift</i> (Δ_x) and Allowable Story Drift (Δ_{ax})	2-21
Problem #12 – 3-Story Special Reinforced Masonry Shear Wall – Simplified Procedure	2-22
Problem #13 – <i>Redundancy Factor (ρ) Determination</i>	
Problem #14 – Load Combinations on Lateral Force-Resisting Elements	
Problem #15 – Mechanical Component and Nonbuilding Structure (Tank) Anchorage	2-29
Problem #16 – Anchorage of Masonry Structural Walls	
Problem #17 – Single-Story Flexible Diaphragm with Interior Shear Wall	
Problem #18 – Flexible (Metal Deck) Roof Diaphragm with Masonry Shear Walls	
Problem #19 – Wood Structural Panel Roof Diaphragm & Shear Walls	
Problem #20 – Concrete Shear Wall & Steel SMF Interaction	2-50
Problem #21 – Single-Story Rigid Diaphragm (CM & CR given)	2-52
Problem #22 – Single-Story Rigid Diaphragm (CM & CR calculations)	
Problem #23 – Concrete Cantilever Retaining Wall with Seismic Loads	

Part 3 – Multiple Choice Problems

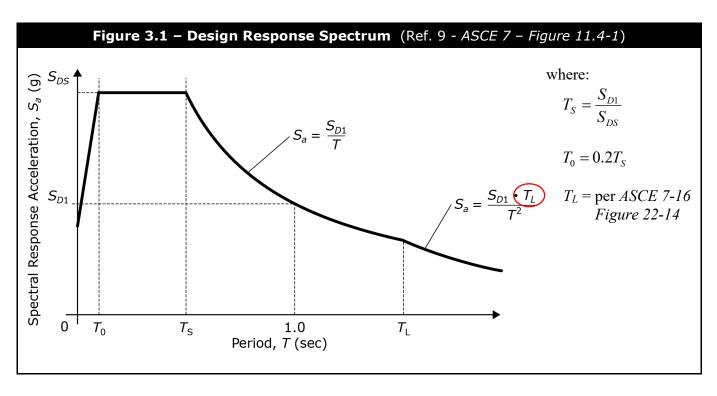
Part 4 – Multiple Choice Solutions

Part 5 – Appendices & Index

Appendix A – Definitions	5-1
Appendix B – Notations	5-15
Appendix C – Approximate Fundamental Period, T _a	5-19
Appendix D – Relative Rigidities of Concrete & Masonry Shear Walls / Piers	5-21
Appendix E – Sample Exam #1	5-25
Appendix F – Sample Exam #1 Solutions	5-41
Appendix G – Sample Exam #2	5-55
Appendix H – Sample Exam #2 Solutions	5-71
Index	5-87

California Special Civil P.E. Seismic Principles Examination Statistics

Exam	% Passed	Cut off score	Total Score	Passing %
October 2000	39.4%	148	288	51%
April 2001	37.3%	121	268	45%
October 2001	40.3%	150	294	51%
April 2002	39.6%	138	276	50%
October 2002	44.2%	136	287	47%
April 2003	37.1%	155	300	52%
October 2003	40.4%	136	281	48%
April 2004	35.6%	125	263	48%
October 2004	38.5%	154	300	51%
April 2005	39.8%	159	292	54%
October 2005	44.8%	164	295	56%
April 2006	37.4%	152	300	51%
October 2006	37.2%	142	263	54%
April 2007	36.7%	156	292	53%
October 2007	39.9%	177	292	61%
April 2008	36.3%	153	295	52%
October 2008	36.6%	151	285	53%
April 2009	39.5%	25	50	50%
October 2009	39.2%		Pass / Fail Only	
April 2010	38.6%		Pass / Fail Only	
October 2010	38.7%		Pass / Fail Only	
April 2011	43.0%		Pass / Fail Only	
October 2011	35.3%		Pass / Fail Only	
April 2012	40.8%		Pass / Fail Only	
October 2012	41.0%		Pass / Fail Only	
April 2013	46.6%		Pass / Fail Only	
October 2013	44.6%		Pass / Fail Only	
Spring 2014	48.0%		Pass / Fail Only	
Fall 2014	41.1%		Pass / Fail Only	
Spring 2015	51.7%		Pass / Fail Only	
Fall 2015	41.1%		Pass / Fail Only	
Spring 2016	53.7%		Pass / Fail Only	
Fall 2016	43.5%		Pass / Fail Only	
Spring 2017	54.9%		Pass / Fail Only	
Fall 2017	43.9%		Pass / Fail Only	
2018 – Q2	41.5%		Pass / Fail Only	
2018 – Q3	43.9%		Pass / Fail Only	
2018 – Q4	43.3%		Pass / Fail Only	
2019 – Q1	47.7%		Pass / Fail Only	
2019 – Q2	50.6%		Pass / Fail Only	
2019 – Q3	<mark>47.7%</mark>		Pass / Fail Only	
2019 – Q4	<mark>48.7%</mark>		Pass / Fail Only	


IBC §1613.2.4

Design Spectral Response Acceleration Parameters

 $S_{DS} \& S_{D1}$ represent the 5% damped <u>design</u> spectral response acceleration parameters at short periods <u>and</u> at 1-second period respectively and they are determined by the following equations:

$S_{DS} = 2/3 S_{MS}$	IBC (16-38)
$S_{D1} = 2/3 S_{M1}$	IBC (16-39)

<u>NOTE</u>: Table 3.1 (p. 1-35) and Table 3.2 (p. 1-36) are provided as short cut procedures in determining $S_{DS} \& S_{D1}$ respectively when S_S , $S_1 \&$ site class are known. These tables should not be used if $F_a \& F_v$ and/or $S_{MS} \& S_{M1}$ are required to be determined. Apply the footnotes as applicable including the use of Site Class D (default) when that site class is assumed (i.e., no geotechnical report).

Determination of Seismic Design Category, SDC

IBC §1613.2.5

The Seismic Design Category (SDC) of a structure is used to determine the following:

- Permitted seismic force-resisting systems (SFRS)
- Building height limits
- Permitted lateral analysis procedures
- Restrictions on buildings with horizontal and/or vertical irregularities
- Seismic <u>detailing</u> requirements
- Requirements for nonstructural components

<u>NOTE</u>: The Seismic Design Category (SDC) for a structure is permitted to be determined in accordance with *IBC* §1613.2.5 or ASCE 7-16. Where the alternative simplified design procedure of ASCE 7-16 is used, the Seismic Design Category (SDC) shall be determined in accordance with ASCE 7-16 – §12.14.

Inherent Torsional Moment, M_t

The *inherent* torsional moment is then equal to the story shear times the calculated eccentricity as follows:

<u>X-Direction</u>: $M_t = V_x e_y$ <u>Y-Direction</u>: $M_t = V_y e_x$

Accidental Torsion

ASCE 7 – §12.8.4.2

Where diaphragms are <u>not</u> flexible (i.e., rigid or semi-rigid), the distribution of lateral forces at each level shall consider the effect of the *inherent* torsional moment (M_t) ... plus the *accidental* torsional moments (M_{ta}) caused by ... the *accidental* eccentricities.

Where earthquake forces are applied concurrently in two orthogonal directions, the required *accidental* eccentricity need not be applied in both of the orthogonal directions at the same time but shall be applied in the direction that produces the greater effect.

<u>NOTE</u>: Accidental torsion <u>shall be applied to all structures</u> for determination if a torsional irregularity <u>or</u> *extreme* torsional irregularity exists as specified in ASCE 7-16 – Table 12.3-1.

Accidental torsional moments (M_{ta}) <u>need not</u> be included when determining the seismic forces (E) in the <u>design</u> of the structure and in the determination of the <u>design</u> story drift in ASCE 7-16 - §12.8.6 ... <u>except</u> for the following:

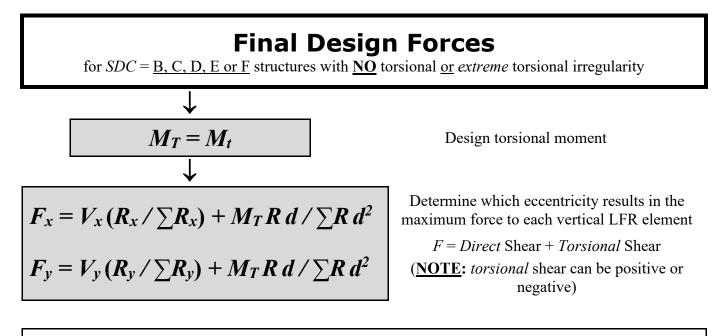
- 1. Structures assigned to $SDC = \underline{B}$ with *extreme* torsional irregularity (Horizontal Type 1b) per *ASCE* 7-16 - Table 12.3-1
- Structures assigned to SDC = C, D, E or F with torsional irregularity or extreme torsional irregularity (Horizontal Type 1a or 1b) per ASCE 7-16 Table 12.3-1

Accidental Eccentricity

The *accidental* eccentricity accounts for an assumed displacement of the *center of mass* (CM) each way from its calculated location by a distance equal to 5% of the dimension of the structure perpendicular to the direction of the applied forces.

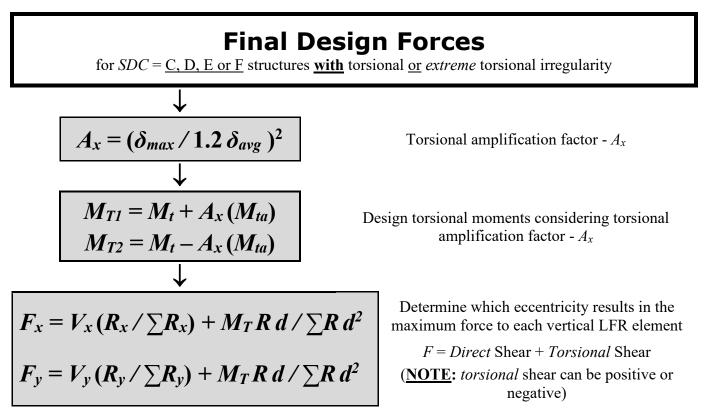
 \therefore accidental eccentricity, $e = \pm 0.05 L_{\perp}$

Then for each direction under consideration:


<u>*X*-Direction</u>: accidental $e_y = \pm 0.05 L_y$

<u>*Y*-Direction</u>: accidental $e_x = \pm 0.05 L_x$

Accidental Torsional Moment, M_{ta}


The *accidental* torsional moment (M_{ta}) is then equal to the story shear times the *accidental* eccentricity as follows:

<u>X-Direction</u>: $M_{ta} = V_x (\pm 0.05 L_y)$ <u>Y-Direction</u>: $M_{ta} = V_y (\pm 0.05 L_x)$

<u>NOTE</u>: If the *CM* and *CR* are inline with each other (in a particular direction under consideration), there will be <u>no</u> inherent eccentricity, <u>no</u> inherent torsional moment (M_t), and <u>no</u> design torsional moment (M_T) ... therefore each vertical LFR element in that direction will only resist *direct* shear (no *torsional* shear).

OR

9.1 General

Chapter 9

IBC Chapter 23 – Wood

Scope

The provisions of *IBC Chapter 23* shall govern the materials, design, construction and quality of wood members and their fasteners.

General Design Requirements

The design of structural elements or systems, constructed partially or wholly of wood or wood-based products, shall be in accordance with one of the following methods:

- Allowable Stress Design (ASD) per IBC §2304, §2305 and §2306
- Load and Resistance Factor Design (LRFD) per IBC §2304, §2305 and §2307
- ► Conventional Light-Frame Construction per IBC §2304 and §2308
- ► AWC Wood Frame Construction Manual (WFCM) per IBC §2309
- \blacktriangleright ICC 400 for design and construction of log structures

9.2 Lateral Force-Resisting Systems

General

Structures using wood-frame *shear walls* or wood-frame *diaphragms* to resist wind, seismic or other lateral loads shall be designed and constructed in accordance with ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS-2015) and the applicable provisions of IBC §2305 (General), §2306 (ASD), and §2307 (LRFD).

Design Requirements

A continuous load path (or paths) with adequate strength and stiffness shall be provided to transfer all forces from their point of application to the final point of resistance.

Boundary Elements

- ✓ Shear wall and diaphragm boundary elements shall be provided to transmit the design tension and compression forces
- \checkmark Diaphragm and shear wall sheathing <u>shall not</u> be used to splice boundary elements
- \checkmark Diaphragm chords and collectors shall be placed in, or in contact with, the plane of the diaphragm framing unless ...

Toe-Nailed Connections

In SDC = D, E & F – the capacity of toe-nailed connections shall not be used when calculating lateral load resistance to transfer seismic lateral forces > 150 plf for ASD (> 205 plf for LRFD) from diaphragms to shear walls, collectors, or other elements, or from shear walls to other elements.

IBC §2305

IBC §2305.1

Chapter 9 - IBC Chapter 23 - Wood

IBC §2301

IBC §2301.1

1-137

SDPWS §4.1.4

SDPWS §4.1.7

SDPWS §4.1.1

IBC §2301.2

B.) Seismic Design Category, SDC

 $S_1 = 0.71 < 0.75 \rightarrow$ therefore, use *IBC Table 1613.2.5(1)* & *Table 1613.2.5(2)* to determine *SDC* $S_{DS} = 1.19 \& RC = II \rightarrow 2018 IBC Table 1613.2.5(1) \rightarrow SDC = D$ $S_{D1} = 0.38 \& RC = II \rightarrow 2018 IBC Table 1613.2.5(2) \rightarrow SDC = D$ $\therefore SDC = D$

C.) Approximate Fundamental Period, Ta

$$\Gamma_a = C_t h_n^x \qquad ASCE \ 7 \ (12.8-7)$$

Steel SMF \rightarrow ASCE 7-16 – Table 12.8-2: Steel MRF – $C_t = 0.028 \& x = 0.8$

$$T_a = 0.028 \ (h_n)^{0.8}$$

= 0.028 (95 feet)^{0.8} = 1.07 second

Or using Table C1 (Appendix C, p. 5-20) \rightarrow Steel MRF & $h_n = 95$ feet $\rightarrow T_a = 1.07$ second

<u>NOTE</u>: $T = T_a = 1.07$ second $> T_s = \frac{S_{D1}}{S_{DS}} = \frac{0.38}{1.19} = 0.32$ second $\rightarrow \therefore ASCE 7 (12.8-2)$ will not govern C_s

D.) Seismic Response Coefficient, Cs

$$C_{s} = \frac{S_{DS}}{(R/I_{e})} = \frac{(1.19)}{(8/1.0)} = 0.149$$
 ASCE 7 (12.8-2)

 C_s <u>need not</u> exceed the following,

 $C_{S} = \frac{S_{D1}}{T(R/I_{e})} = \frac{(0.38)}{1.07(8/1.0)} = 0.044$ ASCE 7 (12.8-3)

<u>NOTE</u>: ASCE 7 (12.8-4) is <u>not</u> applicable since T = 1.07 seconds $\langle T_L = 8$ seconds ... BUT need to check ASCE 7 (12.8-5) and (12.8-6) since $S_1 = 0.71 > 0.6$

 C_S shall not be less than the following,

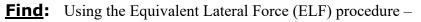
 $C_s = 0.044S_{DS}I_e = 0.044(1.19)(1.0) = 0.052 \quad \leftarrow \text{ governs} \qquad ASCE \ 7 \ (12.8-5) \ge 0.01 \text{ minimum}$

 C_{S} shall not be less than the following,

$$C_{S} = \frac{0.5S_{1}}{(R/I_{e})} = \frac{0.5(0.71)}{(8/1.0)} = 0.044$$

$$ASCE 7 (12.8-6)$$

$$\therefore C_{S} = \boxed{0.052}$$


E.) Seismic Base Shear, V

$$V = C_S W$$
= 0.052 (3500 kips) = 182 kips
ASCE 7 (12.8-1)

Problem #5

<u>Given</u>:

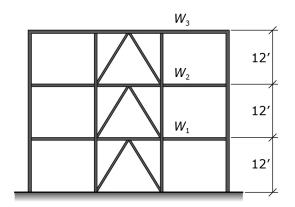
- 3-story Office building
- Site Class C (very dense soil) per Geotechnical Report
- $T_L = 16$ seconds per ASCE 7-16 Figure 22-14
- Mapped acceleration parameters
 - $\circ S_S = 1.22$
 - $\circ S_1 = 0.48$
- Building Frame Systems
 - Steel special concentrically braced frames (SCBF)
- All story heights, $h_s = 12$ feet
- Effective seismic weights
 - Level 1 & 2: $w_1 = w_2 = 100$ kips
 - Level 3 (roof): $w_3 = 80$ kips

- A.) Design spectral response acceleration parameters, S_{DS} & S_{D1}
- B.) Seismic Design Category, SDC
- C.) Approximate fundamental period, T_a
- D.) Seismic response coefficient, C_S
- E.) Seismic base shear, V

Solution:

Office building = Risk Category II $\rightarrow 2018$ IBC Table 1604.5

- $I_e = 1.0 \rightarrow ASCE \ 7-16 Table \ 1.5-2$: Risk Category II
- $F_a = 1.2 \rightarrow 2018 \ IBC \ Table \ 1613.2.3(1)$: Site Class C & $S_S = 1.22$
- $F_v = 1.5 \rightarrow 2018 \ IBC \ Table \ 1613.2.3(2)$: Site Class C & $S_1 = 0.48$


 $R = 6 \rightarrow ASCE 7-16 - Table 12.2-1$, item B.2: Building Frame Systems - Steel SCBF

Building height, $h_n = 3$ stories (12 feet/story) = 36 feet

Total effective seismic weight, $W = w_1 + w_2 + w_3 = 100 + 100 + 80 = 280$ kips

A.) Design Spectral Response Acceleration Parameters, S_{DS} & S_{D1}

$S_{MS} = F_a S_S$ = 1.2 (1.22) = 1.46	IBC (16-36)
$S_{DS} = 2/3 S_{MS}$ = 2/3 (1.46) = 0.98	IBC (16-38)

Elevation

$$S_{M1} = F_{v} S_{1} \qquad IBC (16-37)$$

= 1.5 (0.48) = 0.72
$$S_{D1} = 2/3 S_{M1} \qquad IBC (16-39)$$

= 2/3 (0.72) = 0.48

<u>NOTE</u>: Alternatively, S_{DS} & S_{D1} can be quickly determined using Tables 3.2 & 3.3 (p. 1-35 & 36):

 $S_S = 1.22 \& Site Class C \rightarrow Table 3.2 \rightarrow S_{DS} = 0.98 \dots$ by interpolation

 $S_1 = 0.48$ & Site Class C \rightarrow Table 3.3 \rightarrow $S_{D1} = 0.48$

B.) Seismic Design Category, SDC

 $S_1 = 0.48 < 0.75 \rightarrow$ therefore, use *IBC Table 1613.2.5(1)* & *Table 1613.2.5(2)* to determine *SDC* $S_{DS} = 0.98 \& RC = II \rightarrow 2018 IBC Table 1613.2.5(1) \rightarrow SDC = D$ $S_{D1} = 0.48 \& RC = II \rightarrow 2018 IBC Table 1613.2.5(2) \rightarrow SDC = D$ $\therefore SDC = D$

C.) Approximate Fundamental Period, *T_a*

$$T_a = C_t h_n^x$$

ASCE 7 (12.8-7)

Steel SCBF \rightarrow ASCE 7-16 – Table 12.8-2: all other structural systems – $C_t = 0.02 \& x = 0.75$

$$T_a = 0.02 \ (h_n)^{0.75}$$

 $= 0.02 (36 \text{ feet})^{0.75} = 0.29 \text{ second}$

Or using Table C1 (Appendix C, p. 5-20) \rightarrow CBF & $h_n = 36$ feet $\rightarrow T_a = 0.29$ second

<u>NOTE</u>: $T = T_a = 0.29$ second < $T_s = \frac{S_{D1}}{S_{DS}} = \frac{0.48}{0.98} = 0.49$ second → ∴ ASCE 7 (12.8-2) will govern C_s

D.) Seismic Response Coefficient, Cs

 $C_{s} = \frac{S_{DS}}{(R/I_{e})} = \frac{(0.98)}{(6/1.0)} = 0.163 \quad \leftarrow \text{governs} \quad ASCE 7 (12.8-2)$

 C_S need not exceed the following,

$$C_s = \frac{S_{D1}}{T(R/I_e)} = \frac{(0.48)}{0.29(6/1.0)} = 0.276$$

ASCE 7 (12.8-3)

<u>NOTE</u>: ASCE 7 (12.8-4), (12.8-5), and (12.8-6) are <u>not</u> applicable since $T < T_S$ (and $T \ll T_L$)

 $\therefore C_S = 0.163$

E.) Seismic Base Shear, V

 $V = C_S W$

= 0.163 (280 kips) = 45.6 kips

ASCE 7 (12.8-1)

Problem #8

<u>Given</u>:

- 5-story Emergency Operations Center
- Mapped acceleration parameters
 - \circ *S_S* = 1.93
 - $\circ S_1 = 0.77$
- $T_L = 12$ seconds per ASCE 7-16 Figure 22-14
- Site Class E per Geotechnical report
- Dual System
 - Steel eccentric braced frames (EBF) with steel SMF
- All story heights, $h_s = 12$ feet
- Total effective seismic weight, W = 24,000 kips

Find: Using the Equivalent Lateral Force (ELF) procedure -

- A.) Design spectral response acceleration parameters, S_{DS} & S_{D1}
- B.) Seismic Design Category, SDC
- C.) Approximate fundamental period, Ta
- D.) Seismic response coefficient, C_S
- E.) Seismic base shear, V

<u>Solution</u>:

Emergency Operations Center = *Risk Category* IV \rightarrow 2018 IBC Table 1604.5

 $I_e = 1.5 \rightarrow ASCE \ 7-16 - Table \ 1.5-2$: Risk Category IV

 $F_a = 1.2 \rightarrow 2018 \ IBC \ Table \ 1613.2.3(1)$: Site Class E & $S_S = 1.93$

 $F_v = 2.0 \rightarrow 2018 \ IBC \ Table \ 1613.2.3(2)$: Site Class E & $S_1 = 0.77$

 $R = 8 \rightarrow ASCE 7-16 - Table 12.2-1$, item D.1: Dual system – Steel SMF & Steel EBF

Building height, $h_n = 5$ stories (12 feet/story) = 60 feet

Total effective seismic weight, W = 24,000 kips

A.) Design Spectral Response Acceleration Parameters, S_{DS} & S_{D1}

S _{MS}	$= F_a S_S = 1.2 (1.93) = 2.32$	IBC (16-36)
S_{DS}	$= 2/3 S_{MS}$ = 2/3 (2.32) = 1.55	IBC (16-38)
S_{MI}	$= F_v S_1$ = 2.0 (0.77) = 1.54	IBC (16-37)
S_{D1}	$= 2/3 S_{M1}$ = 2/3 (1.54) = 1.03	IBC (16-39)

 $S_S = 1.93 \& Site Class \to Table 3.2 \to S_{DS} = \underline{1.55} \dots$ by interpolation $S_1 = 0.77 \& Site Class \to Table 3.3 \to S_{D1} = 1.03 \dots$ by interpolation

B.) Seismic Design Category, SDC

 $S_1 = 0.77 > 0.75 \& RC = IV \rightarrow 2018 IBC \S 1613.2.5 \rightarrow SDC = F$ $\therefore SDC = F$

C.) Approximate Fundamental Period, Ta

```
T_a = C_t h_n^x
```

ASCE 7 (12.8-7)

Dual System D.1 - steel EBF & steel SMF $\rightarrow ASCE 7-16 - Table 12.8-2$: $C_t = 0.03 \& x = 0.75$ $T_a = 0.03 (h_n)^{0.75}$

 $= 0.03 \ (60 \ \text{feet})^{0.75} = 0.65 \ \text{second}$

Using Table C1 (Appendix C, p. 5-20) \rightarrow Dual System D.1 & $h_n = 60$ feet $\rightarrow T_a = 0.65$ second

<u>NOTE</u>: $T = T_a = 0.65$ second $< T_s = \frac{S_{D1}}{S_{DS}} = \frac{1.03}{1.55} = 0.66$ second $\rightarrow \therefore ASCE 7 (12.8-2)$ will govern C_s

D.) Seismic Response Coefficient, Cs

$$C_s = \frac{S_{DS}}{(R/I_e)} = \frac{(1.55)}{(8/1.5)} = \underline{0.291} \quad \leftarrow \text{governs} \quad ASCE \ 7 \ (12.8-2)$$

 C_s <u>need not</u> exceed the following,

$$C_s = \frac{S_{D1}}{T(R/I_e)} = \frac{(1.03)}{0.65(8/1.5)} = 0.298$$

<u>NOTE</u>: ASCE 7 (12.8-4), (12.8-5), and (12.8-6) are <u>not</u> applicable since $T \le T_S$ (and $T \le T_L$).

Also, per ASCE 7-16 – §11.4.8 - Exception 3, a ground motion hazard analysis (in accordance with ASCE 7-16 – §21.2) is not required for structures on Site Class E sites with $S_1 \ge 0.2$ provided that the structures period $T \le T_S$ and the Equivalent Lateral Force (ELF) procedure is used for design. Therefore, if it was determined that $T > T_S$... a ground motion hazard analysis would have been required.

$$\therefore C_S = 0.291$$

E.) Seismic Base Shear, V

$$V = C_S W$$

ASCE 7 (12.8-1)

ASCE 7 (12.8-3)

=0.291 (24,000 kips) = 6980 kips

ASCE 7 (12.14-12)

A.) Seismic Base Shear, V

$$V = \frac{F \cdot S_{DS}}{R} W$$

= [1.2 (1.4) / 5¹/₂] W = 0.306 W
= 0.306 (800) = 245 kips

B.) Lateral Force at Each Level, F_x

$$F_{x} = \frac{W_{x}}{W} V$$

$$= \frac{F \cdot S_{DS}}{R} w_{x} = 0.306 \ w_{x}$$

$$F_{1} = 0.306 \ w_{1} = 0.306 \ (300 \ \text{kips}) = 91.8 \ \text{kips}}$$

$$F_{2} = 0.306 \ w_{2} = 0.306 \ (300 \ \text{kips}) = 91.8 \ \text{kips}}$$

$$F_{3} = 0.306 \ w_{3} = 0.306 \ (200 \ \text{kips}) = 61.2 \ \text{kips}}$$
Check ... $V = \sum_{i=1}^{n} F_{i} = 91.8 + 91.8 + 61.2 = 245 \ \text{kips}}$

$$F_{3} = 61.2^{k} \qquad \qquad \text{Level 3}$$

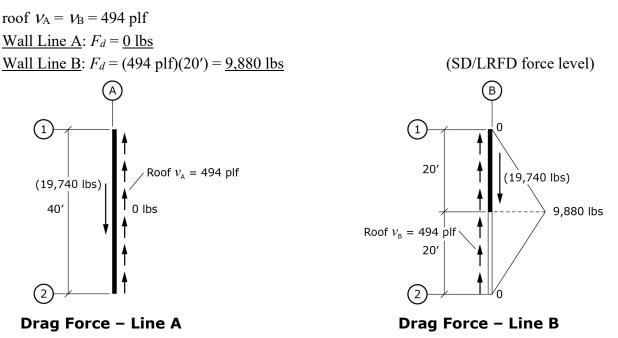
$$F_{3} = 61.2^{k} \qquad \qquad \text{Level 3}$$

$$F_{3} = 91.8^{k} \qquad \qquad \text{Level 1}$$

$$F_{3} = 91.8^{k} \qquad \qquad \text{Level 1}$$

$$F_{4} = 91.8^{k} \qquad \qquad \text{Level 1}$$

C.) Story Shear at Each Story, V_x


 $V_x = \sum_{i=x}^{n} F_i$ ASCE 7 (12.14-14) <u>3rd story shear</u> - $V_3 = F_3 = 61.2 = 61.2 \text{ kips}$ <u>2nd story shear</u> - $V_2 = F_3 + F_2 = 61.2 + 91.8 = 153 \text{ kips}$ <u>1st story shear</u> - $V_1 = F_3 + F_2 + F_1 = 61.2 + 91.8 = 245 \text{ kips}$

D.) Diaphragm Design Force at Each Level, F_{px}

ASCE 7-16 – §12.14.7.4 - floor and roof diaphragms shall be designed to resist the design seismic forces at each level (F_x) calculated in accordance with §12.14.8.2:

Level 1 -
$$F_{p1} = F_1 = 91.8$$
 kips
Level 2 - $F_{p2} = F_2 = 91.8$ kips
Level 3 (roof) - $F_{p3} = F_3 = 61.2$ kips

4. Drag Force Diagram on lines A & B, F_d

<u>NOTE</u>: The actual <u>design</u> of the "*collector elements and their connections* …" would need to consider the overstrength factor as required by *ASCE* 7-16 - §12.10.2.1 for this structure assigned to SDC = D (i.e., design for $\Omega_0 \cdot Q_E$ where Q_E is the drag force determined above … see p. 1-121).

B.) <u>E-W DIRECTION</u>: L = 40', d = 70'

1. Design Seismic Force to Diaphragm, $w_s = f_{p1} = F_{p1}/L$

 $\begin{aligned} & \text{roof DL} + 20\% \text{ snow} & \text{East \& West exterior walls} \\ W_{p1} &= (16 \text{ psf} + 20\% \cdot 100 \text{ psf})(70')(40') + (85 \text{ psf})(14'/2 + 2')(2 \text{ walls})(40') \\ &= 100,800 \text{ lbs} + 61,200 \text{ lbs} = 162,000 \text{ lbs} \\ F_{p1} &= 0.190 W_{p1} = 0.190 (162,000 \text{ lbs}) = 30,780 \text{ lbs} \\ w_s &= f_{p1} = F_{p1}/L = (30,780 \text{ lbs}) / (40') = \boxed{770 \text{ plf}} \end{aligned}$

2. Unit Roof Shear on lines 1 & 2, vr

 $V_1 = V_2 = w_s L/2 = (770 \text{ plf})(40'/2) = \underline{15,400 \text{ lbs}}$ Roof $v_1 = v_2 = V_1/d = (15,400 \text{ lbs})/70' = \boxed{220 \text{ plf}}$

(SD/LRFD force level)

3. Maximum Chord Force on lines A & B, CF

max. $M = w_s L^2 / 8 = (770 \text{ plf})(40')^2 / 8 = 154,000 \text{ lb-ft}$ max. CF = (154,000 lb-ft) / 70' = 2,200 lbs

(SD/LRFD force level)

4. Shear Force to walls 1A & 1B

<u>Relative Rigidities</u>: assume cantilever walls, Table D1 - Relative Rigidity of Cantilever Shear Walls / Piers (Appendix D, p. 5-22)

Wall 1A: $H/D = 14'/11' = 1.27 \rightarrow \text{Table D1 (p. 5-22)} \rightarrow R_{IA} = 0.833$ Wall 1B: $H/D = 14'/22' = 0.64 \rightarrow \text{Table D1 (p. 5-22)} \rightarrow R_{IB} = 3.369$ $\Sigma R = R_{IA} + R_{IB} = 0.833 + 3.369 = 4.202$

- 3.39 Given a 10-story Office building with $S_1 = 0.67$, $S_{DS} = 0.82$ & $S_{D1} = 0.67$... what is the appropriate *Seismic Design Category*?
 - a. SDC = B
 - b. SDC = C
 - c. SDC = D
 - d. SDC = E
- 3.40 Given a 2-story Apartment building with $S_1 = 0.20$, $S_{DS} = 0.41$ & $S_{D1} = 0.20$... what is the appropriate *Seismic Design Category*?
 - a. SDC = B
 - b. SDC = C
 - c. SDC = D
 - d. SDC = E

3.41 The *Seismic Design Category* is used to determine the:

- a. permissible lateral analysis procedure (based on *Risk Category*)
- b. level of seismic detailing required for the seismic force-resisting system (SFRS)
- c. building height limit (based on SFRS type)
- d. all the above
- 3.42 A structure with an assigned *Seismic Design Category* C represents which of the following:
 - a. Very low seismic hazard level
 - b. Low seismic hazard level
 - c. Moderate seismic hazard level
 - d. High seismic hazard level
- 3.43 Which of the following occupancy types would <u>never</u> be assigned to *Seismic Design Category* F(SDC = F)?
 - a. Hospital with emergency surgery or emergency treatment
 - b. Single-family residence
 - c. County jail
 - d. Both b & c
- 3.44 A 5-story building with offices in the upper four stories and a fire station in the first story, would be assigned to what *Risk Category*?
 - a. I
 - b. II
 - c. III
 - d. IV
- 3.45 What would be the most appropriate MCE_R spectral response acceleration parameters ($S_S \& S_1$) for a building project proposed at 45°00′00″ Latitude and -120°00′00″ Longitude?
 - a. $S_S = 0.15 \& S_1 = 0.05$
 - b. $S_S = 0.30 \& S_1 = 0.10$
 - c. $S_S = 0.36 \& S_1 = 0.15$
 - d. $S_S = 0.45 \& S_1 = 0.21$

- 4.34 Which shear wall would be considered the <u>least</u> ductile?
 - a. A
 - b. B
 - c. C
 - d. D
- 4.35 A 15-story Office building utilizes steel special concentrically braced frames (R = 6) with a fundamental period of 1.2 seconds and effective seismic weight of 12,000 kips. The acceleration parameters are determined to be $S_S = 1.04$, $S_1 = 0.44$, $S_{DS} = 0.83$ & $S_{D1} = 0.55$. What is the Equivalent Lateral Force procedure seismic base shear?
 - a. 444 kips
 - b. 912 kips
 - c. 1,140 kips
 - d. 1,660 kips
- 4.36 Given a 3-story light-framed apartment building with wood structural panel shear walls (bearing walls), $S_{DS} = 0.75$, *Seismic Design Category* E, and effective seismic weight of 200 kips. Determine the seismic base shear using the Simplified Design Procedure of *ASCE 7-16*.
 - a. 15 kips
 - b. 23 kips
 - c. 28 kips
 - d. 35 kips
- 4.37 What is the <u>minimum</u> seismic base shear for a *Risk Category* IV structure using steel special moment frames (SMF's) and with $S_1 = 1.10 \& S_{DS} = 1.33$?
 - a. 0.069 W
 - b. 0.088 W
 - c. 0.103 W
 - d. 0.166 W
- 4.38 When using the *ASCE 7-16* Equivalent Lateral Force procedure, <u>actual</u> seismic forces from the DBE ground motion (i.e., 2/3 MCE_R) in relation to *ASCE 7-16* <u>design</u> seismic forces are:
 - a. slightly smaller
 - b. much smaller
 - c. equal
 - d. greater
- 4.39 In the ASCE 7-16, the factor Ω_0 represents an/a:
 - a. increase due to actual seismic forces
 - b. decrease due to actual seismic forces
 - c. increase of factor of safety for workmanship and materials
 - d. decrease of factor of safety for workmanship and materials
- 4.40 What is the approximate ratio between the <u>actual</u> DBE seismic base shear and the *ASCE* 7-16 Equivalent Lateral Force procedure <u>design</u> seismic base shear?
 - a. 1 to 1
 - b. $2\frac{1}{2}$ to 1
 - c. 4 to 1
 - d. 8 to 1

- 5.3 A lateral analysis of a 2-story Office building determines that a steel braced frame column has the following <u>axial</u> load effects: D = 20 kips, L = 15 kips, $L_r = 0$ kips and E = 25 kips. Assume $\rho = 1.0$ to determine the <u>maximum</u> axial compression force in this column using the <u>Strength</u> <u>Design</u> (SD or LRFD) load combinations of *IBC* §1605.2.
 - a. 45 kips
 - b. 53 kips
 - c. 57 kips
 - d. 61 kips

5.4 In ASCE 7-16 – $\S12.4.2.1$, the symbol Q_E represents which of the following?

- a. The effects of the horizontal seismic forces from the seismic base shear (V)
- b. The effects of the horizontal seismic forces from the nonstructural component seismic design force (F_p)
- c. The seismic design base shear (V)
- d. Either a or b
- 5.5 Which of the following conditions would require the use of the load combinations with *overstrength factor* (Ω_0) of *ASCE* 7-16 §12.4.3.2?
 - I. Vertical structural irregularity type 4 (ASCE 7-16 Table 12.3-2)
 - II. Vertical structural irregularity type 5a (ASCE 7-16 Table 12.3-2)
 - III. Horizontal structural irregularity type 4 (ASCE 7-16 Table 12.3-1)
 - a. I
 - b. I & III
 - c. II & III
 - d. I, II & III

5.6 Use of a *redundancy factor* (ρ) greater than 1.0 is intended to:

- a. reduce the inelastic response and ductility demand of a structure
- b. increase the seismic base shear (V) on a structure
- c. decrease the calculated story drift within a structure
- d. (increase the inelastic response and ductility demand of a structure

A column of a steel special concentrically braced frame (SCBF), in a single-story Medical Office building (SDC = D), is determined to support the following <u>axial</u> load effects: dead load - D = 35 kips, floor live load - L = 0 kips, roof live load - $L_r = 15$ kips, and horizontal seismic load effect - $Q_E = 15$ kips. Given $S_{DS} = 1.25$, overstrength factor $\Omega_0 = 2$, and redundancy factor $\rho = 1.3$, answer questions 5.7 through 5.13.

- 5.7 What is the vertical seismic load effect axial force in this column?
 - a. 0 kips
 - b. $\pm 7 \text{ kips}$
 - c. ± 9 kips
 - d. ± 12 kips

5.8 What is the horizontal seismic load effect axial force in this column?

- a. ± 12 kips
- b. ± 15 kips
- c. ± 20 kips
- d. ± 24 kips

- 5.9 What is the <u>maximum</u> axial compression force in this column using the <u>Strength Design</u> (SD or LRFD) load combinations of *IBC §1605.2*?
 - a. 53 kips
 - b. 62 kips
 - c. 67 kips
 - d. 70 kips
- 5.10 What is the <u>minimum</u> axial compression force in this column using the <u>Strength Design</u> (SD or LRFD) load combinations of *IBC §1605.2*?
 - a. 3 kips
 - b. 7 kips
 - c. 9 kips
 - d. 12 kips
- 5.11 What is the <u>horizontal</u> seismic load effect with overstrength factor (E_{mh}) axial force in this column?
 - a. ± 15 kips
 - b. ± 20 kips
 - c. ± 30 kips
 - d. ± 37 kips
- 5.12 What is the <u>maximum</u> axial compression force in this column using the Basic <u>strength design</u> load combinations with overstrength factor of *IBC* §1605.1 and *ASCE* 7-16 §12.4.3?
 - a. 51 kips
 - b. 63 kips
 - c. 72 kips
 - d. 81 kips
- 5.13 What is the <u>minimum</u> axial compression force in this column using the Basic <u>strength design</u> load combinations with overstrength factor of *IBC* §1605.1 and *ASCE* 7-16 §12.4.3?
 - a. 10 kips
 - b. 5 kips
 - c. 2 kips
 - $d.\ -7\ kips$
- 5.14 What is the maximum *redundancy factor* that needs to be considered for a structure assigned to *Seismic Design Category* E?
 - a. 1.0
 - b. 1.25
 - c. 1.3
 - d. 1.5
- 5.15 The vertical seismic load effect is permitted to be taken as zero (i.e., $E_v = 0$) under the following conditions:
 - a. structures assigned to Seismic Design Category B
 - b. structures assigned to Seismic Design Category B or C
 - c. when the Dead Load effect is equal to zero (i.e., D = 0)
 - d. Both a & c

- 10.9 Geotechnical investigations shall include the potential for *liquefaction* and soil strength loss evaluated for peak ground accelerations for structures assigned to *Seismic Design Category*:
 - a. B, C, D, E & F
 - b. C, D, E & F
 - c. D, E & F
 - d. E & F
- 10.10 Geotechnical investigations shall include an evaluation for potential slope instability, *liquefaction*, total and differential settlement, surface fault displacement, etc. for structures assigned to *Seismic Design Category*:
 - a. B, C, D, E & F
 - b. C, D, E & F
 - c. D, E & F
 - d. E & F
- 10.11 What design standard applies to the seismic design requirements of masonry construction per the 2018 IBC?
 - a. TMS 402-16
 - b. ACI 318-14
 - c. ACI 530-16
 - d. ASCE 7-16
- 10.12 The seismic force-resisting systems (SFRS) of structural steel structures assigned to *Seismic Design Category* D, E or F shall be designed to what design standard per the 2018 IBC?
 - a. AISC 341-16
 - b. AISC 360-16
 - c. ACI 318-14
 - d. ASCE 7-16
- 10.13 Which earthquake resulted in the *California Building Code (CBC)* no longer permitting the use of the pre-qualified beam-column connection for welded steel moment frames without justifying by cyclic testing or by calculation.
 - a. 1985 Mexico City, Mexico earthquake $(M_w 8.0)$
 - b. 1989 Loma Prieta, CA earthquake $(M_w 6.9)$
 - c. 1994 Northridge, CA earthquake $(M_w 6.7)$
 - d. 1995 Kobe, Japan earthquake $(M_w 6.9)$
- 11.1 According to the *IBC*, which of the following would be allowed to employ one or more *approved agencies* to perform the required *special inspections* on a project?
 - I. Building Owner
 - II. Owner's authorized agent
 - III. Contractor
 - a. I
 - b. II
 - c. I & II
 - d. I & III

Problem	Answer	Reference / Solution
4.65	a	p. 1-67 to 68 & ASCE 7-16 p. 104 - $\$12.8.7$ P-delta effects need not be considered where the stability coefficient is equal to or less than 0.10 \therefore the stability coefficient (θ) does not exceed 0.10 \leftarrow
4.66	b	 p. 1-51 & ASCE 7-16 p. 100 - Table 12.6-1 ASCE 7-16 may require a dynamic analysis procedure for the design of these irregular structures. ∴ Dynamic lateral force procedures ←
4.67	a	1-54 & ASCE 7-16 p. 97 - Table 12.3-2, Type 5a Weak story is defined to exist when the story lateral strength < 80% of that in a story above ←
4.68	b	p. 1-54 & ASCE 7-16 p. 97 - Table 12.3-2, Type 1a & 5a Stiffness: $(14 \text{ kips/inch / 19.5 kips/inch})(100\%) = 72\% > 70\%$ OK Strength: $(57 \text{ kips / 76kips})(100\%) = 75\% < 80\% \leftarrow \underline{\text{NG}}$ Soft Story does not exist, but Weak Story does $\therefore \underline{\text{II}} \leftarrow$
4.69	a	p. 1-54 & ASCE 7-16 p. 97 - Table 12.3-2, Type 2 I. $W_1/W_2 = (320 \text{ kips} / 200 \text{ kips})(100\%) = \underline{160\%} > 150\% \leftarrow \underline{\text{NG}}$ II. $W_4/W_3 = (200 \text{ kips} / 150 \text{ kips})(100\%) = \underline{133\%} < 150\% \underline{\text{OK}}$ III. $W_1/W_2 = (250 \text{ kips} / 200 \text{ kips})(100\%) = \underline{125\%} < 150\% \underline{\text{OK}}$ NOTE: A roof that is lighter than the floor below <u>need not be considered</u> therefore, no need to check W_3/W_4 for structure III. $\therefore \underline{I} \leftarrow$
4.70	d	p. 1-70 to 71 & ASCE 7-16 p. 95 - Table 12.3-1 & p. 100 - §12.5.3 For $SDC = C$, structures that have horizontal structural irregularity Type 5 in ASCE 7-16 - Table 12.3-1 (i.e., Non Parallel Systems Irregularity) shall use <u>one</u> of the following procedures: $ASCE$ 7-16 - §12.5.3.1, item a - Orthogonal Combination Procedure <u>or</u> ASCE 7-16 - §12.5.3.1, item b - Simultaneous Application of Orthogonal Ground Motion. $\therefore ASCE$ 7-16 - §12.5.3.1, item a or b \leftarrow
4.71	a	p. 1-54 - Table 4.2 & ASCE 7-16 p. 97 - Table 12.3-2, Type 1a Stiffness-Soft Story Irregularity may be present only when the lateral stiffness decreases as you proceed down the height of the structure (e.g., from top to bottom) and only <u>structure I</u> loses a number of braces (i.e., stiffness) in the 1 st story. $\therefore \underline{I} \leftarrow$
4.72	с	 p. 1-59 - Seismic Base Shear Design seismic forces (e.g., seismic base shear, etc.) are determined at a <u>Strength Design</u> (SD) force level essentially the same as <u>LRFD</u> ∴ <u>I & II</u> ←

Problem	Answer	Reference / Solution
		$\begin{array}{rcl} 0.9(D+F) + 1.0E + 1.6H & IBC (16-7) \\ \text{minimum axial, } P = 0.9(35 \text{ kips} + 0) + 1.0(-28.3 \text{ kips}) + 1.6(0) \\ &= 3.2 \text{ kips} \\ \therefore 3 \text{ kips} \leftarrow \end{array}$
5.11	с	p. 1-80 - Horizontal Seismic Load Effect w/ Overstrength Factor & ASCE 7- 16 p. 99 - $\$12.4.3.1$ $E_{mh} = \pm \Omega_0 Q_E$ ASCE 7 (12.4-7) $E_{mh} = \pm 2 (15 \text{ kips}) = \pm 30.0 \text{ kips}$ $\therefore \pm 30 \text{ kips} \leftarrow$
5.12	d	p. 1-79 to 80 - Seismic Load Effect Including Overstrength Factor, 2018 IBC p. 365 - §1605.1 & ASCE 7-16 p. 8 - §2.3.6 $E_v = \pm 8.8$ kips $E_{mh} = \pm 30.0$ kips Use <u>positive</u> E_v and E_{mh} to determine <u>maximum</u> compression. The following ASCE 7-16 (SD/LRFD) Basic load combination including overstrength factor (Ω_0) will govern for <u>maximum</u> axial compression – 6. $1.2D + E_v + E_{mh} + L + 0.2S$ 1.2 (35 kips) + 8.8 kips + 30.0 kips + 0 + 0.2(0) = 80.8 kips $\therefore 81$ kips \leftarrow
5.13	d	p. 1-79 to 80 - Seismic Load Effect Including Overstrength Factor, 2018 IBC p. 365 - §1605.1 & ASCE 7-16 p. 8 - §2.3.6 $E_v = \pm 8.8$ kips $E_{mh} = \pm 30.0$ kips Use <u>negative</u> E_v and E_{mh} to determine <u>minimum</u> compression. The following ASCE 7-16 (SD/LRFD) Basic load combination including overstrength factor (Ω_0) will govern for <u>mimimum</u> axial compression – 7. $0.9D - E_v + E_{mh}$ 0.9 (35 kips) - 8.8 kips - 30.0 kips = -7.3 kips $\therefore -7 \text{ kips} \leftarrow$
5.14	с	p. 1-78 to 79 - Redundancy Factor & <i>ASCE</i> 7-16 p. 98 - §12.3.4.2 For structures assigned to $SDC = D$ E or $F - \rho = 1.3$ shall be used unless one of the following two conditions is met, where $\rho = 1.0$ is permitted \therefore maximum $\rho = 1.3 \leftarrow$
5.15	d	p. 1-78 - Vertical Seismic Load Effect & ASCE 7-16 p. 99 - §12.4.2.2 Per Exception 2 - it is permitted to use $E_v = 0$ for structures assigned to <u>SDC = B</u> Also, if the Dead load effect is zero (i.e., $D = 0$) - $E_v = \pm 0.2S_{DS}D$ $E_v = \pm 0.2S_{DS}(0) = 0$ \therefore Both a & c \leftarrow

Problem	Answer	Reference / Solution
		A geotechnical investigation shall be conducted, and shall include an evaluation of all of the following potential geologic and seismic hazards - slope instability, <i>liquefaction</i> , total and differential settlement, surface fault displacement, etc. $\therefore \underline{C, D, E \& F} \leftarrow$
10.11	a	p. 1-173 - Masonry & <i>IBC</i> p. 468 - §2106.1 The seismic design requirements of <u>TMS 402-16</u> – Part 2: Chapter 7 shall apply to the design and construction of masonry based on the structures Seismic Design Category. \therefore <u>TMS 402-16</u> \leftarrow
10.12	a	 p. 1-176 - Seismic Design Category D, E or F & IBC p. 480 - §2205.2.1.2 (Structural steel SFRS of) structures assigned to SDC = D, E or F shall be designed and detailed in accordance with <u>AISC 341-16</u> – Seismic Provisions for Structural Steel Buildings ∴ <u>AISC 341-16</u> ←
10.13	b	p. 1-177 - NOTE Following the January 17, <u>1994 Northridge Earthquake</u> the <i>International</i> <i>Conference of Building Officials (ICBO)</i> adopted an emergency code change to the <i>1994 Uniform Building Code (UBC)</i> . This code change omitted the pre-qualified connection (for welded steel moment frames) \therefore <u>1994 Northridge, CA earthquake (M_w 6.7)</u> \leftarrow
11.1	с	p. 1-182 & 2018 IBC p. 416 - $\$1704.2$ – Special inspections The <u>owner</u> or <u>the owner's agent</u> , other than the contractor, shall employ one or more <i>approved agencies</i> to provide special inspections and tests $\therefore \underline{I \& II} \leftarrow$
11.2	d	p. 1-183 to 184 & 2018 IBC p. 416 to 422 - $\$1705$ I. Masonry construction - $\$1705.4$ II. Structural steel welding - $\$1705.2$ III. Cast-in-place deep foundations - $\$1705.8$ $\therefore I, II \& III \leftarrow$
11.3	с	 p. 1-186 & 2018 IBC p. 418 - §1704.6 the owner or the owner's authorized agent shall employ a registered design professional to perform structural observations. Ideally, the structural observer should be the engineer (or architect) responsible for the structural design, etc. ∴ Civil engineer responsible for the structural design ←
11.4	b	p. 1-187 & 2018 IBC p. 418 - $\$1704.6.2$, item 1 & 2 Structural observations for seismic resistance shall be provided for those structures assigned to $SDC = \underline{D}, \underline{E} \text{ or } \underline{F}$ where <u>one or more</u> of the following conditions exist: (continued)