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Abstract

Simultaneous inference was introduced as a statistical problem as
early as the mid-twentieth century, and it has been recently revived
due to advancements in technology that result in the increasing avail-
ability of data sets containing a high number of variables. This paper
provides a review of some of the significant contributions made to the
field of multiple hypothesis testing, and includes a discussion of some
of the more recent issues being studied.

1 Introduction

Data sets containing a high number of variables, notably those generated by
high-throughput experiments in fields such as genomics and image analysis,
have been becoming increasingly available as technology and research ad-
vances. For this reason multiple hypothesis testing remains an area of great
interest. This review covers some of the major contributions to multiple hy-
pothesis testing and provides a brief discussion on other issues surrounding
the standard assumptions of simultaneous inference. This is not meant to be
a comprehensive report but rather a history and overview of the topic.

1.1 Single Hypothesis

In the case of a single hypothesis, we typically test the null hypothesis H0

versus an alternative hypothesis H1 based on some statistic. We reject H0

in favor of H1 whenever the test statistic lies in the rejection region specified
by some rejection rule. Here it is possible to make one of two types of errors:
Type I and Type II. A Type I error, or false positive, occurs when we decide
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to reject the null hypothesis when it is in fact true. A Type II error, or
false negative, occurs when we do not reject the null hypothesis when the
alternative hypothesis is true. Table 1 summarizes the error possibilities.

Table 1: Possible outcomes for a single hypothesis test

Declared True Declared False
True Null Correct (1− α) Type I Error (α)
False Null Type II Error (β) Correct (1− β)

Typically, a rejection region is chosen so as to limit the probability of a
Type I error to some level α. Ideally, we also choose a test that offers the
lowest probability of committing a Type II error, β, while still controlling α
at or below a certain level. In other words, we maximize power (1−β) while
maintaining the Type I error probability at a desired level.

1.2 Multiple Hypotheses

When conducting multiple hypothesis tests, if we follow the same rejection
rule independently for each test, the resulting probability of making at least
one Type I error is substantially higher than the nominal level used for each
test, particularly when the number of total tests m is large. This can be
easily seen when considering the probability of making zero Type I errors.
For m independent tests, if α is the rejection level for each p-value, then this
probability becomes (1− α)m. Because 0 < α < 1, it follows that

(1− α)m < (1− α)

and so the probability of making no Type I errors in m > 1 tests is much
smaller than in the case of one test. Consequently, the probability of making
at least one such error in m tests is higher than in the case of one test. For
example, we use a rejection rule of p < .05 for each of 100 total independent
tests, the probability of making at least one Type I error is about 0.99.

To address this issue, multiple testing procedures seek to make the indi-
vidual tests more conservative so as to minimize the number of Type I errors
while maintaining an overall error rate, which we denote q. The cost of these
procedures is often a reduction in the power of the individual tests. Tests
are typically assumed to be independent, although there do exist methods in
cases of dependency, which is discussed briefly in Section 4.1.
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We assume that we are testing m independent null hypotheses,
H01, H02, . . . , H0m, with corresponding p-values p1, p2, . . . , pm, and we call the
ith hypothesis “significant” if we reject the null hypothesis H0i. In Table 2 we
summarize the possible configurations when testing m hypotheses simultane-
ously. We see that V is the number of false rejections (or false discoveries), U
is the number of true non-rejections (or true acceptances), S is the number
of true rejections, and T is the number of false non-rejections. Here m0, the
total number of true null hypotheses, is fixed but unknown. Though random
variables V , S, U , and T are not observable, the random variables R = S+V
and W = U + T , the number of significant and insignificant tests, respec-
tively, are observable. The proportion of false rejections is V/R when R > 0
and the proportion of false acceptances is T/W when W > 0.

Table 2: Possible outcomes for m hypothesis tests

Significant Not Significant Total
True Null V U m0

False Null S T m1

Total R W m

The Type I error rates most discussed in the literature are:

1. Family-wise error rate (FWER): Probability of at least one Type I
error,
FWER = Prob(V ≥ 1)

2. False discovery rate (FDR): Expected proportion of false rejections,

FDR = E(Q), where Q =

{
V/R R > 0
0 R = 0

2 Controlling Family-Wise Error Rate

The earliest multiple hypothesis adjustment methods focused on controlling
the family-wise error rate (FWER), and these are still commonly used today.
The FWER is defined as the probability of making at least one false rejection
when all null hypotheses are true. Instead of controlling the probability of
a Type I error at a set level for each test, these methods control the overall
FWER at level q. The trade-off, however, is that they are often overly
conservative, resulting in low-power tests.
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Many of the methods in this class are based on the idea of ordered p-
values. That is, prior to performing any adjustments, we first order the
m p-values as p(1), p(2) . . . , p(m) such that p(1) ≤ p(2) ≤ · · · ≤ p(m), with
corresponding null hypotheses H0(1), H0(2), . . . , H0(m). Most procedures are
then developed using either the first-order Bonferroni inequality or the Simes
inequality [48]. The inequalities are very similar and can even be viewed as
different formulations of the same concept.

2.1 Bonferroni Inequality

The first-order Bonferroni inequality states that, given any set of events
E1, E2, . . . , Em, the probability of at least one of the events occurring is less
than or equal to the sum of their marginal probabilities [48]. In the context
of multiple hypothesis testing, the event of interest is the rejection of a null
hypothesis. The applicable form of the inequality then, for 0 ≤ α ≤ 1, is

Prob

(
m⋃
i=1

(
pi ≤

α

m

))
≤ α

The primary method based on this concept was proposed by Bonferroni,
and it also happens to be the most popular among all procedures for con-
trolling FWER. In its simplest form, to maintain the FWER at level q, set
the nominal significance level for each test at α = q/m [48]. That is, for test
i, if the corresponding p-value is pi < q/m, we reject null hypothesis H0i.

Others have also developed procedures around this idea. One such method
includes a sequential, step-down algorithm proposed by Holm (1979)[30],
shown to be uniformly more powerful than Bonferroni’s simple procedure.
To maintain an error rate at level q, reject all null hypotheses in the set{

H0(i) : i < min
(
k : p(k) >

q

m+ 1− k

)}
Another suggestion for improvement is to replace the quantity α/m with[

1− (1− α)1/m
]
, which is always a larger value [48]. This is a common idea

used when developing procedures to control the false discovery rate.

2.2 Simes Inequality

Simes (1986) [49] extended Bonferroni’s inequality; in the context of mul-
tiple hypothesis testing, the Simes inequality can be stated the following
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way: for ordered p-values, p(1), p(2), . . . , p(m), corresponding to independent,
continuous tests (so that the p-values are Uniform(0,1)), then assuming all
hypotheses are true:

Prob
(
p(i) ≥ i · α

m

)
= 1− α

where 0 ≤ α ≤ 1. Using this inequality, Simes created a simple multiple
testing rule: to maintain an error rate at level q, reject all null hypotheses in
the set {

H0(i) : p(i) ≤
i · α
m

)
}

Two common methods that also utilize the Simes inequality were devel-
oped by Hochberg and Hommel ([29],[31]).

Hochberg’s procedure is very similar to Holm’s proposed method from
Section 2.1, except it was formulated as a step-up procedure. It has also
been shown to be more powerful than Holm’s procedure. Again using the
ordered p-values and maintaining the error rate level at q, reject all null
hypotheses in the set{

H0(i) : i ≤ max
(
k : p(k) ≤

q

m+ 1− k

)}
More powerful, and only marginally more difficult to execute, Hommel’s

(1988) [31] procedure is a an alternative, yet less popular, option. Under the
same conditions as discussed in this section, to control at level q reject all
null hypotheses:

1. Compute k = max
{
i ∈ {1, . . . ,m} : p(m−i+j) >

jα
i

for j = 1, · · · , i
}

.

2. If no maximum exists, then reject all null hypotheses. Else, reject
{H0i : pi ≤ α/k}.

3 Controlling False Discovery Rate

More modern approaches in multiple hypothesis testing focus on controlling
the false discovery rate (FDR). The FDR is defined as the expected percent-
age or proportion of rejected hypotheses that have been wrongly rejected [3].
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Instead of controlling the probability of a Type I error at a set level for each
test, these methods control the overall FDR at level q. When all null hy-
potheses are actually true, the FDR is equivalent to the FWER. If, however,
the number of true null hypotheses is less than the number of total hypothe-
ses - that is, when m0 < m - the FDR is smaller than or equal to the FWER
[3]. Thus, methods that control FWER will also control the FDR. We see,
then, that controlling the FDR is a less stringent condition than controlling
the FWER, and consequently FDR procedures are more powerful.

Controlling the FDR was made popular by Benjamini and Hochberg
(1995) [3], who developed a simple step-up procedure performed on the or-
dered p-values of the tests [3]. Since then there have been several other
proposed FDR procedures. These are summarized in this section.

3.1 Continuous Tests

The density of the p-values can be expressed as

f(p) = π0f0(p) + (1− π0)f1(p)

where f0(p) and f1(p) are the densities of the p-values under the null and
alternative hypotheses, respectively [13]. For continuous tests, p-values are
uniformly distributed on (0, 1). However, the alternative hypothesis is un-
known. Methods for estimating π0 when the test statistics are continuous
have been developed by coupling the mixture model with the assumption
that either f(p), the density of marginal p-values, or f1(p), the density of
p-values under the alternative, is non-increasing.

The following is a summary of commonly-used methods for controlling
FDR when the p-values are continuous. For all procedures, we assume that
we are testing m independent null hypotheses, H01, H02, . . . , H0m, of which
m0 are truly null, with corresponding p-values, p1, p2, . . . , pm. Additionally,
all methods here are based on ordered p-values. That is, instead of us-
ing the original, unordered p-values, we consider instead the ordered values,
p(1), p(2), . . . , p(m), such that p(1) ≤ p(2) ≤ · · · ≤ p(m), with corresponding null
hypotheses H0(1), H0(2), · · · , H0(m).

3.1.1 Benjamini and Hochberg Procedure

Benjamini and Hochberg [3] presented the first procedure for controlling FDR
in their 1995 paper, and it still remains the most common procedure to date
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(the BH algorithm). To control FDR at level q, reject all null hypotheses
where {

H0(i) : i ≤ max
(
k : p(k) ≤

i · q
m

)}
It has been shown that when the test statistics are continuous and inde-
pendent, this procedure controls the FDR at level π0q [3], where π0 is the
proportion of true null hypotheses. Ferreira and Zwinderman (2006) [20] later
developed some exact and asymptotic properties of the rejection behavior of
the BH algorithm.

3.1.2 Benjamini and Liu Procedure

While the BH algorithm is a step-up procedure, Benjamini and Liu (1999)
[6] suggested an alternative step-down procedure for controlling FDR (the
BL algorithm). To control FDR at level q, the procedure is conducted as
follows:

1. Calculate the critical values, δi = 1−
[
1−min

(
1, m·q

m−i+1

)]1/(m−i+1)
for

i = 1, . . . ,m.

2. Let k be the value such that k = min{i : p(i) > δi}.

3. Reject the null hypotheses H0(1), H0(2), . . . , H0(k−1).

They demonstrated that this procedure neither dominates nor is domi-
nated by the step-up procedure of Benjamini and Hochberg.

3.1.3 Storey’s Procedure

Storey (2002) [50] suggests a different approach to adjusting for multiple
hypotheses. While the previous methods involved fixing an FDR level q
and determining from there which tests to reject, Storey uses the opposite
approach: he fixes which tests are rejected (in a sequential way) and then
estimates the corresponding false discovery rate. The basic idea of Storey’s
procedure is as follows:

1. Define a set of rejection regions, {[0, γj]}. One easy way to do this
is to let γi = p(i), or the series of ordered p-values. Then, for γi, the
rejection region is {p(1), . . . , p(i)}.
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2. For each rejection region, estimate the FDR. This will lead to a series
of FDR estimates, {F̂DRj}.

3. Choose the rejection region that provides an acceptable estimate of
FDR.

Storey’s approach can also be used by estimating a variation on the FDR:
the positive FDR (pFDR), the false discovery rate conditional on nonzero
rejections: E(V/R|R > 0) [51]. This is often a more interpretable and easily
estimable value. In his paper, Storey proposed that an estimate of pFDR for
a given γj is (γjm̂0)/R(γj), where m̂0 is an estimate of the true number of
null hypotheses, and R(γj) = #(p ≤ γj) is the number of tests that would
be rejected for the given rejection region. Further discussion on using m̂0

instead of m is given in Section 3.3

3.2 Discrete Tests

Most research to date has been dedicated to the case of continuous data.
In these situations, the resulting test statistics are continuous with known
distributions when the null hypothesis is true. As well, the p-values are
continuous and known to follow a Uniform(0,1) distribution under the null
hypothesis. For discrete data, however, this is no longer the case. Nonpara-
metric tests, such as Fisher’s exact tests, lead to p-values that are discrete
and non-uniform. To illustrate this point, we create histograms of p-values
that come from m = 10, 000 tests, all of which correspond to a true null
hypothesis, as shown in Figure 1. Note that in the continuous case, the ob-
served p-values form a near-uniform distribution. However, in the case of
discrete data, we are far from uniform and in fact see a peak at p = 1.

Furthermore, the distribution of achievable p-values of a given discrete
test is dependent on the ancillary statistic. As a result, in the case of multiple
hypotheses, the distribution of p-values will vary by test. Consequently, the
use of a subscript becomes necessary in the mixture model from Section 3.1
to highlight this difference. The model can be rewritten as

fi(pi) = π0f0i(pi) + (1− π0)f1i(pi)

where fi(pi) is the density of the ith observed p-value and f0i(pi) and f1i(pi)
are the null and alternative densities fo the ith p-value, respectively. One can
immediately see the potential problems with having unique distributions for
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Figure 1: Histograms of p-values coming from m = 10, 000 tests, all of which
correspond to true null hypotheses.

(a) Discrete (b) Continuous

each test. Recently more focus has been given to the situation of discrete
testing, though the topic has yet to be as extensively explored.

Using midP -values instead of p-values in the BH algorithm was the first
suggestion for addressing multiple testing for discrete data. Lancaster (1961)
[36] defined the midP -values as the average of the observed and the next
smallest possible p-value. The distribution of themidP -value is more uniform
under the null hypothesis than is the p-value, and using the midP -value
should lead to results that are at least as powerful as when using the p-value,
but also may exceed the nominal FDR level. This idea is discussed further
by Routledge (1994) [44], Berry and Armitage (1995)[8], and Fellows (2010)
[19].

3.3 Adaptive Procedures

Estimating m0 = π0m, the number of true null hypotheses, can improve
FDR procedures by making them more powerful. When replacing m by
m0 in the BH or the BL algorithm we can control the FDR at exactly the
level of q. When using m̂0 instead of m in an FDR procedure, we call these
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“adaptive” methods. The value of π0, and thus of m0, can be estimated using
a variety of methods. The idea behind many of the proposed methods were
first introduced by Mantel (1980) [38], and Black (2004) [9] provides a nice
discussion of the benefits of using an adaptive method.

3.3.1 Estimating m0 for Continuous Tests

The following is a summary of commonly-used methods used for estimating
m0 (or π0) when the p-values are continuous. In addition to those given
below, continuous estimators have also been proposed in the form of adaptive
algorithms developed by Benjamini and Hochberg (2000) [4], Storey et. l.
(2004) [53], Benjamini et. al. (2006) [5], Gavrilov et. al. (2009) [23],
Blanchard and Roquain (2009) [10], or Liu and Sarkar (2011) [37].

Storey’s Method Storey’s (2002) method [50] is one of the most popular
methods used today, and has been shown to estimate π0 reasonably well for
continuous p-values. The estimator is given by

π̂0 =
#(pi > λ)

m(1− λ)

where λ ∈ [0, 1] is a tuning parameter and #(S) is is the number of elements
in S. Storey also offers an adaptive method for selecting an optimal λ [50].
This procedure typically provides a conservative estimate of π0.

Pounds and Cheng Method Pounds and Cheng (2006) [41] proposed
an estimator of π0 when the test statistics are continuous. The estimator is
given by

π̂0 =

{
min(1, 2p̄) for two-sided tests
min(1, 2t̄) for one-sided tests

where p̄ = 1
m

∑m
i=1 pi is the average p-value for all m hypothesis tests, t̄ =

1
m

∑m
i=1 [2 ·min(pi, 1− pi)], and min(a, b) is the minimum of a and b. In

general, the Pounds and Cheng estimator is biased upward, but the bias is
small when pf1(p) is small or when π0 is close to 1.
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Location Based Estimator Dalmasso et. al. (2005) [12] proposed an
estimator for π0 for continuous and independent tests, which they coined
the Location Based Estimator (LBE). The LBE is simple estimator that is
obtained from the expectation of transformed p-values, using the transforma-
tion ψ(P ) = [− log(1− P )]n, where log() is the natural logarithm function
and n ≥ 0 is an integer tuning parameter. Taking the ratio of the expected
value of ψ under the alternative and null hypotheses gives us the following
estimator:

π̂0 =
(1/m)

∑m
i=1 [−log(1− pi)]n

n!

where n! is the factorial of n. In their paper, Dalmasso et. al. does provide
one example of how to select the tuning parameter n but notes that other
criteria could be considered. The LBE provides a bias-variance balance and,
because of its relatively low variance, it often performs better in terms of
mean-squared error than π0 estimators that had been developed by that
time, including the Storey and Pounds and Cheng methods.

Nettleton’s Method Nettleton et. al. (2006) [39] presents an algorithm
for estimating m0 by estimating the proportion of observed p-values that
follow the uniform distribution. The algorithm used in Nettleton’s method
is as follows:

1. Partition the interval [0, 1] in B bins of equal width.

2. Assume all null hypotheses are true, and set m
(0)
0 = π

(0)
0 m = m.

3. Calculate the expected number of p-values for each bin given the cur-
rent estimate of the number of true null hypotheses.

4. Beginning with the leftmost bin, sum the number of p-values in excess
of the expected until a bin with no excess is reached.

5. Use the excess sum as an updated estimate of m1, and then use that
to update the estimate of m0 = m−m1.

6. Return to Step 3 and repeat the procedure until convergence is reached.

The number of bins is a tuning parameter, and using B = 20 has been
recommended [39].
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3.3.2 Estimating m0 for Discrete Tests

There do not exist FDR procedures designed specifically for discrete data,
other than the use of the midP -values. However, the non-uniformity of the
p-values may be addressed in the first step of estimating m0 and then utiliz-
ing an adaptive FDR method. We maintain the assumptions and notations
used thus far. However, now we further assume that π0 does not depend
on the set of null distributions, of which there are d unique discrete dis-
tributions (d ≤ m), f01, f02, . . . , f0d, which are known. These distributions
correspond to the d unique ancillary statistics A1, A2, . . . , Ad (each of which
can be viewed as fixed or random). For a null distribution f0j there is a
finite set of achievable p-values Sj1, Sj2, . . . , SjTj with Sj1 < Sj2 < · · · <
SjTj = 1 and with corresponding probabilities sj1, sj2, . . . , sjTj . Note that

set Sj =
{
Sj1, Sj2, . . . , SjTj

}
, is the support of f0j, with sj1 = Sj1 and

sjk = Sjk − Sj,k−1 for 2 ≤ k ≤ Tj. The hypotheses are partitioned into sets
so that if the null distribution of the ith p-value is known to be f0j, then the
corresponding support is Sj. However, the distribution of pi is not known
when the corresponding null hypothesis is false.

The following is a summary of commonly-used methods used for esti-
mating the number or proportion of true null hypotheses when the p-values
are discrete. The performance of continuous and discrete m0 estimators in
the presence of discrete data is explored in Dialsingh (2012) [13] and Austin
(2014) [1].

Pounds and Cheng Method In the same paper as their 2006 continuous
estimator, Pounds and Cheng [41] also proposed an estimator of π0 for the
discrete case. Similar to the continuous estimator, the discrete estimator is
given by

π̂0 =

{
min(1, 2p̄) for two-sided tests
min(1, 8t̄) for one-sided tests

where p̄ = 1
m

∑m
i=1 pi is the average p-value for all m hypothesis tests, t̄ =

1
m

∑m
i=1 [2 ·min(pi, 1− pi)], and min(a, b) is the minimum of a and b. Simu-

lations show that this estimator is conservative but robust for discrete tests.

Regression Method Proposed by Dialsingh [13], the regression method
can be used when the mixture distribution, Prob(pi = Sit|Ai = a), can
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be estimated from the data. For each of the d unique null distributions,
there exists a finite set of achievable p-values. So, for null distribution f0j,
there is a known support Sj. With a slight abuse of notation, we say that
H0i ∈ f0j if the ith null hypothesis is assumed to have distribution f0j. Then
we have (pi = Sjt|H0i ∈ f0j, H0i true) = φ0jt, which is known. However, the
distribution of pi is not known when the null hypothesis is false; we denote
this unknown probability as Prob (pi = Sjt|H0i ∈ f0j, H0i false) = φ1jt. We
assume that φ0jt < φ1jt for small Sjt and φ0jt > φ1jt for large Sjt. Then we
have

Prob (pi = Sjt|H0j ∈ f0j) = φjt = π0φ0jt + (1− π0)φ1jt

When the set Dj = {H0i : H0i ∈ f0j} is significantly large, φjt can be esti-
mated from the data as

φ̂jt =
Kjt

Mj

where Mj is the cardinality of set Dj and Kjt is the number of hypotheses in

Dj that have p-value Sjt. We know that E(φ̂jt) = φjt = π0φ0jt + (1− π0)φ1jt

and that φ0jt is known. The regression method estimates π0 by regressing φ̂jt
on φ0jt by assuming (1− π0)φ1jt is the constant intercept. Thus the slope of
the resulting regression equation is an estimator of π0. To obtain reasonable
estimates of φ̂jt it is preferred that each Mj is sufficiently large.

Bancroft Method The method developed by Bancroft et. al. (2013) [2]
is an adaptation of Nettleton’s method for continuous tests to discrete cases.
Similar to Nettleton’s method, the idea is to create bins in the interval [0, 1]
and to use the excess of expected versus observed p-values in those bins to
iteratively update the estimate of m0. However, because the possible attain-
able p-values depend on the null distribution, we no longer look at entire set
of m p-values but rather at each of the d sets of p-values corresponding to
the d unique null distributions, f01, f02, . . . , f0d. Nettleton’s algorithm can
be applied to each set of p-values separately to come up with an estimate
of m0j, the number of tests corresponding to true null hypotheses in set Dj.
Note that the initial estimate of m0j would be Mj, the total number of tests
in Dj.

Furthermore, because the p-values of discrete tests are not uniformly dis-
tributed over [0, 1], bins need not and should not be of equal width. Instead,
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since the support Sj is known for each unique null distribution f0j, bins can
be created such that each bin houses a single value from Sj. Then, the same
algorithm from Nettleton’s method is applied to these bins.

The algorithm is run d instances to find estimates of m01,m02, . . . ,m0j.
Then, the estimate of π0 becomes

π̂0 =
m̂01 + m̂02 + · · ·+ m̂0j

m

T-Methods The T-methods, proposed by Dialsingh [13], are based on
Tarone’s (1990) [56] idea of removing hypotheses for which there is no power
prior to performing any analyses. For certain values of the ancillary statistic,
the number of achievable p-values is small, yielding a component of the null
distribution that is far from uniform. Often the corresponding hypothesis
tests have zero power because the minimum achievable p-value is larger than
the boundary of the rejection region, say α = .05. Because filtering out
these tests improves the uniformity of the p-values, Tarone suggested remov-
ing these tests to improve the power of multiple comparison adjustments.
The remaining tests are then used to estimate π0 developed for continuous
p-values.

3.3.3 Gilbert’s Procedure

Analogous to T-methods for estimating π0, Gilbert (2005) [25] developed a
procedure using the idea that multiplicity adjustments do not need to ac-
count for hypothesis tests that have no power. Gilbert’s procedure uses the
BH algorithm on only a subset of the tests by removing the tests whose min-
imum achievable p-value is less than q. To control FDR at level q, Gilbert’s
procedure is conducted as follows:

1. Let m(I) be the number of tests with power, with corresponding or-
dered p-values
p(1), p(2), . . . , p(m(I)) and null hypotheses H0(1), H0(2), . . . , H0(m(I)).

2. Apply the BH algorithm on only these m(I) tests.

One can perform an adaptive version of Gilbert’s procedure as well, as
suggested in Dialsingh [13]. More recently, Heyse (2011) [28] contributed
an alternative multiple-testing procedure for categorical data that uses the
exact conditional distribution of potential outcomes.
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3.4 Variations on the FDR

There exists a number of variations on the false discovery rate as defined
by Benjamini and Hochberg. In Section 3.1.3 we discussed the positive FDR
(pFDR) as used by Storey. In the same year Tsai et. al. (2003) [57] discussed
the properties and relationships of several variations on the FDR. Including
the pFDR, these alternatives included:

1. Conditional FDR (cFDR): cFDR = E(V/R|R = r)

2. Marginal FDR (mFDR): mFDR = E(V )/E(R)

3. Empirical FDR (eFDR): eFDR = E(V )/r

Pounds and Cheng (2004) [40] developed a method, coined the spacings
LOESS histogram (SPLOSH), for estimating the cFDR, the expected propor-
tion of false rejections given that there are r total rejections. The method
was applied to independent, continuous tests; however, there is no model
assumed on the observed p-values and may be applicable to other situations.

The local FDR (lFDR), coined by Efron (2005) [15], estimates the proba-
bility of the null model conditional on the observed test statistic. He applied
it only to continuous tests. It is based on empirical Bayes analysis of the
mixture model of the null and alternative hypothesis distributions. It has
been studied by Efron et. al. (2001) [17], Efron and Tibshirani (2002) [16],
Efron (2004) [14], and Strimmer (2008) [54].

4 Other Considerations

4.1 Dependent Tests

In all methods discussed thus far there is an assumption of independence
among the tests. However, in many cases, such as when comparing several
treatments with a single control, this assumption is not valid. In fact, in
practice, dependent tests statistics are encountered more often than inde-
pendent test statistics. Therefore dependency of hypotheses remains a valid
area of research.

The common BH and BL algorithms can still be used for dependent
tests under certain situations. Benjamini and Yekutieli (2001) [7] proved
that the BH algorithm controls FDR when the test statistics are positive

15



dependent1 under the null hypotheses. They furthermore showed that under
other kinds of dependency, a small conservative modification can be be made
to maintain the nominal error rate. The following year Sarkar (2002) showed
that the FDR is also controlled in the BL procedure if the test statistics are
positive dependent [45]. In 2008 Sarkar further investigated the performance
of common FDR procedures under positive dependence [46].

Most of the FWER-controlling procedures can be used in certain de-
pendency situations. Sarkar and Chang (1997) [47] showed that the Simes
method still controls the FWER under positive dependency of the test statis-
tics. Later, Guo et. al. (2009) [27] developed FWER-controlling methods
based on adaptive Holm and Hochberg procedures and proved that they
control the FWER under positive dependence. That same year Sun and Cai
(2009) [55] developed a multiple-testing procedure that exploits the depen-
dence structure among hypotheses assuming that the data were generated
from a two-stage hidden Markov model.

Friguet et. al. (2009) [21] utilized factor analysis to model the dependence
structure of the responses given the predictors. They used this to develop
modified t-tests that take advantage of the common factor structure to reduce
the error rate variance. They showed that this procedure is more powerful
and results in more precise FDR estimates than the traditional BH algorithm
when used on dependent tests.

4.1.1 Pairwise Comparisons

A more specific dependence issue in multiple testing arises when each hypoth-
esis is composite and one tests for differences across all or many parameter
pairs. There has been extensive study on these types of pairwise procedures
for a single response variable, and Jaccard et. al. (1984) [32] provides a nice
overview of procedures developed up until that time. They found that Tukey
(1953) [58] is one of the best methods when the assumptions of equal sam-
ple sizes, homogeneous variances, and normality hold. When one or more
assumptions fail, they recommend procedures by Kramer (1956) [34] and
Games et. al. (1981) [22]. All of these are considered one-step procedures
that control for multiple testing when there is a single response variable.
Jiang and Doerge (2006) [33] proposed a two-step procedure when there are
many composite hypotheses, with many pairwise comparisons of parameters

1Two random variables X1 and X2 are positive dependent if P(X1 ∩ X2) > P(X1) ·
P(X2).
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within each, that controlled the FDR and was more powerful than traditional
one-step procedures.

4.1.2 Multivariate Test Statistics

When handling multiple hypotheses, the first major step is to rank the tests in
order of perceived significance. This is typically done in a univariate matter,
through ordering the p-values of the individual tests. However, as shown
by Storey (2007) [52], overall performance can be improved by borrowing
information across all tests to perform the ranking. Storey referred to this as
the “optimal discovery procedure,” which maximizes the expected number
of true rejections, which in turn results in a reduced FDR. A generalized
Bayesian discovery procedure was later developed by Guindani et. al. [26]

Chi (2008) [11] also considered the idea of multivariate p-values. He
created a procedure that uses an arbitrary family of nested regions of the
p-values’ domain and showed that this controlled the FDR and pFDR and
was relatively powerful.

4.2 Weighted P-Values

The idea of weighted p-values was first presented by Genovese et. al. (2006)
[24] as a way to incorporate prior information about the hypotheses. If the
assignment of weights to p-values is positively associated with the non-null
hypotheses, power is increased, except in cases where the power is already
near one. Wasserman and Roeder (2009) [35] derived methods for choosing
optimal weights and showed that power is robust to misspecification of the
p-value weights. Roquain and van de Wiel (2009) [43] further discussed the
weighting of p-values in the Benjamini and Hochberg procedure.

4.3 Power

As discussed in Section 1.2, error can be defined in a number of ways, though
most modern procedures focus on controlling the false discovery rate. Power,
too, can be defined in more than one way. Most researchers defined power as
the average probability of rejecting a non-null hypothesis, otherwise known
as the per-pair power [18]. However, other power definitions include the
probability of rejecting at least one non-null hypothesis, or any-pair power,
and the probability of rejecting all false hypotheses, or all-pairs power [42].
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5 Conclusion

The topic of multiple hypothesis testing is too far-reaching to be covered in its
entirety in this review, and there are many researchers whose contributions
have not been acknowledged here. This review serves as a brief introduction
to the topic and its many issues. Though the problem of simultaneous in-
ference has been recognized for many years, multiple hypothesis testing has
recently became a more intense area of research due to the greater access
and availability of data. The methods focus on controlling some Type I error
rate while maintaining power of the individual tests. There remains many
potential areas of research in this field, including the problems surrounding
discrete data or dependent tests.
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