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1 Multiple Regression

1.1 The Data

The simple linear regression setting can be extended to the case of p independent variables, such that we
may now have the following array of data points,

(yi, xi1, . . . , xip), i = 1, . . . , n.

In addition, and for notational convenience, we also include a dummy variable, which will be used to compute
the y-intercept, β0. Therefore, when the model includes such an intercept, we add the dummy variable
xi0 := 1, for every i, and obtain the full data set,

(yi, xi0, xi1, . . . , xip), i = 1, . . . , n.

Therefore,

1. the number of covariates will be denoted by p,

2. whereas the number of parameters will be denoted by p∗ := p+ 1.

Naturally, the IVs, xij , can take either discrete or continuous values, without affecting the estimation
procedure. In the sequel, we will systematically assume that the model contains an intercept, except when
specified otherwise. In multiple regression, it is assumed that p < n, and more generally, we mainly consider
data sets, for which p� n.

1.2 The Model

Multiple linear regression (MLR) is defined in the following manner,

yi =

p∑
j=0

xijβj + ei, ∀ i = 1, . . . , n,

which may then be reformulated, using linear algebra,

yi = xT
i β + ei, ∀ i = 1, . . . , n,
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where β and the xi’s are (p∗ × 1) column vectors. Altogether, we can write the entire system of linear
equations in matrix format, ∣∣∣∣∣∣∣∣∣

y1
y2
...
yn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 x11 . . . x1p
1 x21 . . . x2p
...

...
. . .

...
1 xn1 . . . xnp

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
β0
...
βp

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
e1
e2
...
en

∣∣∣∣∣∣∣∣∣ .
Alternatively, one could also re-express this as a single equation, alongside the assumption on the error terms,

y = Xβ + e,

where y and e are (n× 1) vectors, X is an (n× p∗) matrix, and β is a (p∗ × 1) vector.

1.3 Example: One-way ANOVA

The matrix X is usually referred to as the design matrix, because it specifies the experimental design. For
instance, if considering a one-way analysis of variance (ANOVA) over three different groups, where we have
2 subjects in each group. We may select one of the following two design matrices,

X1 :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
, and X2 :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
;

where in the former case, X1 is called a cell means design, whereas in the latter case, X2 is referred to
as a reference group design, where the mean value in the two remaining groups are expressed as offsets
from the value attained in the first group.

1.4 Geometrical Perspective

Just as the mean function of a simple regression determines a one-dimensional line in the two-dimensional
Euclidean space, R2, the defining equation of multiple regression determines a p-dimensional hyperplane
embedded into the p∗-dimensonal Euclidean space, Rp∗

.
The goal of OLS estimation is to identify the optimal hyperplane minimizing our target statistical

criterion with respect to all the points in the sample, i.e. the n points of the form (yi, xi1, . . . , xip), positioned
in p∗-dimensional Euclidean space, Rp∗

.

1.5 Model Assumptions

Multiple regression is based on the following assumptions:

1. Linearity in the parameters, such that the mean function is defined as

E[Yi|X] = xT
i β, ∀ i = 1, . . . , n.

2. Independence and homoscedasticity of the error terms, such that

Var[e|X] = σ2In.
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Equivalently, the variance function may be assumed to satisfy,

Var[y|X] = σ2In,

since the variance operator is invariant under translation, i.e. Var[a + Y] = Var[Y].

3. In addition to the standard OLS assumptions for simple linear regression, we will also assume that X
has full rank. That is,

rank(X) = p∗.

2 Minimizing the Residual Sum of Squares

2.1 Matrix Formulation for RSS

Since p∗ < n, we have here a non-homogeneous over-determined system of linear equations, in the parameters
βj ’s. So, as before, we define, for computational convenience, a statistical criterion, which we wish to
minimize. The RSS for this model is given by

RSS(β) :=

n∑
i=1

(
yi − xT

i β
)2
,

which can be re-expressed more concisely as follows,

RSS(β) := (y−Xβ)T (y−Xβ).

Observe that this criterion is a scalar, and not a vector or a matrix. This is a dot product. In particular,
this should be contrasted with the variance of a vector, such as for instance,

Var[y|X] := E
[
(y− E[y|X])(y− E[y|X])T

]
,

which is an n× n matrix.

2.2 Some Notions of Matrix Calculus

Consider a vector-valued function F(x) : Rn 7→ Rm of order m× 1, such that

F(x) =
[
f1(x), . . . , fm(x)

]T
.

The differentiation of such a vector-valued function F(x) by another vector x of order n× 1 is ambiguous
in the sense that the derivative

∂F(x)

∂x

can either be expressed as an m × n matrix (numerator layout convention), or as an n × m matrix
(denominator layout convention), such that we have

∂F(x)

∂x
=

∣∣∣∣∣∣∣∣
∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

∣∣∣∣∣∣∣∣ , or
∂F(x)

∂x
=

∣∣∣∣∣∣∣∣
∂f1(x)
∂x1

. . . ∂fm(x)
∂x1

...
. . .

...
∂f1(x)
∂xn

. . . ∂fm(x)
∂xn

∣∣∣∣∣∣∣∣ .
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In the sequel, we will adopt the denominator layout convention, such that the resulting vector of partial
derivatives will be of the dimension of the vector that we are conducting the differentiation with respect
to. Moreover, we will be mainly concerned with differentiating scalars. However, observe that the choice of
layout convention remains important, even though we are only considering the case of scalar-valued functions.
Indeed, if we were to adopt the numerator convention, the derivative ∂

∂xf(x) would produce a row vector,
whereas the denominator convention would yield a column vector. In a sense, the choice of a particular
layout convention is equivalent to the question of treating all vectors as either row or column vectors in
linear algebra. Here, for consistency, all vectors are treated as column vectors, and therefore we also select
the denominator layout convention.

For instance, given any column vectors a,x ∈ Rn, the scalar-valued function f(x) := aTx is differentiated
as follows,

∂

∂x
(aTx) =

∣∣∣∣∣∣∣∣
∂aTx
∂x1

...
∂aTx
∂xn

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∂

∂x1

∑
aixi

...
∂

∂xn

∑
aixi

∣∣∣∣∣∣∣ = a.

Moreover, it immediately follows that differentiating a scalar is invariant to transposition,

∂

∂x
(aTx) =

∂

∂x
(aTx)T =

∂

∂x
(xTa) = a. (1)

For a quadratic form, however, things become slightly more cumbersome. Here, we are considering the
function of a column vector x ∈ Rn, for some square matrix A of order n× n,

xTAx =
∣∣x1 . . . xn

∣∣
∣∣∣∣∣∣∣
a11 . . . a1n
...

. . .
...

an1 . . . ann

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1
...
xn

∣∣∣∣∣∣∣ .
Naturally, this quantity is also a scalar. Differentiation with respect to x, adopting the denominator
convention gives

∂

∂x
(xTAx) =

∣∣∣∣∣∣∣
∂

∂x1

∑
i,j aijxixj

...
∂

∂xn

∑
i,j aijxixj

∣∣∣∣∣∣∣ , (2)

where observe that the double summation in each element of this vector can be simplified as follows,[
∂

∂x
(xTAx)

]
k

=
∂

∂xk

n∑
i=1

n∑
j=1

aijxixj

=

n∑
j=1

akjxj +

n∑
j=1

ajkxj = Ak·x + AT
·kx,

for every k = 1, . . . , n, and where Ak· and A·k denote the kth row and the kth column of A, respectively.
For the entire vector, the above expression therefore gives

∂

∂x
(xTAx) = Ax + ATx =

(
A + AT

)
x,

where recall that A is a square matrix, which can hence be transposed. Now, if in addition, this matrix is
also symmetric, such that A = AT , then

∂

∂x
(xTAx) = 2Ax, (3)
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which provides a natural matrix generalization of the classical power rule of differential calculus, ∂
∂xx

k =
kxk−1, when k = 2. A useful mnemonic for recalling whether one should eliminate xT or x, is to remember
that we must obtain a matrix, which is conformable to the order of the argument with respect to which we
differentiate. In this case, this is β, which is of order (n × 1), and therefore we know that we must obtain
Ax, which is also of order (n× 1).

2.3 Derivation of OLS Estimators

Now, the OLS estimators can be defined as the vector of βj ’s that minimizes the RSS,

β̂ := argmin
β̃∈Rp∗

RSS(β̃).

This can be expanded in the following manner,

RSS(β) := (y−Xβ)T (y−Xβ)

= yTy− yTXβ − βTXTy + βT (XTX)β

= yTy− 2βTXTy + βT (XTX)β,

where we have used the fact that any scalar is invariant under transposition, such that

yTXβ = (yTXβ)T = βTXTy.

Differentiating and setting to 0, we obtain

∂

∂β
βT (XTX)β − 2

∂

∂β
βTXTy = 0,

where using equations (1) and (3), we obtain

2(XTX)β = 2XTy

since XTX can be shown to be symmetric. This produces a system of linear equations, which are referred
to as the normal equations, in statistics. These equations put p∗ constraints on the random vector, y, of
observed values.

Finally, we have also assumed that X is full rank. Moreover, since X is a matrix with real entries, it
is known that the rank of X is equal to the rank of its Gram matrix, defined as XTX, such that

rank(X) = rank(XTX) = p∗.

Since XTX is a matrix of order p∗ × p∗, it follows that this matrix is therefore also of full rank, which is
equivalent to that matrix being invertible. Thus, the minimizer of RSS(β) is given by

β̂ = (XTX)−1XTy.
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