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Data for multiple regression
Up to this point we have considered, in detail, the linear regression 
model in one explanatory variable x.

ŷ = b0 + b1x

Usually more complex linear models are needed in practical 
situations.

There are many problems in which a knowledge of more than one 
explanatory variable is necessary in order to obtain a better 
understanding and better prediction of a particular response. 

In general, we have data on n cases and p explanatory variables.



For “p” number of explanatory variables, we can express the population 
mean response (μy) as a linear equation:

μy = β0 + β1x1 … + βpxp

The statistical model for n sample data (i = 1, 2, … n) is then:

Data =               fit      +    residual

yi =   (β0 + β1x1i … + βpxpi) +       (εi)

Where the εi are independent and normally distributed N(0, σ).

Multiple linear regression assumes equal variance σ2 of y. The 
parameters of the model are β0, β1 … βp.

Multiple linear regression model



We selected a random sample of n individuals for which p + 1 variables 
were measured (x1 … , xp, y). The least-squares regression method  
minimizes the sum of squared deviations ei (= yi – ŷi) to express y as a 
linear function of the p explanatory variables:

ŷi =  b0 + b1x1i … + bkxpi

As with simple linear regression, the constant b0 is the y intercept. 

■ The regression coefficients (b1− bp) reflect the unique association of each 
independent variable with the y variable. They are analogous to the slope 
in simple regression. 

ŷ μy
b0 are unbiased estimates of population parameters β0

bp βp

Estimation of the parameters



Confidence interval for βj

Estimating the regression parameters β0, … βj … βp is a case of one-

sample inference with unknown population variance. 

We rely on the t distribution, with n – p – 1 degrees of freedom.

A level C confidence interval for βj is:

bj ± t* SEbj

- SEbj is the standard error of bj —we rely on software to obtain SEbj .

- t* is the t critical for the t (n – 2) distribution with area C between –t* 

and +t*.



Significance test for βj

To test the hypothesis  H0: βj = 0 versus a 1 or 2 sided alternative.

We calculate the t statistic t = bj/SEbj

which has the t (n – p – 1) 

distribution to find the 

p-value of the test.

Note: Software typically provides

two-sided p-values.



For a multiple linear relationship the ANOVA tests the hypotheses 

H0: β1 = β2 = … = βp = 0 versus Ha: H0 not true

by computing the F statistic: F = MSM / MSE

When H0 is true, F follows 

the F(1, n − p − 1) distribution. 

The p-value is P(F > f ). 

A significant p-value doesn’t mean that all p explanatory variables 
have a significant influence on y—only that at least one does.

ANOVA F-test for multiple regression



ANOVA table for multiple regression

Source Sum of squares SS df Mean square MS F P-value

Model p SSM/DFM MSM/MSE Tail area above F

Error n − p − 1 SSE/DFE

Total n − 1
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SST = SSM + SSE
DFT = DFM + DFE

The standard deviation of the sampling distribution, s, for n sample 
data points is calculated from the residuals ei = yi – ŷi

s is an unbiased estimate of the regression standard deviation σ.
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Squared multiple correlation R2

Just as with simple linear regression, R2, the squared multiple 

correlation, is the proportion of the variation in the response variable 

y that is explained by the model.

In the particular case of multiple linear regression, the model is all p

explanatory variables taken together.
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We have data on 224 first-year computer science majors at a large 

university in a given year. The data for each student include:

* Cumulative GPA after 2 semesters at the university (y, response variable)

* SAT math score (SATM, x1, explanatory variable)

* SAT verbal score (SATV, x2, explanatory variable)

* Average high school grade in math (HSM, x3, explanatory variable)

* Average high school grade in science (HSS, x4, explanatory variable)

* Average high school grade in English (HSE, x5, explanatory variable)

Here are the summary statistics for these data given by software SAS:



The first step in multiple linear regression is to study all pair-wise 
relationships between the p + 1 variables. Here is the SAS output for all 
pair-wise correlation analyses (value of r and 2 sided p-value of H0: ρ = 0).

Scatterplots for all 15 pair-wise relationships are also necessary to understand the data. 



For simplicity, let’s first run a multiple linear regression using only 
the three high school grade averages:

P-value very 
significant

R2 is fairly small (20%)

HSM significant

HSS, HSE not



The ANOVA for the multiple linear regression using only HSM, HSS, and HSE is 

very significant at least one of the regression coefficients is significantly 

different from zero.

But R2 is fairly small (0.205) only about 20% of the variations in cumulative 

GPA can be explained by these high school scores.

(Remember, a small p-value does not imply a large effect.)

P-value very 
significant

R2 is fairly small (20%)



The tests of hypotheses for each b
within the multiple linear regression 
reach significance for HSM only. 

We found a significant correlation 
between HSS and GPA when 
analyzed by themselves, so why is 
bHSS not significant in the multiple 
regression equation?
Well, HHS and HHM are also 
significantly correlated.

HSM significant

HSS, HSE not

When all three high school averages are used together in the multiple regression 
analysis, only HSM contributes significantly to our ability to predict GPA. 



P-value very 
significant

R2 is small (20%)

HSM significant
HSE not

We now drop the least significant variable from the previous model: HSS.

The conclusions are about the same. But notice that the actual regression 
coefficients have changed. predicted GPA=.590+.169HSM+.045HSE+.034HSS

predicted GPA=.624+.183HSM+.061HSE



P-value very 
significant

R2 is very small (6%)

SATM significant
SATV not

Let’s run a multiple linear regression with the two SAT scores only.

The ANOVA test for βSATM and βSATV is very significant at least one is not zero.

R2 is really small (0.06) only 6% of GPA variations are explained by these tests.

When taken together, only SATM is a significant predictor of GPA (P 0.0007).



We finally run a multiple regression model with all the variables together

The overall test is significant, but only the average high school math score (HSM) 
makes a significant contribution in this model to predicting the cumulative GPA.
This conclusion applies to computer majors at this large university.

P-value very 
significant

R2 fairly small (21%)

HSM significant
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