Multiple Regression

Inference for Multiple Regression
and A Case Study

IPS Chapters 11.1 and 11.2

Objectives (IPS Chapters 11.1 and 11.2)

Multiple regression

- Data for multiple regression
- Multiple linear regression model
- Estimation of the parameters
- Confidence interval for β_{j}
- Significance test for β_{j}
- ANOVA table for multiple regression
- Squared multiple correlation R^{2}

Data for multiple regression

- Up to this point we have considered, in detail, the linear regression model in one explanatory variable x .

$$
\hat{y}=b_{0}+b_{1} x
$$

- Usually more complex linear models are needed in practical situations.
- There are many problems in which a knowledge of more than one explanatory variable is necessary in order to obtain a better understanding and better prediction of a particular response.
- In general, we have data on n cases and p explanatory variables.

Multiple linear regression model

For " p " number of explanatory variables, we can express the population mean response $\left(\mu_{y}\right)$ as a linear equation:

$$
\mu_{y}=\beta_{0}+\beta_{1} x_{1} \ldots+\beta_{p} x_{p}
$$

The statistical model for n sample data $(i=1,2, \ldots n)$ is then:

$$
\begin{aligned}
& \text { Data }=\begin{array}{c}
\text { fit } \\
y_{i}
\end{array}=\begin{array}{c}
\text { residual } \\
\left(\beta_{0}+\beta_{1} x_{1 i} \ldots+\beta_{p} x_{p i}\right)
\end{array}+\begin{array}{c}
\left.\varepsilon_{i}\right) \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Where the ε_{i} are independent and normally distributed $N(0, \sigma)$.

Multiple linear regression assumes equal variance σ^{2} of y. The parameters of the model are $\beta_{0}, \beta_{1} \ldots \beta_{p}$.

Estimation of the parameters

We selected a random sample of n individuals for which $p+1$ variables were measured ($x_{1} \ldots, x_{p}, y$). The least-squares regression method minimizes the sum of squared deviations $e_{i}\left(=y_{i}-\hat{y}_{i}\right)$ to express y as a linear function of the p explanatory variables:

$$
\hat{y}_{i}=b_{0}+b_{1} x_{1 i} \ldots+b_{k} x_{p i}
$$

As with simple linear regression, the constant b_{0} is the y intercept.

- The regression coefficients $\left(b_{1}-b_{p}\right)$ reflect the unique association of each independent variable with the y variable. They are analogous to the slope in simple regression.

Confidence interval for β_{j}

Estimating the regression parameters $\beta_{0}, \ldots \beta_{j} \ldots \beta_{p}$ is a case of onesample inference with unknown population variance.
\rightarrow We rely on the t distribution, with $n-p-1$ degrees of freedom.

A level C confidence interval for β_{j} is:

$$
b_{j} \pm t^{*} S E_{b j}
$$

- $S E_{b j}$ is the standard error of b_{j}-we rely on software to obtain $S E_{b j}$.
$-t^{*}$ is the t critical for the $t(n-2)$ distribution with area C between $-t^{*}$ and $+t^{*}$.

Significance test for β_{j}

To test the hypothesis $H_{0}: \beta_{j}=0$ versus a 1 or 2 sided alternative.

We calculate the t statistic

$$
t=b_{j} / \mathrm{SE}_{b j}
$$

which has the $t(n-p-1)$ distribution to find the

$$
H_{a}: \beta_{j}>0 \text { is } P(T \geq t)
$$

p-value of the test.

$$
H_{a}: \beta_{j}<0 \text { is } P(T \leq t)
$$

Note: Software typically provides two-sided p-values.

$$
H_{a}: \beta_{j} \neq 0 \text { is } 2 P(T \geq|t|)
$$

ANOVA F-test for multiple regression

For a multiple linear relationship the ANOVA tests the hypotheses

$$
H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{p}=0 \quad \text { versus } H_{\mathrm{a}}: H_{0} \text { not true }
$$

by computing the F statistic: $F=$ MSM / MSE

When H_{0} is true, F follows the $F(1, n-p-1)$ distribution. The p-value is $P(F \geq f)$.

A significant p-value doesn't mean that all p explanatory variables have a significant influence on y-only that at least one does.

ANOVA table for multiple regression

Source	Sum of squares SS	df	Mean square MS	F	P-value
Model	$\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	p	SSM/DFM	MSM/MSE	Tail area above F
Error	$\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	$n-p-1$	SSE/DFE		
Total	$\sum\left(y_{i}-\bar{y}\right)^{2}$	$n-1$			

The standard deviation of the sampling distribution, s, for n sample data points is calculated from the residuals $e_{i}=y_{i}-\hat{y}_{i}$

$$
s^{2}=\frac{\sum e_{i}^{2}}{n-p-1}=\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-p-1}=\frac{S S E}{D F E}=M S E
$$

s is an unbiased estimate of the regression standard deviation σ.

Squared multiple correlation R^{2}

Just as with simple linear regression, R^{2}, the squared multiple correlation, is the proportion of the variation in the response variable y that is explained by the model.

In the particular case of multiple linear regression, the model is all p explanatory variables taken together.

$$
R^{2}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{\text { SSModel }}{\text { SSTotal }}
$$

We have data on 224 first-year computer science majors at a large university in a given year. The data for each student include:

* Cumulative GPA after 2 semesters at the university (y, response variable)
* SAT math score (SATM, x1, explanatory variable)
* SAT verbal score (SATV, x2, explanatory variable)
* Average high school grade in math (HSM, x3, explanatory variable)
*Average high school grade in science (HSS, x4, explanatory variable)
* Average high school grade in English (HSE, x5, explanatory variable)

Here are the summary statistics for these data given by software SAS:

Variable	N	Mean	Std Dev	Minimum	Maximum
GPA	224	2.6352232	0.7793949	0.1200000	4.0000000
SATM	224	595.2857143	86.4014437	300.0000000	800.0000000
SATV	224	504.5491071	92.6104591	285.0000000	760.0000000
HSM	224	8.3214286	1.6387367	2.0000000	10.0000000
HSS	224	8.0892857	1.6996627	3.0000000	10.0000000
HSE	224	8.0937500	1.5078736	3.0000000	10.0000000

The first step in multiple linear regression is to study all pair-wise relationships between the $p+1$ variables. Here is the SAS output for all
 pair-wise correlation analyses (value of r and 2 sided p-value of $H_{0}: \rho=0$).

Scatterplots for all 15 pair-wise relationships are also necessary to understand the data.

For simplicity, let's first run a multiple linear regression using only the three high school grade averages:

The ANOVA for the multiple linear regression using only HSM, HSS, and HSE is very significant \rightarrow at least one of the regression coefficients is significantly different from zero.

But R^{2} is fairly small (0.205) \rightarrow only about 20% of the variations in cumulative GPA can be explained by these high school scores.
(Remember, a small p-value does not imply a large effect.)

When all three high school averages are used together in the multiple regression analysis, only HSM contributes significantly to our ability to predict GPA.

We now drop the least significant variable from the previous model: HSS.

The conclusions are about the same. But notice that the actual regression coefficients have changed.

$$
\begin{aligned}
& \text { predicted GPA=. } 590+.169 \mathrm{HSM}+.045 \mathrm{HSE}+.034 \mathrm{HSS} \\
& \text { predicted GPA }=.624+.183 \mathrm{HSM}+.061 \mathrm{HSE}
\end{aligned}
$$

Let's run a multiple linear regression with the two SAT scores only.

The ANOVA test for $\beta_{\text {SATM }}$ and $\beta_{\text {SATV }}$ is very significant $\boldsymbol{\rightarrow}$ at least one is not zero.
R^{2} is really small (0.06) \rightarrow only 6% of GPA variations are explained by these tests.
When taken together, only SATM is a significant predictor of GPA (P 0.0007).

We finally run a multiple regression model with all the variables together

The overall test is significant, but only the average high school math score (HSM) makes a significant contribution in this model to predicting the cumulative GPA. This conclusion applies to computer majors at this large university.

Regression Statistics						
Multiple R	0.459837234					
R Square	0.211450282					
Adjusted R Square	0.193364279					
Standard Error	0.699997195					
Observations	224					
ANOVA						
	df	SS	MS	F	Signifcance F	
Regression	5	28.64364489	5.728729	11.69138	$5.06 \mathrm{E}-10$	
Residual	218	106.8191439	0.489996			
Total	223	135.4627888				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	uper 95\%
intercept	0.326718739	0.399996431	0.816804	0.414932	-0.4616.36967	1.115074446
HSM	0.14596108	0.039260974	3.717714	0.000256	0.068581358	0.223340801
HSS	0.03590532	0.037798412	0.949916	0.343207	-0.03859183	0.11040247
HSE	0.055292581	0.039568691	1.397382	0.163719	-0.022693622	0.133278785
SATM	0.000843593	0.000685657	1.376187	0.170176	-0.000407774	0.002294959
SATV	0.00040785	0.000591893	-0.68906	0.491518	-0.001574415	0.00075816

Excel

The regression equation is
GPA $=0.327+0.146 \mathrm{HSM}+0.0359 \mathrm{HSS}+0.0553 \mathrm{HSE}+0.000944 \mathrm{SATM}-$ 0.000408 SATV

Predictor	Coef	StDev	T	P
Constant	0.3267	0.4000	0.82	0.415
HSM	0.14596	0.03926	3.72	0.000
HSS	0.03591	0.03780	0.95	0.343
HSE	0.05529	0.03957	1.40	0.164
SATM	0.0009436	0.0006857	1.38	0.170
SATV	-0.0004078	0.0005919	-0.69	0.492
S = 0.7000	R-Sq $=21.1 \%$	R-Sq $($ adj $)=19.3 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	5	28.6436	5.7287	11.69	0.000
Error	218	106.8191	0.4900		
Total	223	135.4628			

