
Introduction Multikernel Tornado Conclusion Discussion Outlook References

Multiprocessor Operating Systems
CS 6410: Advanced Systems

Kai Mast

Department of Computer Science
Cornell University

September 4, 2014

Kai Mast — Multiprocessor Operating Systems 1/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Let us recall
Multiprocessor vs. Multicore

Figure: Multiprocessor [10] Figure: Multicore [10]

Kai Mast — Multiprocessor Operating Systems 2/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Let us recall
Message Passing vs. Shared Memory

Shared Memory
Threads/Processes access the same memory region
Communication via changes in variables
Often easier to implement

Message Passing
Threads/Processes don’t have shared memory
Communication via messages/events
Easier to distribute between different processors
More robust than shared memory

Kai Mast — Multiprocessor Operating Systems 3/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Let us recall
Miscellaneous

Cache Coherence
Inter-Process Communication
Remote-Procedure Call
Preemptive vs. cooperative Multitasking
Non-uniform memory access (NUMA)

Kai Mast — Multiprocessor Operating Systems 4/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Current Systems are Diverse

Different Architectures (x86, ARM, ...)
Different Scales (Desktop, Server, Embedded, Mobile ...)
Different Processors (GPU, CPU, ASIC ...)
Multiple Cores and/or Multiple Processors
Multiple Operating Systems on a System (Firmware,
Microkernels ...)

Kai Mast — Multiprocessor Operating Systems 5/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

How about the Future?
Moore’s Law

(Source: Wikimedia Commons)

Kai Mast — Multiprocessor Operating Systems 6/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

How about the Future?
Single-Core doesn’t scale anymore

Figure: Possible power-consumption of a 10GHz chip [3]

Kai Mast — Multiprocessor Operating Systems 7/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

How about the Future?
Rock’s Law

Manufacturing cost increases with amount of
semiconductors
Rock’s Law eventually collides with Moore’s Law
One solution: Higher production quantity
Another approach: Multiple mid-range processors instead
of one high-end processor

Kai Mast — Multiprocessor Operating Systems 8/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

How about the Future?
But...

Multiprocessor Systems are reality today!
Existing Operating System had to be adapted to support
multiple cores
Applications heavily rely on multi-threading (just think of
the assignment...)

Kai Mast — Multiprocessor Operating Systems 9/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Interconnects are evolving
Direct Wiring does not scale

On-chip networks are more efficient in terms of
power-consumption and area [2].

Kai Mast — Multiprocessor Operating Systems 10/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Interconnects are evolving
Many-Core Chips

Figure: 36-core Chip from MIT [4]

Kai Mast — Multiprocessor Operating Systems 11/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Are Operating Systems ready for this?
In-Kernel Locking

n threads on n cores execute the following:
1 f = open (” f i l e n a m e ”) ;
2

3 w h i l e (t r u e) {
4 f 2 = dup (f) ;
5 c l o s e (f 2) ;
6 }

Kai Mast — Multiprocessor Operating Systems 12/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Are Operating Systems ready for this?
In-Kernel Locking

Figure: Decreasing performance with increasing amount of Cores
in Linux [8]

Kai Mast — Multiprocessor Operating Systems 13/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Are Operating Systems ready for this?

OSes optimized for most common configuration(s)
Evolutionary improvements towards scalability
Some special applications are highly coupled to hardware
configuration
Can we abstract from hardware and gain performance?

Kai Mast — Multiprocessor Operating Systems 14/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Multikernel and Tornado

Figure: Barrelfish/Mulitkernel
[1] Figure: Tornado [6]

Kai Mast — Multiprocessor Operating Systems 15/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

The Multikernel OS
The Paper

”The Multikernel: A new OS architecture for scalable
multicore systems”

Presented on SOSP in 2009

Kai Mast — Multiprocessor Operating Systems 16/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

The Multikernel OS
Author Info

Andrew Baumann
Was post-doc at ETH Zurich
Now at Microsoft Research
Several Projects focused around OS design

Simon Peter
Was post-doc at ETH Zurich
Now at University of Washington
Current Project: Arrakis[9] (a Barrelfish fork)

Kai Mast — Multiprocessor Operating Systems 17/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

The Multikernel OS

The OS itself is a distributed system
Actually, multiple operating systems
Explicit communication between cores
Abstract design to allow easier portability
Note, that only the communication layer is abstracted

Kai Mast — Multiprocessor Operating Systems 18/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
What is it?

Multikernel OS is just a concept
Barrelfish is an example for an actual implementation
Claims to have all the properties described before
(scalable, modular, portable...)
Let us evaluate and discuss later!

Kai Mast — Multiprocessor Operating Systems 19/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
Overview

Figure: Structure of Barrelfish [1]

Kai Mast — Multiprocessor Operating Systems 20/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
Component Summary

Application
(Possibly) distributed over several kernels

Monitor
Generic (same for all cores)
But still single threaded

CPU driver
Architecture/Hardware specific
Single-threaded

Kai Mast — Multiprocessor Operating Systems 21/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
Memory

Memory is still a shared and global resource
Logic is handled by the monitor, not the CPU driver
Pages of memory a mapped to specific monitors
But virtual/shared memory pages are also possible

Kai Mast — Multiprocessor Operating Systems 22/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
Performance Evaluation

Figure: Latency of Unmapping a Memory Page [1]
Kai Mast — Multiprocessor Operating Systems 23/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Barrelfish
Performance Evaluation

Are the numbers meaningful?
No complex applications were evaluated
Only implemented on x86
OS doesn’t support any advanced features yet

Kai Mast — Multiprocessor Operating Systems 24/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Is this an important paper?

Pros
Proposes a new type of Operating Systems
The concept could represent a paradigm-shift
Such an approach would make OSes ”future proof”

Cons
No complex benchmarks exist yet
Does not support systems that are distributed over the
network

Kai Mast — Multiprocessor Operating Systems 25/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Open Questions

Does it make sense to split monitor and CPU driver
performance-wise?
What would be a good communication model for
Multikernels?
How to support systems without a global shared memory?

Kai Mast — Multiprocessor Operating Systems 26/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Other Multikernels
Invasive Computing

Figure: invasIC Architecture [7]

Kai Mast — Multiprocessor Operating Systems 27/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Tornado

”Tornado: Maximizing Locality and Concurrency in a Shared
Memory Multiprocessor Operating System”

Presented on SOSP in 1999
Evaluated mostly on NUMAchine at UofToronto

Kai Mast — Multiprocessor Operating Systems 28/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Tornado
Authors

Ben Gamsa
Former Ph.D. student at University of Toronto
Now working at Altera (unrelated to his research)

Orran Krieger
Former VMware employee
Working IBM T.J. Watson Research Center at the time of
publication
Now leading the ”Center for Cloud Innovation” at Boston
University

Kai Mast — Multiprocessor Operating Systems 29/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Tornado
Overview

Core 1 Core 2

Application 1 Application 2

Clustered Object(s)

Server Object(s)

Kernel

Server Object(s)

Kernel

Kai Mast — Multiprocessor Operating Systems 30/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Clustered Objects

Figure: Tornado [6]

Same problem as before: Some resources need to be
shared
Shared object can have more than one instance (or
representative)

Kai Mast — Multiprocessor Operating Systems 31/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Resolving Clustered Objects

User calls a function

Has Reference?Call Object Miss Handler

Object Unknown?

Call Global Miss Handler

Retrieve Reference Forward call to Rep

Yes

No

Yes

No

Kai Mast — Multiprocessor Operating Systems 32/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Resolving Clustered Objects
Miss Handler

Figure: Miss Handling Table [6]

Kai Mast — Multiprocessor Operating Systems 33/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Garbage Collection

Clustered Object

Thread(s)Shared Memory

temporary referencepersistent reference

might use

Object must ensure that all references are gone before
removal
Fortunately, we know of all references because of the miss
handler

Kai Mast — Multiprocessor Operating Systems 34/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Inter-Process Communication

IPC is a core component of any modern OS
Executing on local core is more effective (handoff
scheduling)
Cross-process call through local rep

Kai Mast — Multiprocessor Operating Systems 35/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Both Papers in Numbers

Tornado Multikernel
Authors 4 9

Year 1999 2009
Citations 182 497

Why does Multikernel seem to have a higher impact?

Kai Mast — Multiprocessor Operating Systems 36/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Conclusion

Similarities
Threat OS as network of (almost) independent cores
As little globally shared data as possible
However, both assume global shared memory

Differences
Tornado hides more from the user
Barrelfish is built more modular
Targeting different hardware (10 years difference)

Kai Mast — Multiprocessor Operating Systems 37/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Discussion

Is the support for virtual memory a good idea? Should a
modern OS expect the applications to do message
passing?
Is a hardware-neutral operating system realistic?
Even with modularity, can one OS (architecture) cover all
possible configurations? What about low-power
embedded systems?
Are the approaches really future-proof? What about
systems that are distributed across the network?

Kai Mast — Multiprocessor Operating Systems 38/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Exokernels
Yet Another Approach

Figure: ”End-to-End” Design of an Exokernel [5]

Kai Mast — Multiprocessor Operating Systems 39/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Exokernels
Corey

Figure: A Webserver powered by the Corey OS [8]

Kai Mast — Multiprocessor Operating Systems 40/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

Exokernels
Arrakis

Figure: Design of Arrakis (a Barrelfish fork) [8]

Kai Mast — Multiprocessor Operating Systems 41/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References 0
Slides

”Multiprocessors/Multicores”
CS 6410 (Fall 2013) by Yue Gao
”Operating Systems in a Multicore World”
CS 6410 (Fall 2012) by Colin Ponce

Kai Mast — Multiprocessor Operating Systems 42/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References I
Literature

[1] Andrew Baumann et al. “The Multikernel: A New OS
Architecture for Scalable Multicore Systems”. In:
Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles. SOSP ’09. Big Sky,
Montana, USA: ACM, 2009, pp. 29–44. isbn:
978-1-60558-752-3. doi: 10.1145/1629575.1629579.
url: http://doi.acm.org/10.1145/1629575.1629579.

[2] Evgeny Bolotin et al. “Cost Considerations in Network
on Chip”. In: Integration-The VLSI Journal, special
issue on Network on Chip, Volume 38, Issue 38 (2004),
pp. 105–128.

Kai Mast — Multiprocessor Operating Systems 43/47

http://dx.doi.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1629575.1629579

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References II
Literature

[3] Shekhar Borkar. “Thousand Core Chips: A Technology
Perspective”. In: Proceedings of the 44th Annual
Design Automation Conference. DAC ’07. San Diego,
California: ACM, 2007, pp. 746–749. isbn:
978-1-59593-627-1. doi: 10.1145/1278480.1278667.
url: http://doi.acm.org/10.1145/1278480.1278667.

[4] B.K. Daya et al. “SCORPIO: A 36-core research chip
demonstrating snoopy coherence on a scalable mesh
NoC with in-network ordering”. In: Computer
Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. 2014, pp. 25–36. doi:
10.1109/ISCA.2014.6853232.

Kai Mast — Multiprocessor Operating Systems 44/47

http://dx.doi.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
http://dx.doi.org/10.1109/ISCA.2014.6853232

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References III
Literature

[5] Dawson R. Engler, M. Frans Kaashoek, and
James O’toole. “Exokernel: An Operating System
Architecture for Application-Level Resource
Management”. In: 1995, pp. 251–266.

[6] Benjamin Gamsa and Benjamin Gamsa. “Tornado:
Maximizing Locality and Concurrency in a
Shared-Memory Multiprocessor Operating System”. In:
In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI. 1999,
pp. 87–100.

Kai Mast — Multiprocessor Operating Systems 45/47

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References IV
Literature

[7] Jan Heisswolf et al. “The Invasive Network on Chip - A
Multi-Objective Many-Core Communication
Infrastructure”. In: Architecture of Computing Systems
(ARCS), 2014 27th International Conference on. 2014,
pp. 1–8.

[8] Ong Mao et al. Corey: an operating system for many
cores.

[9] Simon Peter and Thomas Anderson. “Arrakis: A Case
for the End of the Empire”. In: Presented as part of the
14th Workshop on Hot Topics in Operating Systems.
Santa Ana Pueblo, NM: USENIX, 2013. url:
https://www.usenix.org/conference/hotos13/arrakis-
case-end-empire.

Kai Mast — Multiprocessor Operating Systems 46/47

https://www.usenix.org/conference/hotos13/arrakis-case-end-empire
https://www.usenix.org/conference/hotos13/arrakis-case-end-empire

Introduction Multikernel Tornado Conclusion Discussion Outlook References

References V
Literature

[10] Understanding Parallel Hardware: Multiprocessors,
Hyperthreading, Dual-Core, Multicore and FPGAs.
url: http://www.ni.com/white-paper/6097/en/.

Kai Mast — Multiprocessor Operating Systems 47/47

http://www.ni.com/white-paper/6097/en/

	Introduction
	Multikernel
	Tornado
	Conclusion
	Discussion
	Outlook

