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Let us recall
Multiprocessor vs. Multicore

Figure: Multiprocessor [10] Figure: Multicore [10]
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Let us recall
Message Passing vs. Shared Memory

Shared Memory
Threads/Processes access the same memory region
Communication via changes in variables
Often easier to implement

Message Passing
Threads/Processes don’t have shared memory
Communication via messages/events
Easier to distribute between different processors
More robust than shared memory
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Let us recall
Miscellaneous

Cache Coherence
Inter-Process Communication
Remote-Procedure Call
Preemptive vs. cooperative Multitasking
Non-uniform memory access (NUMA)
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Current Systems are Diverse

Different Architectures (x86, ARM, ...)
Different Scales (Desktop, Server, Embedded, Mobile ...)
Different Processors (GPU, CPU, ASIC ...)
Multiple Cores and/or Multiple Processors
Multiple Operating Systems on a System (Firmware,
Microkernels ...)
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How about the Future?
Moore’s Law

(Source: Wikimedia Commons)
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How about the Future?
Single-Core doesn’t scale anymore

Figure: Possible power-consumption of a 10GHz chip [3]
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How about the Future?
Rock’s Law

Manufacturing cost increases with amount of
semiconductors
Rock’s Law eventually collides with Moore’s Law
One solution: Higher production quantity
Another approach: Multiple mid-range processors instead
of one high-end processor
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How about the Future?
But...

Multiprocessor Systems are reality today!
Existing Operating System had to be adapted to support
multiple cores
Applications heavily rely on multi-threading (just think of
the assignment...)
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Interconnects are evolving
Direct Wiring does not scale

On-chip networks are more efficient in terms of
power-consumption and area [2].
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Interconnects are evolving
Many-Core Chips

Figure: 36-core Chip from MIT [4]
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Are Operating Systems ready for this?
In-Kernel Locking

n threads on n cores execute the following:
1 f = open ( ” f i l e n a m e ” ) ;
2

3 w h i l e ( t r u e ) {
4 f 2 = dup ( f ) ;
5 c l o s e ( f 2 ) ;
6 }
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Are Operating Systems ready for this?
In-Kernel Locking

Figure: Decreasing performance with increasing amount of Cores
in Linux [8]
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Are Operating Systems ready for this?

OSes optimized for most common configuration(s)
Evolutionary improvements towards scalability
Some special applications are highly coupled to hardware
configuration
Can we abstract from hardware and gain performance?
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Multikernel and Tornado

Figure: Barrelfish/Mulitkernel
[1] Figure: Tornado [6]
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The Multikernel OS
The Paper

”The Multikernel: A new OS architecture for scalable
multicore systems”

Presented on SOSP in 2009
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The Multikernel OS
Author Info

Andrew Baumann
Was post-doc at ETH Zurich
Now at Microsoft Research
Several Projects focused around OS design

Simon Peter
Was post-doc at ETH Zurich
Now at University of Washington
Current Project: Arrakis[9] (a Barrelfish fork)
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The Multikernel OS

The OS itself is a distributed system
Actually, multiple operating systems
Explicit communication between cores
Abstract design to allow easier portability
Note, that only the communication layer is abstracted
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Barrelfish
What is it?

Multikernel OS is just a concept
Barrelfish is an example for an actual implementation
Claims to have all the properties described before
(scalable, modular, portable...)
Let us evaluate and discuss later!
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Barrelfish
Overview

Figure: Structure of Barrelfish [1]
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Barrelfish
Component Summary

Application
(Possibly) distributed over several kernels

Monitor
Generic (same for all cores)
But still single threaded

CPU driver
Architecture/Hardware specific
Single-threaded
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Barrelfish
Memory

Memory is still a shared and global resource
Logic is handled by the monitor, not the CPU driver
Pages of memory a mapped to specific monitors
But virtual/shared memory pages are also possible
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Barrelfish
Performance Evaluation

Figure: Latency of Unmapping a Memory Page [1]
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Barrelfish
Performance Evaluation

Are the numbers meaningful?
No complex applications were evaluated
Only implemented on x86
OS doesn’t support any advanced features yet
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Is this an important paper?

Pros
Proposes a new type of Operating Systems
The concept could represent a paradigm-shift
Such an approach would make OSes ”future proof”

Cons
No complex benchmarks exist yet
Does not support systems that are distributed over the
network
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Open Questions

Does it make sense to split monitor and CPU driver
performance-wise?
What would be a good communication model for
Multikernels?
How to support systems without a global shared memory?
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Other Multikernels
Invasive Computing

Figure: invasIC Architecture [7]
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Tornado

”Tornado: Maximizing Locality and Concurrency in a Shared
Memory Multiprocessor Operating System”

Presented on SOSP in 1999
Evaluated mostly on NUMAchine at UofToronto
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Tornado
Authors

Ben Gamsa
Former Ph.D. student at University of Toronto
Now working at Altera (unrelated to his research)

Orran Krieger
Former VMware employee
Working IBM T.J. Watson Research Center at the time of
publication
Now leading the ”Center for Cloud Innovation” at Boston
University
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Tornado
Overview

Core 1 Core 2

Application 1 Application 2

Clustered Object(s)

Server Object(s)

Kernel

Server Object(s)

Kernel
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Clustered Objects

Figure: Tornado [6]

Same problem as before: Some resources need to be
shared
Shared object can have more than one instance (or
representative)
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Resolving Clustered Objects

User calls a function

Has Reference?Call Object Miss Handler

Object Unknown?

Call Global Miss Handler

Retrieve Reference Forward call to Rep

Yes

No

Yes

No
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Resolving Clustered Objects
Miss Handler

Figure: Miss Handling Table [6]
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Garbage Collection

Clustered Object

Thread(s)Shared Memory

temporary referencepersistent reference

might use

Object must ensure that all references are gone before
removal
Fortunately, we know of all references because of the miss
handler
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Inter-Process Communication

IPC is a core component of any modern OS
Executing on local core is more effective (handoff
scheduling)
Cross-process call through local rep
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Both Papers in Numbers

Tornado Multikernel
Authors 4 9

Year 1999 2009
Citations 182 497

Why does Multikernel seem to have a higher impact?
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Conclusion

Similarities
Threat OS as network of (almost) independent cores
As little globally shared data as possible
However, both assume global shared memory

Differences
Tornado hides more from the user
Barrelfish is built more modular
Targeting different hardware (10 years difference)
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Discussion

Is the support for virtual memory a good idea? Should a
modern OS expect the applications to do message
passing?
Is a hardware-neutral operating system realistic?
Even with modularity, can one OS (architecture) cover all
possible configurations? What about low-power
embedded systems?
Are the approaches really future-proof? What about
systems that are distributed across the network?
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Exokernels
Yet Another Approach

Figure: ”End-to-End” Design of an Exokernel [5]
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Exokernels
Corey

Figure: A Webserver powered by the Corey OS [8]
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Exokernels
Arrakis

Figure: Design of Arrakis (a Barrelfish fork) [8]
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References 0
Slides

”Multiprocessors/Multicores”
CS 6410 (Fall 2013) by Yue Gao
”Operating Systems in a Multicore World”
CS 6410 (Fall 2012) by Colin Ponce
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