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Multisensor Integration and Fusion in 
Intelligent Systems 

Abstract-Interest has been growing in the use of multiple sensors to 
increase the capabilities of intelligent systems. The issues involved in 
integrating multiple sensorsinto the operation of a system are presented in 
the context of the type of information these sensors can uniquely provide. 
The advantages gained through the synergistic use of multisensory infor- 
mation can be decomposed into a combination of four fundamental as- 
pects: the redundancy, complementarity, timeliness, and cost of the infor- 
mation. The role of multiple sensors in the operation of a particular system 
can then be defined as the degree to which each of these four aspects is 
present in the information provided by the sensors. A distinction is made 
between multisensor integration and the more restricted notion of multi- 
sensor fusion to separate the more general issues involved in the integra- 
tion of multiple sensory devices at the system architecture and control 
level, from the more specific issues-possibly mathematical or statisti- 
cal-involved in the actual combination (or fusion) of multisensory infor- 
mation. A survey is provided of the increasing number and variety of 
approaches to the problem of multisensor integration and fusion that have 
appeared in the literature in recent years-ranging from general paradigms, 
frameworks, and methods for integrating and fusing multisensory informa- 
tion, to existing multisensor systems used in different areas of application. 
General multisensor fusion methods, sensor selection strategies, and world 
models are surveyed, along with approaches to the integration and fusion 
of information from combinations of different types of sensors. Short 
descriptions of the role of multisensor integration and fusion in the 
operation of a number of existing mobile robots are provided, together 
with proposed high-level multisensory representations suitable for mobile 
robot navigation and control. Existing multisensor systems are surveyed in 
the following areas of application: industrial tasks like material handling, 
part fabrication (e.g., welding), inspection, and assembly; military com- 
mand and control for battle management; space; target tracking; inertial 
navigation; and the remote sensing of coastal waters. A discussion is 
included of possible problems associated with creating a general methodol- 
ogy for multisensor integration and fusion-focusing on the methods used 
for modeling error or uncertainty in the integration and fusion process 
(e.g., the registration problem), the actual sensory information (i.e., the 
sensor model), and the operation of the overall system (e.g., multisensor 
calibration). 

I. INTRODUCTION 

N RECENT YEARS interest has been growing in the I synergistic use of multiple sensors to increase the capa- 
bilities of intelligent machines and systems. For these 
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systems to use multiple sensors effectively, some method is 
needed for integrating the information provided by these 
sensors into the operation of the system. While in many 
multisensor systems the information from each sensor 
serves as a separate input to the system. the actual combi- 
nation or fusion of information prior to its use in the 
system has been a particularly active area of research. 
Typical of the applications that can benefit from the use of 
multiple sensors are industrial tasks like assembly, military 
command and control for battlefield management, mobile 
robot navigation, multitarget tracking, and aircraft naviga- 
tion. Common among all of these applications is the 
requirement that the system intelligently interact with and 
operate in an unstructured environment without the com- 
plete control of a human operator. 

A .  Biological Examples of the Synergistic Integration of 
Multisensor Information 

Two of the major abilities that a human operator brings 
to the task of controlling a system are the use of a flexible 
body of knowledge and the ability to integrate synergisti- 
cally information of different modality obtained through 
lus or her senses. The increasing use of knowledge-based 
expert systems is an attempt to capture some aspects of 
this first ability; current research in multisensor integra- 
tion is an attempt to capture, and possibly extend to 
additional modalities, aspects of this second ability. Thus a 
human’s or other animal’s ability to integrate multisensory 
information can provide an indication of what is ulti- 
mately achievable for intelligent systems (i.e., an existence 
proof) and insight into possible future research directions. 

1) Ventriloquism: A well-known example of human mul- 
tisensory integration is ventriloquism, in which the voice of 
the ventriloquist seems to an observer to come from the 
ventriloquist’s dummy. The ability of visual information 
(the movement of the dummy’s lips) to dominate the 
auditory information coming from the ventriloquist dem- 
onstrates the existence of some process of integration 
whereby information from one modality (audition) is inter- 
preted solely in terms of information from another modal- 
ity (vision). Howard [l] has reported research that found 
the discordance between visual and auditory information 
becomes noticeable only after the source of each has been 
separated beyond 30” relative to the observer (see Fig. 1). 
Notwithstanding ventriloquism, the use of information 
from these two modalities can increase the probability of 
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Fig. 1. Ventriloquism demonstrates existence of some process of human 

multisensory integration through ability of visual information (move- 
ment of dummy’s lips) to dominate auditory information (from ventril- 
oquist) for up to 30” separation of these information sources relative to 
observer. 
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Fig. 2. Left eye and pit organ of rattlesnake are receiving information 
from Region 1 in environment. Information from both sources is 
represented on surface of optic tectum in similar spatial orientation. 
(Adapted from [2, p. 1211.) 

detecting an event in the environment when compared to 
the use of either modality alone. 

2) Pit Vipers and Rattlesnakes: Although in humans the 
processes of multisensory integration have not yet been 
found, research on the less complex nervous systems of the 
pit viper and the rattlesnake has identified neurons in 
these snakes’ optic tectums (a midbrain structure found in 
vertebrates) that are responsive to both visual and infrared 
information [2]. As shown in Fig. 2, both the left eye and 
pit organ of a rattlesnake are receiving information from 
Region 1 in the environment. Infrared information from 
the pit organ, together with visual information from the 

eye, are represented on the surface of the optic tectum in a 
similar spatial orientation so that each region of the optic 
tectum receives information from the same region of the 
environment. This allows certain “ multimodal” neurons to 
respond to different combinations of visual and infrared 
information. Certain “or” neurons respond to information 
from either modality and could be used by the snake to 
detect the presence of prey in dim lighting conditions, 
while certain “and” neurons, which only respond to infor- 
mation from both modalities, could be used to recognize 
the difference between a warm-blooded mouse and a cool- 
skinned frog. The “ and” neurons have been whimsically 
described as mouse detectors. In evolutionary terms, it 
seems likely that similar integration processes take place in 
the tectums of most other vertebrates-although at present 
only Newman and Hartline’s [2] work on pit vipers and 
rattlesnakes has been reported. 

B. Previous Surveys and Reviews 

A number of recent papers have surveyed and reviewed 
different aspects of multisensor integration and fusion. An 
article on multisensor integration in the Encyclopedia of 
Artificial Intelligence has focused on the issues involved in 
object recognition [3]. Mitiche and Agganval [4] discuss 
some of the advantages and problems involved with the 
integration of different image processing sensors, and re- 
view recent work in that area. Garvey [5] has surveyed 
some of the different artificial intelligence approaches to 
the integration and fusion of information, emphasizing the 
fundamental role in artificial intelligence of the inference 
process for combining information. A number of the dif- 
ferent knowledge representations, inference methods, and 
control strategies used in the inference process are dis- 
cussed in his paper. Mann [6] provides a concise literature 
review as part of his paper concerning methods for integra- 
tion and fusion that are based on the maintenance of 
consistent labels across different sensor domains. Luo and 
Kay [7], and Blackman [SI have surveyed some of the 
issues of and different approaches to multisensor integra- 
tion and fusion, with Blackman providing an especially 
detailed discussion of the data association problem (Sec- 
tion VI-D). Recent research workshops have focused on 
the multisensor integration and fusion issues involved in 
manufacturing automation [9] and spatial reasoning [lo]. 

C. Overview of this Paper 

Section I1 serves both to describe multisensor integra- 
tion and fusion and to set the stage for the presentation in 
the four subsequent sections of a broad survey of current 
approaches to the problem. In each of these subsequent 
sections, increasingly more specific approaches are sur- 
veyed: from general paradigms and methods for integrat- 
ing and fusing multisensory information, to existing multi- 
sensor systems used in different areas of application. 

Section I1 describes the role of multisensor integration 
and fusion in the operation of an intelligent system. Multi- 
sensor integration and the related notion of multisensor 
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fusion are defined and distinguished. A general pattern of 
multisensor integration and fusion is presented to highlight 
the distinction between the integration and the fusion of 
information in the overall operation of a system. The 
potential advantages in integrating multiple sensors are 
then discussed in terms of four fundamental aspects of the 
information provided by the sensors. 

Section I11 presents approaches to different aspects of 
multisensor integration and fusion that are quite general in 
terms of their range of applicability. Initially a variety of 
paradigms, frameworks, and control structures are pre- 
sented that have been proposed for the overall multisensor 
integration process. Work is then presented relating to two 
important integration functions: the preselection and real- 
time selection of sensors and the use of world models. The 
section concludes with a survey of general multisensor 
fusion methods. 

Section IV surveys approaches to the integration and 
fusion of information from combinations of different types 
of sensors, with special emphasis given to vision and tactile 
sensor combinations because of the broad range of capa- 
bilities that this combination can provide an industrial 
robot. 

Section V details the critical role played by multisensor 
integration and fusion in enabling mobile robots to oper- 
ate in uncertain or unknown dynamic environments. A 
variety of proposed high-level representations for multisen- 
sory information are presented that are suitable for mobile 
robot control and navigation. The section concludes with a 
discussion of different sensor combinations that have been 
used in mobile robots, and short descriptions of the role of 
multisensor integration and fusion in the navigation and 
control of a number of existing mobile robots. 

Section VI surveys a variety of multisensor systems in 
the following areas of application: industrial tasks llke 
material handling, part fabrication (e.g., welding), inspec- 
tion, and assembly; military tasks (e.g., command and 
control for battle management); space; target tracking; 
inertial navigation; and the remote sensing of coastal wa- 
ters. 

Section VI1 concludes with a discussion of possible 
problems and future research directions in the area of 
multisensor integration and fusion. Discussion of the pos- 
sible problems centers around the methods used for model- 
ing error or uncertainty in the integration and fusion 
process, the actual sensory information, and the operation 
of the overall system. 

11. THE ROLE OF MULTISENSOR INTEGRATION AND 
FUSION IN INTELLIGENT SYSTEMS 

In the operation of an intelligent system, the role of 
multisensor integration and fusion can best be understood 
with reference to the type of information that the inte- 
grated multiple sensors can uniquely provide the system. 
The potential advantages gained through the synergistic 
use of this multisensory information can be decomposed 
into a combination of four fundamental aspects: the re- 

dundancy, complementarity, timeliness, and cost of the 
information. Prior to discussing these aspects, this section 
first provides a definition of the distinction between the 
notions of the integration and the fusion of multisensory 
information; secondly, a general pattern of multisensor 
integration and fusion is presented within the context of 
an overall system architecture to highlight some of the 
important functions in the integration process. 

A .  Multisensor Integration versus Fusion 

Multisensor integration, as defined in this paper, refers 
to the synergistic use of the in formation provided by 
multiple sensory devices to assist in the accomplishment of 
a task by a system. An additional distinction is made 
between multisensor integration and the more restricted 
notion of multisensor fusion. Multisensor fusion, as de- 
fined in this paper, refers to any stage in the integration 
process where there is an actual combination (or fusion) of 
different sources of sensory information into one represen- 
tational format. (This definition would also apply to the 
fusion of information from a single sensory device ac- 
quired over an extended time period.) Although the dis- 
tinction of fusion from integration is not standard in the 
literature, it serves to separate the more general issues 
involved in the integration of multiple sensory devices at 
the system architecture and control level, from the more 
specific issues involving the actual fusion of sensory infor- 
mation-e.g., in many integrated multisensor systems the 
information from one sensor may be used to guide the 
operation of other sensors in the system without ever 
actually fusing the sensors’ information (e.g., Section IV-B). 

B. A General Pattern 

Fig. 3 is meant to represent a general pattern of multi- 
sensor integration and fusion in a system. While the fusion 
of information takes place at the nodes in the figure, the 
entire network structure, together with the integration 
functions, shown as part of the system, are part of the 
multisensor integration process. In the figure, n sensors 
are integrated to provide information to the system. The 
outputs x1 and x2 from the first two sensors are fused at 
the lower left-hand node into a new representation xl,*. 
The output x3 from the third sensor could then be fused 
with xl,* at the next node, resulting in the representation 
x ~ , ~ , ~ ,  which might then be fused at nodes higher in the 
structure. In a similar manner the output from all n 
sensors could be integrated into an overall network struc- 
ture. The dashed lines from the system to each node 
represent any of the possible signals sent from the integra- 
tion functions within the system. The three functions shown 
in the figure are some of the functions typically used as 
part of the integration process. “Sensor selection” can 
select the most appropriate group of sensors to use in 
response to changing conditions, sensory information can 
be represented within the “world model,” and the infor- 
mation from different sensors may need to be “trans- 
formed” before it can be fused or represented in the world 
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SYSTEM impossible to perceive using just the information from 
each individual sensor operating separately. If the features 
to be perceived are considered dimensions in a space of 
features, then complementary information is provided 
when each sensor is only able to provide information 
concerning a subset of features that form a subspace in the 
feature space, i.e., each sensor can be said to perceive 
features that are independent of the features perceived by 
the other sensors; conversely, the dependent features per- 
ceived by sensors providing redundant information would 
form a basis in the feature space. 

More timely information, as compared to the speed at 
whch it could be provided by a single sensor, may be 
provided by multiple sensors due to either the actual speed 
of operation of each sensor, or the processing parallelism 
that may be possible to achleve as part of the integration 
process. 

Less costly information, in the context of a system with 
multiple sensors, is information obtained at a lesser cost 
when compared to the equivalent information that could 
be obtained from a single sensor. Unless the information 
provided by the single sensor is being used for additional 

Fig. 3. General pattern of multisensor integration and fusion in system. 

model. Shown along the right-side of the figure is a scale 
indicating the level of representation of the information at 
the corresponding level in the network structure. The 
transformation from lower to higher levels of representa- 
tion as the information moves up through the structure is 
common in most multisensor integration processes. At the 
lowest level, raw sensory data are transformed into infor- 
mation in the form of a signal. As a result of a series of 
fusion steps, the signal may be transformed into progres- 
sively more abstract numeric or symbolic representations. 
This “ signals-to-symbols” paradigm is common in compu- 
tational vision [ll]. 

C. Potential Advantages in Integrating Multiple Sensors 

The purpose of external sensors is to provide a system 
with useful information concerning some features of inter- 
est in the system’s environment. The potential advantages 
in integrating and/or fusing information from multiple 
sensors are that the information can be obtained more 
accurately, concerning features that are impossible to per- 
ceive with individual sensors, in less time, and at a lesser 
cost. These advantages correspond, respectively, to the 
notions of the redundancy, complementarity, timeliness, 
and cost of the information provided the system. 

Redundant information is provided from a group of 
sensors (or a single sensor over time) when each sensor is 
perceiving, possibly with a different fidelity, the same 
features in the environment. The integration or fusion of 
redundant information can reduce overall uncertainty and 
thus increase the accuracy with which the features are 
perceived by the system. Multiple sensors providing redun- 
dant information can also serve to increase reliability in 
the case of sensor error or failure. 

Complementary information from multiple sensors al- 
lows features in the environment to be perceived that are 

functions in the system, the total cost of the single sensor 
should be compared to the total cost of the integrated 
multisensor system. 

The role of multisensor integration and fusion in the 
overall operation of a system can be defined as the degree 
to which each of these four aspects is present in the 
information provided by the sensors to the system. Redun- 
dant information can usually be fused at a lower level of 
representation compared to complementary information 
because it can more easily be made commensurate. Com- 
plementary information is usually either fused at a sym- 
bolic level of representation, or provided directly to differ- 
ent parts of the system without being fused. While in most 
cases the advantages gained through the use of redundant, 
complementary, or more timely information in a system 
can be directly related to possible economic benefits, in 
one case fused information was used in a distributed 
network of target tracking sensors just to reduce the band- 
width required for communication between groups of sen- 
sors in the network (Section VI-D). 

Fig. 4 illustrates the distinction between complementary 
and redundant information by using the network structure 
from Fig. 3 to perform, hypothetically, the task of object 
discrimination. Four objects are shown in Fig. 4(a). They 
are distinguished by the two independent features, shape 
and temperature. Sensors 1 and 2 provide redundant infor- 
mation concerning the shape of an object, and Sensor 3 
provides information concerning its temperature. Fig. 4(b) 
and (c) show hypothetical frequency distributions for both 
square and round objects, representing each sensor’s his- 
torical (i.e., tested) responses to such objects. The bottom 
axes of both figures represent the range of possible sensor 
readings. The output values x1 and x2 correspond to some 
numerical “degree of squareness or roundness” of the 
object as determined by each sensor, respectively. Because 
Sensors 1 and 2 are not able to detect the temperature of 
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an object, objects A and C (as well as B and D) cannot be 
distinguished. The dark portion of the axis in each figure 
corresponds to the range of output values where there is 
uncertainty as to the shape of the object being detected. 
The dashed line in each figure corresponds to the point at 
which, depending on the output value, objects can be 
distinguished in terms of a feature. Fig. 4(d) is the fre- 
quency distribution resulting from the fusion of x1 and x2. 
Without specifying a particular method of fusion, it is 
usually true that the distribution corresponding to the 
fusion of redundant information would have less disper- 
sion than its component distributions. (Under very general 
assumptions, a plausibility argument can be made that the 
relative probability of the fusion process not reducing the 
uncertainty is zero [12].) The uncertainty in Fig. 4(d) is 
shown as approximately half that of Fig. 4(b) and (c). In 
Fig. 4(e), complementary information from Sensor 3 con- 
cerning the independent feature temperature is fused with 
the shape information from Sensors 1 and 2 shown in 
Fig. 4(d). As a result of the fusion of this additional 
feature, it is now possible to discriminate between all four 
objects. This increase in discrimination ability is one of the 
advantages resulting from the fusion of complementary 
information. As mentioned before, the information result- 
ing from this second fusion could be at a higher represen- 
tational level (e.g., the result of the first fusion, x ~ , ~ ,  may 
still be a numerical value, while the result of the second 
x ~ , ~ , ~ ,  could be a symbol representing one of the four 
possible objects). 

111. GENERAL APPROACHES TO MULTISENSOR 
INTEGRATION AND FUSION 

This section presents approaches to different aspects of 
the multisensor integration and fusion problem discussed 
in the previous section. Although some of the approaches 
were originally presented in terms of a specific application 
or combination of sensors, they are distinguished by their 
applicability to a broad range of systems in a number of 
possible applications. 

A .  Paradigms and Frameworks for Integration 

1) Hierarchical Phase- Template Paradigm: Luo and Lin 
[13]-[17] have proposed a general paradigm for multisen- 
sor integration in robotic systems based upon four distinct 
temporal phases in the sensory information acquisition 
process (see Fig. 5). The four phases, “far away,” “near 
to,” “ touching,” and “manipulation,” are distinguished at 
each phase by the range over which sensing will take place, 
the subset of sensors typically required, and, most impor- 
tantly, the type of information desired. During the first 
phase, “far away,” only global information concerning the 
environment is obtained. Typical information at t h s  stage 
would be the detection, location, or identity of objects in a 
scene. The most likely types of sensors to be used during 
this phase would be noncontact sensors like vision cameras 
and range finding devices. If the scene is found to be of 
sufficient interest during the first phase, the manipulator 

COLD COLD HOT HOT (a) 
D 

1 & 
SQUARE Rcus xI.2 

Fig. 4. Discrimination of four different objects using redundant and 
complementary information from three sensors. (a) Four objects (A, B, 
C. and D) distinguished by features “shape” (square vs. round) and 
“temperature” (hot versus cold). (b) Two-dimensional (2-D) distribu- 
tions from Sensor 1 (shape). (c) Sensor 2 (shape). (d) 2-D distributions 
resulting from fusion of redundant shape information from Sensors 1 
and 2. (e) Three-dimensional (3-D) distributions resulting from fusion 
of complementary information from Sensors 1 and 2 (shape), and 
Sensor 3 (temperature). 

Fig. 5. Four phases of hierarchical phase-template paradigm. 
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can zoom in to obtain more detailed information. This 
leads to the second phase, “near to.” Usually at t h s  close 
range it is not possible to see the entire object, so noncon- 
tact sensors like proximity sensors or “eye-in-hand’’ vision 
systems, mounted on the gripper of the manipulator, are 
used. If it is desired to confirm or integrate the informa- 
tion from the previous two phases, one can proceed to the 
third phase, “ touching.” Contact sensors such as tactile 
sensors might be used at this phase. Finally if it is neces- 
sary to manipulate the object, one can proceed to the 
fourth phase, “manipulating.” Sensors providing informa- 
tion concerning force/torque, slippage, and weight would 
typically be used during manipulation. 

The information acquired at each phase is represented in 
the form of a distinct framelike template. Each template 
represents information that is both common to all phases 
(e.g., position and orientation of an object) and specific to 
the particular phase. During each phase of operation, the 
information acquired by each sensor is stored as an in- 
stance of that phase’s template. The information from each 
sensor can then be fused into a single instance of the 
template (Section 111-E-3 provides a description of the 
fusion method used). 

2) Neural Networks: Current research in neural net- 
works (e.g., [18]-[20]) is providing a common paradigm for 
the interchange of ideas between neuroscience and robotics; 
Pellionisz [21] has even introduced the term “neurobotics” 
to describe the possible use of brainlike control and repre- 
sentation in robotic systems. Although related to the adap- 
tive learning control structure described in Section 111-B-3, 
neural networks provide a fairly well-established formal- 
ism with which to model the multisensor integration pro- 
cess. Neurons can be trained to represent sensory informa- 
tion and, through “associative recall,” complex combina- 
tions of the neurons can be activated in response to 
different sensory stimuli. “Simulated annealing” is one of 
many different techniques that can be used to find a global 
optimal state in a network based upon the local state of 
activation of each neuron in the network. Simulated an- 
nealing has been used to find optimal global paths for 
mobile robot navigation (Section V-B-2). “Self-organizing 
feature maps” as developed by Kohonen [20] can be used 
to reduce the dimensionality of the sensor signals while 
preserving their topological relationshps. 

Pearson er al. [22] have presented a neural network 
model for multisensor fusion based on the barn owl’s use 
of visual and acoustic information for target localization. 
Separate visual and acoustic maps are fused into a single 
map (corresponding to the owl’s optic tectum) which is 
then used for head orientation. Jakubowicz [23] has pre- 
sented a neural network-based multisensor system that is 
able to reconfigure itself adaptively in response to sensor 
failure, and Dress [24] has explored the use of frequency- 
coded sensor information for fusion in neural networks. 

3) Logical Sensors: A “logical sensor,” as proposed by 
Henderson and Shilcrat [25], [26] and then extended in 
[27]-[33], is a specification for the abstract definition of a 
sensor that can be used to provide a uniform framework 
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for multisensor integration. Through the use of an abstract 
definition of a sensor, the unnecessary details of the actual 
physical sensor are separated from their functional use in a 
system. In a manner similar to how an abstract data type 
separates the user from unnecessary algorithmic detail, the 
use of logical sensors can provide any multisensor system 
with both portability and the ability to adapt to technolog- 
ical changes in a manner transparent to the system. 

Fig. 6 shows the essential elements of a logical sensor. 
Each logical sensor can serve as an element in a network of 
logical sensors, which itself can be viewed as a logical 
sensor. The “logical sensor name” uniquely defines a logi- 
cal sensor. The “characteristic output vector” describes the 
data type of the stream of output vectors produced by the 
logical sensor. The “control commands” input to a logical 
sensor consist of both commands necessary to control the 
logical sensor and commands that are just passing through 
to other sensors lower in the network. The “control com- 
mand interpreter” processes the incoming commands and 
sends appropriate commands to logical sensors lower in 
the network. The “selector” monitors the control com- 
mands issued to the logical sensor and the results of the 
various “ program units”- acting as a “microexpert sys- 
tem” which knows the required function of the logical 
sensor. Each program unit serves to perform any required 
computation on the inputs to the unit. The logical sensor 
inputs are the output vectors of logical sensors lower in the 
network. When the logical sensor is an actual physical 
sensor, the raw data sensed from the environment can be 
considered as null inputs. 

A hypothetical logical sensor-based range finder is shown 
in Fig. 7 that incorporates three physical sensors: an 
ultrasonic range finder and two cameras. Both cameras are 
used as input to a fast and a slow stereo logical sensor. 
Each of these logical sensors, which differ in terms of the 
speed and accuracy of their processing algorithms, are 
used as input to an overall stereo logical sensor which just 
serves a switching function based on control commands 
from the top-level logxal sensor. The entire network of 
logical and physical sensors can provide for a range finder 
that is both robust in terms of the lighting conditions in 
whch it can operate (i.e., the ultrasonic sensor for poor 
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Fig. 7. Logical sensor network for range finder. (Adapted from 
Fig. 61.) 

lighting conditions) and, depending on time constraints, 
the speed at which it can operate. The range information 
could possibly be made more accurate if the redundant 
information from the stereo and ultrasonic sensors is fused 
at the top-level logical sensor in the network. 

4) Object-Oriented Programming: In a similar manner to 
the logical sensors mentioned earlier, object-oriented pro- 
gramming is a methodology that can be used to develop a 
uniform framework for implementing multisensor tasks; 
Henderson and Weitz [29], [31] have, in fact, discussed the 
development of logical sensor specifications within an ob- 
ject-oriented programming context. In most object-ori- 
ented multisensor applications, each sensor is represented 
as an object. Objects communicate by passing messages 
that invoke specialized sensor processing procedures 
(“methods”) based on the sensor’s attributes and behavior. 
Each method is transparent to other objects, allowing 
possibly different physical sensors to be used interchange- 
ably. Rodger and Browse [34] have used object-oriented 
programming for multisensor object recognition, and Allen 
[35] has developed an object-oriented framework for multi- 
sensor robotic tasks. 

B. Control Structures 

Tlus section presents different structures that have been 
used to control the overall integration and fusion process. 
Control structures based on artificial intelligence (e.g., 
production systems) have not been included because a 
thorough discussion of their use in the context of multisen- 
sor integration and fusion can be found in [5 ] .  

I )  The NBS Sensoly and Control Hierarchy: The Center 
for Manufacturing Engineering at the National Bureau of 
Standards (NBS) is implementing an experimental factory 
called the Automated Manufacturing Research Facility 
(AMRF). As part of the AMRF, a multisensor interactive 
hierarchical robot control system [36]-[40] is being devel- 
oped based, in part, on the mathematical formalism called 
the cerebellar model arithmetic computer [41], [42]. As 
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Fig. 8. NBS sensory and control herarchy used to control multisensor 
robot. (Adapted from [38, figs. 5.24 and 9.61.) 

shown in Fig. 8, the structure of the control system in 
AMRF consists of an ascending “sensory processing” her- 
archy coupled to a descending “ task-decomposition’’ con- 
trol hierarchy via “world models” at each level. Input to 
the world model at each level comes from both the task 
unit at that level, and other unspecified locations in the 
system. The use of multiple levels is motivated by the 
observation that the complexity of a control program 
grows exponentially as the number of sensors and their 
associated processing increases. By isolating related por- 
tions of the required processing at one level, tlus complex- 
ity can be reduced. The large number of low-level process- 
ing tasks, wluch usually have to be done in real time, can 
be separated from the fewer, more complex, higher level 
processing tasks so that the required processing time at 
each level can become nearly equal. Assuming the required 
communication between processing levels will be much less 
than the communication within levels, complexity is re- 
duced by requiring only a limited number of communica- 
tion channels between levels. If the processing at each level 
can be done in parallel, the addition of more levels will not 
result in an exponential increase in complexity. The amount 
of processing at each level is further reduced by the use of 
a priori knowledge from the world model. The world 
models provide predictions to the sensory system concern- 
ing the incoming sensory information so that the amount 
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of processing required can be reduced. The use of a world 
model promotes modularity because the specific informa- 
tion requirements of the sensory and control hierarches 
are decoupled. 

Fig. 8 provides an example of the control of a multisen- 
sor robot using the NBS hierarchy. Raw sensory data from 
the environment enter the system at the bottom. At this 
lowest level, most of the required sensory processing will 
be continuous monitoring of the robot’s joint positions. 
Any deviation between the actual and expected data is sent 
as feedback information to the servos, and as summary 
information to the next level in the sensory processing 
hierarchy. More complex data, like that from vision sen- 
sors, is sent through to higher levels unmodified. At the 
very hghest level in the system, the complex task and 
top-level world model filter down to lower levels in the 
herarchy both expected and desired information values. It 
is at the intermediate levels where both of these informa- 
tion flows meet and interact. Based upon current sensory 
information, the world models are updated. The updated 
world models can then serve to modify the desired task 
control actions until, at the lowest level, the necessary 
drive signals are sent to the robot to initiate actions in the 
environment. 

2) Distributed Blackboard: A blackboard architecture al- 
lows economical communication between distributed sen- 
sory subsystems in an integrated multisensor system. Each 
subsystem can send time-stamped summary output to a 
blackboard where it becomes available to any fusion pro- 
cess as well as the integration functions. The time stamp 
on the output in the blackboard allows for sensor informa- 
tion to be made commensurate before being fused. The 
blackboard can contain any system information needed by 
the integration functions. Any number of different fusion 
methods can be implemented using the output from the 
blackboard. Harmon et al. [43] have used a blackboard 
architecture to compare different methods of multisensor 
fusion, and Harmon (Section V-D-3) has used a black- 
board architecture for autonomous vehicle control. 

3) Adaptive Learning: Miller et al. [44-[46] have ap- 
plied an adaptive learning approach to the multisensor- 
based control of robotic manipulators. In experiments 
using this approach, the performance accuracy was limited 
by the resolution of the sensor feedback rather than by any 
limitations in the control structure. Adaptive learning is a 
method of control in which the system “discovers” the 
appropriate signals for control based on the output of the 
sensors. The system is taught a representative sample of 
correlated control signals and associated sensory outputs 
over the range of signals and sensory outputs encountered 
by the system. Based on the associations developed during 
t h s  teaching phase, it is possible to have the system 
respond to any combination of sensory outputs with an 
appropriate control signal. The system requires no a priori 
knowledge of the relationship between the structural kine- 
matics of the robot, or the desired control signals and their 
associated sensory outputs. It is t h s  feature of the adap- 

are possibly multiple sensors interacting to produce com- 
plex output. 

C. Sensor Selection Strategies 

Sensor selection is one of the integration functions that 
can enable a multisensor system to select the most appro- 
priate configuration of sensors (or sensing strategy) from 
among the sensors available to the system. Two different 
approaches to the selection of the type, number, and 
configuration of sensors to be used in the system can be 
distinguished: preselection during design or initialization, 
and real-time selection in response to changing environ- 
mental or system conditions. 

I )  Preselection: As an initial step towards a general 
methodology for optimal sensor design, Beni et al. [47] 
have derived a general relationshp between the number 
and operating speed of available sensing elements as a 
function of their response and processing times. T h s  rela- 
tionship can be used to determine the optimal arrangement 
of the sensing elements in a multisensor system. In addi- 
tion to the actual geometric arrangement of the sensing 
elements, consideration of the choice between adding sens- 
ing elements (static sensing) and moving the elements 
(dynamic sensing) is used in determining the optimal ar- 
rangement. 

2) Real-Time Selection: Hutchinson et al. [48] have pre- 
sented an approach to planning sensing strategies for 
object recognition in a robotic workcell. One sensor is used 
to form an initial set of object hypotheses and then subse- 
quent sensors are chosen so as to disambiguate maximally 
the remaining object hypotheses. Grimson [49] has also 
considered the problem of recognizing objects in the 
workspace of a robot using minimal sets of sensory infor- 
mation, and Taylor and Taylor [50] have used “dynamic 
error probability vectors” to select the appropriate sensors 
necessary for the recovery from errors during an automatic 
assembly process. 

D. World Models 

The use of world models enables a multisensor system to 
both store and reason with previously acquired sensory 
information. World models are usually defined in terms of 
a high-level representation. Sensory information can be 
either added to a predefined model of the world (i.e., the 
system’s environment), or used to create the model dynam- 
ically during operation. The majority of the research re- 
lated to the development of multisensor world models has 
been within the context of the development of suitable 
hgh-level representations for multisensor mobile robot 
navigation and control. Section V-B describes a number of 
examples of world models used in mobile robots. Included 
in this section are two representations that are more gen- 
eral in nature. These representations were developed withn 
the context of a previously mentioned multisensor integra- 
tion framework (logical sensors) and control structure (the - -  

tive learning approach that makes it attractive when there ’ NBS hierarchy). 
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TABLE I 
GENERAL METHODS OF MULTISENSOR FUSION 

Operating Type of 
Environ- Sensory Information Measurement Fusion 

Method ment Information Representation Uncertainty Consistency Technique 
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Kalman 
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Bayesian estimate 
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Bayesian 
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decision 
theory 
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rules 

dynamic 

dynamic 

static 

static 

static 

static 

static 

static 

redundant 

redundant 

redundant 

redundant 

redundant 

redundant 

redundant 

redundant 

and complementary 

and complementary 

and complementary 

raw sensor 
readings 

probability 
distribution 

probability 
distribution 

probability 

probability 
distribution 

distribution 

proposition 

proposition 

proposition 

- (thresholding 

additive Gaussian (thresholding. 
noise calibration) 

additive Gaussian largest digraph 
noise 

possible) 

in relation 
matrix 

additive Gaussian c-contamination 

additive noise c-contamination 
noise 

level of support - 

degree of truth - 
versus ignorance 

confidence factor - 

weighted 
average 

filtering of 
system model 

maximum Bayesian 
estimate of 
consensus 
sensor 

maximum Bayesian 
estimate 

robust minimax 
decision rule5 

logical inference 

logical inference 

logical inference 

I )  The Multisensor Kernel System: Henderson et al. [51], 
[52] have presented the multisensor kernel system as a 
means of providing a representation for sensor informa- 
tion that is compatible with the specification of logical 
sensors (Section 111-A-3). Object features are extracted 
from low-level sensory data and organized into a three- 
dimensional “ spatial proximity graph” that makes explicit 
the neighborhood relations between features. Each feature 
is defined in terms of a logical sensor and is available to 
the system as the output of the logical sensor’s characteris- 
tic vector. Subsequent sensory data can then either be 
matched in terms of the spatial proximity graph, or a “k-d 
tree” (a binary tree with k-dimensional keys that allows 
the nearest neighbors of one of k features to be found) is 
constructed, using the proximity graph, for faster process- 
ing. 

2) The NBS Sensory System: Shneier et al. [53], [55], and 
Kent et al. [54] have described the kinds of processes 
involved in the higher levels of the sensory system of the 
NBS herarchy (Section 111-B-1). World models at each 
level in the herarchy are used to create initial expectations 
about the form of the sensory information available at that 
level and then to generate predictions for the task control 
units in the hierarchy so that they do not have to wait for 
sensory processing to finish. Errors between the sensed 
information and the world model are used initially to 
register the model and later to maintain the consistency of 
the model during operation of the system. 

E. General Fusion Methods 

This section surveys different methods that have been 
proposed for general multisensor fusion (discussion of 
additional fusion methods relating to specific applications 
is included in Sections IV-VI). Most methods of multisen- 
sor fusion make explicit assumptions concerning the na- 
ture of the sensory information. The most common as- 
sumptions include the use of a measurement model for 

each sensor that includes a statistically independent addi- 
tive Gaussian error or noise term (i.e., location data) and 
an assumption of statistical independence between the 
error terms for each sensor. Many of the differences in the 
fusion methods included below center on their particular 
techniques (e.g., calibration, thresholding) for transforming 
raw sensory data into a form so that the above assump- 
tions become reasonable and a mathematically tractable 
fusion method can result. An excellent introduction to the 
conceptual problems inherent in any fusion method based 
on these common assumptions has been provided by 
kchardson and Marsh [12]. Their paper provides a proof 
that the inclusion of additional redundant sensory infor- 
mation almost always improves the performance of any 
fusion method based on optimal estimation. 

Pau [56], [57] describes a number of statistical pattern- 
recognition techniques that are appropriate for multisensor 
fusion. All of these techniques could be used to reduce the 
error in classifying objects through the use of multiple 
sensors to provide redundant information concerning fea- 
tures of the objects. To avoid an exponential increase in 
complexity as sensors are added to a system, a key require- 
ment is that the number of features and levels in the 
recognition process increase at a slower rate than the 
number of sensors. To meet this requirement it becomes 
necessary to improve the overall methods of feature extrac- 
tion and selection-two major areas of interest in pattern 
recognition. Thus multisensor fusion becomes a problem 
within the context of statistical pattern recognition. Pau 
describes a number of operators and techniques that can 
fuse the features perceived by the sensors to limit their 
growth as additional sensors are added [56] and introduces 
a representation for multisensor fusion that is based on 
“context truth maintenance” [57]. 

Table I summarizes for comparison the relevant aspects 
of each general multisensor fusion method presented in 
this section. The sequence in which the methods are pre- 
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sented corresponds roughly to the increasingly high levels 
of representation of the information being fused (see Fig. 
3). The representations used extend from low-level proba- 
bility distributions for statistical inference to hgh-level 
logical propositions used in production rules for logical 
inference. In addition to the level of representation of the 
multisensory information, distinctions can be made as to 
whether the method is appropriate when information is 
assumed to come from static or dynamic sources in the 
operating environment, and as to whether the information 
is redundant or complementary (Section 11-C). Included in 
the table are the means used to represent uncertainty in 
the measurement and fusion processes, possible methods 
used to determine the consistency of sensor measurements 
(e.g., elimination of any spurious sensor measurements), 
and the actual techniques used for fusion. 

1) Weighted Auerage: One of the simplest and most 
intuitive general methods of fusion is to take a weighted 
average of redundant information provided by a group of 
sensors and use this as the fused value. While this method 
allows for the real-time processing of dynamic low-level 
data, in most cases the Kalman filter is preferred because 
it provides a method that is nearly equal in processing 
requirements and, in contrast to a weighted average, re- 
sults in estimates for the fused data that are optimal in a 
statistical sense. A weighted average has been used for 
multisensor fusion in the mobile robot HILARE (Section 
V-D-l), after first thresholding the sensory information to 
eliminate spurious measurements. 

2) Kalman Filter: The Kalman filter (see [66] for a 
general introduction) is used in a number of multisensor 
systems when it is necessary to fuse dynamic low-level 
redundant data in real time. The filter uses the statistical 
characteristics of the measurement model to determine 
estimates recursively for the fused data that are optimal in 
a statistical sense. If the system can be described with a 
linear model and both the system and sensor error can be 
modeled as whte Gaussian noise, the Kalman filter will 
provide unique statistically optimal estimates for the fused 
data. The recursive nature of the filter makes it appropri- 
ate for use in systems without large data storage capabili- 
ties. Examples of the use of the filter for multisensor 
fusion include: object recognition using sequences of im- 
ages (Section IV-A), robot navigation (Section V-D-4), 
multitarget tracking (Section VI-D-2), inertial navigation 
(Section VI-E), and remote sensing (Section VI-F). In 
some of these applications the “U-D (unit upper triangular 
and diagonal matrix) covariance factorization filter” or the 
“extended Kalman filter” is used in place of the conven- 
tional Kalman filter if, respectively, numerical instability 
or the assumption of approximate linearity for the system 
model present potential problems. 

3) Bayesian Estimation using Consensus Sensors: Luo 
and Lin [13]-[17] have developed a method for the fusion 
of redundant information from multiple sensors that can 
be used within their hierarchical phase-template paradigm 
(Section 111-A-1). The central idea behind the method is 

first to eliminate from consideration the sensor informa- 
tion that is likely to be in error and then to use the 
information from the remaining “consensus sensors” to 
calculate a fused value. 

Fig. 9 shows a functional block diagram of the method. 
The information from each sensor is represented as a 
probability density function. Given readings from n sen- 
sors in the system, the resulting information is first made 
commensurate through preprocessing. An n by n distance 
matrix is created by calculating for each element ( i ,  j )  in 
the matrix the “confidence distance measure” between the 
information from sensors i and j .  A confidence distance 
measure is defined to be equal to twice the area under the 
density function of sensor i between the readings from 
sensor i and sensor j .  Use of this measure assumes that 
the domains of each sensor’s density function are commen- 
surate. If the density functions are assumed to be Gauss- 
ian, the distance can be computed by use of the error 
function. The distance matrix determined by the use of 
this measure will not be symmetric unless the density 
functions of all the sensors are identical. Threshold values, 
based on the required sensing accuracy, are then applied to 
the elements in the matrix. Elements not exceeding their 
threshold are represented by a one in a binary-valued n by 
n relation matrix. The largest connected digraph formed 
from this matrix will determine the group of consensus 
sensors most likely not to be in error. The optimal fusion 
of the information is determined by finding the Bayesian 
estimator that maximizes the likelihood function of the 
consensus sensors. 

4) Multi-Bayesian: Durrant-Whyte [58]-[61] has devel- 
oped a model of a multisensor system that represents the 
task environment as a collection of uncertain geometric 
objects. Each sensor in the system is described by its 
ability to extract useful static descriptions of these objects. 
An “e-contaminated” (see paragraph 5, below) Gaussian 
distribution is used to represent the geometric objects. The 
sensors in the system are considered as a team of decision- 
makers. Together, the sensors must determine a team-con- 
sensus view of the environment. A multi-Bayesian ap- 
proach, with each sensor considered a Bayesian estimator, 
is used to combine the associated probability distributions 
of each respective object into a joint posterior distribution 
function. A likelhood function of this joint distribution is 
then maximized to provide the final fusion of the sensory 
information. The fused information, together with an 
a priori model of the environment, can then be used to 
direct the robotic system during the execution of different 
tasks. 

5) Statistical Decision Theory: McKendall and Mintz 
[62] and Zeytinoglu and Mintz [63], [64] have used statisti- 
cal decision theory to develop a general two-step method 
for the fusion of redundant location data from multiple 
sensors. (Location data refer to sensor measurements that 
are modeled as additive sensor noise translated by the 
parameter of interest being sensed.) Sensor noise is mod- 
eled as the e-contamination of a variety of possible proba- 
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Fig. 9. Functional block diagram of consensus sensor fusion method 
(Adapted from [17, fig. 2.) 

bility distributions. The use of €-contamination in the 
sensor model serves to increase the robustness of the 
decision procedure by removing a certain outlying fraction 
c of the distribution to account for heavy-tailed deviations 
from the assumed noise distribution that may have been 
caused by spurious sensor readings. Initially. the data from 
different sensors are subject to a robust hypothesis test as 
to its consistency (see [65] for an introduction to “robust 
statistics”). Data that passes this preliminary test are then 
fused using a class of robust minimax decision rules. 

6) Shafer - Dempster Evidential Reasoning: Garvey et al. 
[67] introduced the possibility of using Shafer-Dempster 
evidential reasoning in multisensor fusion. Bogler [68] and 
Waltz and Buede [69] have explored its possible applica- 
tion in, respectively, multisensor target identification, and 
military command and control. Shafer-Dempster eviden- 
tial reasoning [70] is an extension to the Bayesian ap- 
proach that makes explicit any lack of information con- 
cerning a proposition’s probability by separating firm 
support for the proposition from just its plausibility. In the 
Bayesian approach all propositions (e.g., features in the 
environment) for which there is no information are as- 
signed an equal a priori probability. When additional 
information from a sensor becomes available and the 
number of unknown propositions is large relative to the 
number of known propositions. an intuitively unsatisfying 
result of the Bayesian approach is that the probabilities of 
known propositions become unstable. In the Shafer- 
Dempster approach this is avoided by not assigning un- 
known propositions an a priori probability (unknown 
propositions are assigned instead to “ignorance”). Igno- 
rance is reduced (i.e., probabilities are assigned to these 
propositions) only when supporting information becomes 
available. 

7) Fuzzy Logic: Huntsberger and Jayaramamurthy [71] 
have used fuzzy logic to fuse information for scene analy- 
sis and object recognition. Fuzzy logic [72], a type of 
multiple-valued logic, allows the uncertainty in multisensor 
fusion to be directly represented in the inference (i.e., 
fusion) process by allowing each proposition, as well as the 
actual implication operator, to be assigned a real number 
from 0.0 to 1.0 to indicate its degree of truth. Consistent 
logical inference can take place if the uncertainty of the 
fusion process is modeled in some systematic fashion. 

8) Production Rules with Confidence Factors: Kamat [73], 
Belknap et al. [74], and Hanson et al. [75] have used 
production rule-based systems for object recognition using 
multisensor fusion. Production rules are used to represent 
symbolically the relation between an object feature and the 
corresponding sensory information. A confidence factor is 
associated with each rule to indicate its degree of uncer- 
tainty. Fusion takes place when two or more rules, refer- 
ring to the same object, are combined during logical infer- 
ence to form one rule. The major problem in using produc- 
tion rule-based methods for fusion is that the confidence 
factor of each rule is defined in relation to the confidence 
factors of the other rules in the system, making i t  difficult 
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Overview of Allen’s robotic object recognition system. Mug is shown being recognized through vision and active 
exploratory tactile sensing. (Adapted from [91, Figs. 1.1 and 1.21.) 

to alter the system when, for example, new sensors are 
added that require additional rules. 

IV. INTEGRATION AND FUSION USING SPECIFIC 
SENSOR COMBINATIONS 

This section surveys a variety of approaches to the 
integration and fusion of information from combinations 
of different types of sensors. An effort is made to present 
approaches that exploit the specific characteristics of the 
information provided by each type of sensor and have an 
area of possible application that is quite general (e.g., 
object recognition). Sections V and VI present a wide 
variety of additional sensor combinations that have been 
used in mobile robot and other applications, respectively. 

A.  Vision 

Visual information is the most powerful single source of 
sensory information available to a system. Many different 
types of nonvisual sensors are used in combination with 
vision sensors to compensate for some of the difficulties 
encountered in the machne processing of visual informa- 
tion. Tasks such as object recognition can sometimes re- 
quire the aid of additional types of sensors to approach the 
capabilities of a human using just visual information. This 
section will not describe in detail the many integration and 
fusion techniques that use only vision sensors because 
there already is an extensive literature, including many 
reviews and book-length treatments (e.g., [76], [77]) cover- 
ing the various aspects of computational vision. 

Magee and Agganval [78] provide a review of recent 
research efforts aimed at combining intensity and range 
features derived from visual images to determine the struc- 
ture of three-dimensional objects. In some of the work 
reviewed, information from one feature is used to guide 
the acquisition of information concerning another feature 
when the second feature requires a much longer processing 
time (e.g., intensity guided range sensing for object recog- 
nition [79] and the determination of motion parameters 

[go]). Research related to the fusion of sequences of images 
has used the “optical flow” of the images to determine the 
motion of objects in the image (see [81] for a recent 
review), and both a Bayesian [82] and extended Kalman 
filter [84], [85] to establish the surfaces of three-dimen- 
sional objects. Flachs et al. [83] have used a “complexity 
metric” as a mathematical basis for multisensor fusion in 
vision systems. Much of the research related to the use of 
multiple visual sensors has used the stereoscopic effect 
from the sensors to determine range information (see [86] 
for a recent stereo vision review, and [87] for an approach 
to binocular fusion that uses simulated annealing). Porrill 
[88] has used Gauss-Markov estimation together with 
geometric constraints to fuse multiple stereo views of a 
wire frame model. In robotics, overhead and “eye-in-hand’’ 
vision sensors have been combined for use in three-dimen- 
sional object recognition [89]. Many of these techniques, 
originally developed to fuse both sequences of images from 
a single vision sensor and images derived simultaneously 
from multiple sensors, have significantly influenced subse- 
quent work in nonvisual fusion. 

B. Vision and Tactile 

As can be seen in Fig. 5 with reference to the hierarchi- 
cal phase-template paradigm (Section 111-A-l), the integra- 
tion of vision and tactile information, together with a 
robot’s own manipulation capabilities, gives that robot a 
wide range over whch to receive sensory information. 
Combined vision and tactile sensors have been used to a 
great extent by industrial robots to perform both assembly 
and inspection tasks (Section VI-A). 

1) Allen: Allen [3], [90]-[95] has developed a robotic 
object-recognition system that uses three-dimensional vi- 
sion together with active exploratory tactile sensing (see 
Fig. 10). The system was developed to recognize common 
kitchen items like mugs, plates, pitchers, and bowls that 
had no discernible textures and were homogeneous in 
color. Recognition of objects like these pose a serious 
problem for many vision-only recognition systems because 
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of the lack of features that can be used for matching and 
depth analysis. Through the integration of tactile informa- 
tion with vision, Allen’s system is able to obtain informa- 
tion concerning any holes, cavities, or curved surfaces that 
can be used to identify a particular object. 

The model data base represents each object in a hierar- 
chcal manner that allows the sensory devices to match the 
models at different levels of detail. The models are inde- 
pendent of viewpoint and scale and contain relational 
information that can be used to reduce the searching of the 
data base. Each object is modeled as a collection of 
components and features: the components correspond to 
the discernible differences in the surface of the objects 
(e.g., the body, bottom, and handle of the mug shown in 
the figure), and the features correspond to the object’s 
holes or cavities. At the lowest level, each surface compo- 
nent is modeled as a grid of bicubic spline curves that 
form a patch. Both holes and cavities are modeled as right 
cylinders of constant cross-sectional area-cavities having 
the additional attribute of depth. The operation of the 
system can be summarized in a five-step recognition cycle 
[9l], as follows. 

Step 1: Initially, two-dimensional vision processing 
routines are applied to the image to determine bounded 
regions. The centroid of each region is calculated by using 
the matched three-dimensional stereo points of its bound- 
ary so that it can be used as the starting point for tactile 
exploration of the region. The depth and surface orienta- 
tion of each region is determined using binocular stereo. 
Isolated edge pixels, which could be possible noise points, 
are excluded from consideration through thresholding. In a 
system relying only on vision to determine depth and 
orientation, this elimination of data to reduce error could 
result in a surface description that is not dense enough for 
recognition purposes. By allowing tactile sensing to ex- 
plore further any uncertain regions, the regions that are 
identified from the remaining data will have a greater 
accuracy and can be used with higher confidence in later 
steps of the recognition process. 

Step 2: The tactile sensing system explores each re- 
gion identified by the vision system to determine if it is a 
surface, hole, or cavity. The tactile sensor used in this 
system is an octagonal cylinder covered with conducting 
surfaces mounted perpendicular to the mounting plate of 
the robot (the tactile sensor in the figure is exploring the 
cavity formed by the well of the mug). The sensor ap- 
proaches a region orientated in a direction normal to the 
centroid of the region until either it contacts a surface, 
travels beyond a specified threshold used to indicate the 
presence of a cavity, or, if the sensor is able to travel its 
full length into the region without contact, the region is 
assumed to be a hole. If the region is a surface, a surface 
patch is constructed by integrating vision and touch. If the 
region is either a hole or cavity, the sensor moves in a 
sawtooth manner around the region’s boundary to deter- 
mine its shape. 

Step 3: For regions that are surfaces, the vision and 
tactile sensing results of the previous steps, together with 
additional tactile sensing, are integrated to create three- 

dimensional surface patches that can be matched with the 
model data base. Starting from the location of contact with 
the surface, the tactile sensor uses knot points to determine 
the directions along which traces of the surface will be 
made. The points reported along each trace are combined 
into cubic least squares polynomial curves which can then 
be used to fill in areas of the surface that still lacked detail 
after stereo vision processing. 

Step 4: The surfaces patches and closed curves (corre- 
sponding to holes or cavities) are matched against the 
model data base to find an object that is consistent with 
the sensory information. If more than one object is found 
to be consistent, a probabilistic measure is used to order 
the objects for verification. 

Step 5: Once a consistent object is found the verifica- 
tion procedure is used for further active exploratory sens- 
ing to verify components and features of an object’s model 
that have not been sensed. Visually occluded holes and 
cavities are verified using the tactile sensor. Verification of 
visually occluded surfaces using only the tactile sensor is 
difficult because vision is needed both to guide the sensor 
during traces of the surface and, most importantly, to 
establish that the region of interest is indeed a smooth 
surface that can be approximated by a patch. The system 
provides for robust viewer-independent object recognition 
because no a priori viewpoint or orientation of the object 
is assumed, e.g., any identifiable part of the model of an 
object can be used to invoke a search to verify the remain- 
ing surfaces or features of the model needed for recogni- 
tion. 

2) Integration using a Decision Tree: Luo and Tsai [96] 
have developed a system that uses two-dimensional vision. 
together with two tactile sensing arrays mounted on a 
gripper of a robot, to recognize objects. Moment invariants 
of an object’s shape are used as features for recognition 
and to calculate the centroid of a region of the object 
needed for determining the proper grasping position for 
the gripper. During the initial learning phase the system 
creates a decision tree by first presenting all of the objects 
to be recognized to the vision sensor so that their top-view 
silhouette boundaries can be determined. If there still exist 
groups of objects that are indistinguishable in terms of this 
visual information, tactile information concerning the ob- 
jects’ lateral shape is obtained to make the objects in each 
group more distinguishable. Different predetermined lat- 
eral directions are used until all of the objects can be 
distinguished. The final result of this clustering process is a 
hierarchical decision tree with each leaf representing a 
single discriminable object, each nonterminal node corre- 
sponding to a group of objects that are indistinguishable at 
that level of sensory processing, and each arc associated 
with the effective lateral direction used by the tactile 
sensor to distinguish the child from the parent node. The 
first level below the root node in the tree corresponds to 
the initial version sensing; levels below the first represent 
successive stages of tactile sensing. Finally. the recognition 
phase proceeds by traversing the decision tree in the same 
direction as the tree was created until the object is able to 
be discriminated. 
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3) Object Apprehension: Stansfield [97]-[loo] has pre- 
sented a system which uses vision and tactile sensors for 
object “apprehension.” Apprehension is defined as the 
determination of the properties of an object and the rela- 
tionships among these properties without, as in recogni- 
tion, going on to attach a label to the object as a whole. 
The system is structured as a modularized hierarchy of 
knowledge-based experts, each responsible for either the 
execution of an exploratory procedure or for the further 
processing of information from other exploratory proce- 
dures. An exploratory procedure extracts information con- 
cerning a predefined general-purpose primitive (e.g., com- 
pliance, elasticity, texture, etc.) or feature (e.g., edges, 
surface patches, holes, cavities, etc.) that is related to some 
aspect of the object’s form, substance, or function [99]. 
Each feature is composed of one or more primitives or 
features. Modules in the lower portion of the hierarchy are 
responsible for processing the information from each sen- 
sor system, while the upper level modules integrate the 
information coming from the different sensor systems. 
Many of the higher level modules are able to function with 
information from a variety of different lower level mod- 
ules. Spatial polyhedrons have been proposed recently by 
Stansfield [loo] as a generic object representation that can 
extend the capabilities of the system to include recogni- 
tion. 

C. Vision and Thermal 

Nandhakumar and Aggarwal [101]-[104] have presented 
a technique for the classification of objects in outdoor 
scenes using thermal and visual sensors. A thermal camera 
is used to acquire an infrared image of a scene and a vision 
camera is used to acquire an intensity image. Both cameras 
are adjusted so that their images are in spatial correspon- 
dence. Three features are used in a decision tree to label 
the objects in a scene. The first, the conductive heat flux of 
each region in the scene, is determined by integrating 
complementary information provided by both sensors. Al- 
though this feature, characterizing the intrinsic thermal 
behavior of the imaged object, provides the greatest amount 
of discriminatory information, two additional features are 
used to identify the objects unambiguously: the surface 
reflectance of a region as determined from the visual image 
and the average region temperature as derived from the 
thermal image. Production rules are used to implement the 
decision tree. An object label is assigned in the consequent 
of each rule and logical combinations of heuristically de- 
termined intervals for the value of each feature are used in 
the antecedent. 

D. Range and Tactile 

Grimson and Lozano-PQez [ 1051 describe a technique 
that uses tactile and range sensors to provide measure- 
ments of position and surface normals that can be used to 
identify and locate objects from among a group of known 
objects. The objects are modeled as polyhedrons, and 

constraints are used to keep the number’of hypotheses as 
to an object’s identity small. The only assumptions made 
about the sensors required are that they be able to provide 
information concerning an object’s surface points and sur- 
face normals; as a result, the technique should be applica- 
ble to a wide variety of different types of sensors besides 
range and tactile. 

E. Laser Radar and Forward Looking Infrared 

Roggemann et al. [lo61 and Tong et al. [lo71 have 
developed a method of fusing the complementary informa- 
tion provided by laser radar and forward loolung infrared 
sensors to segment and enhance features of man-made 
objects such as tanks and trucks in a cluttered background. 
Once separated from the background, these features can be 
used by other methods to identify the object. The laser 
radar image provides range information for areas within a 
field of view, and the infrared image can show special 
features of the area. The gradients of both images are used 
for both object enhancement and segmentation. Bound- 
aries enclosing areas of small range gradient can be used to 
identify possible objects because natural backgrounds such 
as mud, grass, and trees exhibit large range differences 
from one pixel to another that can be modeled as random 
noise. The gradient of the infrared image will sharpen the 
infrared signature and temperature characteristics of ob- 
jects that are infrared sources and can also serve to iden- 
tify cold objects in a hot background because only temper- 
ature differences are noted. Initially, a binary mask of the 
laser radar image is created that indicates the location, 
area, and boundary of possible objects. Assuming that 
objects exhibit small gradients relative to the background 
and occupy a small percentage of the overall image, the 
first derivative of the histogram of the gradient magnitudes 
in the image is used to estimate a threshold for the mask. 
The threshold alone is not discriminatory enough to sepa- 
rate every pixel in the image. To distinguish object from 
background pixels further, both the segmented infrared 
and segmented range gradient images are first “anded,” 
pixel to pixel, with the mask. The resulting images are then 
multiplied to produce a final image that shows where the 
range and infrared gradients match, emphasizing object 
features and deemphasizing the background. 

V. MULTISENSOR-BASED MOBILE ROBOTS 

The mobility of robots and other vehicles is required in 
a variety of applications. In simple well-structured envi- 
ronments, automatic control technology is sufficient to 
coordinate the use of the required sensor systems (e.g., 
automatic guided vehicles, missiles, etc.) [108]. When a 
vehicle must operate in an uncertain or unknown dynamic 
environment-usually in close to real time-it becomes 
necessary to consider integrating or fusing the data from a 
variety of different sensors so that an adequate amount of 
information from the environment can be quickly per- 
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Fig. 11. Role of perception function in hypothetical archtecture for 
mobile robot. 

ceived. Because of these factors, mobile robot research has 
proved to be a major stimulus to the development of 
concrete approaches to multisensor integration and fusion. 
Luo and Kay [lo91 have reviewed the role of multisensor 
integration and fusion in the operation of mobile robots, 
and Levi [110] has discussed some of the multisensor 
fusion techniques appropriate for mobile robot navigation 
and has reviewed their use in a number of applications. 
Multiple sensors have been used in mobile robots to enable 
them to operate in environments ranging from roadways 
[ l l l ] ,  [112] to unstructured indoor environments [113] to 
unknown natural terrain [114], [115] and to be used for 
applications including assembly [ 1161 and nuclear power 
station maintenance [117]. 

A.  The Role of Perception in a Hypothetical Architecture 

Fig. 11 illustrates the role of the perception function in a 
hypothetical architecture for a mobile robot. Perception, 
together with vehicle control, obstacle avoidance, position 
location, path planning, and learning, are generic functions 
necessary for intelligent autonomous mobility [log]. Six 
different external sensor types are shown in the figure as 
part of the perception function. Subsets of these sensors 
are used to perform three tasks that usually comprise the 
perception function: the matching of sensory data to a 
world model (or map) representing the environment and 
then updating the model to reflect the matching results, 
the recognition of landmarks in the environment for use in 
determining the location of the robot, and the detection of 
obstacles so that they can be avoided. The degree of 
integration and fusion of the sensory data required for 
each of these tasks can differ. In a simple system, each 
sensor used for obstacle detection might operate indepen- 
dently of the other sensors if the detection of nearby 
obstacles is required; in a more complex system, some of 
the sensor data might be also fused so as to extend the 
range and accuracy of possible detection [114]. One of the 

simplest techniques used for position location is trajectory 
integration, where the location is calculated from the accu- 
mulated rotational and translational motion of the vehicle 
as determined by internal sensors like an odometer. Due to 
the inherent inaccuracies in any sensor, locational error 
continues to accumulate as the robot moves. To deduce 
this cumulative error most mobile robots periodically de- 
termine the location of some external landmark. As shown 
in the figure, the results from landmark recognition are 
sometimes fused with the location determined by internal 
sensors after each has been transformed to common coor- 
dinates. Any of the techniques of multisensor object recog- 
nition presented in this paper may be used first to rec- 
ognize the landmark. The world model matching and 
updating task requires that the sensor information and any 
associated measure of its uncertainty correspond to the 
representation used in the world model so that integration 
can take place. Depending on the representational format 
used in the world model, the information will in most cases 
have to be made commensurate by applying appropriate 
space and time transformations. Information from the 
different sensors might be fused or otherwise transformed 
before reachmg the matchng task to reduce the communi- 
cation bandwidth required or the complexity of the match- 
ing process. In the figure, information from the laser 
ranging and stereo vision sensors are fused before being 
matched to the world model. 

While the hypothetical archtecture described represents 
in broad outline most current approaches to the design of 
mobile robots, the MIT mobile robot project has adopted 
a radically different layered approach for autonomous 
control that they term a “subsumption” architecture [118], 
[119]. Each layer in this architecture consists of a complete 
control system similar to that in Fig. 11 for a simple task 
achieving behavior like avoiding obstacles or wandering. 
Starting with low-level tasks, new task-achieving behavior 
can be added incrementally because the layers operate 
asynchronously communicating over low-bandwidth lines 
without a central locus of control, central data structure, 
or global plan. 

B. High-Level Representations 

Considerable research has been directed at the develop- 
ment of either a single representation or multiple hierar- 
chical levels of representations suitable for use by a mobile 
robot to perform the reasoning required for its control, 
path planning, and learning functions. The representations 
are usually at a high enough level so as not to be sensor 
specific. As mentioned before, information from different 
sensors is usually transformed to the common high-level 
representation and then added to a world model. The 
function of the world model and the particular form of the 
high-level representation depend both on the control archi- 
tecture used in the robot and the complexity of the re- 
quired reasoning-extremes range from road-following ve- 
hicles where sensor information is dynamically processed 
using feedback loops to produce control commands with- 
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out ever using a world model, to pure production rule-based 
representations that assume a static and perfect model of 
the world that is difficult to modify [120]. In practice, the 
representations used for robots operating in unknown or 
unstructured environments allow for their world models to 
be dynamically modified and updated with uncertain sen- 
sor information. Except for explicit learning procedures 
used in many production rule-based representations, learn- 
ing takes place implicitly as the world model is updated 
with new information as the robot traverses the environ- 
ment. 

Included below are some examples of different hgh-level 
representations. Many of the papers referenced are distin- 
guished by a discussion of the multisensor integration and 
fusion issues relevant to their proposed representation. 
Other representations are discussed as part of the descrip- 
tions of different mobile robots found in Section V-D of 
this section. 

1) Spherical Octree: Chen [121]-[124] has proposed a 
“spherical octree” representation for use in mobile robot 
navigation. A spherical octree is an 8-ary tree structure 
that at its first level separates a spherical perspective view 
of the environment into eight octants corresponding to the 
children of the root node (the entire spherical environment 
perceived by the robot). Objects in the environment can be 
represented in the octree by recursively subdividing oc- 
tants containing part of the object into eight more octants 
at the next lowest level and merging octants that are 
completely contained by the object into one octant at the 
next highest level, repeating this process to represent the 
object at increasingly finer resolution. The use of a spheri- 
cal perspective view eliminates some of the limitations of 
the typical orthographic and planar perspectives used in 
optical sensing. It is also appropriate for sensors providing 
range information because range values can be represented 
as the radial distances from the sensor to the object. 
Information from each different sensor is used to recon- 
struct three-dimensional surfaces using a knowledge base 
of typical patterns for the sensor. The reconstructed sur- 
faces are then fused together as part of the process of 
being represented in the octree structure. 

2) Occupancy Grids and Neural Nets: Elfes [12]-[127] 
originally developed a cellular world model representation 
called the “occupancy grid” for use with a sonar equipped 
mobile robot. This representation has been extended to 
allow for the integration of information from many differ- 
ent types of sensors [128], [129]. Bayesian estimation is 
used to fuse together each sensor’s probabilistic estimate as 
to whether a cell in the grid is occupied by an object. The 
resulting grid can then be used to determine paths through 
unoccupied areas of the grid. Jorgensen [130] has proposed 
dividing the environment into equal-size volumetric cells 
and associating each with a neuron. In a manner similar to 
the occupancy grid, the magnitude of each neuron’s activa- 
tion corresponds to the probability that the cell it repre- 
sents is occupied. The neurons are trained using sensory 
information from different perspectives. Associative recall 
(Section 111-A-2) can then be used to recognize objects in 

the environment and simulated annealing can be used to 
find optimal global paths for navigation. 

3) Graphs: Graph structures have been used to represent 
the local and topological features of the environment to 
avoid having to define a global metric relation between 
nonadjacent nodes (or points) in the graph. When land- 
marks or beacons are not used to correct cumulative 
position error, a global metric would contain too much 
uncertainty to be useful. Graph structures allow the topo- 
logical features to be represented and reasoned with in an 
efficient manner. Kak et al. [131] and Andress and Kak 
[132] used an attributed graph and Shafer-Dempster evi- 
dential reasoning (Section 111-E-6) to integrate sensory 
information for hierarchical spatial reasoning. Brooks [133] 
proposed the use of a graph to represent regions of poten- 
tial collision-free motion termed “freeways” and 
“meadows.” Each point in the graph, represented as an 
“uncertainty manifold,” corresponds to the location of a 
robot in configuration space at which sensory information 
was acquired; each arc is labeled with a local measurement 
of the distance traveled between endpoints. The cumula- 
tive uncertainty of the robot as it moves from point to 
point in the graph is taken into account through the 
cascading of successive uncertainty manifolds. 

4) Labeled Regions: Sensory information can be used to 
segment the environment into regions with properties that 
are useful for spatial reasoning. The known characteristics 
of different types of sensory information can be used to 
label some useful property of each region so that symbolic 
reasoning can be performed at higher levels in the control 
structure. Asada [134] proposed a method for building 
world models that uses the range images from sensors to 
create height maps of the local environment. Grey levels 
represent the height of points in the map with respect to an 
assumed ground plane. The map is then segmented into 
regions and labeled. Sequences of maps, created as a robot 
moves, are integrated into a global map by overlaying 
pairs of height maps and then replacing the labels of 
corresponding regions in the height maps with a label 
determined according to a precedence procedure (e.g., if a 
region is labeled as unexplored in one height map and as 
an obstacle in another, the global map might label the 
region as an obstacle). The global map is then used for 
obstacle detection and path planning. Miller [135] devel- 
oped a spatial representation that divided a map of an 
indoor environment into labeled regions. Each label is one 
of four possible types-each type referring to the number 
of degrees of freedom in the region (i.e., the two planar 
dimensions and the robot’s orientation) that information 
from a sensor could be used to eliminate (e.g., the empty 
space in the center of the room is of type zero, a region 
near a corner is of type three, etc.). “Voronoi diagrams” 
are then used to group the regions into areas that corre- 
spond to a specific edge (or wall) in the environment. 

5) Production Rules: The use of production rules in a 
control structure allows for a wide range of well-known 
artificial intelligence methods to be used for path planning 
and learning purposes. Lawton et al. [136] have used 
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TABLE I1 
SELECTED EXAMPLES OF MULTISENSOR-BASED MOBILE ROBOTS 

Mobile External Operating World Model Fusion 
Robot References Sensors Environment Representation Method 

HILARE [113]. [1491- 
(1979) 11541 

Crowley’s 11551-[157] 
mobile 
robot 
(1 984) 

surveillance 
robot 
(1984) 

Ground [1141,[1581 

Stanford 11591 
mobile 
robot 
(1987) 

NAVLAB and 
Terregator 
(1986) 

CMU’s ALV’s 11111, [160] 

DARPA [112]. [115]. 
ALV 11611-11631 
(1’985) 

vision 
acoustic 
laser range finder 
rotating ultrasonic 
tactile 

hgh-resolution grey 
level vision 

Low-resolution color 
vision 

acoustic 
laser range finder 
stereo vision 
tactile 
ultrasonic 

color vision 
sonar 
laser range finder 

color vision 
sonar 
laser range finder 

unknown 
man-made 

known man- 
made 

unknown 
natural 
terrain 

unknown 
man-made 

unknown 
roadway 

unknown 
natural 
terrain 

polygon objects in weighted average 
graph of locations 

connected sequences best correspondence 
of line segments 
in two confidence factors 
dimensions 

triangular segments variety possible (data 
in blackboard 

using integer valued 

put in spatial and 
temporal cor- 
respondence) 

herarchical sensor Kalman filter 
measurements 
and symbols 

polygon tokens with variety possible (data 
attribute-value put in spatial and 
pairs in whiteboard temporal cor- 

respondence) 
Cartesian elevation average elevation 

maps (CEM’s) change over small 
CEM areas 

production rules to create schemas to represent both ob- 
jects in terrain models and certain generic object types, 
Network hierarchies are created from the schemas that 
allow inference and matching procedures to take place at 
multiple levels of abstraction, with each level using an 
appropriate combination of the available sensors. Is& and 
Meystel [ 1371 have used fuzzy-valued linguistic variables to 
represent the attributes of objects as part of a fuzzy 
logic-based (Section 111-E-7) production system for mobile 
robot control. 

C. Sensor Combinations 

Due to the advantages and limitations of each type of 
sensor, most mobile robots use some combination of dif- 
ferent sensor types to perform each task of the perception 
function. Some sensors cannot be used in a particular 
environment due to their inherent limitations (e.g., acous- 
tic sensors in space), while others are limited due to either 
technical or economic factors. Obstacle detection with 
contact sensors necessarily limits the speed of a robot 
because contact must be made before detection can take 
place [138]; laser sensors require an intense energy source, 
and they have a short range and slow scan rate (their use 
can also cause eye problems [139]); and vision sensors are 
critically dependent on ambient lighting conditions, and 
their scene analysis and registration procedures can be 
complex and time-consuming [138]. Shaky, one of the first 
autonomous vehicles, used vision together with tactile sen- 
sors for obstacle detection [140]. JASON combined acous- 
tic and infrared proximity sensors for obstacle detection 
and also used these sensors for path planning [141]. The 
Stanford University Cart used acoustic and infrared sen- 
sors together with stereo vision for navigating over a flat 

terrain whle avoiding obstacles [142]. Bixler and Miller 
[143] used simple low-resolution vision in their au- 
tonomous mobile robot to locate the direction of an obsta- 
cle, and then used an ultrasonic range finder to determine 
its depth and shape. Other combinations of sensors used in 
mobile robot systems have included contact, infrared, and 
stereo vision [144]; sonar and infrared [145]; contact and 
acoustic (1461; acoustic and stereo vision [147]; and stereo 
vision and laser range finding [148]. 

D. Selected Examples 

Short descriptions of a number of different mobile robots 
are provided next. Emphasis is given to the role of multi- 
sensor integration and fusion in their navigation and con- 
trol. Table I1 summarizes for comparison the relevant 
multisensor integration and fusion features of each mobile 
robot. Included under the name of each mobile robot in 
the table is the year the initial publication appeared. In 
cases where there have been major modifications to the 
mobile robot, the features listed in the table correspond to 
the most recent published research. 

1) Hilare: The mobile robot Hilare combines con- 
tact, acoustic, two-dimensional vision, and laser range 
finding sensors so that it can operate in unknown environ- 
ments [113], [149]-[154]. Hilare was the first mobile 
robot to create a world model of an unknown environment 
using information from multiple sensors [log]. Acoustic 
and vision sensors are used to create a graph partitioned 
into a hierarchy of locations. Vision and laser range-find- 
ing sensors are then used to develop an approximate 
three-dimensional representation of different regions in the 
environment-constraints being used to eliminate extrane- 
ous features of the representation. The laser range finder is 
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then used to obtain more accurate range information for 
each region. To provide a robust and accurate estimation 
of the robot’s position, three independent methods are 
used: absolute position referencing by use of a beacon, 
trajectory integration without external reference, and rela- 
tive position referencing with respect to landmarks in the 
environment [154]. Each of these methods is used in a 
complementary fashion to correct or reduce errors and 
uncertainties in the other methods. The information from a 
variety of sensors is integrated to provide the position of 
known objects and places relative to the robot. The shape 
of each object is represented as a polygon. Depending on 
the features of an object and its distance from the robot, 
an appropriate group of redundant sensors is selected to 
measure the object. The uncertainty of each sensor is 
modeled as a Gaussian distribution. If the standard devia- 
tions of all the sensor’s measurements have the same 
magnitude, a weighted average (Section III-E-1) of their 
values is used as the fused estimate of a vertex of the 
object; otherwise, the measurement from the sensor with 
the smallest standard deviation is used. The estimated 
vertices of the object can then be matched to known 
regions of the world model by finding an object in the 
model that minimizes the weighted sum of the distance 
between corresponding vertices. 

2) Crowley’s Mobile Robot: Crowley [155]-[157] de- 
scribes a mobile robot with a rotating ultrasonic range 
sensor and a touch sensor capable of autonomous naviga- 
tion in a known domain. Information from a prelearned 
global world model is integrated with information from 
both sensors to maintain dynamically a composite model 
of the local environment. Obstacles and surfaces are repre- 
sented as connected sequences of line segments in two 
dimensions. Confidence as to the actual existence of each 
line segment is represented by an integer ranging from one 
(transient) to five (stable and connected). The uncertainty 
as to the position, orientation, and length of each segment 
is accounted for by allowing tolerances in the value of 
these attributes. Information from the global model and 
the sensors is matched to the composite local model by 
determining which line segment in the local model has the 
best correspondence with a given line segment from either 
the global model or sensors. The best correspondence is 
found by performing a sequence of tests of increasing 
computational cost based on the position, orientation, and 
length of the line segments relative to each other. The 
results of the matching process are then used to update the 
composite local model by either adding newly perceived 
line segments to the model or adjusting the confidence 
value of the existing segments. The local model can then 
be used for obstacle detection, local path planning, path 
execution, and learning. 

3) Ground Surveillance Robot: The ground surveillance 
robot described by Harmon [114], [158] is an autonomous 
vehicle designed to transit from one known location to 
another over unknown natural terrain. Vision and acoustic 
ranging sensors are used for obstacle detection. A lasex 
range finder together with a high-resolution gray-level 

camera and a low-resolution color camera are used for 
distant terrain and landmark recognition. The information 
from the obstacle detection sensors is fused into a single 
estimate of the position of nearby obstacles by superposi- 
tioning distributions that represent each sensor’s a priori 
probability of detection. A distributed blackboard is used 
both to control the various subsystems of the vehcle and 
as a mechanism through which to integrate and fuse vari- 
ous types of sensor data. As part of the blackboard, a 
world model is used to organize the data into a class tree 
with inheritance properties. Each element in the world 
model has a list of properties to which values are assigned, 
some values being determined by sensory data. Terrain 
data are represented as triangular segments with the prop- 
erties of absolute position, orientation, adjacency, and type 
of ground cover. To allow for a variety of fusion methods 
to be used, each element in the world model includes a 
time stamp and measures of its accuracy and confidence. 
When two or more sensor values are functionally depen- 
dent, changes in one value will propagate throughout the 
blackboard so that its dependent values reflect the change. 
When sensor values refer to the same property of an 
element, either a decision is made as to which of the 
competing values is to be used (e.g., the most recent value 
of the most accurate sensor) or the values are fused. 

4) Stanford Mobile Robot: The Stanford mobile robot 
(1591 uses tactile, stereo vision, and ultrasonic sensors for 
navigation in unstructured man-made environments. A 
herarchical representation is used in its two-dimensional 
world model, with features close to the actual sensor 
measurements at the lowest level and more abstract or 
symbolic features at the higher levels. The uncertainty as 
to the location of the robot and the features in the environ- 
ment is modeled with a Gaussian distribution. A Kalman 
filter (Section III-E-2) is used to fuse the measurements 
from a sensor as the robot moves. An example of the 
application of this method is shown in Fig. 12. Fig. 12(a) 
shows two points a and b as measured by the stereo vision 
sensor-first at location p 1  and then at location p , .  The 
uncertainty ellipses around the point measurements are 
elongated toward the sensor because the uncertainty due to 
distance is much greater than the angular uncertainty 
when calculated through stereo vision. The uncertainty due 
to distance is also greater for points further from their 
location of measurement (i.e., b is more uncertain than a). 
The two measurements of each point (e.g., a1 and U , )  are 
not coincident because of the inherent error in the internal 
odometer sensor of the robot. In Fig. 12(b), the uncer- 
tainty of the points and location p ,  are shown with 
respect to pl. The uncertainty ellipse around p 2  is elon- 
gated perpendicular to the direction of motion because the 
angular error of the odometer sensor is greater than its 
error in determining distance. The uncertainty with respect 
to p 1  of measurements U ,  and b, has increased because 
their uncertainty with respect to p ,  has been compounded 
with p 2  locational uncertainty. In Fig. 12(c), the Kalman 
filter is used to determine new fused estimates for both 
points (a* and b*) that have a reduced uncertainty with 
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Fig. 12. Reduction in uncertainty as to location of robot ( p )  and two 
points ( a  and h )  in environment through use of Kalman filter to fuse 
measurements as robot moves from p 1  to p 2 .  (a) Uncertainty before 
fusion of points a and h as measured from p ,  and p z .  (b) Uncertainty 
of a ,  h, and p z  with respect top, .  (c) Fused estimates for a ,  6 ,  and p z  
with respect to p I .  (Adapted from 1159, fig. 101.) 

respect to both locations p1 and p 2 .  The uncertainty of p 2  
with respect to p 1  has also been reduced. 

5)  CMU’s Autonomous Land Vehicles: The NAVLAB 
and Terregator are two vehicles developed at 
Carnegie-Mellon University’s Robotics Institute as part of 
their research on autonomous land vehicles [ill], [160]. 
Each vehcle is equipped with a color TV camera, laser 
range finder, and sonar sensors. The sonar sensors are used 
to detect nearby obstacles. The design of an architecture 
able to support parallel processing and the development of 
multisensor integration and fusion techniques have been 
major goals of the research. The current system consists of 
several independently running modules that are tied to- 
gether in what is termed a “ whiteboard” control structure, 
whch differs from a blackboard in that each module 
continues to run while synchronization and data retrieval 
requests are made. Data in a local world model are repre- 
sented as tokens with attribute-value pairs. Tokens repre- 
senting physical objects and geometric locations consist of 
a two-dimensional polygonal shape, a reference coordinate 
frame that can be used to transform the location to other 
frames, and time stamps that record when the token was 
created and the time at which sensor data were received 
that led to its creation. When range data, measured by the 
camera and laser range finder at different times and loca- 

tions on the vehicle, are to be fused, the coordinate frames 
of the tokens created by each sensor for these data are first 
transformed to a common vehicle frame and then trans- 
formed forward to the same point in time. The data are 
now fused, resulting in the creation of a new token repre- 
senting the fused data. 

6) The DARPA Autonomous Land Vehicle: The Au- 
tonomous Land Vehicle (ALV) [112], [115], [161]-[163] 
built by Martin Marietta is part of the Defense Advanced 
Research Projects Agency’s (DARPA) Strategic Comput- 
ing Program. The ALV is intended to be a testbed de- 
signed for demonstrating the state of the art in au- 
tonomous vehcle research [163]. A number of companies 
and universities are currently worlung on different re- 
search aspects of the project. In the initial stages of the 
project, the ALV was used in road-following applications 
[112], [161], [164]; in more recent stages, obstacle avoid- 
ance [163] and autonomous cross-country navigation [163], 
[165] capabilities have been demonstrated. Future research 
is aimed at enhancing the operational speed and robust- 
ness of the ALV, and adding capabilities like landmark 
recognition [163]. 

In road-following applications [112], [163], the ALV uses 
sonar to determine its height, tilt, and roll with respect to 
road surfaces directly beneath it. Complementary informa- 
tion from a laser range scanner and two color video 
cameras is used for obstacle detection. Color video infor- 
mation is used to locate roads because the laser range 
information can easily be confused if there is very little 
difference in depth between the road and surrounding 
areas. Laser range information is used to obtain accurate 
descriptions of the geometrical features of obstacles on the 
road because, unlike the video information, it is not sensi- 
tive to poor lighting conditions and shadows. After being 
transformed to a common world coordinate system, the 
video information is used both to determine the bound- 
aries of the road for path planning and, after being inte- 
grated with similarly transformed laser range information, 
for obstacle recognition. 

In autonomous cross-country navigation applications 
[115] a hierarchical control system is used to provide the 
ALV with the flexibility needed for operation over natural 
terrain. At the lowest level in the hierarchy, “ virtual sen- 
sors” and “reflexive behaviors” are used as real-time oper- 
ating primitives for the rest of the control system [165]. 
Functioning in a similar transparent manner as the logical 
sensors described in Section 111-A-3, virtual sensors com- 
bine information from physical sensors with appropriate 
processing algorithms to provide specific information to 
associated reflexive behaviors. Combinations of behavior 
and virtual sensors are used to handle specific subprob- 
lems that are part of the overall navigation task. In these 
applications a laser range-scanner, together with orienta- 
tion sensors to determine the pitch, roll, and x and y 
position of the vehicle, were used to provide information 
needed to create overhead map view representations of the 
terrain called Cartesian elevation maps (CEM’s); other 
range sensors such as stereo vision could also be used to 
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create CEM’s. Smoothing procedures are applied to the 
CEM’s to fill in detail not provided by the sparse laser 
range information. As the ALV travels over the terrain, 
CEM’s are fused together to provide a means for selecting 
traversable trajectories for the vehcle. 

VI. APPLICATIONS 

This section discusses a variety of intelligent systems in 
different areas of application to illustrate the role of multi- 
sensor integration and fusion in their overall operation. A 
description of the use of multisensor-based mobile robots 
in different areas of application can be found in Section V. 

A .  Industrial 

The addition of sensory capabilities to the control of 
industrial robots can increase their flexibility and allow for 
their use in the production of products with a low volume 
or short design life [166]. In many industrial applications, 
the use of multiple sensors is required to provide the robot 
with sufficient sensory capabilities. Most of the multisen- 
sor integration and fusion techniques discussed in this 
paper are suitable for industrial applications because the 
industrial environment is usually well-structured, and de- 
scriptions of many of the objects in the environment are 
available from the data bases of computer-aided design 
systems. 

Nitzan et al. [167] divide industrial robot applications 
into four general areas: material handling, part fabrication 
(e.g., spot and arc welding, forging, etc.), inspection, and 
assembly. Material handling is usually the simplest area of 
application and assembly the most complex. 

I )  Material Handling: Industrial robots can be used for 
in-process workpiece handling and the loading and unload- 
ing of industrial trucks (e.g., automatic guided vehicles, 
tow tractors, etc.) and conveyors- the two major material 
handling equipment types. Much of the research on mobile 
robots (Section V) can readily be applied to existing indus- 
trial trucks to increase their capabilities in areas such as 
route planning and obstacle avoidance. Choudry et al. 
[168] have developed a simulation system to test designs 
for the sensory control of an autonomous material han- 
dling vehicle. Their sensory control designs take advantage 
of the relatively well-structured shop floor environment to 
avoid having to use the more cumbersome herarchical 
control structures used in most mobile robots. The hierar- 
chical phase-template paradigm (Section 111-A-1) summa- 
rizes the integration and fusion issues resulting from the 
use of a multisensor robot for handling workpieces. Sen- 
sory capabilities can enable a robot to grasp workpieces 
that are randomly oriented in a bin or on a conveyor. 
Hitachi Ltd. [169] has developed a robot which uses three- 
dimensional vision and force sensors to pick up randomly 
positioned connectors and mount them on a printed circuit 
board. One of the projects of the ESPRIT program (the 
European Strategic Programme for Research and Develop- 
ment into Information Technology) is developing a system 

that combines vision and tactile sensors for real-time ap- 
plications in material handling [170]. Miller [45], [46] has 
applied adaptive learning (Section 111-B-3) to an experi- 
ment involving having a robot use sensory feedback to 
track and intercept an object on a moving conveyor. 
Results of the experiment showed that, by the tenth at- 
tempt to teach the robot to follow the object to the end of 
the conveyor, the gripper was able to approach the object 
to within a small (1-4 cm) degree of accuracy. 

2) Part Fabrication: As of 1985, almost half of the 
robots in US. industry were being used for welding [171] 
-the majority being used in spot welding applications 
because arc welding robots without sensory capabilities 
cannot track a seam with randomly variable gaps. Kremers 
et al. [172] developed a robot that used both a vision 
sensor and wrist-mounted laser scanner range sensors to 
guide the arm of the robot during the one pass arc welding 
of workpiece joints that had random gaps along their 
seams. Howarth and Guyote [173] describe work being 
done at Oxford that uses eddy current and ultrasonic 
sensors for robot arc welding. Nitzan et al. [167] provide a 
plan for a sensor guided arc welding system as a specific 
example to illustrate the use of generic robot functions 
(e.g., “recognize,” “place,” “grasp,” etc.) and their associ- 
ated high-level properties (e.g., “identity,” “location,” etc.) 
determined from sensory information. 

3) Inspection: Inspection can be divided into two differ- 
ent types [167]: explicit and implicit. Explicit inspection 
verifies the integrity of workpieces, as a separate operation, 
either during or after the manufacturing process. Depend- 
ing on the nature of the work pieces involved, any of the 
multisensor integration and fusion techniques described in 
this paper could be of potential use for explicit inspection. 
Implicit inspection verifies the integrity of work pieces 
whle handling them during the manufacturing process. 
Many of the object-recognition approaches that combine 
vision with tactile sensors (Section IV-B) would be espe- 
cially appropriate if applied to implicit inspection (as well 
as assembly) operations because the manipulator would 
already be in position to grasp and inspect the workpieces. 
Manufacturing research at Georgia Tech [174] is focused 
on integrating vision and tactile information for the adap- 
tive control of a robot manipulator that would be useful in 
just such applications. 

4) Assembly: Assembly is the most complex area of 
industrial robot application because, in addition to opera- 
tions like insertion that are unique to assembly, different 
aspects of the other three application areas can be part of 
the overall assembly process. Smith and Nitzan [175] de- 
scribe an assembly station consisting of two robots with 
wrist-mounted vision and force sensors, overhead cameras, 
and a general-purpose parts feeder. Printer carriages were 
assembled by first locating components on the feeder using 
the overhead cameras and then transporting them to the 
carriage and snapping them in place using the robots. The 
force and wrist-mounted vision sensors were used to verify 
that the components were correctly in place. One of the 
projects of the ESPRIT program is to develop vision and 
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tactile sensors that can be used in an integrated manner 
for assembly operations [170]. 

Groen et al. [166], [176] describe a multisensor robotic 
assembly station equipped with vision, ultrasonic, tactile, 
and force/torque sensors. The assembly process is repre- 
sented as a sequence of stages that are entered when 
certain sensor determined conditions are satisfied. A her- 
archical control structure, modeled after the NBS control 
hierarchy (Section 111-B-l), is used to enable the entire 
process to be executed using a set of modular low-level 
peripheral processes that perform dedicated tasks like sen- 
sory processing, robot control, and data communication. 
The system has been applied to the assembly of three 
different types of hydraulic lift assemblies for gas water 
heaters. In operation, vision sensors are used to recognize 
different parts of the asspmblies as they arrive in varying 
order and at undefined positions. Feedback information 
from the force/torque sensors and the passive compliance 
of the robot’s gripper are used for bolt insertion operations 
and to transport and place, with great precision, assembly 
housings on work spots so that the housing can be used as 
a reference for the remaining assembly operations. Final 
inspection is performed with the vision sensors. 

Ruokangas et al. [177] describe an experimental hierar- 
chcally controlled multisensor robot work station devel- 
oped using Rockwell’s Automation Sciences Testbed. Vi- 
sion, acoustic, and force/torque sensors, all mounted on 
the end effector of a robot, were used both separately and 
in different combinations to demonstrate the limitations of 
the information each sensor was able to provide and the 
advantages to be gained when two or more sensors are 
integrated. In one demonstration, distance information 
from the acoustic sensor was used to position the end 
effector so that the camera was at the correct focal dis- 
tance for the visual inspection of workpieces. In another 
demonstration, the force/torque sensors were used to pro- 
vide modifications during task execution to the measure- 
ment of hole positions that were initially determined by 
the integrated range information provided by stereo cam- 
eras and an acoustic sensor- the acoustic information 
being used to provide redundancy to the distance informa- 
tion provided by the cameras. 

B. Military 

As the complexity, speed, and scope of warfare has 
increased, the military has increasingly turned to auto- 
mated systems to support many activities traditionally 
performed manually [178]. The use of large numbers of 
diverse sensors as part of these systems has resulted in the 
issues of multisensor integration and fusion assuming criti- 
cal importance. As an example of the need for highly 
automated systems, the typical average information re- 
quirements for the command and control of tactical air 
warfare have been estimated to be 25-50 decisions/min 
based on 50 000-100 000 reports from 156 separate sensor 
platforms concerning as many as 1000 hostile targets being 
tracked up to an altitude of 20 km over an area of 800 km2 

[69]. As part of a comprehensive survey of the possible 
military applications of artificial intelligence technologies, 
Franklin et al. [179] listed multisensor integration and 
fusion as being of major importance in the areas of general 
operations, intelligence analysis and situation assessment, 
force command and control, autonomous vehicles, avion- 
ics, and electronic warfare; together with areas of minor 
importance, multisensor integration and fusion were listed 
in 20 of the 25 areas of application. Given this wide scope, 
multisensor integration and fusion will be one of the 
technologies necessary for the development of the Au- 
tonomous Land Vehcle (Section V-D-6), an intelligent 
Pilot’s Associate, and a command and control system for 
naval battle management- three of the initial projects 
supported by DARPA’s Strategic Computing Program 
aimed at exploring the potential of AI-based solutions to 
important military problems [180]. 

The use of multisensor integration and fusion for object 
recognition in military applications requires that consider- 
ation be given to some additional factors that are not 
present in nonmilitary applications. Object recognition can 
be considered as a two-person zero-sum statistical game 
played against nature by the system performing the recog- 
nition [181]. In the terms of game theory, at each move in 
the game both players select a strategy. Associated with 
each pair of possible strategies is a payoff. In a zero-sum 
game, the gain of one player is equal to the loss of the 
other. The system’s strategies are the possible decisions as 
to the identity of an object; nature’s strategies are the 
a priori probabilities corresponding to the occurrence of 
each of the possible classes to which an object can belong. 
In most nonmilitary applications, nature can be considered 
to be indifferent (i.e., the strategies it selects are based 
upon the a priori probability of each object, and they 
remain constant even though they may not be optimal in 
the game theoretic sense); in military applications, by 
contrast, it is possible that the moves of the other player 
(e.g., the design or operation of the hostile aircraft being 
recognized) are being selected with the goal of maximizing 
the potential payoff. 

The possibility of a game against a “malevolent nature” 
(i.e., the enemy) hghlights the necessity of being able to 
make decisions through the use of a variety of different 
sensors. Any system relying on the information provided 
by just a single sensor type could be more vulnerable to 
what might be called “ meta-sensor” error. Although the 
sensor might be functionally providing correct informa- 
tion, it could be spoofed as to the true identity of an object 
being sensed (e.g., a hostile aircraft using a friendly radar 
signature). Through the use of redundant information pro- 
vided by sensors of different types together with the ability 
to integrate t h s  information intelligently, the system can 
minimize the effect of the spoofed sensor in the overall 
determination of the object’s identity. Garvey and Fischler 
[182] discuss the use of multiple sensors for inductive and 
interpretative perceptual reasoning in hostile environ- 
ments, Comparato [183] describes the potential role of 
multisensor fusion in the next generation of tactical com- 
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Fig. 13. Generic military command and control architecture. (Adapted 
from [69. figs. 5 and 61.) 

bat platforms, and Mayersak [ 1841 reviews the multisensor 
fusion aspects of munition (e.g., guided missile) design. 

1 )  A Generic Command and Control Architecture: Waltz 
and Buede [69] proposed an architecture for a generic 
command and control system that includes multisensor 
integration and fusion functions as one of its two major 
subsystems (see Fig. 13). The operation of the system can 
be divided into four main steps of a feedback loop. First, a 
variety of different sensors collect data from the combat 
environment and then transmit these data on to the multi- 
sensor integration and fusion subsystem. The functions 
comprising this subsystem integrate and fuse the data so 
that any targets or events can be located and identified. 
The fused information, representing the possible targets or 
events that comprise the current situation, is then sent to 
the decision support subsection where it is used to create, 
analyze, and rank alternative courses of action. A human 
commander completes the feedback loop by selecting a 
course of action whch possibly changes the environment. 
The system initiates operation with a query from the 
human commander to the decision support subsystem for 
recommended courses of action. Using certain key param- 
eter values supplied by the human commander and the 
system's assessment of current situation, the decision sup- 
port subsystem analyzes alternative courses of action, pos- 
sibly querying the multisensor integration and fusion sub- 
system for additional information, to select those actions 
to recommend to the human commander, The human 
commander can then either select one of the current rec- 
ommended actions or query the system for additional 
information. Although the human commander can always 
make the final decision, certain routine or time-critical 
actions can automatically be determined by the system. 

The process of data fusion starts with each sensor or 
network of sensors in the combat environment sending 
detection reports or target tracks to a queue from which 
they are made commensurate by being transformed to a 
common space and time coordinate system. A local target 
track is maintained by a sensor if the measurement time of 
the sensor is small relative to the ability of the system to 
process the data. (In Fig. 13, both the radar and the 
network of sensors (e.g., ground sensors measuring seismic 
or acoustic events) may generate a track containing dozens 
of measurements in the time it takes the photographic 
sensor to generate a single image.) Because the system is 
generic, the common spatial reference (e.g., XYZ;  lati- 
tude/longitude, range/azimuth/elevation, etc.) depends 
on the specific environment, and the methods of trans- 
forming the sensed data depend on the differing locations, 
resolutions, fields of view, and measurement times of the 
particular sensors used. After the reports or tracks are 
transformed to a common coordinate system, hypothetical 
pairwise assignments are made to each existing report from 
the situation data base and track from the multitarget 
dynamic tracking filter-each of which has been propa- 
gated in time to coincide with the current data. The 
assignments are then scored using a metric defined over 
some feature of the data (e.g., the spatial distance between 
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the data and existing reports or tracks). The resulting 
scores are then used in selecting either a single hypothesis 
or a small set of hypotheses that are sent to the multitarget 
tracker. Probabilistic methods are sometimes needed to 
make the selection because of uncertainties in the sensor 
measurements or the large number of hypotheses gener- 
ated when there are many sensors and possible targets. 
Reports that remain uncorrelated to any existing reports 
are sent to the situation data base for possible use in the 
future. When an assignment of a new report is made, the 
multitarget tracker updates the estimate of the associated 
target in the data base. The situation data base contains 
the reports and tracks that correspond to the most likely 
grouping of the data so far collected. The process of 
actually combining the collected data to enable the at- 
tributes of a target (e.g., its identity, intent, future behav- 
ior, etc.) to be inferred is the core function in the multisen- 
sor integration and fusion subsystem. While all of the 
methods of fusion mentioned in this paper can be used in 
implementing this function, the use of production rules to 
infer higher-level information (e.g., intent and future be- 
havior) allows for a convenient interface to the decision 
support subsystem. The arrival of new sensor data causes a 
forward-chaining process that may result in the antecedent 
of a production rule being satisfied and the situation data 
base being updated with the rule’s consequent. Reversing 
the direction of inference, queries from the decision sup- 
port subsystem as to the support for a hypothetical situa- 
tion can cause a backward-chaining process that searches 
to determine if any of the antecedents in the data base 
support the consequents implied by the query. If the 
required antecedents to not exist or have too large of an 
associated uncertainty, the data base can direct the sensor 
management function to redirect the sensors to search for 
data to support the required antecedents; for example, if 
the current possible enemy threat to a specific location X 
is queried, sensors near to X could be redirected to focus 
on that location. Priorities can be sent to the sensor 
management function when multiple queries exist. 

2) Analyst: Analyst [185], [186] is a prototype expert 
system developed for the U.S. Army that generates real- 
time battlefield tactical situation descriptions using the 
information provided by multiple sensor sources. (This 
summary follows that given in [174].) Analyst determines 
as output a situation map showing the suspected location 
of enemy units through the use of intelligence input from 
battlefield sensors, photographs, and intercepted enemy 
communications and radar transmissions. Each intelli- 
gence report input is represented as a frame. The use of 
frames allows default values to be attached to the slots of 
the frame in the case where the intelligence report was 
incomplete. Each frame is then applied simultaneously to 
production rules contained in the first two of six different 
knowledge bases. The initial fusion of the sensor informa- 
tion is performed by these rules in the process of inferring 
a possible battlefield entity (also represented as a frame). 
Associated with each entity frame is a slot containing a 
likelihood factor to indicate the strength of the evidence 

used to infer the presence of the entity. The third knowl- 
edge base eliminates possible multiple frames correspond- 
ing to the same entity that may have been created from the 
reports of different sensors. The fourth and fifth knowl- 
edge bases refine and reinforce the entity frames through 
the use of tactical and terrain data together with the 
presence of other possible related entities in the knowledge 
bases. The sixth knowledge base serves to remove from 
consideration those entities that have not been reinforced 
with additional information for a sufficient length of time. 
Each knowledge base is applied sequentially to each piece 
of sensor information as it becomes available, enabling 
Analyst continuously to provide the most current estimate 
of the battlefield situation. 

C. Space 

NASA‘s permanently manned space station will be the 
United States’ major space program in coming years [187]. 
Previous NASA programs, including the space shuttle, 
have used a high degree of participation by both the crew 
and ground-based personnel to perform the sensing and 
perception functions required for many tasks. Both to 
increase productivity and allow tasks beyond the capabil- 
ity of the crew to be performed, the space station will 
make increasing use of autonomous systems for the servic- 
ing, maintenance, and repair of satellites and the assembly 
of large structures for use as production facilities and 
commercial laboratories. Probably the most important fac- 
tor promoting the use of autonomous systems for these 
applications is the cost of having a human in space. In 
addition to these economic factors, aspects of the space 
environment can make the use of multiple sensors an 
especially important part of these systems. The sensing of 
objects in space using just optical sensors is difficult be- 
cause the lack of atmosphere invalidates some of the 
common assumptions concerning surface reflectance used 
in many visual recognition methods; also, images in space 
frequently have deep shadows, missing edges, and intense 
specular reflections [188]. 

Shaw et al. [188] have presented a system that uses TV 
images to guide a microwave radar unit in the determina- 
tion of the shape of objects in space. Microwave radar 
information serves to complement optical information for 
a number of important features of objects typically found 
in space. Scattering cross-sectional data from radar can be 
used to determine the shape of the metallic surfaces typi- 
cally found on satellites; optical sensors and even laser 
range-scanners have difficulty with metallic surfaces be- 
cause they reflect light in a specular direction. Optical 
sensors would be more useful in determining the shape of 
the slightly matte surfaces found on the space shuttle 
because these surfaces reflect light more equally in all 
directions. As compared to optical wavelengths, the longer 
wavelength of radar can be used to penetrate the solar 
blankets on space objects that sometimes cover important 
surface details needed by a robot for grasping and may 
sometimes diffract around objects that are occluded along 



924 IEEE TRANSACTIONS O N  SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 1989 

the optical sensor’s line of sight. The optical image is used 
to provide an initial estimate of the shape of a surface that 
serves to reduce the ambiguity inherent when interpreting 
narrow-band radar-scattering cross-sectional data. In oper- 
ation, the system uses equations defining the orthogonal 
directions of the polarized radar-scattering cross section to 
determine surface shapes. Initially, occluding contours are 
derived from the optical image of the surface by threshold- 
ing, and a partial surface shape description is derived from 
shape-from-shading or stereo. The surface is then either 
matched to some simple geometric shape or, if no match is 
found, a grid is constructed over the surface. If a simple 
match is found, a closed-form expression can be used.for 
the scattering equations; if no match is found, an iterative 
nonlinear least squares technique is used to approximate 
the equations. 

D. Target Tracking 

A variety of different filtering techniques, together with 
radar, optical, and sonar sensors, have been used for 
tracking targets (e.g., missiles, planes, submarines, etc.) in 
the air, space, and under water. Bar-Shalom and Fortmann 
[189], [190] have surveyed a number of tracking methods 
that can be used when there are multiple targets in the 
environment. Recently, researchers have been developing 
methods of multitarget tracking that integrate and/or fuse 
the information (or measurements) provided by a number 
of identical sensors. The key problem in multitarget track- 
ing in general, and in multisensor multitarget tracking in 
particular, is “data association”- the association of sensor 
information to a single target [ 1911 (in general multisensor 
integration and fusion, this problem is termed the registra- 
tion problem (Section VII-A-1)). For the purposes of t h s  
discussion, the different multisensor tracking methods can 
be distinguished based on the complementary versus re- 
dundant nature of the information provided by the sensors 
(Section II-C). 

I )  Complementary Tracking Information: The position 
and velocity of targets can be derived through the use of 
the complementary information provided by the time of 
arrival and frequency of signals sent by a small group of 
sensors. The difference between both the time and fre- 
quency of the signals arriving at each sensor can be used to 
determine the tracks of targets. Arnold et al. [192] and 
Mucci et al. [193] have used the Fisher information matrix 
to evaluate the performance of this approach and have 
found that a single pair of omnidirectional sensors are 
sufficient to determine the location of moving targets when 
they are in the vicinity (“near field”) of the sensors; three 
sensors are required when they are distant or stationary. 

2) Redundant Tracking Information: Redundant track- 
ing information can be provided by a network of sensors 
distributed over a large geographic area to increase the 
overall reliability and survivability of the tracking system 
[191]. Two different processing architectures have been 
developed for the association of the information provided 

by each sensor in the network. In the first, the measure- 
ments of all the sensors are transmitted to a centralized 
site for processing; in the second, the processing is dis- 
tributed to local nodes in the network. As compared to the 
first, the second archtecture provides the additional bene- 
fits of an increased survivability and the possibility of 
using a smaller bandwidth for communication within the 
network. 

Chang et al. [191] and Chong et al. [194] have presented 
a distributed processing version of the Joint Probabilistic 
Data Association algorithm, first applied in a centralized 
processing architecture [ 1951, that reduces the network‘s 
bandwidth requirements by fusing, at each local node in 
the network, measurements from a small number of sen- 
sors. The compressed higher level fused information is 
then propagated to the other local nodes in the network. 
Each local node can use the fused information it receives 
from the other nodes to amve at a solution to the global 
tracking problem. The algorithm used for fusion was de- 
veloped by Speyer [196]. It is based on the use of a 
Kalman filter (Section III-E-2) at each local node and 
requires the propagation of an additional data-dependent 
vector beyond the usual filter equations. 

In a series of papers Thomopoulos et al. [197]-[200] 
have developed algorithms for fusing target detection in- 
formation from a distributed network of sensors. In the 
first paper [197], optimal and suboptimal algorithms are 
developed for the situation in which a group of parallel 
sensors transmit their detection decision to a fusion center 
where, assuming the sensors are conditionally independent, 
a Neyman-Pearson test maximizes the fused probability of 
detection for a fixed probability of false alarm. A likeli- 
hood-ratio test is used for detection at each sensor. In the 
second paper [198], a pair of sensors is considered in which 
one sensor is the primary sensor responsible for the final 
detection decision and the other is a consulting sensor. 
Based on an estimated cost associated with any communi- 
cation between the sensors and the quality of its own raw 
data, the primary sensor makes a decision as to whether to 
consult with the other sensor as part of its overall detec- 
tion decision. In the third paper [199] delays in the net- 
work and channel errors are considered, and in the final 
paper [200] the time origin of the information from each 
sensor is assumed to be uncertain. An extension to the 
Kalman filter is developed to account for this uncertainty. 

E. Inertial Navigation 

The inertial system used in spacecraft and many ad- 
vanced aircraft for navigation consists of a gyroscope 
mounted on a platform suspended in a gimbal structure 
that allows the vehicle to change its angular orientation 
while maintaining the platform fixed with respect to a 
reference coordinate frame [66], [201]. The position and 
velocity of the vehicle can be determined by integrating the 
signals from accelerometers mounted on the platform. Due 
to inherent gyro characteristics that cause errors in posi- 
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Fig. 14. External sensor-aided indirect feedback inertial navigation system configuration. (Adapted from [66, fig. 6.9(a)].) 

tion and velocity to grow unbounded slowly over time (i.e,, F. Remote Sensing 
low-frequency noise), the inertial navigation system re- 
quires the aid of other external navigation sensors to 
bound or dampen these errors. Typical external sensors 
used to aid the inertial system include on-board or 
ground-based radar, radio, navigation, satellites, land- 
marks or star sightings, laser ranging, and altimeters. As 
opposed to the inertial system which accurately follows the 
high-frequency motions of the vehicle, each of these exter- 
nal sensors provides information which is good on average 
(i.e., its error does not increase over time) but is subject to 
considerable high-frequency noise (i.e., each measurement 
has considerable error). A Kalman filter (Section 111-E-2) 
can be used to determine the fusion of inertial system and 
external sensor information that will statistically minimize 
the error in the estimate of the vehicle's position. 

Fig. 14 shows a typical external sensor-aided inertial 
navigation system configuration. In the figure, the Kalman 
filter is used in an indirect (error state space) feedback 
configuration to generate estimates of the errors in the 
inertial system and then feed these estimates back into the 
inertial system to correct it. The indirect feedback filter 
configuration is used in most inertial navigation systems 
because 1) as opposed to the direct formulation where the 
vehicle's actual position is estimated, the indirect formula- 

In aerial photo mapping over land, known ground points 
can be used to establish the orientation of photographs; in 
aerial mapping over water, the orientation must be deter- 
mined by accurately knowing the position and attitude of 
the camera at the time the photograph is taken because 
known ground points are not generally available. Gesing 
and Reid [202] describe a system that fuses information 
from multiple navigation sensors to estimate an aircraft's 
position and attitude accurately enough for use in the 
mapping of shallow coastal waters. An inertial navigation 
system is mounted to the top of the aerial survey camera in 
the aircraft used for mapping. During flight, information is 
recorded from a number of auxiliary navigation sensors 
including: a laser bathymeter to measure water depth, a 
microwave ranging system, barometric and radar altime- 
ters, a radio navigation system, and a Doppler radar. A 
U-D covariance factorization filter (Section 111-E-2) and a 
modified Bryson-Frazier smoother are then used for post- 
flight processing to produce time-correlated sensor error 
estimates that can be subtracted from the recorded inertial 
system data to yield highly accurate position and attitude 
information that serves to orient the photographs taken 
during the flight. 

tion increases the overall reliability of the navigation sys- 
tem because the inertial system can still operate if the filter 
should fail due to a temporary computer or external navi- 
gation sensor failure; 2 )  the feedback, as opposed to feed- 
forward, mechanization is used so that inertial errors do 
not grow unchecked; and 3) the sample rate for this filter 
is low because only low frequency linear dynamics are 
modeled. 

VII. CONCLUSION 

The issues of and approaches to the problem of multi- 
sensor integration and fusion presented above demonstrate 
the wide scope of present research efforts in this area. To 
conclude this paper, a discussion of the possible problems 
and future research directions in the area of multisensor 
integration and fusion is provided. 
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A .  Possible Problems 

Many of the possible problems associated with creating 
a general methodology for multisensor integration and 
fusion, as well as developing the actual systems that use 
multiple sensors, center around the methods used for mod- 
eling the error or uncertainty in 1) the integration and 
fusion process, 2) the sensory information, and 3) the 
operation of the overall system including the sensors. For 
the potential advantages in integrating multiple sensors 
(Section 11-C) to be realized, solutions to these problems 
will have to be found that are both practical and theoreti- 
cally sound. 

1) Error in the Integration and Fusion Process: The ma- 
jor problem in integrating and fusing redundant informa- 
tion from multiple sensors is that of “registration”- the 
determination that the information from each sensor is 
referring to  the same features in the environment. (The 
registration problem is termed the correspondence [77] and 
data association [191] problem in stereo vision and multi- 
target tracking research, respectively.) Barniv and Casasent 
[203] have used the correlation coefficient between pixels 
in the grey level of images as a measure of the degree of 
registration of objects in the images from multiple sensors. 
Lee and Van Vleet [204] and Holm [205] have studied the 
registration errors between radar and infrared sensors. Lee 
and Van Vleet have presented an approach that is able 
both to estimate and minimize the regstration error, and 
Holm has developed a method that is able to compensate 
autonomously for registration errors in both the total scene 
as perceived by each sensor (“macroregistration”), and the 
individual objects in the scene (“microregstration”). 

2) Error in Sensory Information: The error in sensory 
information is usually assumed to be caused by a random 
noise process that can be adequately modeled as a proba- 
bility distribution. The noise is usually assumed not to be 
correlated in space or time (i.e., white), Gaussian, and 
independent. The major reasons that these assumptions are 
made are that they enable a variety of fusion techniques to 
be used that have tractable mathematics and yield useful 
results in many applications. If the noise is correlated in 
time (e.g., gyroscope error (Section VI-E-1)) it is still 
sometimes possible to retain the whiteness assumption 
through the use of a shaping filter [66]. The Gaussian 
assumption can only be justified if the noise is caused by a 
number of small independent sources. In many fusion 
techniques the consistency of the sensor measurements is 
increased by first eliminating spurious sensor measure- 
ments so that they are not included in the fusion process. 
Many of the techniques of robust statistics (e.g., c-con- 
tamination in Sections 111-E-4 and -5) can be used to 
eliminated spurious measurements. The independence as- 
sumption is usually reasonable so long as the noise sources 
do not originate from within the system (cf. paragraph 3, 
below). 

3) Error in System Operation: When error occurs during 
operation due to possible coupling effects between compo- 
nents of a system, it may still be possible to make the 

assumption that the sensor measurements are independent 
if the error, after calibration, is incorporated into the 
system model through the addition of an extra state vari- 
able [66]. In well-known environments the calibration of 
multiple sensors will usually not be a difficult problem, but 
when multisensor systems are used in unknown environ- 
ments, it may not be possible to calibrate the sensors. 
Possible solutions to this problem may require the creation 
of detailed knowledge bases for each type of sensor so that 
a system can autonomously calibrate itself. One other 
important feature required of any intelligent multisensor 
system is the ability to recognize and recover from sensor 
failure (cf. [23], [206]). 

B. Future Research Directions 

In addition to multisensor integration and fusion re- 
search directed at finding solutions to the problems al- 
ready mentioned, research in the near future will likely be 
aimed at developing integration and fusion techniques that 
will allow multisensory systems to operate in unknown and 
dynamic environments. As currently envisioned, multisen- 
sor integration and fusion techniques will play an impor- 
tant part in the Strategic Defense Initiative in enabling 
enemy warheads to be distinguished from decoys [207]. 
Many integration and fusion techniques will likely be 
implemented on recently developed highly parallel com- 
puter architectures (e.g., the Connection Machine [208], 
etc.) to take full advantage of the parallelism inherent in 
the techniques. The development of sensor modeling and 
interface standards would accelerate the design of practical 
multisensor systems [9]. Continued research in the areas of 
artificial intelligence and neural networks will continue to 
provide both theoretical and practical insights. AI-based 
research may prove especially useful in areas like sensor 
selection, automatic task error detection and recovery, and 
the development of high-level representations; research 
based on neural networks may have a large impact in areas 
like object recognition through the development of dis- 
tributed representations suitable for the associative recall 
of multisensory information, and in the development of 
robust multisensor systems that are able to self-organize 
and adapt to changing conditions (e.g., sensor failure). 

The development of integrated solid-state chips contain- 
ing multiple sensors has been the focus of much recent 
research [209], [210]. As current progress in VLSl technol- 
ogy [211] continues, it is likely that so-called “smart sen- 
sors” [212] will be developed that contain many of their 
low-level signal and fusion processing algorithms in cir- 
cuits on the chip. In addition to a lower cost, a smart 
sensor might provide a better signal-to-noise ratio and 
abilities for self-testing and calibration. Currently, it is 
common to supply a multisensor system with just enough 
sensors for it to complete its assigned tasks; the availabil- 
ity of cheap integrated multisensors may enable some 
recent ideas concerning “ highly redundant sensing” [213] 
to be incorporated into the design of intelligent multisen- 
sor systems-in some cases, high redundancy may imply 
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the use of up to ten times the number of minimally 
necessary sensors to provide the system with a greater 
flexibility and insensitivity to sensor failure. In the more 
distant future, the development of micro or “gnat” [214] 
robots will necessarily entail the advancement of the state 
of the art in multisensor integration and fusion. 
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