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Abstract

A widely used heuristic for solving stochastic optimization problems is to use a de-

terministic rolling horizon procedure which has been modified to handle uncertainty

(e.g. buffer stocks, schedule slack). This approach has been criticized for its use of a

deterministic approximation of a stochastic problem, which is the major motivation

for stochastic programming. This dissertation recasts this debate by identifying both

deterministic and stochastic approaches as policies for solving a stochastic base model,

which may be a simulator or the real world. Stochastic lookahead models (stochas-

tic programming) require a range of approximations to keep the problem tractable.

By contrast, so-called deterministic models are actually parametrically modified cost

function approximations which use parametric adjustments to the objective function

and/or the constraints. These parameters are then optimized in a stochastic base

model which does not require making any of the types of simplifications required

by stochastic programming. This dissertation formalizes this strategy, describes a

gradient-based stochastic search strategy to optimize policies, and presents a series

of energy related numerical experiments to illustrate the efficacy of this approach.
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Chapter 1

Introduction

There has been a long history in industry of using deterministic optimization models

to make decisions that are then implemented in a stochastic setting. Energy com-

panies use deterministic forecasts of wind, solar and loads to plan energy generation

(Wallace and Fleten (2003)); airlines use deterministic estimates of flight times to

schedule aircraft and crews (Lan et al. (2006)); and retailers use deterministic esti-

mates of demands and travel times to plan inventories (Harrison and Van Mieghem

(1999)). These models have been widely criticized in the research community for not

accounting for uncertainty, which often motivates the use of large-scale stochastic

programming models which explicitly model uncertainty in future outcomes (Mul-

vey et al. (1995) and Birge and Louveaux (2011a)). These large-scale stochastic

programs have been applied to unit commitment (Jin et al. (2011)), hydroelectric

planning (Carpentier et al. (2015)), and transportation (Lium et al. (2009)). These

models use large scenario trees to approximate potential future events, but result in

very large-scale optimization models that can be quite hard to solve in practice.

In this thesis, we make the case that these previous approaches ignore the true

problem that is being solved, which is always stochastic. The so-called “deterministic

models” used in industry are almost always parametrically modified deterministic

1



approximations, where the modifications are designed to handle uncertainty. Both the

“deterministic models” and the “stochastic models” (formulated using the framework

of stochastic programming) are examples of lookahead policies to solve a stochastic

optimization problem. The stochastic optimization problem is to find the best policy

which is typically tested using a simulator, but may be field tested in an online

environment (the real world).

We characterize these modified deterministic models as parametric cost function

approximations which puts them into the same category as other parameterized poli-

cies that are well known in the research community working on policy search (Ng

and Jordan (2000a), Peshkin et al. (2000a), Hu et al. (2007a), Deisenroth (2011), and

Mannor et al. (2003)). A parallel community has evolved under the name simulation-

optimization (see the recent edited volume Fu (2015)), where powerful tools have

been developed based on the idea of taking derivatives of simulations (see the exten-

sive literature on derivatives of simulations covered in Glasserman (1991), Ho (1992),

Kusher, Harold; Ying (2003), Cao (2009)); a nice tutorial is given in Chau and Fu,

Michael C, Huashuai Qu (2014). Much of this literature focuses on derivatives of

discrete event simulations with respect to static parameters such as a buffer stock.

Our strategy also exhibits static parameters, but in the form of a parameterized mod-

ifications of constraints in a policy that involves solving a linear program. This use

of modified linear programs is new to the policy search literature, where “policies”

are typically parametric models such as linear models (“affine policies”), structured

nonlinear models (such as (s,S) policies for inventories) or neural networks.

1.1 Model Notation

Sequential, stochastic decision problems require a richer notation than standard linear

programs and deterministic problems. For the sake of notational consistency, we
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follow the canonical model in Powell (2011) which breaks dynamic programs into five

dimensions:

• The state variable, St, is all the information at time t that is necessary and

sufficient to model the system from time t onward.

• A decision, xt, is an n-dimensional vector that must satisfy xt ∈ Xt, which

is typically a set of linear constraints. Decisions are determined by a decision

function (policy) which we denote by Xπ
t (St), where π carries the information

that determines the structure and parameters that define the function.

• The exogenous information, Wt, describes the information that first becomes

known at time t. We let ω ∈ Ω be a sample path of W1, . . . ,WT . Let F be the

sigma algebra on Ω, and let P be a probability measure on (Ω,F), giving us a

probability space (Ω,F ,P). Next let Ft = σ(W1, . . . ,Wt) be the sigma-algebra

generated by W1, . . . ,Wt, where (Ft)Tt=1 forms a filtration. The information Wt

may depend on the state St and/or the action xt, which means it depends on

the policy. If this is the case, we write our probability space as (Ωπ,Fπ,Pπ),

with the associated expectation operator Eπ.

• The transition function, SM(·), describes how each state variable evolves over

time, which we designate using

St+1 = SM(St, xt,Wt+1). (1.1)

• The objective function is used to evaluate the effectiveness of a policy or

sequence of decisions. It minimizes the expected sum of the costs C(St, xt) in

each time period t over a finite horizon, where we seek to find the policy that

solves

min
π∈Π

Eπ
[ T∑
t=0

C(St, X
π
t (St))

∣∣∣∣ S0

]
, (1.2)
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where St+1 = SM(St, X
π
t (St),Wt+1). We use Eπ(·) since the exogenous variables

in the model may be affected by the decisions generated by our policy. There-

fore we express the expectation as dependent on the policy. Since stochastic

problems incorporate uncertainty in the model a variety of risk measures can be

used in replacement of expectation. Equation (1.2), along with the transition

function and the exogenous information process, is called the base model.

This canonical model can be used to model virtually any sequential, stochastic

decision problem as long as we are using expectations instead of risk measures. We

use this setting to put different policies onto a standard footing for comparison. In

the next section we describe the major classes of policies that we can draw from to

solve the problem. We use this framework to review the literature.

We state this canonical model because it sets up our modeling framework, which

is fundamentally different than the standard paradigm of stochastic programming

(for multistage problems). However, it sets the foundation for searching over policies

which is fundamental to our approach.

1.2 Classes of Policies

There are two fundamental strategies for identifying policies. The first is policy search,

where we search over different classes of functions f ∈ F and different parameters

θ ∈ Θf in each class (see Robbins and Monro (1951a) and Spall et al. (2003)). Policy

search is written as

min
π=(f,θf )∈(F ,Θf )

E

{
T∑
t=0

C(St, X
π
t (St|θf ))

∣∣∣∣S0

}
. (1.3)

Policies that can be identified using policy search come in two classes:
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Policy function approximations (PFAs) These include linear or nonlinear mod-

els, neural networks, and locally parametric functions. For example a linear

model, also known as an affine policy, might be written

XPFA(St|θ) = θ0 + θ1φ1(St) + θ2φ2(S2) + . . .

PFAs (using any of a wide range of approximation strategies) have been widely

studied in the computer science literature under the umbrella of policy search,

most commonly using parametric functions. A few examples of parametric poli-

cies are the Boltzmann exploration policy (Sutton et al. (1999)), linear decision

rules (see Bertsimas and Goyal (2012), Hadjiyiannis et al. (2011), and Bertsi-

mas et al. (2011)), and neural networks (Bengio (2009) and Levine and Abbeel

(2014)). See Ng and Jordan (2000a), Peshkin et al. (2000a), Hu et al. (2007a),

Deisenroth (2011), and Mannor et al. (2003) for a sample.

Cost function approximations (CFAs) Here we use parametrically modified

costs and constraints that are then minimized. These are written

XCFA(St|θ) = argmin
xt∈Xπ(θ)

C̄π(St, xt|θ).

CFAs are widely used in industry for complex problems such as scheduling

energy generation or planning supply chains, but they have not been studied

formally in the research literature.

In special cases, PFAs and CFAs may produce optimal policies, although generally

we are looking for the best within a class.

The second strategy is to construct policies based on lookahead models, where we

capture the value of the downstream impact of a decision xt made while in state St.
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An optimal policy can be written

X∗t (St) = argmin
xt∈Xt

(
C(St, xt) + E

{
min
π∈Π

E

{
T∑

t′=t+1

C(St′ , X
π(St′))

∣∣St+1

}∣∣St, xt}) . (1.4)

Equation (1.4) is basically Bellman’s equation, but it is computable only for very

special instances (Puterman (2014)). For example, to model a decision tree the

policies π in (1.4) would be a lookup table expressing the action to be taken out

of every decision node.

There are two core strategies for approximating the lookahead portion in (1.4):

Value function approximations (VFAs) Here we approximate the lookahead

portion using a value function. Standard practice is to write the value function

Vt(St) around the (pre-decision) state St as

Vt+1(St+1) = min
π∈Π

E

{
T∑

t′=t+1

C(St, X
π(St))

∣∣St+1

}
.

Since we typically cannot compute Vt+1(St+1) exactly, we replace it with a value

function approximation V t+1(St+1), in which case we would write our policy as

XV FA
t (St) = argmax

xt∈Xt

(
C(St, xt) + E{V t+1(St+1)|St}

)
.

Often it is easier to use the post-decision state Sxt (the state immediately after a

decision has been made) which captures the entire lookahead term in equation

(1.4). This allows us to write our policy without the imbedded expectation

XV FA
t (St) = argmax

xt∈Xt

(
C(St, xt) + V

x

t (S
x
t )
)
.

Eliminating the expectation opens the door to solving problems where xt is

high-dimensional (but only if V
x

t (S
x
t ) is concave). Value function approxima-
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tions have been widely studied under the umbrellas of approximate dynamic

programming (see Powell (2011), and Bertsekas (2010)) and reinforcement learn-

ing (Sutton and Barto, 1998). Specialized methods have evolved for handling

convex problems that arise in multistage linear programming such as stochas-

tic dual dynamic programming (SDDP) (see Pereira and Pinto (1991), Shapiro

et al. (2009), Shapiro (2011), and Philpott and Guan (2008)) or piecewise linear,

separable value functions (Powell et al. (2004), Topaloglu and Powell (2006)).

Direct lookahead approximations (DLAs) When the lookahead problem can-

not be reasonably approximated by a value function, it is often necessary to

turn to a direct lookahead approximation, where we replace the model with an

approximation for the purpose of approximating the future. In this case our

policy (1.4) can be written

X
DLA
t (St) = argmin

xt∈Xt

C(St, xt) + Ẽ

min
π̃∈Π̃

Ẽ


t+H∑
t′=t+1

C̃(S̃tt′ , X̃
π̃
(S̃tt′ ))

∣∣S̃t,t+1

 ∣∣St, xt

 . (1.5)

Here, all variables (states and decisions) in the lookahead model are indicated

with tilde’s, and are indexed by t (the time at which the lookahead model is

instantiated) and t′ (the time period within the lookahead horizon). Lookahead

models are typically characterized by five types of approximations: 1) the hori-

zon, 2) the staging of information and decisions (multistage problems may be

approximated by two-stages), 3) the outcome space (we may use a determin-

istic lookahead or a sampled stochastic), 4) discretization (of states, actions,

and time periods), and 5) holding some information static that varies in the

base model (a common assumption is to hold a forecast constant within the

lookahead model). Lookahead models can take a variety of forms: determinis-

tic lookahead models, also referred to as rolling horizon procedures (Sethi and

Sorger, 1991) or model predictive control (Camacho and Alba, 2013), decision

trees (which can be approximated using Monte Carlo tree search) for discrete
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actions, or stochastic programming models using scenario trees (see Birge and

Louveaux (2011b) and Donohue and Birge (2006)).

Policy search, whether we are using PFAs or CFAs, requires tuning parameters in our

base objective function (1.2). By contrast, policies based on lookahead approxima-

tions depend on developing the best approximation of the future that can be handled

computationally, although these still need to be evaluated using (1.2).

1.3 Thesis Outline

The main theme of this thesis is introducing and formalizing the class of decision

making polices known as parametric cost function approximations (CFA) which use

deterministic optimization problems that have been parametrically modified to ac-

count for uncertainty. This thesis is organized as follows. In chapter 2, we introduce

and develop the idea of parameterized cost function approximations as a tool for

solving important classes of stochastic optimization problems. Then we show the ap-

proach is computationally comparable to solving deterministic approximations, with

the exception that the parametric modifications have to be optimized, typically in a

simulator that avoids the many approximations made in stochastic lookahead models.

We derive the policy gradients for parameterized right-hand sides using the proper-

ties of the underlying linear program and introduce a gradient-based policy search

algorithm for determining parameter values. Finally, we illustrate different styles

of parametric approximations using the context of a nonstationary energy inventory

problem, and quantify the benefits relative to a basic deterministic lookahead without

adjustments.

In chapter 3, we apply the CFA to the difficult problem of making lagged commit-

ments while managing a portfolio of energy resources including steam and gas turbine

generators. This particular problem requires making commitments several hours and
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days in the advance. This chapter provides a proper base model of a stochastic,

lagged resource allocation problem in the context of energy portfolio management.

Additionally, we introduce a family of parameterizations of a deterministic lookahead

model designed to produce robust policies that respond in a realistic way to the level

of uncertainty in forecasts. This chapter also provides a set of sufficient conditions to

prove the convergence of our data-driven gradient based search algorithm. Finally,

we demonstrate empirically that our method produces high quality solutions relative

to unmodified deterministic lookahead policies on a library of lagged energy portfolio

problems.

In chapter 4, we apply the CFA to the complex problem of managing a network

of industrial gas production plants, a hydrogen storage cavern, a diverse set of cus-

tomers, and access to electricity and natural gas commodity markets. We formally

describe the problem and propose a parametrically modified operating policy. We

then presents a series of experiments to demonstrate the use of our model, the effi-

cacy of our gradient-based search algorithm, and analyze the performance of solutions

under varying operating environments.

1.4 Publications and Presentation

The material in this thesis has been presented at various conferences: INFORMS

Annual Meeting, Federal Energy Regulatory Commission (FERC)’s Technical Con-

ference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved

Software, International Conference of Stochastic Programming, and INFORMS Op-

timization Society Conference.
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Chapter 2

Parametric Cost Function

Approximations

2.1 Introduction

We consider the idea, used for years in industry, that an effective way to solve complex

stochastic optimization problems is to shift the modeling of the stochastics from a

lookahead approximation, where even deterministic lookahead models can be hard to

solve, to the stochastic base model, which typically is implemented as a simulator but

which might also be the real world. Tuning a model in a stochastic simulator makes it

possible to handle arbitrarily complex dynamics, avoiding the many approximations

(such as two-stage models, exogenous information that is independent of decisions)

that are standard in stochastic programming.

The parametric cost function approximation (CFA) is conceptually rooted in this

idea. This class of policies opens up a fundamentally new approach for providing

practical tools for solving high-dimensional, stochastic programming problems. It

provides an alternative to classical stochastic programming with its focus on opti-

mizing a stochastic lookahead model which requires a variety of approximations to
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make it computationally tractable. The parametric CFA makes it possible to incorpo-

rate problem structure, such as the recognition that robust solutions can be achieved

using standard methods such as schedule slack and/or buffer stocks. Furthermore,

the parametric CFA makes it possible to incorporate problem structure for handling

uncertainty. Some examples include:

• Air freight companies plan for equipment problems by maintaining spare aircraft

at different locations around the country.

• Hospitals can handle uncertainty in blood donations and the demand for blood

by maintaining supplies of O-minus blood, which can be used by anyone.

• Grid operators handle uncertainty in generator failures, as well as uncertainty

in energy from wind and solar, by requiring generating reserves.

Central to this approach is the ability to manage uncertainty by recognizing ef-

fective strategies for responding to unexpected events. We argue that this structure

is apparent in many settings, especially in complex resource allocation problems.

Parametric cost function approximations make it possible to exploit these structural

properties. For example, it may be obvious that the way to handle uncertainty when

planning energy generators in a unit commitment problem is to require extra reserves

at all times of the day. A stochastic programming model encourages this behavior,

but the requirement for a manageable number of scenarios will produce the required

reserve only when one of the scenarios requires it. Imposing a reserve constraint

(which is a kind of cost function approximation) allows us to impose this requirement

at all times of the day, and to tune this requirement under very realistic conditions. At

a minimum, we offer that our approach represents an interesting, and very practical,

alternative to stochastic programming.

Designing a parametric cost function approximation closely parallels the design

of any parametric statistical model, which is part art (creating the model) and part
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science (fitting the model). To illustrate the process of designing a parametric cost

function approximation, we use the setting of a time-dependent stochastic inventory

planning problem that arises in the context of energy storage, but could represent

any inventory planning setting. We assume we have access to rolling forecasts where

forecast errors are based on careful modeling of actual and predicted values for energy

loads, generation from renewable sources, and prices. The combination of the time-

dependent nature and the availability of rolling forecasts which are updated each time

period make this problem a natural setting for lookahead models, where the challenge

is how to handle uncertainty. We have selected this problem since it is relatively small,

simplifying the extensive computational work. However, our methodology is scalable

to any problem setting which is currently being solved using a deterministic model.

This chapter makes the following contributions. 1) We introduce and develop the

idea of parameterized cost function approximations as a tool for solving important

classes of stochastic optimization problems, shifting the focus from solving complex,

stochastic lookahead models to optimizing a stochastic base model. This approach is

computationally comparable to solving deterministic approximations, with the excep-

tion that the parametric modifications have to be optimized, typically in a simulator

that avoids the many approximations made in stochastic lookahead models. 2) We

derive the policy gradients for parameterized right-hand sides using the properties of

the underlying linear program. 3) We illustrate different styles of parametric approxi-

mations using the context of a nonstationary energy inventory problem, and quantify

the benefits over a basic deterministic lookahead without adjustments.

The chapter is organized as follows. Section 2.2 introduces the basic concept and

alternative structures of the CFA. Section 2.3 describes the derivation of the gradi-

ent of the base model with respect to the policy parameters. Section 2.3 describes

gradient-based stochastic search strategy to optimize our parameterized policies. Sec-
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tion 2.4 formally describes a time-dependent stochastic energy storage problem. Fi-

nally, section 2.5 presents a series of numerical results.

2.2 The Parametric Cost Function Approximation

We extend the concept of policy search to include parameterized optimization prob-

lems. The parametric Cost Function Approximation (CFA) draws on the structural

simplicity of deterministic lookahead models and myopic policies, but allows more

flexibility by adding tunable parameters. This puts this methodology in the same

class as parametric policy function approximations widely used in the policy search

literature, with the only difference that our parameterized functions are inside an

optimization problem, making them more useful for high dimensional problems.

Basic Idea

Since the idea of a parametric cost function approximation is new, we begin by outlin-

ing the general strategy, and then demonstrate how to apply it for our energy storage

problem. We propose using parameterized optimization problems such as

Xπ
t (St|θ) = argmin

xt∈Xπ(θ)

{
C(St, xt) +

∑
f∈F

θcfφf (St, xt) : Atxt = b̄πt (θb)

}
(2.1)

as a type of parameterized policy. Here the index π signifies the structure of the

modified set of constraints, θc is the vector of cost function parameters, θb is the

vector of constraint parameters, and φf are the basis functions corresponding to

features f ∈ F .

Parametric terms can be added to the cost function or constraints of a myopic

or deterministic lookahead model. In the following example, parameters have been

added as an error correction term to the objective function as well as to the model
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constraints, giving us

Xπ
t (St|θ) = argmin

xt∈Xt

(
C(St, xt) +

∑
f

θcfφf (St, xt)

)
(2.2)

subject to

Atxt = bt +Dθb,

where D is a scaling matrix. We emphasize that the cost correction term should

not be confused as a value function approximation, because we make no attempt to

approximate the downstream value of being in a state.

Whether the parameterizations are in the objective function, or in the constraints,

the specification of a parametric CFA parallels the specification of any statistical

model (or policy). The structure of the model is the “art” that draws on the knowledge

and insights of the modeler. Finding the best CFA, which involves finding the best

θ, is the science which draws on the power of classical search algorithms.

A hybrid Lookahead-CFA policy

There are many problems that naturally lend themselves to a lookahead policy (for

example, to incorporate a forecast or to produce a plan over time), but where there is

interest in making the policy more robust than a pure deterministic lookahead using

point forecasts. For this important class (which is the problem we face), we can create

a hybrid policy where a deterministic lookahead has parametric modifications that

have to be tuned using policy search. When parameters are applied to the constraints

it is possible to incorporate easily recognizable problem structure. For example,

a supply chain management problem can handle uncertainty through buffer stocks,

while an airline scheduling model might handle stochastic delays using schedule slack.

A grid operator planning energy generation in the future might schedule reserve

capacity to account for uncertainty in forecasts of demand, as well as energy from
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wind and solar. As with all policy search procedures, there is no guarantee that the

resulting policy will be optimal unless the parameterized space of policies includes

the optimal policy. However, we can find the optimal policy within the parameterized

class, which may reflect operational limitations. We note that while parametric cost

function approximations are widely used in industry, optimizing within the parametric

class is not done.

Structure of the cost function approximation

Parametric terms can be appended to existing constraints, and new parameterized

constraints can be added to the existing model. Often the problem setting will in-

fluence how policy constraints should be parameterized. Consider the energy storage

problem where a manager must satisfy the power demand of a building. The manager

has a stochastic supply of renewable energy at no cost, an unlimited supply from the

power grid at a stochastic price, and access to a local rechargeable storage device.

Every period the manager must determine what combination of energy sources to

use to satisfy the power demand, how much energy to store, and how much to sell

back to the grid. Given the manager has access to point forecasts of future exogenous

information he or she can use the following lookahead policy to determine how to

allocate their energy,

XD-LA
t (St) = argmin

xt,(x̃tt′ ,t
′=t+1,...,t+H)

(
C(St, xt) +

[
t+H∑
t′=t+1

c̃tt′x̃tt′

])
(2.3)

where S̃t,t′+1 = S̃M(S̃tt′ , x̃tt′ , W̃ t,t′+1) and H is the size of the lookahead horizon. Here,

all variables (states and decisions) in the lookahead model are indicated with tilde’s,

and are indexed by t (the time at which the lookahead model is instantiated) and t′

(the time period within the lookahead horizon). It is important to note that if the

contribution function, transition function, and constraints of Xπ(·) are linear, this
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policy can be expressed as the following linear program

XD-LA
t (St) = argmin

xt,x̃tt′ ,t
′=t+1,t+H

ctxt + c̃tx̃t : Atxt ≤ bt, Ãtxt ≤ b̃t, xt ≥ 0}, (2.4)

where c̃t = {c̃tt′ : t′ = t + 1, ..., t + H}, Ãt = {Ãtt′ : t′ = t + 1, ..., t + H}, and

b̃t = {b̃tt′ : t′ = t + 1, ..., t + H}. There are different ways to parameterize the

previous policy, but since all the uncertainty in our problem is restricted to the right

hand side constraints, we will only parameterize the vector bt. Once parameterized

our policy becomes

XLA-CFA
t (St|θ) = argmin

xt,x̃tt′ ,t
′=t+1,t+H

ctxt+ c̃tx̃t : Atxt ≤ bt(θ), Ãtxt ≤ b̃t(θ), xt ≥ 0} (2.5)

where θ is a vector of tunable parameters. Parametric modifications can be designed

specifically to capture the structure of a particular policy. The idea to use buffers

and inventory constraints to manage storage is intuitive and easily incorporated into a

deterministic lookahead. In the previous energy storage problem a lower buffer guar-

antees the decision maker will always have access to some stored energy. Conversely,

an upper threshold will make sure some storage space remains in the battery in order

to capitalize on unexpected gusts of wind (for example). For the energy storage prob-

lem, we represent the amount of energy stored in the battery as the variable Rt and

the approximated future amount of energy in storage at time t′ given the information

available at time t as Rtt′ . Thus,

θL ≤ Rtt′ ≤ θU for t′ > t. (2.6)
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Although it can greatly increase the parameter space, the upper and lower bounds

can can also depend on (t′ − t), as in

θLt′−t ≤ Rtt′ ≤ θUt′−t for t′ > t. (2.7)

The resulting modified deterministic problem is no harder to solve than the original

deterministic problem (where θL = 0 and θU = Rmax). We now have to use policy

search techniques to optimize θ. Below we suggest different ways of parameterizing

the right hand side adjustment.

Policy parameterizations come in a variety of forms. A simple form is a lookup

table indexed by time as in equation (2.7). Although it may be simple, a lookup

table model for θ means that the dimensionality increases with the horizon which can

complicate the policy search process.

In the energy storage example, fEtt′ represents the forecast of the amount of renew-

able energy available at time t′ given the information available at time t. A policy

maker may use the parametrization θt′−t · fEtt′ to intentionally overestimate or under-

estimate the amount of future renewable energy. The policy maker may set θt′−t ≤ 1

to make the policy more robust and avoid the risk of running out of energy.

This type of parameterization is not limited to just modifying the point forecast

of exogenous information. If the modeler has sufficient information such as the cu-

mulative distribution function of Et′ , F
E
t′ (·), he or she may even exchange the point

forecast fEtt′ with the quantile function

QE
t′ (θt′−t) = inf

{
w ∈ R : θt′−t ≤ FEtt′ (w)

}
. (2.8)

In this case θt′−t is still a parameter of the policy and determines how aggressively or

passively the policy stores energy. The lookup table in time parameterization is best

if the relationship between parameters in different periods is unknown.
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Instead of having an adjustment θτ = θt′−t for each time t+τ in the future, we can

use instead a parametric function of τ , which reduces the number of parameters that

we have to estimate. For example, we might use the parametric adjustment given by

θL · eατ ≤ Rtt′ ≤ θU · eβτ for t′ > t and α, β ∈ R. (2.9)

These parametric functions of time can also be used to directly modify the fore-

casts in the lookahead model. For example, in the energy storage example, the policy

maker may use the parameterization fEtt′ · θ1e
θ2·(t′−t) to replace the forecasted amount

of future renewable energy, fEtt′ .

2.3 The CFA gradient algorithm

Policy Function Approximations (PFAs) and Cost Function Approximations (CFAs)

are structurally different in the sense that one uses analytic functions and the other

uses parameterized optimization problems, respectively, to make decisions. However,

they are both subclasses of the same general class of parameterized policies, Xπ
t :

St ×Θ→ Xt, and their optimal parameterization, θ∗, can be found by solving

θ∗ = argmin
θ∈Θ

F (θ), (2.10)

where

F (θ) = E

[
T∑
t=0

C(St, X
π
t (St|θ))

∣∣ S0

]
(2.11)

and St+1 = SM(St, X
π
t (St|θ),Wt+1). If F (·) is well defined, finite valued, convex, and

continuous at every θ in the nonempty, closed, bounded, and convex set Θ ⊂ Rn,

then an optimal θ∗ ∈ Θ exists. We can use a stochastic gradient algorithm to search

for θ∗, (see Robbins and Monro (1951b)) given Wt is a stochastic process adapted to
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the filtration (Ft)t≥0 and there exists a stochastic subgradient, gn ∈ ∂θF (θn−1) that

satisfies the following assumptions:

A1) E
[
gn+1 · (θ̄n − θ∗)

∣∣∣∣Fn] ≥ 0,

A2) |gn| ≤ Bg,

A3) For any θ where |θ − θ∗| > δ, δ > 0, there exists ε > 0 such

that E[gn+1|Fn] > ε.

This is true regardless of whether the policy Xπ
t (·|θ) is a CFA or PFA. There are

several ways to generate stochastic subgradients that satisfy the previous conditions.

If the cumulative reward of a single sample path, F̄ (·, ω), is convex and differentiable

for every ω ∈ Ω and θ is an interior point of Θ, then the gradient, ∇θF̄ , of

F̄ (θ, ω) =
T∑
t=0

C

(
St(ω), Xπ

t (St(ω)|θ)
∣∣∣∣θ) (2.12)

where St+1(ω) = SM(St(ω), Xπ
t (St(ω)),Wt+1(ω)), satisfies the conditions required for

the previously mentioned iterative algorithm (see Strassen (1964)). This subgradient

can be calculated recursively and is described in the following proposition.

Proposition 1. Assume F̄ (·, ω) is convex for every ω ∈ Ω, θ is an interior point of

Θ, and F (·) is finite valued in the neighborhood of θ, then

∇θF (θ) = E[∇θF̄ (θ, ω)]

where

∇θF̄ =

(
∂C0

∂X0

·∂X0

∂θ

)
+

T∑
t′=1

[(
∂Ct′

∂St′
·∂St

′

∂θ

)
+

(
∂Ct′

∂Xt′(St|θ)
·
(
∂Xt′(St|θ)

∂St′
·∂St

′

∂θ
+
∂Xt′(St|θ)

∂θ

))]
,

(2.13)
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and

∂St′

∂θ
=

∂St′

∂St′−1

· ∂St
′−1

∂θ
+

∂St′

∂Xt′−1(St−1|θ)
·
[
∂Xt;−1(St−1|θ)

∂St′−1

· ∂St
′−1

∂θ
+
∂Xt′−1(St−1|θ)

∂θ

]
.

Proof. If F̄ (·, ω) is convex for every ω ∈ Ω, θ is an interior point of Θ, and F (·) is

finite valued in the neighborhood of θ, then by theorem 7.47 of Shapiro et al. (2009)

∇θEF (θ,W ) = E∇θF (θ,W ).

Applying the chain rule, we find

∇θF̄ =
∂

∂θ

[
C0(S0, X0(S0|θ)) +

T∑
t′=1

C(St′ , Xt′(St′ |θ))
]

=
∂

∂θ
C0(S0, X0(S0|θ)) +

∂

∂θ

[ T∑
t′=1

C(St′ , Xt′(St′ |θ))
]

=

(
∂C0

∂X0
· ∂X0

∂θ

)
+

[ T∑
t′=1

∂

∂θ
C(St′ , Xt′(St′ |θ))

]

=

(
∂C0

∂X0
· ∂X0

∂θ

)
+

T∑
t′=1

[(
∂Ct′

∂St′
· ∂St

′

∂θ

)
+

(
∂Ct′

∂Xt′(St′ |θ)
· ∂Xt′(St′ |θ)

∂θ

)]

=

(
∂C0

∂X0
· ∂X0

∂θ

)
+

T∑
t′=1

[(
∂Ct′

∂St′
· ∂St

′

∂θ

)
+

(
∂Ct′

∂Xt′(St′ |θ)
·
(
∂Xt′(St′ |θ)

∂St′
· ∂St

′

∂θ
+
∂Xt′(St′ |θ)

∂θ

))]
,

where

∂St′

∂θ
=

∂St′

∂St′−1

· ∂St
′−1

∂θ
+

∂St′

∂Xt′−1(St−1|θ)
·
[
∂Xt;−1(St−1|θ)

∂St′−1

· ∂St
′−1

∂θ
+
∂Xt′−1(St−1|θ)

∂θ

]
.

�

Computing the gradient of linear cumulative reward

If the objective function in equation (3.37) is a linear function of the decisions, xt, the

parametric CFA policy, Xπ
t (St|θ), which determines the decision, xt, can be written
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as the following linear program

Xπ
t (St|θ) = argmin

xt,(x̃tt′ ),t
′=t+1,...,t+H

ctxt +
t+H∑
t′=t+1

c̃tt′x̃tt′ ,

where Ãtx̃t ≤ b̃t(θ, St) and x̃Tt = [x̃Tt,t, ..., x̃
T
t,T ]. The state variable, St, includes the

point estimates, (W̃ tt′)t′=t+1,...,t+H , that are used to approximate exogenous informa-

tion. If this policy is written as a linear program where the state and approximated

exogenous information is only in the right hand side constraints, b̃t(θ, St), then a sub-

gradient can be calculated recursively and is described in the following proposition:

Proposition 1. Given F̄ (θ, ω) is concave in θ for every ω ∈ Ω, θ is an interior point

of Θ, and the contribution function C(x) is a linear function of x, the transition

function St = SM(St−1, xt−1,Wt) is linear in St−1 and xt−1, F (·) is finite valued in

the neighborhood of θ, and the policy, Xπ
t (St|θ) is defined as

Xπ
t (St|θ) = argmin

xt,(x̃tt′ ),t
′=t+1,...,t+H

ctxt +
t+H∑
t′=t+1

c̃tt′x̃tt′ (2.14)

where Ãtx̃t ≤ b̃t(θ, St), Bt is the basis matrix corresponding to the basic variables for

the optimal solution of (3.40), and x̃Tt = [x̃tt, . . . , x̃tT ]. Then

∇θF (θ) = E[∇θF̄ (θ, ω)]

where

∇θF̄ (θ, ω) =
T∑
t=1

(
∇θb̃t(θ, St) +∇St b̃t(θ, St) · ∇θSt

)T
·
(
B−1
t

)T
· ct, (2.15)

∇θSt = ∇St−1S
M(St−1, xt−1,Wt) · ∇θSt−1 +∇xt−1S

M(St−1, xt−1,Wt) · ∇θxt−1. (2.16)
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Proof. If F̄ (·, ω) is convex for every ω ∈ Ω, θ is an interior point of Θ, and F (·) is

finite valued in the neighborhood of θ then we define our policy as equation (3.40). If

the contribution function C(x) is a linear function of x, the transition function, St =

SM(St−1, xt−1,Wt), is linear, and the policy, Xπ
t (St|θ) is defined as

Xπ
t (St|θ) = argmax

xt

(
ctxt + max

x̃tt′ ,t
′=t+1,...,t+H

t+H∑
t′=t+1

c̃tt′x̃tt′

)

where Ãtx̃t ≤ b̃t(St, θ) and x̃Tt = [x̃tt, ..., x̃t,T ]. Then

∇θF̄ (θ, ω) = ∇θ

[ T∑
t=0

cTt xt(St(ω)|θ)
]

=
T∑
t=0

[
∇θ

(
cTt xt(St(ω)|θ)

)]

=
T∑
t=0

[
∇θxt(St(ω)|θ)T

]
· ct

=
T∑
t=0

∇θ

[
B−1
t · b̃t(θ, St(ω))

]T
· ct

=
T∑
t=0

∇θ

[
b̃t(θ, St(ω)) · (B−1

t )T
]
· ct

=
T∑
t=0

(
∇θb̃t(θ, St(ω))T

)
·
(
B−1
t

)T
· ct

=
T∑
t=0

(
∇θb̃t(θ, St(ω)) +∇St(ω)b̃t(θ, St(ω)) · ∇θSt(ω)

)T
·
(
B−1
t

)T
· ct.

(2.17)

�
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The algorithm

The ability to calculate an estimator of∇θF (θ) allows us to use stochastic approxima-

tion techniques to determine the optimal parameters, θ, of the CFA policy, Xπ
t (·|θ).

Below is the iterative algorithm we use to tune our CFA policies

Algorithm 1 CFA Gradient Algorithm

1: Initialize θ0, N , and k:

2: for n = 1, 2, 3, ..., N do

3: Generate a trajectory ωn where

Snt+1(ωn) = SM(Snt (ωn), Xπ
t (Snt (ωn)|θn−1),Wt+1(ωn))

4: Compute the gradient estimator using equation (2.13)

5: Update policy parameters, θ

θn = θn−1 + αn−1∇θF̄ (θn−1, ωn)|θ=θn−1 (2.18)

where the stepsizes αn satisfy conditions

B1) αn > 0, a.s.

B2)
∑∞

n=0 αn =∞, a.s.

B3) E [
∑∞

n=0(αn)2] <∞.

If F (·) is continuous and finite valued in the neighborhood of every θ, in the

nonempty, closed, bounded, and convex set Θ ⊂ Rn such that F̄ (·, ω) is convex for

every ω ∈ Ω where θ is an interior point of Θ, then

lim
n→∞

θn −→ θ∗ a.s.
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Although any stepsize rule that satisfies the previous conditions will guarantee asymp-

totic convergence, we prefer parameterized rules that can be tuned for quicker con-

vergence rates. Therefore, we limit our evaluation of the algorithm to how well it

does within N iterations. The CFA Algorithm can be described as a policy, θπ(Sn),

with a state variable, Sn = θn plus any parameters needed to compute the stepsize

policy, and where π describes the structure of the stepsize rule. If θπ,n is the estimate

of θ using stepsize rule π after n iterations, then our goal is to find the rule that

produces the best performance (in expectation) after we have exhausted our budget

of N iterations. Thus, we wish to solve

min
π

EF̄ (θπ,N ,W ). (2.19)

We wish to find the best stepsize rule that maximizes terminal value within N it-

erations. For our numerical example we use the adaptive gradient algorithm, ADA-

GRAD, as our step size rule (Duchi et al. (2011a)). ADAGRAD modifies the indi-

vidual step size for the updated parameter, θ, based on previously observed gradients

using

αn =
η√

Gt + ε
(2.20)

where η is a scalar learning rate, G ∈ Rd×d is a diagonal matrix where each diagonal

element is the sum of the squares of the gradients with respect to θ up to the cur-

rent iteration n, while ε is a smoothing term that avoids division by zero. For our

simulations we set η = 0.1.

2.4 An Energy Storage Application

We use the setting of an energy storage application to show how we can use a para-

metric CFA to produce robust policies using rolling forecasts of varying quality. Our
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problem is designed to test the capabilities of the algorithm, rather than representing

an accurate model of a specific energy storage application.

In our setting a smart grid manager must satisfy a recurring power demand with a

stochastic supply of renewable energy, limited supply of energy from the main power

grid at a stochastic price, and access to a local rechargeable storage devices. This

system is graphically represented in Figure 2.1.

Figure 2.1: Energy system schematics

Every hour the manager must determine what combination of energy sources to

use to satisfy the power demand, how much energy to store, and how much to sell back

to the grid. The state variable at time t, St, includes the level of energy in storage,

Rt, the amount of energy available from wind, Et, the spot price of electricity, Pt, the

demand Dt, and the energy available from the grid Gt at time t. The state of the

system can be represented by the following five dimensional vector,

St = (Rt, Et, Pt, Dt, Gt) (2.21)
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where Rt ∈ [0, Rmax] is the level of energy in storage at time t. The demand, Dt, has

a deterministic seasonal structure

Dt = bmax{0, 100− 50 sin

(
5πt

T

)
}c. (2.22)

At the beginning of every period t the manager must combine energy from the

following sources to satisfy the demand, Dt:

1. Energy currently in storage (represented by a decision xrdt );

2. Newly available wind energy (represented by a decision xwdt );

3. And energy from the grid (represented by a decision xgdt ).

Additionally, the manager must decide how much renewable energy to store, xwrt , how

much energy to sell to the grid at price Pt, x
rg
t , and how much energy to buy from

the grid and store, xgrt . The manager’s decision is defined as the following vector

xt = (xwdt , xgdt , x
rd, xwrt , x

gr
t , x

rg
t )T ≥ 0 (2.23)

given the following constraints:

xwdt + βdxrdt + xgdt ≤ Dt, (2.24)

xgdt + xgrt ≤ Gt, (2.25)

xrdt + xrgt ≤ Rt, (2.26)

xwrt + xgrt ≤ Rmax −Rt, (2.27)

xwrt + xwdt ≤ Et, (2.28)

xwrt + xgrt ≤ γc, (2.29)

xrdt + xrgt ≤ γd (2.30)
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where γc and γd are the maximum amount of energy that can be charged or

discharged from the storage device. Typically, γc and γd are the same.

The transition function, SM(·), explicitly describes the relationship between the

state of the model at time t and t+ 1,

St+1 = SM(St, xt,Wt+1)

where Wt+1 = (Et+1, Pt+1, Dt+1) is the exogenous information revealed at t + 1. In

our numerical experiments, we assumed that Wt+1 was independent of St, but the

CFA algorithm can work with any sample path provided by an exogenous source.

The relationship of storage levels between periods is defined as

Rt+1 = Rt − xrdt + βcxwrt + βcxgrt − x
rg
t (2.31)

where βc ∈ (0, 1) and βd ∈ (0, 1), are the charge and discharge efficiencies. For a

given state St and decision xt, we define:

C(St, xt) = Pt·(xwdt +βdxrd+xgd+βdxrgt −x
gr
t −x

gd
t )−Cpenalty·

(
Dt − xwdt − βdxrd − xgd

)
(2.32)

where Cpenalty is the penalty of not satisfying demand and C(St, xt) is the profit

realized at t given the current state is St and the decision is xt. The objective is to

find the policy π that solves

max
π∈Π

Eπ
[ T∑
t=0

C(St, X
π
t (St))

∣∣∣∣ S0

]
subject to (2.23) - (2.31) for t ∈ [0, T ].

(2.33)
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Renewable energy model

Our model below is designed in part to create complex nonstationary behaviors to

test the ability of our policy to exploit forecasts while managing uncertainty. We use

a hidden Markov model (Durante et al. (2017)) to create a very realistic model of the

stochastic process describing the generation of renewable energy and make the amount

of energy available from the grid a function of time. This model generates forecast

errors based on an underlying crossing time distribution, the consecutive periods of

time for which the observed energy produced is above or below the forecast.

These errors are modeled using a two-level Markov model with two state variables

that evolve on different time scales. The primary state variable, which contains all the

pertinent information to approximate the current period’s error distribution, evolves

at every discrete point of time. The secondary state variable, also known as the

crossing state of the system, contains the sign of the error and the duration of how

long the sample path has been above or below the forecast. Unlike the primary state

variable, this secondary state variable is only updated when forecast errors change

signs. Forecast errors are then generated using a distribution selected by a second

level Markov model conditioned on the crossing state of the system.

A sample path of renewable energy and its respective forecast can be viewed in

figure 2.2. Arrows have been added to identify crossing times. This is an example

of a complex stochastic process that causes problems for stochastic lookahead mod-

els. For example, it is very common when using the stochastic dual decomposition

procedure (SDDP) to assume interstage independence, which means that Wt and

Wt+1 are independent, which is simply not the case in practice (Shapiro et al. (2013)

and Dupačová and Sladký (2002)). However, capturing this dynamic in a stochastic

lookahead model is quite difficult.

Our CFA methodology, however, can easily handle these more complex stochastic

models since we only need to be able to simulate the process in the base model. We
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Figure 2.2: Sample path of renewable energy (Et)

manipulate the quality of the renewable energy forecast by multiplying the forecast

errors by the forecast quality, σf . This allows us to modify the quality of our forecast

without modifying the observed stochastic process (Pt).

The amount of energy available from the main grid at t, Gt is defined as:

Gt = min

{
max

{
90− 50 sin

(
5πt

2T

)
, Gmin

}
Gmax

}
(2.34)

where Gmin is the minimum energy always accessible from the grid, Gmax is the max-

imum energy every accessible.
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Spot price model

The spot price (Pt) of electricity at time t is a sinusoidal stochastic function defined

as:

Pt = min

{
max

{
Pmax + Pmin

2
− (Pmax − Pmin) · sin

(
5πt

2T

)
+ εt, Pmin

}
Pmax

}
(2.35)

where ε ∼ N (µp, σp), Pmin is the minimum price allowed, Pmax is the maximum

price allowed, µp is expected value of the change in price, and σp is the standard

deviation of the change in price. Since spot prices occasionally go below zero Pmin

may have a negative value. This is also the price at which energy can be purchased

and sold to and from the grid. Sample paths of the stochastic process St are displayed

in figure 2.3.

Since the price process, Pt, is stochastic, forecasts of Pt must be generated for

both the deterministic lookahead and the CFA. In our model, we create forecasts by

using correlated perturbations of the observed prices. This allows us to control the

quality of the forecast without modifying the observed prices Pt. In our simulation we

begin by creating a set of observed prices P1, . . . , PT , which we treat as coming from

history. We then create a series of forecasts where F P
tt′ = Et[Pt′ ] given the information

available at time t. The process F P
tt′ satisfies the following conditions:

1. The spot price, Pt, is defined as

Pt = F P
t,t ∀ t ∈ [1, T ] (2.36)
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Figure 2.3: Sample paths of spot prices (Pt)

2. The stochastic process, Ptt′ , is calculated from,

F P
t−1,t′ = min

{
max

{
ρt, Pmin

}
, Pmax

}
t′ ≥ t (2.37)

where ρt ∼ N (Ptt′ , σ
2
f ). We can directly control the quality of the forecast by varying

σf , where σf = 0 means the forecast is perfect, while increasing σf degrades the

quality of the forecast. Figure 2.4 compares the forecasted price path at time t = 5

to the observed price path for σf = 5.

Policy Parameterizations

If the contribution function, transition function and constraints are linear, a deter-

ministic lookahead policy can be constructed as a linear program if point forecasts
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Figure 2.4: Spot price forecast (Ptt′) v. Observed price (Pt)

of exogenous information are provided. For our deterministic lookahead we optimize

equation (2.3) subject to constraints (2.24) - (2.30).

for t′ ∈ [t+ 1, t+H]. We call this deterministic lookahead policy the benchmark

policy, and use it to estimate the degree to which the parameterized policies are able

to improve the results in the presence of uncertainty.

• Capacity Constraints: This parameterization limits the amount of energy in

storage and guarantees there is capacity to purchase inexpensive energy. An

upper bound constraint is easily created by multiplying the capacity of the

storage device, Rmax by the parameter θt′−t. This changes (2.27) to

xwrtt′ + xgrtt′ ≤ Rmax · θUt′−t − FR
tt′ (2.38)
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where θt′ ∈ [0, 1] and t′ ∈ [t, t+H]. Parameterized lower constraints are incor-

porated into the policy by creating the additional linear constraints

−xrdt − x
rg
t +Rt ≥ Rmax · θLt′−t (2.39)

where θLt′ ∈ [0, 1] and t′ ∈ [t+ 1, t+H].

• Lookup table forecast parameterization - Overestimating or underesti-

mating forecasts of renewable energy influences how aggressively a policy will

store energy. We modify the forecast of renewable energy for each period of

the lookahead model with a unique parameter θτ . This parameterization is a

lookup table representation because there is a different θ for each lookahead

period, τ = 0, 1, 2, ... This changes (2.28) to

xwrtt′ + xwdtt′ ≤ FEtt′ · θt′−t. (2.40)

where t′ ∈ [t + 1, t + H] and τ = t′ − t. If θτ < 1 the policy will be more

robust and decrease the risk of running out of energy. Conversely, if θτ > 1 the

policy will be more aggressive and less adamant about maintaining large energy

reserves.

• Constant forecast parameterization - Instead of using a unique parameter

for every period, this parameterization uses a single scalar to modify the forecast

amount of renewable energy for the entire horizon. The policy constraints (2.28)

are changed to

xwrtt′ + xwdtt′ ≤ FEtt′ · θ. (2.41)

• Exponential Function - Instead of calculating a set of parameters for every

period within the lookahead model we make our parameterization a function of
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time and two parameters. The policy constraints (2.28) are then changed to

xwrtt′ + xwdtt′ ≤ FEtt′ · θ1 · eθ2·(t
′−t). (2.42)

2.5 Numerical Results

To demonstrate the capability of the CFA and Algorithm 1, we test parameteriza-

tions, (2.38)-(2.42), of the deterministic lookahead policy defined by equation (2.3) on

variations of the previously described energy storage problem. We provide the bench-

mark policy and parameterized policies the same forecasts of exogenous information.

Our goal is to show that parameterizing the benchmark policy and using the CFA

gradient algorithm to determine parameter values can improve the performance of the

benchmark policy. We say a parameterization, π(θ), outperforms the nonparametric

benchmark policy if it has positive policy improvement, ∆F π(θ). We define the policy

improvement, ∆F π(θ), of parameterization π(θ) as

∆F π(θ) =
F π(θ) − FD-LA

|FD-LA|
(2.43)

where F π(θ) is the average profit generated by parametrization π(θ) and FD-LA is

the average profit generated by the unparameterized deterministic lookahead policy

described by equation (2.3).

One of the most prominent advantages of the CFA is its ability to handle uncer-

tainty without restrictions on the structure of the dynamics. By varying the forecast

quality, σf , of the energy storage problem we demonstrate the abilities of the CFA

and the CFA Gradient Algorithm to detect different levels of uncertainty and adapt

accordingly. Table 2.1 presents the performance of each parameterization over varying

forecast qualities.
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σf = 20 σf = 25 σf = 30 σf = 35
Constant 13% 13% 16% 17%
Lookup 20% 22% 26% 25%
Expo 14% 22% 26% 26%
Capacity Constraint 0.00% 0.00% 0.00% 0.00%

Table 2.1: This table displays the percentage improvement obtained by parameterized
policies relative to the deterministic benchmark for varying forecast qualities, σf .
These values are calculated using 500 simulations.

As the uncertainty and forecast error increases the performance of the benchmark

policy deteriorates and the average profit generated decreases since it is unable to

deal with uncertainty. The average profit of the parameterizations also deteriorate

as forecast errors increase, but does so at a slower rate than the benchmark policy.

Although the added noise to the forecast makes the problem more difficult, the param-

eterized policy is able to adapt and perform better than the standard deterministic

lookahead policy. This explains the positive relationship between the the Constant,

Lookup table, and Exponential parameterizations improvements and forecast quality.

As the forecast uncertainty increases, the parameterized policies adapt by dis-

counting the forecast to limit the risk of paying penalties for not satisfying demand.

This phenomenon can be seen in figure 2.5 which shows the relationship between

profits and θ for the constant parameterization and different forecast qualities.

Factoring the Forecast

All policies prefer to underestimate the future renewable levels by setting θτ < 1 for

all τ ∈ [0, H]. Figures 2.6 and 2.7 show how θτ for the parameterizations described

by (2.40) - (2.42) behave as functions of τ .

Notice how θτ decreases for each subsequent lookahead period for the lookup

table and exponential adjustment functions. This is a consequence of the diminishing

marginal improvement for each additional period in the lookahead model. As seen in

figure 2.5, as the forecast error, σf , increases θτ decreases. This implies the algorithm
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Figure 2.5: Policy Improvement over deterministic benchmark v. θ for constant
parameterizations

recognizes that as the forecast error increases the forecast is less reliable. The policy

determines that it is better to just expect no renewable energy than to depend on the

forecast.

Capacity Constraints

The capacity constraint parameterization, described by equations (2.38) and (2.39),

was the only parameterization that did not generate positive improvement in the

provided problem settings. Setting an upper limit on the storage in the lookahead

model decreases the amount of energy placed into storage during the current state.

This maintains lower storage levels than the benchmark policy and limits the pur-

chased energy from the grid for storage. However, this also limits the ability of the
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(a) θτ for σf = 35 and γ = Rmax (b) Rt for σf = 35 and γ = .Rmax

Figure 2.6: Figure 2.6a compares the θτ values for the Constant, Lookup Table, and
Exponential parameterizations when σf = 35 and γ = ·Rmax. Figure 2.6b compares
the storage levels, Rt of the different parameterizations over t ∈ [1, 24] for the same
conditions.

(a) θτ for σf = 20 and γ = Rmax (b) Rt for σf = 20 and γ = Rmax

Figure 2.7: Figure 2.7a compares the θτ values for the Constant, Lookup Table, and
Exponential parameterizations when σf = 30 and γ = Rmax. Figure 2.7b compares
the storage levels, Rt of the different parameterizations over t ∈ [1, 24] for the same
conditions.
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parameterized policy to sell excess energy to the grid for profit. This can be seen in

figure 2.8.

Figure 2.8: Capacity constraint parameterization sample path where θ = [.3, 0]

Notice how the cumulative profit of the parameterized policy is greater than that of

the benchmark policy until t = 20 in figure 2.8. The parameterized policy achieves this

by maintaining lower storage associated costs. However, as the simulation approaches

t = T the benchmark policy begins to sell off excess storage. Since the storage for the

parameterized policy is constantly lower than the benchmark it misses the additional

returns. Setting a lower limit has the reverse effect on storage. This can be seen

in figure 2.9. By requiring a certain amount of energy in the storage device in the

Figure 2.9: Capacity constraint parameterization sample path where θ = [1, .05]

lookahead policy, the policy is unable to sell as much excess energy to the grid during
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the current period as the benchmark policy. This limits the ability of the policy

to generate revenue. The CFA Algorithm seemed to recognize these problems and

did not limit the capacity constraints in the lookahead model as much. Although it

could not improve the lookahead policy by modifying the capacity constraints, it still

identified the optimal θ∗ = [1, 0] for the parameterization form.

Finally, we applied the methodology for a problem with perfect forecasts. As we

would expect (but there are never guarantees), the CFA gradient algorithm finds the

optimal policy by setting θτ ≈ 1∀τ = 1, . . . , H. This is shown in figure 2.10.

Figure 2.10: θτ values for the Constant, Lookup, and Exponential parameterized
policies given a perfect forecast after 500 simulations.

We note in closing that our parametric CFA policy is stationary, in that the

parameters θ are not time-dependent. As a result, we only have to apply the gradient
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CFA algorithm once in an offline setting, as long as characteristics such as the quality

of the forecast remain the same.

2.6 Conclusion

This work builds upon a long history of using deterministic optimization models to

solve sequential stochastic problems. Unlike other deterministic methods, our class

of methods, parametric cost function approximations, parametrically modify deter-

ministic approximations to account for problem uncertainty. Our particular use of

modified linear programs and the CFA Gradient Algorithm represent a fundamen-

tally new approach to solving stochastic programming problems. Our method allows

us to exploit the structural properties of the problem while capturing the complex

dynamics of the full base model, rather than accepting the approximations required

in a stochastic lookahead model. We have demonstrated this class of policies in the

context of a complex, time-dependent energy storage problem with forecasts. For

our numerical work we selected an energy storage problem that is relatively small to

simplify the extensive computational work. However, our methodology is scalable to

any problem setting which is currently being solved using a deterministic model.

An important feature of our approach is that it can handle complex dynamics,

as long as we are able to compute the derivatives in equations (2.13). For example,

we were able to handle the complex hidden semi-Markov model used to represent

renewable energy described in section 6.1. Our methodology would not be affected if

this were replaced with any other time series model, or even an observed sample path

from history (for which there is no model).

The parametric cost function approximation represents an alternative to stochastic

lookahead models that represent the foundation of stochastic programming. Paramet-

ric CFAs require some intuition into how uncertainty might affect the optimal solution.
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We would argue that this requirement parallels the design of any parametric statistical

model, and hence enjoys a long history. We believe there are many problems where

practitioners have a good sense of how uncertainty affects the solution. However,

further research will be required to determine how well this methodology performs

compared to classical stochastic programming models based on scenario trees.
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Chapter 3

Managing Energy Portfolios using

Parametric Cost Function

Approximations

3.1 Introduction

In a deregulated electricity market power producers are exposed to risk from volatile

fuel and electricity prices as well as time-varying electricity loads. Faced with the

potential of expensive production costs, electricity retailers can reduce their own

costs by making advance commitments, but this requires making decisions using more

uncertain forecasts. This uncertainty can be mitigated by committing resources (e.g.

gas turbines) with much smaller notification times, but at higher cost. For example,

at time t (which might be noon today), a retailer may need to plan how much steam

generation to bring online at time t′ tomorrow (say, 2pm). This decision requires

knowing how much energy might be available from a wind farm using a day-ahead

forecast that is quite poor. However, the retailer will get a better forecast at 1pm

tomorrow, which can inform decisions for using gas turbines which we do not have to
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commit until 1pm tomorrow. The higher cost of waiting and using a short-notification

time generator may be offset by reducing the possibility of committing excess resources

in advance.

Lagged decisions can be handled in a deterministic lookahead model, as is currently

done in all unit commitment models used by industry. Such models carry an inherent

bias toward making early commitments to take advantage of lower costs. However,

this standard approximation does not properly account for differences in forecast

errors for different lead times. The challenge is properly modeling the uncertainties

in forecasts within a planning horizon, and the stochastic decisions that result in

response to the arrival of new information.

Lagged resource planning problems arise in many settings, including supply chain

management, transportation and logistics, but for this paper our particular focus

is in energy systems. There are a number of papers modeling energy management

problems as stochastic programs (see for example Takriti et al. (1996), Wallace and

Fleten (2003), Philpott et al. (2000), Shapiro et al. (2013)). There are several papers

that focus on problems related to lagged resource planning problems in the energy

management community. Conejo et al. (2008) uses a large scale mixed-integer linear

program to manage an electricity producer’s portfolio of long-term electricity forward

contracts using alternative risk measures such as Conditional Value-at-Risk (CVaR).

Singh et al. (2009) simulates a large-scale multi-stage, stochastic, mixed-integer linear

program to optimize the capacity expansion plan of an electricity distribution net-

work in New Zealand. Takriti et al. (2000) presents a stochastic model for the unit

commitment that incorporates power trading. These models use large scenario trees

to approximate potential future events, but result in very large-scale optimization

models that can be quite hard to solve in practice.

Every paper on stochastic unit commitment (and the vast majority of papers in

stochastic programming) uses a standard two-stage modeling approximation, where
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the stochastic future (which might span one or two days) is realized all at once,

after which all decisions after the initial decision are made using perfect information.

This modeling approximation ignores the evolution of information and the changing

quality in forecasts. For example, a day-ahead forecast of wind at 3pm will be much

less accurate than the hour-ahead forecast. The model has to trade off potentially

lower costs of energy committed in the day-ahead market against the potentially

higher costs of decisions made with shorter notification times.

A popular modeling strategy for multistage linear programs is the use of stochastic

dual dynamic programming (SDDP), which has been widely used in hydroelectric

planning (see Pereira and Pinto (1991), Shapiro et al. (2013), and Philpott and Guan

(2008)). SDDP falls under the broad umbrella of approximate dynamic programming,

which approximates the future through value function approximations using methods

such as Benders cuts or statistical models (Powell, 2011). VFA-based policies are not

able to explicitly model forecasts in the state variable. As a result, forecasts have to

be treated as latent variables.

By contrast, lookahead models such as scenario trees handle the forecast directly in

the formation of the scenario tree, but standard practice (for computational reasons)

is to use a two-stage approximation, where decisions in the future are allowed to see

the entire future. The two-stage approximation ignores the characteristic of lagged

problems which requires that we recognize at time t that a decision may be made at

time t′ > t to be implemented at time t′′ > t′ using the forecast that will be available

at time t′.

In this chapter, we transition to the difficult problem of making lagged commit-

ments while managing a portfolio of energy resources including steam and gas turbine

generators. This setting requires making a decision now to make a commitment sev-

eral hours and days in the future, which still captures our ability to make shorter

term commitments, typically at higher prices but with more accurate forecasts.
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Our method is be able to make the tradeoff between forecast reliability and cost.

For example, imagine that we have a system that can make very reliable short-term

forecasts. Now imagine that these short-term contracts are the lowest cost option. If

this is the case, then an effective model and algorithm should be able to recognize that

we should never schedule fossil fuel generators very early in advance, but this would

not be the case if we used any current stochastic or deterministic lookahead model.

We note that in our work in energy, it is not uniformly the case that forecasts become

more accurate with shorter notification times, and costs do not increase monotonically

as the notification time decreases.

This chapter makes the following contributions. 1) We provide, apparently for the

first time, a proper base model of a stochastic, lagged resource allocation problem in

the context of energy portfolio management. 2) We introduce a family of parameter-

izations of a deterministic lookahead model designed to produce robust policies that

respond in a realistic way to the level of uncertainty in forecasts. 3) We demonstrate

empirically that our method produces high quality solutions relative to unmodified

deterministic lookahead policies on a library of lagged energy portfolio problems.

Our presentation is organized as follows. In section 3.2 we discuss the inherent

bias of deterministic lookahead models in lagged problems. The modeling framework

for the lagged energy portfolio problem is given in section 3.3. We then provide an

overview of the different classes of policies and alternative designs for parametric

CFAs in section 3.4. Section 3.6 presents a series of numerical results.

3.2 Bias of deterministic models

Although deterministic lookahead models are commonly used to handled lagged de-

cision problems, these models exhibit clear biases and limitations. Consider the case

when prices increase and forecast quality improves the later decisions are made. If
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costs decline when we make commitments farther in the future, deterministic models

will have a natural bias of placing orders early because they are unable to account for

the issue of forecast accuracy, and our ability to respond to better forecasts. This bias

can be corrected by strategically parameterizing a deterministic model. To illustrate

this idea we consider an extension of the classical newsvendor problem (Arrow et al.,

1952). In the classical problem a newsvendor sells daily newspapers at a static price,

p. Every day the vendor must decide how many newspapers to purchase, x, for a

given cost, c, before knowing how many customers will demand newspapers, D̂. The

objective of the vendor is to determine how many newspapers to purchase in order

to maximize expected profits. Formally, this problem is written as

max
x

p · E
[
max(x, D̂)

]
− cx.

This is a classical single-period problem where a decision x is made, then exogenous

information is observed, D̂, and the final outcome is measured. However, if we allow

the vendor multiple opportunities to purchase inventory the problem becomes a lagged

resource allocation problem. In the two-stage newsvendor problem the vendor can

order inventory one day in advance, x1, at the marginal cost c1 or place orders once

D̂ is known, x2, at the marginal cost c2 where c1 < c2. In this case, the demand D̂ is

an unobserved random variable when x1 is made, but known when x2 is determined.

If the cost of ordering inventory at the latest opportunity, c2, is less than the selling

price, p, then the vendor will satisfy the order of every customer and x2 = (D−x1)+.

Formally, we describe the problem as

max
x1

E
[
pmin(D̂, x1 + x2)− c1x1 − c2x2)

]
.
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Given the vendor has a day-ahead forecast of the demand, fD1 , we can use the following

deterministic lookahead policy to determine how much inventory to order using

x∗1 = argmax
x1

[
pfD1 − c1x1 − c2x2

]
(3.1)

subject to

x1 + x2 = fD1 , (3.2)

x ≥ 0.

If the forecast fD1 is perfect, then the policy (3.1) is optimal and the problem is trivial.

Since this generally not the case, the vendor must consider the potential of ordering

too much inventory in advance or waiting and ordering the right amount at a higher

cost. This lookahead model will always order the forecasted demand, fD1 , without

considering the risk of ordering too much or too little. However, we can mitigate the

risk of ordering too much by adding the following parameterized constraint,

x1 ≤ fD1 · θ, (3.3)

to the policy in equation (3.1) where θ ≥ 0. When θ = 1, the parameterized policy

defined in equation (3.3) is identical to the unmodified policy described in equation

(3.1). Depending on the value of θ the decisions of the parameterized policy can

deviate from unmodified lookahead model such that the policy may purchase more

or less inventory than is forecasted.

Consider the case where c1 = $5, c2 = $7, p = $10, the forecast of demand is a

noisy observation such that fD1 ∼ N (D, σf ), and the realization is D̂ = 10. Figure

3.1 illustrates the relationship between the policy parameter, θ, and the expected

cumulative profit for the parametric policy for different σf . Figure 3.1 shows that as
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Figure 3.1: This figure compares the expected cumulative profits for parametric policy
defined by equation (3.3) for different parameter values, θ, and forecast qualities σf

where fD1 ∼ N (E[D̂], σf ). The empirical expected values were calculated using 106

independent observations.

the amount of noise in the forecast, σf , increases the vendor can increase expected

profits by discounting the forecast, or setting θ < 1. Figure 3.2 shows the optimal

distribution of orders for each of the tested forecast qualities, σf . As the forecast

noise increases the optimal policy is to order less inventory in advance and to order

the expensive inventory later. The parameterized policy exploits the fact that it is

less expensive to wait and order inventory than to have a surplus.

This problem can be further generalized so the vendor may have T opportunities to

purchase inventory before customer arrives. In this case, demand D̂T , is only revealed

at time T , but the forecasts of the demand, (fDt,T )Tt evolves over time according to

fDt+1,T = fDt,T + εt,
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Figure 3.2: This figure presents the optimal distribution of ordering decisions for the
parametric policy defined by equation (3.3) for different forecast qualities σf . The
empirical expected values were calculated using 106 independent observations.

where εt ∼ N (0, σf ) and fDT,T = D̂T . The decisions are determined using a policy,

Xπ
t (St), which uses the Ft-measurable state variable St = (fDt , Rt) to determine how

much inventory to order at time t. To keep track of the aggregate amount of inventory

already ordered, we introduce the sequence of variables, (Rt)
T
t=1, where

Rt+1 = Rt + xt.

The T -period problem is formally described as

max
π

E
[
pmin

(
D̂T ,

T∑
t=1

Xπ
t (St)

)
−

T∑
t=1

ctX
π
t (St)

]
, (3.4)

where the objective is to find the policy, π, that maximizes profit. We can solve this

problem using the following parameterized lookahead policy to determine how much

inventory to purchase for every period 1 ≤ t ≤ T .

Xπ
t (St) = argmax

x̃t,t

[
p · fDt,T −

T∑
t′=t

ct′ , x̃t,t′

]
(3.5)

subject to
T∑
t′=t

x̃t,t′ ≤ fDt,T −Rt,
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x̃t,t ≤ θt,Tf
D
t,T ,

x̃ ≥ 0,

where the decision xtt′ represents the estimated amount of inventory to purchase at

time t′ given information available at time t and θt,T = 1+β(T−t). By modifying the

policy parameter, β, we can control the timing of when the vendor orders inventory.

Figure 3.3 compares the expected cumulative profits for the parametric policy defined

in equation (3.5) when T = 5 and

ct = 5 + (t− 1)
5

T − 1
.

With this function, costs increase as we order later, which encourages ordering earlier.

Figure 3.3: This figure compares the expected cumulative profits for parametric policy
defined by equation (3.5) for different parameter values, θ, and forecast qualities σf .
The empirical expected values were calculated using 106 independent observations
and T = 5.

Figure 3.3 illustrates the same behavior as seen in the two period newsvendor problem.

As the amount of noise in the forecast increases, the optimal policy is to further

50



discount the forecast of demand and wait to purchase inventory. This behavior can

clearly be seen in figure 3.4.

Figure 3.4: This figure presents the optimal distribution of ordering decisions for the
parametric policy defined by equation (3.5) for different forecast qualities σf . The
empirical expected values were calculated using 106 independent observations.

Although the multiperiod newsvendor problem is much simpler than the lagged

energy commitment problem we present in this chapter, it demonstrates why a pa-

rameterized cost function approximation can outperform unmodified deterministic

polices in a lagged setting. When the cost of ordering energy increases over time, it

is better to order early, but this requires using less accurate forecasts which requires

balancing cost against forecast accuracy. Below, we study a more complex lagged

problem where a range of nested decisions xtt′ can be made for many time periods t′,

where energy is committed anywhere from time t = 1 to t = t′ for t′ = 1, ..., T . In

addition, we assume excess energy in storage at time t′ can be held forward to time

t′ + 1, which means the problem does not decompose by time t′.

3.3 Lagged energy portfolio model

An electricity retailer must satisfy a stochastic hourly load over a finite horizon,

T , while managing a portfolio of energy resources. The portfolio contains dispatch-

able (typically steam and gas turbine) generators, G, intermittent renewable energy

sources, E , and a single storage device. Each source of energy is characterized by a

notification time that reflects startup times, planning processes, and internal opera-
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tional practices. We use the notation xt = (xtt′)t′≥t as a vector of energy commitments

made at time t to be delivered over a horizon t ≤ t′ ≤ T . Any decision xtt′ is treated

as a commitment that cannot be changed. We note different types of decisions made

be made at different time periods (e.g. steam decisions may be made at noon each

day, while decisions about gas turbines may be made hourly). These notification

times can span minutes to 24 hours or more. Renewables cannot be controlled (that

is, they are not “dispatchable”), but are described by an evolving set of forecasts,

which parallel the lagged plans. Any unsatisfied load must be met using electricity

purchased from the electricity spot market at a stochastic price. The retailer may

store electricity from the renewable sources or spot market to use at a later date. The

retailer’s objective is to maximize expected cumulative returns.

We follow the framework described in chapter 1 to present our lagged energy

portfolio model.

State variable

At time t the state variable St contains the following:

(fLtt′)t′=t,...,t+H = forecasts of future loads at time t′ given information available

at time t,

((ftt′e)t′=t,...,t+H)e∈E = forecasts of electricity available from renewable sources,

e ∈ E at time t′ given information available at time t,

(fPtt′)t′=t,...,t+H = forecasts of the spot price for electricity at time t′ given infor-

mation available at time t,

(
P gen
t (τg)

)
g∈G = prices of purchasing electricity from the set of dispatachable

generators, G, at time t. Specifically, P gen
t (τg) is the price of ordering from

generator g ∈ G at time t to be delivered at t + τg, where τg is the unique

notification time of the generator g ∈ G.
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(Rgen
tt′ )t′=t,...,t+H = aggregate amount of energy from the generators from the set

of dispatachable generators, G, already committed for time t′,

Rstor
t = the amount of energy in storage at time t,

(Pte)e∈E = the marginal prices to use electricity generated by renewable sources,

e ∈ E .

Formally, we define the state variable as

St =

(
Rstor
t , (Rgen

tt′ )t′=t,...,t+H , (f
L
tt′)t′=t,...,t+H ,

((ftt′e)t′=t,...,t+H)e∈E , (f
P
tt′)t′=t,...,t+H ,

(
P gen
t (τg)

)
g∈G

)
,

(3.6)

where Rstor
t ∈ [0, Rmax]. Forecasts, fXtt′ , are estimates of some underlying random

variable, Xt′ , at time t′, given what we know at time t. We denote the actual obser-

vation of the underlying variable at time t as Xt = fXtt . We note that our handling of

forecasts is important in that they are modeled explicitly in the state variable, and

not as a latent variable. This is the reason (as we show below) that our parametric fit

of the CFA does not have to be reoptimized when the forecasts are changed, giving

us a stationary policy even in the presence of a highly time dependent problem.

The cost of purchasing electricity in advance from an energy generator is a function

of the notification time of generator g, τg. This function is known as the lagged price

function, λ(·) : N → R. By varying the shape of the lagged price function we can

create very different problem settings. We discuss this function in greater detail and

provide examples in section ?? with the numerical experiments.

Decision variables

At time t the electricity retailer must determine the flow of electricity between the

following sources:

53



(xren-load
t,e )e∈E = the renewable sources, e ∈ E , to load,

(xgen-load
tt′g )t′=t+1,...,t+H = the energy committed at time t from generator g to come

online at time t′,

xspot-load
t = the spot market to load,

(xren-stor
t,e )e∈E = the renewable sources, e ∈ E to storage,

xspot-stor
t = the electricity spot market to storage,

xstor-spot
t = the storage device to the spot market,

xstor-load
t = the storage device to the load.

Formally, we define the decision, xt, at time t as

xt =

(
(xren-load

t,e )e∈E , (x
gen-load
tt′g )t′=t+1,...,t+H , x

spot-load
t , (xren-stor

t,e )e∈E , x
spot-stor
t , xstor-spot

t , xstor-load
t

)
(3.7)

where xt ≥ 0. The decisions relating to electricity generated by renewable sources,

e ∈ E are constrained by the amount of available renewable energy,

0 ≤ xren-load
t,e + xren-stor

t,e ≤ f ett ∀ t = 0, ..., T and e ∈ E . (3.8)

The variables, γc ∈ [0, 1] and γd ∈ [0, 1] are the charge and discharge rates of the

electricity storage device. They decide how quickly energy can be deposited and

withdrawn from storage. The following constraint describes how quickly electricity

can be deposited in storage,

0 ≤ xspot-stor
t +

∑
e∈E

xren-stor
t,e ≤ min

(
γcRmax, Rmax −Rstor

t

)
. (3.9)
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The following constraint describes how quickly electricity can be removed from stor-

age,

0 ≤ xstor-load
t + xstor-spot

t ≤ min
(
γdRmax, Rstor

t

)
. (3.10)

The load at t, fLtt , must always be satisfied. We use the following constraints to

enforce this requirement,

fLtt ≤
∑
e∈E

xren-load
t,e +Rt + xspot-load

t + xstor-load
t ∀ t = 0, ..., T. (3.11)

There is also a limit on how much electricity can be ordered from generator g ∈ G

every period. We define this constraint as

0 ≤ xgen-load
tt′g ≤ Rmax

g ∀ t = 0, ..., T and ∀g ∈ G. (3.12)

Decisions are determined by a decision function (policy) which we denote by

Xπ
t (St), where π carries the information that determines the structure and parameters

that define the function. When we wish to make the dependence on the parameters

explicit, we write the policy as Xπ
t (St|θ).

Exogenous Information

The exogenous information, Wt, at time t contains the changes in forecasts

of future loads ((f̂Ltt′)t′=t,...,t+H), available electricity from renewable sources((
(f̂ ren
tt′e)t′=t,...,t+H

)
e∈E

)
, and the spot price of electricity

(
(f̂Ptt′)t′=t,...,t+H

)
. We

formally define the exogenous information at time t as

Wt =

((
f̂Ltt′
)
t′=t,...,t+H

,
(

(f̂ ren
tt′e)t′=t,...,t+H

)
e∈E

,
(
f̂Ptt′
)
t′=t,...,t+H

)
. (3.13)
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Updated forecasts are dependent on past forecasts such that forecasts improve over

time. We define the forecasts as noisy approximations of the underlying stochastic

variable Xt≤t′≤H where f̂Xt+1,t′ ∼ N (0, (σf )2) and

fXt+1,t′ = fXt,t′ + f̂Xt+1,t′ . (3.14)

The stochastic error terms (f̂Ptt′)t′=t,...,t+H and
(

(f̂ ren
tt′e)t′=t,...,t+H

)
e∈E

are generated using

the univariate crossing state hidden semi-Markov model (HSMM) from Durante et al.

(2017) to capture the distribution of wind speed and electricity spot prices exceeding

and falling below a forecast series, termed crossing times. These models include

hidden states which captures for how long wind speed is above or below a forecast

as well as distributions of the change in wind speed conditioned on both the prior

wind speed and the hidden state. In our simulations the periodic load, (fLtt ), has the

stochastic seasonal structure

fLtt = 1200 + 200 sin

(
5πt

2T

)
+ εL, (3.15)

where εL ∼ N(0, 50).

Transition function

The transition function SM(·) explicitly describes the relationship between the state

of the model at time t and t+ 1,

St+1 = SM(St, xt,Wt+1) (3.16)

where Wt+1 =

(
(f̂Ltt′)t′=t,...,t+H ,

(
(f̂ ren
tt′e)t′=t,...,t+H

)
e∈E

, (f̂Ptt′)t′=t,...,t+H

)
is the exogenous

information revealed at time t+1. Every period t the system must update all forecasts
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and electricity scheduled for future periods. We formally describe the transition

function for this system as

SM(St, xt,Wt+1) =



Rgen
t+1,t′ = Rgen

tt′ + xgen-load
tt′g ∀ t′ = t+ 1, ..., t+H

Rt+1 = Rstor
t + xspot-stor

t + xwind-stor
t − xstor-load

t − xstor-spot
t

fLt+1,t′ = fLt,t′ + f̂Lt+1,t′

ft+1,t′,e = ft,t′,e + f̂t+1,t′,e

fPt+1,t′ = fPt,t′ + f̂Pt+1,t′

(3.17)

where the transition function is required to satisfy the constraints (3.8)-(3.12).

Objective function

For a given state, St, and decision, xt, at time t we define the contribution function,

Ct(St, xt) as

Ct(St, xt) = fPtt · (fLtt − x
spot-load
t + xstor-spot

t − xspot-stor
t −Rtt)

−
∑
e∈E

(xren-load
t,e · Pte)−

∑
g∈G

(xgen-load
t,t+τg ,g · f

gen
tt (τg)).

(3.18)

The objective is to find the policy, Xπ(St), that solves

max
π∈Π

E

[
T∑
t=0

Ct(St, X
π(St))

∣∣∣∣S0

]
(3.19)

where the state evolves according to the transition function in (3.17).

3.4 Policies

In this chapter, we propose a hybrid based on an approximate lookahead that is

parameterized to provide better performance. We then use policy search to tune the
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parameterization. Below we begin by presenting a deterministic lookahead, and then

present a parameterization designed to accommodate the errors introduced by the

deterministic approximation.

Deterministic lookahead

We are particularly interested in deterministic lookahead models where exogenous

information, (Wt′)
t+H
t′=t , is replaced with an estimate of Wt′ made at time t, fWtt′ . To

make a distinction between the base model (which is the problem we are trying to

solve) and the lookahead model, we use the same notation as in the base model, but

we introduce tilde’s on all the variables. Each variable carries a triple time index,

x̃t,t′,t′′ , where t is the current point in time in the base model (equation (3.19)), which

determines what we know. We may be planning a decision that might be made at time

t′ ≥ t (in the lookahead model) to be implemented at time t′′ (also in the lookahead

model). In addition, the decision made at time t′ still has to consider the uncertainty

at time t′′. Given this notation, the deterministic lookahead model is defined as

XDLA
t (St) = argmax

(xt,t′′ ) ∀ t′′=t,...,T

{
Ct

(
St, (xtt′′)t′′=t,...,T

)
+

T∑
t′=t+1

C̃tt′
(
S̃tt′ , (x̃tt′t′′)t′′=t,...,T

)}
(3.20)

S̃t,t′+1 = S̃M(S̃tt′ , (x̃ttt′′)t′′=t,...,T , f̃
W
t,t′+1). If the transition and contribution functions

are linear functions we can represent (3.20) as the following linear program

XDLA
t (St) = argmax

(xtt′′ ) ∀ t′′=t,...,T

{
T∑

t′′=t

(ctt′′xtt′′) + max
(xtt′t′′ ) ∀ t′>t

(
T∑
t′=t

T∑
t′′=t′

(c̃t′t′′x̃tt′t′′)

)}
(3.21)

where we model transitions in the lookahead model using St,t′+1 = SM(Stt′ , x̃t, W̃t,t′+1)

and x̃t = (x̃ttt′′)t′′=t,...,T .

For this problem we define a deterministic lookahead model that is constructed

by substituting all of the exogenous information in (3.19) with point forecasts. We
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adapt the linear contribution function (3.18) to use the triple index notation,

C̃tt′
(
S̃tt′ , x̃t

)
= f̃Ptt′ · (f̃Ltt′ − x̃

spot
tt′t′ + x̃stor-spot

tt′t′ − x̃spot-stor
tt′t′ )

−
∑
e∈E

(xren-load
tt′t′,e · Pt′e)−

∑
g∈G

(xgen-load
t,t′,t′+τg ,g

· P gen
t (τg)),

(3.22)

where x̃t = (x̃tt′t′′)t′′∈[t′,t′+H]. We formally define S̃tt′ as

S̃tt′ =

(
(f̃Ltt′)t′=t,...,t+H , (f̃

E
tt′)t′=t,...,t+H , (f̃

P
tt′)t′=t,...,t+H , (R̃

gen
tt′t′′)t′′=t′,...,t+H

)
, (3.23)

where R̃gen
tt′t′′ represents the amount of committed energy from generators at time t′

in the lookahead model to be used at t′′ in the lookahead model generated at time

t (in the base model). We define R̃stor
tt′ as the estimate of electricity in storage at

time t′ given the information available at time t. Given this notation we define the

deterministic policy, XD-LA
t , as

XD-LA
t = argmax

{xtt′ t′= t,...,t+H}

{
Ct

(
St, (xtt′)t′∈[t,t+H]

)
+

t+H∑
t′=t+1

C̃tt′

(
S̃tt′ , (x̃tt′t′′)t′′∈[t,t+H]

)}
(3.24)

subject to

R̃gen
t,t′+1,t′′ = R̃gen

t,t′,t′′ +
∑
g∈G

x̃gen-load
tt′t′′g ∀ t′′ = t′ + 1, ..., t+H, (3.25)

R̃stor
t,t′+1 = R̃stor

tt′ + x̃spot-stor
tt′t′ +

∑
e∈E

x̃ren-stor
tt′t′e − x̃stor-load

tt′t′ − x̃stor-spot
tt′t′ t′ ∈ [t, t+H], (3.26)

0 ≤ x̃gen-load
tt′t′′g ≤ Rmax

g ∀ t ≤ t′ ≤ t′′ ≤ t+H and ∀g ∈ G, (3.27)

x̃ren-load
tt′t′e + x̃ren-stor

tt′te ≤ f̃Ett′e ∀ t′ ∈ [t, t+H] and ∀ e ∈ E , (3.28)
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0 ≤ x̃spot-stor
tt′t +

∑
e∈E

x̃ren-stor
tt′te ≤ min(γcRmax, Rmax −Rstor

tt′ ) t′ ∈ [t, t+H], (3.29)

0 ≤ x̃stor-load
tt′t + x̃stor-spot

tt′t ≤ min(γdRmax, Rstor
tt′ ) t′ ∈ [t, t+H], (3.30)

f̃Ltt ≤
∑
e∈E

x̃ren-load
tt′t′e + R̃gen

tt′t′ + x̃spot-load
tt′t′ + x̃stor-load

tt′t′ t′ ∈ [t, t+H]. (3.31)

Equations (3.25) are transition constraints for energy generated by energy generators.

Constraint (3.26) is a transition constraint for the energy level of the storage device.

The constraint (3.27) limits how much energy can be ordered from generator g during

a single period. The constraint (3.28) limits the policy from using more intermittent

energy sources than forecasted. Constraints (3.29) and (3.30) determine how much

energy can be deposited and withdrawn from the storage device. The constraint

(3.31) guarantees that the load is always satisfied.

Parametric Cost Function Approximation

The obvious weakness of the deterministic lookahead policy is that it does not account

for the uncertainties in the forecasts. This means we are counting on them being

correct, and ignoring problems when they are too high (an issue for the prices or

loads) or too low (such as the energy from renewables). To overcome this weakness,

we introduce the idea of using a parametric cost function approximation (or CFA),

where the deterministic lookahead is modified in a way that we hope will better

accommodate uncertainty. While we could modify either the cost function or the

constraints, in this paper we are going to use constraint modifications, which are

then optimized using our stochastic base model in equation (2.33). We then train the
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parametrically modified policy using a data-driven approach that makes it possible

to handle arbitrary richness in the underlying stochastic process.

The benchmark policy, defined by equations (3.24)-(3.31), is easily converted into

a parametric cost function approximation by modifying existing constraints and/or

appending new parametric constraints. The selection of these parametric constraints

parallel the selection of any statistical model. The structure of the model is an art

that draws on the knowledge and imagination of the modeler. Once the structure

of the model has been determined, finding the best parameter values, is the science

which draws on the power of classical search algorithms. For the previously described

lagged energy storage problem we propose two parametric constraint modifications.

We modify the constraints controlling how much energy can be ordered from the

energy generators, known as order constraints, to mitigate the effects of uncertainty

in spot prices, renewables and loads. Specifically, we modify the order constraint

(3.27), which limits how much energy from energy generator g can be ordered in

advance, with the parameter θgen = (θgen
1 , ..., θgen

H ) ∈ [0, 1]H such that

0 ≤ x̃gen-load
ttt′g ≤ θgen

t′−tR
max
g . (3.32)

Overestimating or underestimating forecasts of renewable energy influences how ag-

gressively a policy will store or order energy for the future. We parameterize the

forecasts of renewable energy sources e ∈ E in constraint (3.28) with the parameter,

θren
e = (θren

1,e , ..., θ
ren
H,e) ∈ [0,∞)H such that

x̃ren-load
tt′t′e + x̃ren-stor

tt′te ≤ θren
t′−t,ef̃

E
tt′e ∀ t′ ∈ [t, t+H] and ∀ e ∈ E , (3.33)

Constraints (3.27) and (3.28) can be parameterized multiple ways, below are a few:
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• Lookup table lagged price function parameterization - This parameter-

ization uses a unique parameter, θgen
t′−t and/or θren

t′−t, to modify each period in the

lookahead model.

• Linear lagged price function parameterization - Searching through an

H-dimensional parameter space is computationally expensive. If we make θgen
t′−t

and/ or θren
t′−t a function of the time until implementation, t′ − t, we can signifi-

cantly reduce the number of tunable policy parameters and policy search time.

The linear parameterization defines the parameters θt′−t as a linear function of

the parameter θ = (θ1, θ2) such that

θt′−t = θ1 + θ2 · (t′ − t). (3.34)

• Exponential lagged price function parameterization - This parameteri-

zation defines θt′−t as an exponential function of the two parameters θ = (θ1, θ2)

such that

θt′−t = θ1e
θ2·(′t−t). (3.35)

This exponential curve dramatically reduces the number of parameters to be

fitted.

3.5 The Algorithm

Parametric cost function approximations are members of the general class of param-

eterized models, Xπ
t : St ×Θ→ Xt. The optimal parameterization, θ∗, of policy, Xπ

t ,

can be found by solving

θ∗ = argmax
θ∈Θ

F (θ), (3.36)
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where

F (θ) = E

[
T∑
t=0

Ct(St, X
π
t (St|θ))

∣∣ S0

]
(3.37)

and where St+1 = SM(St, X
π
t (St|θ),W n

t+1). This problem can be solved using an

iterative stochastic gradient algorithm such as the CFA Gradient algorithm, described

in Algorithm 1, (see Spall et al. (2003)).

The gradient

There are multiple ways to approximate∇θF for Algorithm 1 (See Spall et al. (2003)).

Given the following assumptions we can calculate an estimator of ∇θF using a single

sample path ω:

A1) The cumulative reward of a single sample path, F̄ (·, ω), is uni-

formly bounded for every ω ∈ Ω.

A2) F̄ (θ, ω), is differentiable for every θ ∈ Θ.

If the cumulative reward function, F (·), satisfies conditions (A1) and (A2) then an

estimator of ∇θF (·) is computed as

∇θF̄ =

(
∂C0

∂X0

·∂X0

∂θ

)
+

T∑
t′=1

[(
∂Ct′

∂St′
·∂St

′

∂θ

)
+

(
∂Ct′

∂Xt′(St|θ)
·
(
∂Xt′(St|θ)

∂St′
·∂St

′

∂θ
+
∂Xt′(St|θ)

∂θ

))]
,

(3.38)

where

∂St′

∂θ
=

∂St′

∂St′−1

· ∂St
′−1

∂θ
+

∂St′

∂Xt′−1(St−1|θ)
·
[
∂Xt;−1(St−1|θ)

∂St′−1

· ∂St
′−1

∂θ
+
∂Xt′−1(St−1|θ)

∂θ

]
.

(3.39)

If the policy is a linear program such that

Xπ
t (St|θ) = argmin

xt,(x̃tt′ ),t
′=t+1,...,t+H

ctxt +
t+H∑
t′=t+1

c̃tt′x̃tt′ (3.40)
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where Ãtx̃t ≤ b̃t(θ, St), Bt is the basis matrix corresponding to the basic variables for

the optimal solution of (3.40), and x̃Tt = [x̃tt, . . . , x̃tT ]. Then an estimator of ∇θF (·)

can be computed as

∇θF̄ (θ, ω) =
T∑
t=1

(
∇θb̃t(θ, St) +∇St b̃t(θ, St) · ∇θSt

)T
·
(
B−1
t

)T
· ct, (3.41)

where

∇θSt = ∇St−1S
M(St−1, xt−1,Wt) · ∇θSt−1 +∇xt−1S

M(St−1, xt−1,Wt) · ∇θxt−1. (3.42)

The stepsize

Given an estimator and an appropriately selected stepsizes (αn)∞n=0, Algorithm 1

will converge to a stationary point of F (·). Specifically, the sequence of (possibly

stochastic) stepsizes, (αn)∞n=0, must satisfy the following:

B1) αn > 0, a.s.

B2)
∑∞

n=0 αn =∞, a.s.

B3) E [
∑∞

n=0(αn)2] <∞.

If F (·) is convex in Θ, Algorithm 1 will be a global minimum, but if not, it could

be a local minimum or even a saddle point. This is true asympototically, but in

practice we prefer parameterized rules that can be tuned for quicker convergence

rates. Therefore, we limit our evaluation of the algorithm to how well it does within

N iterations. We evaluated several stepsize rules and found the Adaptive Gradient

Algorithm (AdaGrad) to be the best. The main benefit of AdaGrad is that it features

self-scaling (similar to the gain matrix of the Kalman filter), which eliminates the need

to manually tune the learning rate for each dimension of θ. Instead, we only have to

tune a single scalar η. Additionally, AdaGrad theoretically has tighter regret bounds

than standard stepsize algorithms (see Duchi et al. (2011b)).
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AdaGrad modifies the individual step size for the updated parameter, θ, based on

previously observed gradients using

αn =
η√

Gt + ε
(3.43)

where η is a scalar learning rate, G ∈ Rd×d is a diagonal matrix where each diagonal

element is the sum of the squares of the gradients with respect to θ up to the cur-

rent iteration n, while ε is a smoothing term that avoids division by zero. For our

simulations we set η = 0.1 and ε = 10−8.

Stochastic Updating

It is important to emphasize that the stochastic gradient equations (3.38)-(3.41) are

data-driven, which means they can use any stochastic process. We do not require a

formal stochastic model, and nor do we impose any restrictions on the structure of the

stochastic process. The data may exhibit arbitrary inter-temporal correlations. In

addition, the noise in the process may decrease or increase in time, which is something

that happens in practice. For example, we might have a process where the single-

period lookahead forecast is perfect. If the cost of waiting until the last minute is

low, the method will learn to wait until the last minute to take advantage of low costs

along with a high quality forecast.

3.6 Experimental Testing

In this section, we compare the deterministic lookahead model, defined by equation

(3.24), to several parametric CFA policies tuned by Algorithm 1, using Monte Carlo

simulation on different variations of the lagged energy storage problem, defined by

equations (3.17) - (3.19). We test the following parameterizations of the deterministic

lookahead model, defined by equation (3.24):
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• Constraint (Lookup) - This parameterization uses the vector, θgen =

(θgen
1 , ..., θgen

H ) ∈ [0, 1]H , where θgen
h modifies the order constraint (3.27) for each

period of the lookahead model. This parameterization directly limits how much

energy can be ordered in advance.

• Forecast (Lookup) - This parameterization uses the vector, θren
e =

(θren
1,e , ..., θ

ren
H,e) ∈ [0,∞)H , where θren

h,e factors the forecasts of renewable en-

ergy sources e ∈ E in constraint (3.28) for each period of the lookahead

model.

• Both (Lookup) - This parameterization uses unique parameters, θgen
t′−t and

θren
t′−t, to modify both the order constraints and forecasts of renewable energy

sources for each period in the lookahead model.

We test these policies on the following lagged price function

λlinear(τ) = 35− τ 15

12
. (3.44)

This lagged price function is designed to demonstrate the ability of our model to

handle the case when the cost of purchasing electricity in advance increases and fore-

cast errors decrease the later an order is placed. We note that forecast errors do not

always decrease as forecasting horizons shorten and that these modeling assumptions

regarding lagged prices are not universal. Forecasts of renewable energy sources com-

monly use persistence forecasting over short horizons, and meteorological models for

longer horizons. We make these assumptions for demonstrative purposes. The CFA is

not limited to these assumptions because the parametric CFA makes no assumptions

about the structure of the stochastic errors in forecasts, or in the behavior of the

advance costs.

Figure 3.5 presents the individual performance of each parameterization relative

to the unmodified benchmark for a variety of forecast qualities, σf . When the forecast
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Figure 3.5: This table displays the empirical expected cumulative profit for each
parameterized policy and the benchmark over varying forecast qualities, σf , and the
lagged price function described by (3.44).

is perfect, σf = 0, the deterministic benchmark policy is the optimal policy. Because

a policy with a perfect forecast in this scenario will never order a surplus, the order

constraints for all the periods of the lookahead model, except for the first two periods,

are non-binding. As long as the order constraints that modify the last two periods

of the lookahead model are 1.0, the parameters that modify the order constraints of

the other periods can be any value greater than or equal to 0 and the policy will

still be optimal. The policies that parameterize just the forecasts of future renewable

energy sources, described by equation (3.33), are also identical to the deterministic

benchmark given a perfect forecast and all the parameters are equal to one.

As the amount of uncertainty in the forecast, σf , increases, the unmodified looka-

head model is no longer optimal. Figure 3.6 presents the distribution energy com-

mitments for the different policies when σf = 300 and σf = 600. These results

demonstrate the inability of the unmodified lookahead model to balance the benefit

of ordering inexpensive energy against the risk of using poor forecasts. Specifically, we

notice the parameterized policies avoid the bias to make early energy commitments

and have more dispersed distributions of energy commitments than the unmodified

benchmark policy. This is the same behavior observed in the multi-period newsven-
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dor example in section 3.2. By waiting later to purchase energy these policies avoid

(a) σf = 200 (b) σf = 600

Figure 3.6: This table displays the distribution of energy commitments for all of
the tested policies for varying degrees of forecast quality and when the lagged price
function is described by equation (3.44). The graphs show that the benchmark de-
terministic lookahead orders farther into the future than the parameterized lookup
policies.

having a surplus of energy they cannot use. In addition to ordering energy later, the

parameterized policies also rely more heavily on other sources of energy than just the

dispatchable energy generators, G. Figure 3.7 shows how as σf increases the param-

eterized policies order less energy from the dispatchable generators. Instead, these

policies rely more heavily on electricity from the spot market.

(a) σf = 200 (b) σf = 600

Figure 3.7: This table displays the average total amount of energy ordered from
dispatchable generators for all of the tested policies for varying degrees of forecast
quality and when the lagged price function is described by equation (3.44).
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Figure 3.8a shows that the policies with parameterized order constraints, described

by equations (3.32) - (3.35), avoid surplus by reducing order constraints in the looka-

head model such that θgen
t′−t < 1 ∀ t′ ∈ [t, t+H]. It is interesting to note the parabolic

shape of the parameters that modify the order constraints, (θgen
t′−t)

t+H
t′=t . By gradually

decreasing the order constraints of the last four periods of the lookahead model these

policies are able to take advantage of the low prices associated with long notification

times and avoid the risk of ordering too much. These policies also eliminate the abil-

ity to order energy four to eight periods in advance because it is less expensive, on

average, to purchase electricity from the spot market, at $25.78 per MWh. Another

interesting observation is that as σf increases these policies do not experience a sig-

nificant decrease in expected cumulative profit because the parameters θgen do not

modify a forecast. Hence, the optimal order constraint parameterization, θgen, seems

to be the same for all σf > 200.

Figure 3.8b shows the policy with parameterized forecasts of renewable energy

supply are modified such that θren
t′−t > 1 ∀ t′ ∈ [2, t + H]. Consequently, the

parameterized policy orders less energy in advance from energy generators because

it expects to satisfy a larger portion of its future load with renewable energy sources

in the future. It is important to note these are not frequently binding constraints.

Thus, these constraints do not influence policy decisions nearly as much as the order

constraints. Therefore, they are not as effective at reducing the bias to make early

energy commitments.

These experiments also show that the inventory parameterization in equation

(3.32) is much more effective that the parameterization of the forecasts in equation

(3.33). Finding the best parameterization is comparable to finding the best model

specification in a statistical model. Our algorithms can find the best parameters for

a given model specification, but at the moment we need intuition, as is the case in
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(a) Order constraint parameter values (b) Forecast parameter values

Figure 3.8: Parameter values of parameterized policies when the lagged price function
is the trivial lagged price function described by equation (3.44) and σf = 60.

designing statistical models, to design the structure of the parameterization. This is

clearly an area for further research.

3.7 Conclusion

In this chapter, we describe a finite-horizon lagged resource problem that is subject

to stochastic prices and renewable sources, with the purpose of demonstrating the

capability of parametrically modified deterministic lookahead models, known as Cost

Function Approximations (CFA). These parameterized deterministic policies allows

us to exploit the structural properties of sequential decision problems while also cap-

turing their complex dynamics. Consequently, these models are capable of handling

much greater richness than are typically captured in stochastic lookahead models

(Birge and Louveaux (2011a)). We demonstrate the efficacy of this approach to

lagged resource allocation problems with the multi-period newsvendor problem and

a significantly more complex energy portfolio management problem. Our numerical

results illustrate the abilities of the CFA to handle uncertainty without restrictions

on the structure of the dynamics. Specifically, we show the ability of the CFA to bal-
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ance the tradeoff between forecast reliability and cost for a library of lagged energy

portfolio problems.
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Chapter 4

An Optimization Model for

Natural Gas Supply Portfolios of

an Industrial Gas Producer

4.1 Introduction

Industrial gas companies have to manage the volatility of electricity and natural gas

prices in the process of converting air into products such as purified oxygen and

nitrogen. These sources of uncertainty are especially important because industrial

gas production processes require large amounts of energy. In addition to energy re-

lated risks, producers deal with many other sources of uncertainty including customer

demands and transmission outages.

In this chapter we propose a detailed, dynamic model of a network of industrial

gas production plants, a hydrogen storage cavern, a diverse set of customers, and

electricity and natural gas commodity markets. We pay special attention to the

planning of lagged decisions in the management of monthly and daily natural gas

deliveries and contracts. This problem requires anticipating decisions that might be
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made in the future. While approximate dynamic programming is a powerful tool for

a wide range of problems, lagged problems remain a problem class that has resisted

this solution approach.

We demonstrate how our model can be used to test and identify hydrogen storage

policies for minimizing the probability of a production shortage. We also demonstrate

the robustness of these strategies on a library of problems. As with any industry,

suppliers must control their costs, which means managing both average costs and

the risks of volatility in costs. Because of their high dependence on natural gas

and electricity, industrial gas suppliers are specifically interested in maximizing daily

cashflows and minimizing the dependence of those cashflows on energy commodity

prices. We demonstrate how this model can be used to test and identify natural gas

nomination strategies to minimize the dependence of the daily profit of the supplier

and energy commodity market. We also demonstrate the robustness of these strategies

for different degrees of natural gas spot market volatility.

This chapter is organized as follows. Section 4.2 provides a brief literature review

of natural gas supply, energy portfolio management, and energy related stochastic

optimization. Section 4.3 presents a dynamic model of an industrial gas producer

with access to a hydrogen storage cavern, a natural gas hub, an electricity grid, and a

diverse set of customers. In this section we formally describe the problem by defining

the five elements of a stochastic optimization problem according to Powell (2011).

We also make a special effort to distinguish between the stochastic base model which

can span from several months to several years, and the daily and monthly operating

policies. Section 4.4 describes a parametric operating policy and a policy search

algorithm to tune it. Section 4.5 presents a series of experiments to demonstrate the

use of our model and analyze the performance of solutions under varying operating

conditions. Finally, section 4.6 concludes the chapter.
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4.2 Literature Review

The related literature encompasses multiple areas of research including natural gas

supply, energy portfolio management, inventory management, and the wide range of

energy related stochastic optimization problems (see Pilipovic (1998), Silver et al.

(1998), and Powell and Meisel (2015)). We consider not only literature that focuses

specifically on industrial gas producers, but the broader collection of similar opti-

mization problems as well. Given its analogous problem structure, we pay particular

attention to the problem of managing short term natural gas contracts for combined

cycle power plants operating in deregulated electricity markets. Chen and Baldick

(2007) proposes a utility-maximization-based policy to optimize a short-term natural

gas supply portfolio for a natural gas fired power plant. The approach considers the

financial risks associated with energy commodities and adjusts the natural gas supply

of the electric utility company to satisfy a designated risk preference. Jirutitijaroen

et al. (2013) uses a two-stage stochastic program to manage a portfolio of short term

natural gas contracts for a power plant with a stochastic recurring customer demand.

Takriti et al. (2000) presents a stochastic model for a unit commitment problem with

extremely volatile electricity spot prices that incorporates power trading with fuel

constraints.

There exists a broader area of research on the valuing and optimal trading of

natural gas storage contracts (see Lai et al. (2010), Secomandi (2010), Lai et al.

(2011), and Löhndorf and Wozabal (2017)). Secomandi (2010) shows the optimal

trading policy for a risk-neutral commodities merchant is a two stage base stock

policy. Though this paper uses natural gas as an example commodity, the paper

focuses on commodity storage in general. This community tends to consider only the

perspective of commodity merchants with no intention of using the commodity outside

of trading. Lai et al. (2011) develops a heuristic model to value real options to store

liquefied natural gas (LNG) that incorporates shipping, price evolution, inventory
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control, and sales in the wholesale natural gas market. Secomandi et al. (2010)

studies model selection methods for natural gas storage real option price models and

hedging strategies given modeling errors. All of the previous literature ignores the

combined problem of securing natural gas through financial markets for the purpose

of satisfying an exogenous stochastic demand.

Stochastic programming applied to energy related problems is a widely studied

area of research (see Jirutitijaroen et al. (2013), Carpentier et al. (2015), and Singh

et al. (2009)). These approaches use large scenario trees to approximate potential

future events, but result in very large-scale optimization models that can be quite

hard to solve in practice. In this chapter we forgo the scenario tree approach and

use a modified deterministic model to account for problem uncertainty. Perkins and

Powell (2017) formalizes the idea of modeling and tuning parametrically modified de-

terministic optimization models known as parametric cost function approximations.

The authors argue for an approach that shifts the modeling of stochastics from an

approximate of a lookahead model to the stochastic base model, which is typically

implemented in a simulator (but might also be the real world). Tuning a paramet-

ric model in a stochastic simulator makes it possible to handle arbitrarily complex

dynamics. This additionally allows us to avoid the many approximations (such as

two-stage models, exogenous information that is independent of decisions) that are

standard in stochastic programming. Perkins and Powell (2017) uses gradient based

methods to determine policy parameters. Their method builds upon the Robbins-

Monro algorithm (Robbins and Monro, 1951a) and a rich literature of stochastic

gradient algorithms and their applications to Markov decision processes (Spall et al.,

2003) and policy search (see Peshkin et al. (2000b), Ng and Jordan (2000b), Hu et al.

(2007b), and Deisenroth (2011)).
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4.3 The stochastic base model

The base model steps forward in daily increments, optimizing over a year long horizon.

It determines how the supplier manages its collection of industrial gas producing

plants to satisfy the recurring daily stochastic demand of customers. The supplier

has multiple individual customers for each type of industrial gas. We denote the set

of industrial gases as g ∈ G where G = {H,N,O, steam} and use the notation J g

to represent the set of customers demanding gas g. Each of these customers has a

unique contract with the supplier which determines their marginal costs as a function

of either daily or monthly natural gas prices. To satisfy the demand of customers

the supplier has access to three sets of production plants including Steam Methane

Reformers (SMRs), air separation units (ASUs), and cogeneration units which we

denote as USMR, UASU, and U cogen respectively. Hydrogen customers, J H , may be

supplied by any SMR unit in USMR. Either oxygen or nitrogen customers can be

supplied by any ASU in UASU. However, each steam consumer can only be supplied

by a single cogeneration unit. Thus, the set of indices denoting steam customers and

the set of cogeneration units are equivalent, J steam = U cogen.

In addition to satisfying the daily demand of customers, the industrial gas supplier

must purchase enough natural gas and electricity to fuel their production processes.

The supplier must decide once a month how much natural gas to purchase through

forward contracts to be delivered in uniform daily increments. Once the supplier

has purchased the natural gas they must decide whether to have it delivered via an

interruptible or uninterruptible pipeline. The interruptible pipeline carries the risk of

random delivery interruptions which will force the industrial gas supplier to purchase

natural gas from the spot market at a potentially higher price. The uninterruptible

pipeline does not have the risk of nondelivery, but is more expensive to use. The

supplier may use a combination of both forms of delivery. Figure 4.1 visually describes

the dynamics of this problem.
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Figure 4.1: This diagram represents the industrial gas supplier’s problem of maximiz-
ing expected profits while always satisfying their customer’s random daily demands.
The supplier has access to multiple plants to satisfy these demands. The air separa-
tion units run entirely off of electricity purchased from ERCOT’s spot market. The
steam methane reformers and cogeneration units require natural gas instead. Nat-
ural gas can be purchased in the day ahead market or through monthly contracts.
The cogeneration units may also be used to produce electricity that is sold back to
ERCOT.

We define the following notation:

Indices: (G, (Jg)g∈G, (Ug)g∈G, t,Mm)

G = The set of industrial gases, G = {H,N,O, steam}, where g ∈ G is the

generic index for the set,
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J g = The set of customers, J g, that demand industrial gas g, where j ∈ J g is

the generic index,

USMR = The set of steam-methane reformers (SMRs) producing hydrogen for cus-

tomers, J H ,

UASU = The set of air separation units (ASUs) producing oxygen and nitrogen for

customers, J O ∪ J N ,

U cogen = The set of cogeneration units producing steam for customers, J steam,

t = The day for which we are solving the problem. We denote the day of the

month and the month of year that t represents with the functions d(t) and

m(t), respectively,

Mm = The set of all days that fall within the month m. Formally, we define this

set as Mm = {t : m(t) = m},
|Mm| = The number of days in the month m.

Policy parameter: θL

θL = This parameter guarantees there a minimum amount of hydrogen in stor-

age to satisfy customer demand in case there is an SMR outage.

Static State Variables:

(γSMR
i , γASU

i , γcogeni , βele, φSMR
i , φASU

i , RH,max)

γSMR
i = The conversion efficiency of natural gas to hydrogen of SMR i ∈ USMR,

γASU
i = The conversion efficiency of electricity to oxygen and nitrogen of ASU

i ∈ UASU,

γcogen
i = The conversion efficiency of natural gas to steam of cogeneration unit

i ∈ U cogen,

βele = The conversion efficiency from steam to electricity,
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φSMR
i = The production capacity of SMR i ∈ USMR,

φASU
i = The production capacity of ASU i ∈ UASU,

RH,max = The hydrogen cavern total capacity.

Dynamic State Variable:

St =
(
RNG−int

t , RNG−uni
t , cintt , cintt , PNG-spot

t , PNG-fut
t , Dt,j ,1

int
t ,
(
1
SMR
t,i

)
i∈UH , P

g
t,j , Et

)

RNG−int
t = The amount natural gas purchased through forward contracts at the end of

the bid week, when d(t) = 1 andm(t) = m, to be delivered in uniform daily

increments throughout the month, Mm, via the interruptible pipeline,

RNG−uni
t = The amount natural gas purchased through forward contracts at the end of

the bid week, when d(t) = 1 andm(t) = m, to be delivered in uniform daily

increments throughout the month, Mm, via the uninterruptible pipeline,

PNG−month
t = The marginal cost of purchasing natural gas through forward contracts at

the end of the bid week, when d(t) = 1 and m(t) = m, to be delivered in

uniform daily increments over the succeeding month, Mm,

cint
t = The marginal cost of purchasing and delivering natural gas in uniform

daily increments over the succeeding month, Mm, via an interruptible

pipeline. This value includes the monthly index price, a premium between

($−.005, $.005) per MMBTU of natural gas, and transportation costs. For

our numerical example we use the definition

cint
t = PNG−month

t + .05

where interruptible transportation costs are $.05/MMBTU and the pre-

mium is $0,
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cuni
t = The marginal cost of purchasing and delivering natural gas in uniform

daily increments over the succeeding month, Mm, via an uninterruptible

pipeline. For our numerical example we use the definition

cuni
t = PNG−month

t + .1

where interruptible transportation costs are $.1/MMBTU and the pre-

mium is $0,

PNG-fut
t = The listed futures contract price of natural gas at time t, to be delivered

during the next month, m(t) + 1,

PNG-spot
t = The spot price of natural gas at time t,

Dt,j = The demand of customer j ∈ J g at time t,

fDt,j = The forecasted demand of customer j ∈ J g at time t. These forecasts are

based on the demand of customer, j, from the previous year,

1
int
t = The status of the interruptible natural gas pipeline at time t where

1
int
t =

 0 the pipeline is interrupted

1 the pipeline is not interrupted
.

RH
t = The amount of hydrogen stored in the salt cavern at time t. The storage

capacity of the cavern is limited by RH
t ∈ [0, RH,max],
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P g
t,j = The marginal revenue from selling a unit of gas g to customer j ∈ J g at

time t. Formally, we define this as

P g
t,j = P0,j ×

(
[1− αj] + αj

(
βtj
NG0

))
, (4.2)

where the parameters NG0, P0,j, and αj are unique for each customer

j ∈ J g. The parameter NG0 is the spot price of natural gas when the

contract was signed. Parameter αj determines how much energy prices

influence prices for customer j. The parameter βtj = PNG-spot
t if the prices

customer j pays are indexed on daily natural gas prices. Conversely, βtj =

PNG-month
t if those prices are indexed on monthly natural prices,

1
SMR
t,i = The outage status of SMR unit i ∈ USMR where

1
SMR
t,i =

 0 unit i is down

1 unit i is running
.

Et = The spot price of electricity at time t,

Γuni = The daily maximum amount of natural gas that can be ordered from the

uninterruptible pipeline,

µSMR = The daily minimum percentage of total production capacity, φSMR
i , that

must be produced by every running SMR.

Decision variables:(
xNG−intt , xNG−unit ,

(
(xt,i,j)j∈J g & i∈Ug

)
g∈G

, xsellt , xbuyt , xNG−dayt , xrest , xstort , xstor-int,i

)
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Monthly decisions - These decisions are made only once a month, when {t :

d(t) = 1}.

xNG−int
t = The fixed daily amount of natural gas ordered from the interruptible

pipeline at the beginning of month m when d(t) = 1 and m(t) = m,

to be delivered in uniform daily increments over the succeeding month,

Mm,

xNG−uni
t = The fixed daily amount of natural gas ordered from the uninterruptible

pipeline at the beginning of month m when d(t) = 1 and m(t) = m, to

be delivered in uniform daily increments over the succeeding month,Mm.

Daily deliveries are limited by the contract agreements with natural gas

pipelines such that

xNG−uni
t < Γuni.

Daily decisions - These decisions are made throughout the month, when {t :

d(t) ≥ 1}.

xt,i,j = The amount of industrial gas g produced by plant i to be sold to customer

j ∈ J g, where i ∈ USMR if g = H, i ∈ UASU if g ∈ {N,O}, or i ∈ U cogen if

g = steam,

xsellt = The amount electricity to produce from the cogeneration units sold to

ERCOT on the spot market,

xbuyt = The amount of electricity purchased from the spot market to power the

air separation units,

xNG−day
t = The amount of natural gas purchased from the spot market,

xres
t = The amount of unused natural gas sold back to the spot market,
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xstor-in
t,i = The amount of hydrogen from SMR unit i ∈ USMR deposited into storage

at time t,

xstor-out
t,j = The amount of hydrogen withdrawn from storage to satisfy demand for

customer j ∈ JH at time t.

Production decisions are limited by the production capacities of the associated pro-

duction plants such that

∑
j∈JH

xt,i,j ≤ φSMR
i ,

∑
j∈JO

xt,i,j +
∑
j∈JN

xt,i,j ≤ φASU
i .

Hydrogen production is additionally constrained by production minimums require-

ments, µSMR, and occasional outages, 1SMR
t,i , such that

∑
j∈JH

xt,i,j + xstor-in
t,i ≤ 1SMR

t,i φSMR
i ∀ i ∈ USMR,

∑
j∈JH

xt,i,j + xstor-in
t,i ≥ µSMR

1
SMR
t,i φSMR

i ∀ i ∈ USMR.

The amount of hydrogen deposited and withdrawn is limited by the total and current

capacity of the salt cavern. Thus,

∑
j∈JH

xstor-out
t,j ≤ RH,max −RH

t ,

∑
j∈JH

xstor-in
t,i ≤ RH

t −RH,max,

x ≥ 0.
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Exogenous information process: (
D̂t,j , Êt, P̂

NG−day
t , P̂

NG−day
t , P̂NG−fut

t , P̂NG−month
t

)

The exogenous information is a random variable that captures the stochastic updating

of forecasts as well as the randomly occurring equipment failure and natural gas

pipeline deliveries. Let ω = {W0,W1, ...,WT} for ω ∈ Ω be a sample path and F

a sigma-algebra on Ω. Given a probability space (Ω,F ,P) and the filtration F1 ⊂

F2 ⊂ · · · ⊂ FT = F . Our exogenous information, {Wt, t = 1, 2, ..., T}, is a stochastic

process adapted to the filtration {Ft, t = 0, 1, 2, ..., T}. This information includes the

following:

D̂t,j = The forecast errors for the daily demand of customer j ∈ J at time t,

Êt = The forecast error for the electricity spot price at time t,

P̂NG−day
t = The forecast error for the spot price of natural gas,

P̂NG−fut
t = The forecast error for the one month ahead futures contract prices,

P̂NG−month
t = The forecast error of the monthly natural gas index prices before trans-

portation costs are included,

Customer demand

The supplier uses customer demands from the current month of the previous year,

fDt,i where m(t) = m, to determine how much natural gas to purchase through for-

ward contracts for the current month,Mm. These forecasts are not accurate enough

to predict customer orders for the individual days of the month, but they do pro-

vide an estimate of how customer orders and cancellations are distributed across the

month. We model the forecasted, fDt,i, and observed, Dt,i customer demands with the

respective processes

fDt+1,i = D̄t+1,i + f̂Dt+1,i,

Dt+1,i = D̄t+1,i + D̂t+1,i,
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where the reference series, D̄t+1,i, is produced using a mean reverting stochastic pro-

cess fitted to a moving average of historical customer demand. The stochastic error

terms, D̂t+1,i and f̂Dt+1,i are generated using the univariate crossing state hidden semi-

Markov model (HSMM) from Durante et al. (2017) to capture the distribution of

customer orders exceeding and falling below the reference series, termed crossing

times. We derive our customer demand models using hypothetical data, built in col-

laboration with Air Liquide. Figure 4.2 shows a simulated sample path of the daily

demand of a single oxygen customer.

Figure 4.2: This is figure is a simulated sample path of the daily demand of a single
oxygen customer.
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Natural Gas Prices

We use a one-factor Schwartz model (see Schwartz (1997)) fit to historical data to

simulate natural gas spot prices, PNG−spot
t . This process models natural gas spot

prices as an exponential function of an Ornstein-Uhlenbeck process given by

dt logPNG−spot
t = κ(m− logPNG−spot

t )dt+ ηdWt. (4.2)

We then generate natural gas futures contract prices, PNG−fut
t , such that

PNG−fut
t+1 = PNG−spot

t+1 + P̂NG−fut
t+1 ,

where P̂NG−fut
t+1 is generated using a hidden semi-Markov model that captures the

distribution of times the spot price falls above and below the futures price. We

determine the monthly index price, PNG−month
t , as the average futures contract price

during bid week. We fit our natural gas spot and futures contract price models using

2014 - 2017 Henry Hub and 2014 - 2017 New York Mercantile Exchange (NYMEX)

data, respectively.

Electricity Prices

Electricity spot prices exhibit spiky behavior and are influenced significantly by natu-

ral gas prices. To capture the complex dependence structure of electricity and natural

gas prices we use the model proposed in Coulon et al. (2013) to model electricity spot

prices, Et, as exponential functions of natural gas prices, PNG−spot
t , using the rela-

tionship

Et+1 = α exp(PNG−spot
t+1 + β) + Êt+1,

where instead of using a regime switching model to capture the volatile behavior of

electricity spot prices we generate Êt+1 with the crossing state model described in
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Durante et al. (2017) with price distributions conditioned on different periods of the

year. This allows us to imitate both the spiky and seasonal behavior of electricity

spot prices. The data our models used to simulate spot prices are derived from 2014

- 2017 Electric Reliability Council of Texas (ERCOT) spot price data. Figure 4.3

shows a sample path of the simulated natural gas and electricity prices.

Figure 4.3: This is figure is a simulated sample path of electricity prices. Where
the blue line represents the daily natural gas price and red dotted line is the daily
weighted-average price price of electricity.

Transition function

The transition function, SM(·), describes how each state variable evolves over time,

which we designate using

St+1 = SM(St, xt,Wt+1),
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where Wt is the exogenous information. The exogenous information process Wt

evolves through time according to the following equations:

Wt+1 =



Et+1 = α exp(PNG−spot
t+1 + β) + Êt+1,

fDt+1,i = D̄t+1,i + f̂Dt+1,i ∀i ∈ (Ug)g∈G ,

Dt+1,i = D̄t+1,i + D̂t+1,i ∀i ∈ (Ug)g∈G ,

PNG−fut
t+1 = PNG−spot

t+1 + P̂NG−fut
t+1 ,

PNG−spot
t+1 = PNG−spot

t + P̂NG−spot
t+1 .

The amount of hydrogen in the hydrogen cavern, RH
t , evolves according to

RH
t+1 = RH

t +
∑
i∈UH

xstor-in
t,i −

∑
j∈JH

xstor-out
t,j .

And the amount of natural gas purchased through forward contracts from the unin-

terrupted and interrupted pipelines at the beginning of the month are set by

RNG−uni
t′ =


xNG−uni
t d(t′) ≥ 1 & m(t′) = m,

0 otherwise,

and

RNG−int
t =


xNG−int
t d(t′) ≥ 1 & m(t′) = m,

0 otherwise,

where d(t) = 1 and m(t) = m.
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Objective Function:

The objective of the industrial gas firm is to maximize expected cumulative profits.

Given a state, St, and decision, xt, at time t = (m, d) the daily profit of the industrial

gas supplier, Ct(St, xt), is defined as

Ct(St, xt) =



∑
j∈JH

∑
i∈USMR∗

PH
t,jxt,i,j +

∑
g∈{O,N}

∑
j∈Jg

∑
i∈UASU

xt,i,j
(
P g
t,j − γ

g
i Et

)
+

∑
j∈Jsteam

∑
i∈Ucogen

xt,i,j
(
P steam
t,j + βele

i Et

)
+ PNG-spot

t

(
.8xrest − x

NG−day
t

)
d(t) 6= 1,

|Mm|C int
t xNG−int

t + |Mm|Cuni
t xNG−uni

t d(t) = 1,

(4.3)

where USMR∗ = {USMR ∪ storage}. The objective is find the policy, π, that solves

max
π∈Π

E

[
T∑
t=0

Ct(St, X
π
t (St))

∣∣∣∣S0

]
(4.4)

where T =
M∑
m=1

|Mm|.

4.4 Operating policy

We use multiple linear programs to manage the daily and monthly operations of the

network of production plants, storage, and customers. Our daily policy determines

the daily flows of fuel to production plants, delivery of product to customers, and

manages the inflow and outflow of hydrogen to the salt cavern. We parameterize the

constraints of this linear program to determine a hydrogen reserve level for the salt

cavern. The monthly policy is a deterministic lookahead model of the forecasted daily

operations of the network for following month. This policy determines the amount of

natural gas to purchase via future contracts. We parameterize this linear program to

determine what portion of the forecasted demand for natural gas to satisfy through

future contracts.
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Our aggregate policy π is represented by the parameterized piecewise function

Xπ
t (St) =


Xπ−month
t (St|θ) d(t) = 1,

Xπ−day
t (St|θ) d(t) ≥ 1.

(4.5)

For the set of daily decisions indexed by t ∈ {t : d(t) ≥ 1}, the policy Xπ−day
t (St)

is a parameterized linear program. We provide a detailed description of the daily

policy in subsection 4.4. In addition to satisfying the daily demand of customers

and managing the hydrogen storage cavern the supplier must determine how much

natural gas to purchase at a indexed price to be delivered in uniform daily increments

over the succeeding month, Mm. The supplier can only make this decision at the

end of the bid week for each month, {t = (m, 1) : m = 1, ...,M}. Thus, when

t ∈ {t = (m, d) : d = 1} the policy Xπ
t (St) is a different parameterized lookahead

model, which we describe in subsection 4.4. We emphasize that this policy, π is not

an optimal policy, but we can obtain relatively robust behavior by tuning parameter,

θ, in the base model given by equation (4.3).

The daily optimization policy Xπ−day
t (St|θ)

For day t where d(t) ≥ 1, policy π is defined as the following parameterized linear

program:

Xπ−day
t (St|θ) = argmax

x

∑
j∈JH

∑
i∈USMR

PHt,jxt,i,j +
∑

g∈{O,N}

∑
j∈Jg

∑
i∈UASU

xt,i,j

(
P gt,j − γ

g
i Et

)
+

∑
j∈Jsteam

∑
i∈Ucogen

xt,i,j

(
P steam
t,j + βele

i Et

)
+ PNG-spot

t (.8xres
t − x

NG−day
t )

+
∑
J∈JH

PHt,jx
stor-out
t,j

(4.6)
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This linear program is solved subject to the following constraints

∑
i∈UASU

xt,i,j = Dt,j ∀ j ∈ (J g)g∈{N,O}, (4.7)

xt,j,j = Dt,j ∀ j ∈ J steam, (4.8)∑
i∈USMR

xt,i,j + xstor-outt,j = Dt,j ∀ j ∈ JH , (4.9)

∑
i∈USMR

 ∑
j∈JH

γHi xt,i,j + γHi x
stor-in
t,i

 +
∑

j∈Jsteam

∑
i∈Ucogen

γsteami xt,i,j = 1
int
t RNG−int +RNG−uni (4.10)

+ xNG−day
t − xrest∑

j∈JH

xt,i,j ≤ φSMR
i ∀ i ∈ USMR, (4.11)

∑
j∈JO

xt,i,j +
∑
j∈JN

xt,i,j ≤ φASU
i ∀ i ∈ UASU, (4.12)

∑
j∈JH

xt,i,j + xstor-int,i ≤ 1
SMR
t,i φSMR

i ∀ i ∈ USMR, (4.13)

∑
j∈JH

xt,i,j + xstor-int,i ≥ .71SMR
t,i φSMR

i ∀ i ∈ USMR, (4.14)

∑
j∈JH

xstor-outt,j ≤ RH,max −RHt (4.15)

∑
j∈JH

xstor-int,i ≤ RHt − θLs(t)R
H,max (4.16)

∑
j∈JH

xstor-int,i ≥ max(θLs(t)R
H,max −RHt , 0) (4.17)

x ≥ 0 . (4.18)

The constraints are as follows:

Equation (4.7) - Demand constraint for nitrogen and oxygen, i.e. guarantees

that every unit of demand for nitrogen and oxygen is satisfied.

Equation (4.8) - Demand constraint for steam, guarantees that each steam

consumer can only be supplied by a single cogeneration unit.

Equation (4.9) - Demand constraint for hydrogen, guarantees that the demand

of every hydrogen customer is satisfied.

Equation (4.10) - Natural gas constraint, i.e. forces the supplier to purchase

more natural gas from the spot market if the amount of natural gas needed
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for production exceeds the amount of natural gas purchased through forward

contracts. This constraint also requires the supplier to sell unused natural gas

from the interruptible and uninterruptible pipeline on the spot market.

Equations (4.11) and (4.12) - Production capacity constraints enforce the pro-

duction constraint of each production plant.

Equation (4.13) - SMR unit outages, i.e. restricts hydrogen production from

unit i ∈ UH in the event of an outage.

Equation (4.14) - SMR hydrogen production minimum, i.e. the supplier cannot

turn off an SMR or lower production below a ratio (e.g., 70% of maximum

capacity). All of the surplus hydrogen produce is place in storage.

Equation (4.16) - Hydrogen cavern withdrawal limits ensure the amount of

hydrogen in storage is always greater than some buffer, θLRH,max where θL ∈

[0, 1].

Equation (4.15) - Hydrogen cavern deposit constraints ensure the amount of

hydrogen in storage never exceeds storage capacity.

We incorporate additional constraints in the linear program to enforce the storage

policy for the hydrogen cavern. These additional constraints change depending on

the state of the system. Equation (4.16) describes the hydrogen cavern withdrawal

policy. These constraints ensure the amount of hydrogen in storage is always greater

than some buffer, θLRH,max. This constraint is only violated if there is an SMR outage

and customer demands cannot be satisfied by the remaining SMR units. When this

happens equation (4.16) becomes

∑
j∈JH

xstor-in
t,i ≤ RH

t −RH,max if
∑

i∈USMR

1
SMR
t,i φHi <

∑
j∈JH

Dj (4.19)
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This allows the supplier to use reserve hydrogen and maintain reliability in the event

a customer demand exceeds production capabilities.

Because the supplier must observe multiple constraints on the flow of products and

resources, we model the daily policy as a parametric linear program. The parametric

modifications are designed to account for problem uncertainty. This approach allows

us to work with arbitrarily complex stochastic processes without requiring us to make

limiting approximations. We emphasize that solving this linear program is not an

optimal policy, but we can obtain relatively robust behavior by tuning the parameter

θL in the base model given by equation (4.3).

The monthly optimization policy: Xπ−month
t (St|θ)

We now consider the monthly decision to purchase natural gas forward contracts. At

the end of bid week, t ∈ {t : d(t) = 1,m(t) = 1, ...,M}, the supplier must determine

how much natural gas to be delivered in uniform daily increments over the succeeding

month. We use a parametrically modified deterministic lookahead model of the month

to make this decision. To distinguish the elements of our lookahead model from the

base model we use a double index notation where all variables (states and decisions)

in the lookahead model are indicated with tildes (∼), and are indexed by t (the time

at which the lookahead model is instantiated) and t′ (the time period within the

lookahead horizon). Before we proceed with the monthly optimization policy, we

need to introduce some new notation.

Parameter: θNG

θNG = The fraction of forecasted demand for natural gas to be filled through one

month forward contracts. θNG ≥ 0,
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Monthly state variable: St = (cint
t , c

uni
t , PNG-spot

t , (f̃Dt,j)j∈Jg)

cint
t = The marginal cost of purchasing natural gas from the interruptible pipeline

at a indexed price to be delivered in uniform daily increments over the

succeeding month,

cuni
t = The marginal cost of purchasing natural gas from the uninterruptible

pipeline at a indexed price to be delivered in uniform daily increments

over the succeeding month,

f̃Dtt′,j = The forecasted demand of customer j ∈ J g at time t′ given information

available at time t. These forecasts are based on the demand of customers

from the previous year,

|Mm| = The number of days in the month m,

Monthly decision variables xt = ((x̃tt′,ij)j∈J g , x
NG−int
t , xNG−uni

t , x̃NGtt′ )

x̃tt′,ij = The predicted amount of industrial gas g produced by plant i to be sold

to customer j ∈ J g during day t′ of the lookahead model given infor-

mation available at time t. For this lookahead model we only consider

g ∈ {H, steam} since they are the only products that require natural gas,

xNG−int
t = The fixed daily amount of natural gas ordered from the interruptible

pipeline to be delivered in uniform daily increments over the succeeding

month,

xNG−uni
t = The fixed daily amount of natural gas ordered from the uninterruptible

pipeline to be delivered in uniform daily increments over the succeeding

month. Daily deliveries from the uninterruptible pipeline are limited by

the contract agreements such that

xNG−uni
t < Γuni.
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x̃NGtt′ = The predicted total amount of natural gas needed to satisfy the expected

customer demand for day t′ of month m(t).

A lookahead policy (in the form of a linear program) uses point forecasts of the

customer demands for the following month to determine how much natural gas to

order. The linear program solved at time t, where d(t) = 0 and m(t) = m, is as

follows:

Xπ
t (St) = argmin

x
|Mm|cint

t x
NG−int
t + |Mm|cuni

t xNG−uni
t (4.20)

This is solved subject to the following constraints (where d(t) = 0, and t′ ∈ {t : d(t) 6=

0,m(t) = m}).

x̃tt′,j = f̃Dtt′,j, j ∈ J steam & t′ ∈Mm (4.21)∑
i∈USMR

x̃tt′,ij = f̃Dtt′,j, j ∈ J H & t′ ∈Mm, (4.22)

∑
j∈Jg

x̃tt′,ij ≤ φgi ∀ i ∈ (Ug)g∈G & t′ ∈Mm, (4.23)

x̃NGtt′ =
∑
j∈JH

∑
i∈USMR

γHi x̃tt′,ij +
∑

j∈Jsteam

γsteam
i x̃tt′,jj, t

′ ∈Mm (4.24)

xNG−int
t + xNG−uni

t =
θNG

|Mm|
∑

t′∈Mm

x̃NGtt′ , (4.25)

xNG−uni
t ≤ Γuni, (4.26)

x ≥ 0. (4.27)

The constraints are as follows:

Equation (4.21) - The policy must satisfy all of the forecasted demand for steam

in the lookahead model.
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Equation (4.22) - The policy must satisfy all of the forecasted demand for hy-

drogen in the lookahead model.

Equation (4.23) - Production capacity constraint enforces the production con-

straint of each gas producing unit.

Equations (4.24) and (4.25) ensures the total amount of natural gas ordered is

equal to the average daily amount of natural gas needed over month Mm.

Equation (4.26) - Uninterruptible constraint sets an upper limit on the amount

of natural gas delivered by the uninterruptible pipeline.

The monthly policy is a linear program which we solve using Gurobi.

Stochastic Gradient Algorithm:

We next consider the problem of determining policy parameters for the daily and

monthly operating policies described in subsections 4.4 and 4.4, respectively. The

policy described by equation (4.5) belongs to the general class of parameterized poli-

cies, Xπ
t : St×Θ −→ Xt. The optimal parameterization, θ∗ ∈ Θ, of policy Xπ

t can be

found by solving the stochastic approximation problem

θ∗ = argmax
θ∈Θ

E
[
F (θ, ω)

∣∣ S0

]
, (4.28)

where

F (θ, ω) =
T∑
t=0

Ct(St, X
π
t (St|θ))

such that St+1 = SM(St, X
π
t (St|θ),Wt+1(ω)). E

[
F (θ, ω)

∣∣ S0

]
is an unknown, non-

convex, non-smooth function, that we cannot evaluate directly. Instead we use nu-

merical gradients generated using our base model, and the finite difference iterative

stochastic optimization algorithm, described in Algorithm 2, to solve Equation (4.28)
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(Kiefer and Wolfowitz, 1952). We recognize the Kiefer Wolfowitz algorithm requires

for each gradient computation, at least p + 1 simulations where θ ∈ Rp. If p is

large this can require substantial computation. However, in our case, p = 2 and

computationally manageable for our purposes.

Algorithm 2 Finite-Difference algorithm

Initialize θ0 ∈ Rp and N :
for n = 1, 2, 3, ..., N do

θn = θn−1 + αn−1∇θF (θn, ωn)

where

∇θF (θn, ωn) ≈


F (θn−1+cnξ1, ωn,1)−F (θn−1,ωn,0)

cn
...

F (θn−1+cnξp, ωn,p)−F (θn−1,ωn,0)

cn

 ,
ξi denotes a vector with a 1 in the ith place and 0’s elsewhere.

Kiefer and Wolfowitz (1952) requires the sequence (cn)∞n=1 and (αn)∞n=1 are infinite

sequences of positive numbers such that

cn → 0 as n→∞,

∞∑
n=0

αn =∞,

∞∑
n=0

αncn <∞

∞∑
n=0

α2
nc
−2
n <∞.

For our numerical work we use the Root Mean Square Propagation algorithm, RM-

SProp, to generate (αn)∞n=1 and define cn = n−1/3 (see Tieleman and Hinton (2012)).
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RMSProp eliminates the need to tune the learning rate for each dimension of θ by di-

viding the learning rate by a running average of the magnitude of the recent gradients.

Given the RMSProp algorithm

αn =
η

√
vn + ε

where

vn = γvn−1 + (1− γ)(∇θF (θn, ωn))2,

and γ ∈ [0, 1] is the forgetting factor. For our simulations we set N = 200, η = 0.1,

ε = 10−8, and γ = .9.

To ensure our policy parameters values are near-optimal, we perform a grid search

over the parameters for both the daily and monthly sub-policies. We first discretize

the parameter space, run a thousand simulations, and compute an empirical expected

cumulative profit for the industrial gas network described in tables 4.1 and 4.2. The

parameters of the customer contracts, described in table 4.1, are generated randomly.

However, we constrain the parameter P0 such that it is always greater than the

product of the conversion efficiency for the associated production plant and the price

of natural gas when the contract was created, NG0. This constraint guarantees that

the marginal revenue for that customer is non-negative when the current price of

natural gas is less than or equal to the spot price of natural gas when the contract

was formed, NG0.

ID Gas Type P0 NG0 αj βj
Penalty

(per MSCF)

0 H2 2.950 4.309 0.340 month 10.00

1 H2 3.200 4.427 0.280 spot 10.00

2 H2 3.450 4.147 0.220 spot 10.00

3 H2 3.700 4.020 0.360 spot 10.00
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4 H2 2.850 3.769 0.300 month 10.00

5 H2 3.100 3.526 0.240 spot 10.00

0 O2 1.140 3.686 0.280 month 10.00

1 O2 1.380 4.463 0.360 spot 10.00

2 O2 1.620 4.456 0.240 spot 10.00

3 O2 0.960 4.433 0.320 spot 10.00

4 O2 1.200 4.061 0.200 month 10.00

5 O2 1.440 3.883 0.280 spot 10.00

6 O2 1.680 3.807 0.360 spot 10.00

7 O2 1.020 4.360 0.240 spot 10.00

8 O2 1.260 4.318 0.320 month 10.00

9 O2 1.500 3.582 0.200 spot 10.00

10 O2 1.740 4.220 0.280 spot 10.00

11 O2 1.080 3.662 0.360 spot 10.00

0 N2 1.390 3.559 0.220 month 10.00

1 N2 1.780 4.198 0.240 spot 10.00

2 N2 1.270 3.591 0.260 spot 10.00

3 N2 1.660 3.555 0.280 spot 10.00

4 N2 1.150 3.501 0.300 month 10.00

5 N2 1.540 3.666 0.320 spot 10.00

6 N2 1.030 4.147 0.340 spot 10.00

7 N2 1.420 3.518 0.360 spot 10.00

8 N2 1.810 3.680 0.380 month 10.00

9 N2 1.300 4.302 0.400 spot 10.00

10 N2 1.690 3.905 0.220 spot 10.00

11 N2 1.180 3.719 0.240 spot 10.00

12 N2 1.570 3.799 0.260 month 10.00

99



13 N2 1.060 4.450 0.280 spot 10.00

14 N2 1.450 3.575 0.300 spot 10.00

15 N2 1.840 4.216 0.320 spot 10.00

16 N2 1.330 4.074 0.340 month 10.00

17 N2 1.720 3.655 0.360 spot 10.00

0 steam 100.400 2.836 0.360 month 10.00

Table 4.1: Customer contract details

Capacity Qty. Spec Power Prod. Min.

Steam Methane Reformer 35,000 MSCF 1 .45 MMBTU/MSCF 70%

Air Separation Unit 100,000 MSCF 1 0.018 MWh/MSCF -

Cogeneration Plant 100,000 MMBTU 1 0.011 MMBTU/ MMBTU -

Table 4.2: Production plant details

The point with the maximum expected cumulative profit from the grid search will

be a near optimal parameterization. We recognize that this method may not result in

the exact optimal solution since the optimization is run over a discretized grid. Figure

4.4 is the two dimensional heat maps of expected cumulative profit as functions of

daily and monthly policy parameters, respectively. The expected cumulative profit

ranges from black (minimum) to white(maximum).

To demonstrate the validity of Algorithm 2, we run the algorithm from different

initial parameterization. If the solutions produced by the algorithm lie in the white

area of the heat map in figure 4.4, regardless of the initial point then we say the

algorithm performs reliability. We represent each run of the algorithm using the

arrows in figure 4.4. The base and head of each arrow represents the initial point

and solution of the algorithm, respectively. Our experiments imply the algorithm

consistently finds a near-optimal solution. In table 4.3 we compare the solutions of

our algorithm with best solutions from the grid search.
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Figure 4.4: This is a heat map of the expected cumulative profit as a function of
policy parameters. The expected cumulative profit ranges from black (minimum)
to white(maximum). The black arrows represent different runs of Algorithm 2 for
different initial points. The base and head of each arrow represents the initial point
and solution of the algorithm, respectively.

The optimal poliy parameters (θ)

In this section we more closely examine the optimal policy parameter, θ = (θL, θNG),

given different simulation assumptions. We particularly focus on the relationship be-

tween the optimal hydrogen reserve level, θL, and the reliability of hydrogen producing

steam methane reformers (SMR). SMRs regularly experience maintenance issues that

render them unable to produce hydrogen. These outages occur randomly and typ-
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Optimal Point (Algorithm 2) Best six points (Grid Search)
Initial

θ = (θL, θNG)
Optimal

θ = (θL, θNG)
Cumulative Profit

($ ×106)
Optimal

θ = (θL, θNG)
Cumulative Profit

($ ×106)
(0.000, 0.000) (0.079, 0.038) 36.243 (0.090, 0.000) 36.290
(0.000, 0.700) (0.079, 0.083) 36.209 (0.090, 0.033) 36.285
(0.350, 0.000) (0.068, 0.038) 36.223 (0.090, 0.067) 36.281
(0.350, 0.700) (0.068, 0.078) 36.190 (0.090, 0.100) 36.276
(0.700, 0.000) (0.093, 0.053) 36.214 (0.090, 0.133) 36.271
(0.700, 0.700) (0.088, 0.097) 36.155 (0.090, 0.167) 36.266

Table 4.3: Search results of Algorithm 2 starting from various initial points (left) and
best results from rudimentary gird search (right). These results were generated using
the industrial gas network described in tables 4.1 and 4.2.

ically last for multiple days. During an outage, if there is not enough hydrogen in

storage the demands of hydrogen customers will go unsatisfied and the industrial gas

supplier will have to pay a penalty fee for each MSCF of hydrogen unsatisfied.

For the following set of experiments we find the set of optimal policy parameters

using the stochastic gradient algorithm described by Algorithm 2 for different SMR

outage durations, SMR outage frequencies, and customer penalties. We calculate

these values using the industrial gas network configuration described in tables 4.1

and 4.2. Table 4.4 displays the results of these three different sets of experiments.

The first section of table 4.4 shows the optimal policy parameters, θ, for varying

SMR outage durations which range from zero days to a month. The second set of

experiments, considers varying SMR outage frequencies from once to ten times a year.

The final set of experiments considers different degrees of penalties for unsatisfied

hydrogen customer demands.

As expected the optimal reserve parameter, θL, increases with both the dura-

tion and frequency of SMR outages. However, when SMR outages are completely

eliminated θL does not go to zero. This occurs because the demands of hydrogen

customers occasionally exceed production capacity and require hydrogen from stor-

age. One may also expect that as the penalty for not satisfying customer demands

increases so would, θL. However, table 4.4 (third part) shows this may not always
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SMR Outage
Duration

(days)

SMR Outage
Frequency

(per annum)

Penalty
($/MSCF)

Opt. θ = (θL, θNG)

0 1 10 (0.071, 0.608)
6 1 10 (0.148, 0.608)
12 1 10 (0.259, 0.608)
18 1 10 (0.378, 0.608)
24 1 10 (0.516, 0.140)
30 1 10 (0.647, 0.140)
4 1 10 (0.100, 0.608)
4 2 10 (0.131, 0.038)
4 4 10 (0.208, 0.001)
4 6 10 (0.267, 0.078)
4 8 10 (0.288, 0.000)
4 10 10 (0.295, 0.379)
4 1 0 (0.067, 0.108)
4 1 2 (0.100, 0.108)
4 1 4 (0.100, 0.108)
4 1 6 (0.100, 0.108)
4 1 8 (0.111, 0.057)
4 1 10 (0.111, 0.057)

Table 4.4: Optimal θ for different Steam Methane Reformers outage frequencies and
durations and penalties for unsatisfied customer demand.

be true. As expected, as the penalty increases so does the optimal θL, however once

the penalty exceeds $10 per unit of unsatisfied customer demand the optimal value

for the parameter θL remains constant. This can be attributed to the fact that the

probability of running out of storage when the SMR only experiences one three-day

outage a year is less than 5% when θL ≥ .12. Hence, increasing θL would only lower

expected cumulative profit. This can be seen in table 4.5 which shows the relationship

between θL and the probability of depleting the hydrogen storage.
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θL
Probability of

depleting storage

Percentage of

sales missed

0.000 100.00% 1.44%

0.043 30.00% 0.12%

0.086 6.67% 0.03%

0.129 3.33% 0.01%

Figure 4.5: This table shows the relationship between θL and the probability of
depleting the hydrogen storage.

4.5 Policy Studies

In this section we demonstrate the use of our model in the context of multiple policy

questions. These include:

• Is it possible to reduce the dependence of the cash flows of the supplier and the

performance of the market?

• What is the sensitivity of the parameters of the operating policy to natural

gas price volatility? (e.g. for scenarios where natural gas volatility is twice its

current volatility.)

All of our experiments assume the industrial gas supplier has access to a single steam-

methane reformer, an air separation unit, one cogeneration plant, and a salt cavern

to store hydrogen. Tables 4.1 and 4.2 contain the technical details of each production

unit and the contract parameters, introduced in equation (4.2), for our simulated

customers. Our problem horizon is one year, T = 366 days, where the first month of

the problem horizon is January.
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Experiment 1: Correlation of profit and fuel

The shareholders of an industrial gas supplier are interested in minimizing their ex-

posure to external market forces. Specifically, they want to minimize the absolute

correlation between the daily profit of the supplier and the overall performance of

the market. For our first set of experiments, we find the optimal monthly operat-

ing policy parameter, θNG, which maximizes the expected cumulative returns of the

industrial gas producer given a certain level of exposure to natural gas spot prices.

We use the absolute value of the correlation of the daily profit of the industrial gas

supplier and the daily natural gas spot price to measure the industrial gas supplier’s

exposure to natural gas prices. The correlation between natural gas spot prices and

the daily profit of the supplier is negative for this particular network configuration.

Our objective is to minimize the dependence of daily profit on fuel prices. Specifically,

we want to minimize the absolute value of the correlation.

To determine the optimal monthly operating policy parameter we discretize the

parameter space, θNG ∈ [0, 1], and perform a thousand simulations to approximate

the expected cumulative profit, standard deviation of cumulative profits, and the

correlation of daily profit and natural gas spot prices. Figure 4.6 illustrate the re-

lationship between the monthly operating policy parameter, θNG, and the empirical

expected cumulative profits of the industrial gas supplier.

Figure 4.6 shows that as the industrial supplier orders more natural gas through

forward contracts they increase the correlation of their daily profits to natural gas spot

prices. Since, the correlation of their daily profits to natural gas prices is negatively

correlated this decreases the exposure of the supplier to energy prices. There is a

cost for the reduction in exposure since the supplier pays a premium to purchase the

contracts. An interesting observation from figure 4.6 is the steep decline in expected

cumulative profit for θNG ≥ .8. This decline is the result of the transaction costs of

selling unused natural gas back on the spot market.
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Figure 4.6: These figures illustrate the relationship between natural gas forward con-
tracts and expected profits. The first figure shows the correlation between daily
profits and the spot price of natural gas prices as a function of the amount of forward
contracts purchased. The second figure shows the standard deviation of cumulative
profits as a function of the amount of forward contracts purchased.

If the objective of the supplier is to just maximize expected cumulative profit, the

optimal monthly policy would avoid purchasing natural gas forward contracts. This

is why the monthly sub-policy parameters, θNG, found using Algorithm 2, are very

small. However, if the objective is to maximize expected cumulative profits and limit

exposure to natural gas prices, the supplier must determine how much profit they are

willing to forfeit to reduce their exposure to fuel prices. Figure 4.7 shows the tradeoff

between exposure to natural gas prices and expected cumulative profits.

The results displayed in figure 4.7 show the industrial gas supplier can reduce the

absolute correlation of their daily profits to natural gas prices by nearly 22% and

only sacrifice about 1% of their expected cumulative profit. If the objective of the

industrial gas supplier is to simply maximize expected cumulative profits and solve

equation (4.3), regardless of their exposure to natural gas prices, then Algorithm 2

is an effective and computationally tractable method. However, if the supplier is

interested in maximizing expected profit given some threshold or maximizing another

risk measure they must rely on gradient-free methods (see Powell and Ryzhov (2012)).
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Figure 4.7: This figure illustrates the tradeoff between exposure to natural gas spot
prices and expected cumulative costs. The x-axis represents the correlation between
daily profits and natural gas spot prices while the y-axis represents the expected
cumulative costs.

Experiment 2: Natural Gas Volatility

For our second experiment, we investigate the effect of natural gas price volatility, η,

on the policy parameters, θ = (θL, θNG). The parameter η is the standard deviation of

the daily log-returns of natural gas spot prices. Figure 4.8 illustrates the relationship

between the parameter η and the standard deviation of simulated natural gas spot

prices.

In the following experiments, we use the same network configuration as the pre-

vious section, but vary the volatility of natural gas spot price model, η. Figures 4.9

and 4.10 compare the operating policy parameter combinations for different levels of

natural gas model volatility, η. The blue dots represent the tested parameter com-

107



Figure 4.8: The relationship between the parameter η and the standard deviation of
natural gas spot prices.

binations. The red dots are the optimal set of parameters, commonly referred to

as the efficiency frontier, that offer the highest expected profit for a defined level of

risk. The red line is the lower bound of the efficiency frontier given the tested policy

parameters. If a parameter combination lies below the efficient frontier it is consid-

ered sub-optimal, because there exists another combination that produces a greater

expected profit for a lesser or equal level of risk.
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(a) η = 0

(b) η = .5

Figure 4.9: These figures display the tradeoff between exposure to natural gas spot
prices and expected cumulative costs where risk is measured as the absolute corre-
lation of daily profit and spot price of natural gas. The individual figures represent
this tradeoff when η = 0 and η = .5.
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(a) η = 1

(b) η = 1.5

Figure 4.10: These figures display the tradeoff between exposure to natural gas spot
prices and expected cumulative costs where risk is measured as the absolute corre-
lation of daily profit and spot price of natural gas. The individual figures represent
this tradeoff when η = 1 and η = 1.5.

In figures 4.9 and 4.10, we can see the substantial benefit of using forward con-

tracts. For all of the cases where η > 0, there is an interval of favorable θNG values
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between .8 ≤ θNG ≤ .9. Within this range there is a substantial reduction in the

absolute correlation between natural gas spot prices and daily profit, but very little

decrease in expected cumulative profit. As expected, when η = 0 there is no benefit

for purchasing forward contracts. In this case the premium paid for purchasing natu-

ral gas through forward contracts just lowers the expected cumulative profit. Hence,

for this case the optimal θNG = 0.

An interesting observation from figures 4.9 and 4.10 is how the shape of the ef-

ficiency frontier changes with the volatility of natural gas prices. As η increases the

expected cumulative profit of policies where θNG < .78 decrease. This demonstrates

that for highly volatile periods purchasing natural gas through forward contracts both

increases the expected cumulative profit and decreases the exposure of the supplier

to natural gas spot prices. This is expected, since forward contracts provide a hedge

against sharp increases in natural gas prices. Although the general shape of the effi-

ciency frontier changes as the volatility of natural gas prices increases, the interval of

favorable θNG values is invariant. This suggests that near optimal policy parameters,

θ, for the operating policy defined in equation (4.5), should be near optimal for all

cases where η > 0.

Figures 4.11 and 4.12 also compare the operating policy parameter combinations

for different levels of natural gas model volatility, η. However, unlike figures 4.9 and

4.10, this figure uses the variance of the cumulative profits of the supplier as a risk

measure.
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(a) η = 0

(b) η = .5

Figure 4.11: These figures display the trade off between exposure to natural gas spot
prices and expected cumulative costs where risk is measured as the standard deviation
of cumulative profit. The individual figures represent this tradeoff when η = 0 and
η = .5.
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(a) η = 1

(b) η = 1.5

Figure 4.12: These figures display the trade off between exposure to natural gas spot
prices and expected cumulative costs where risk is measured as the standard deviation
of cumulative profit. The individual figures represent this tradeoff when η = 1 and
η = 1.5.

In figures 4.11 and 4.12, we observe very similar behavior to figures 4.9 and 4.10.

When η > 0, .8 < θNG < .9 is the interval of favorable θNG values. An interesting
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observation is that this interval is very close to the favorable interval when the cor-

relation of natural gas prices and daily profit is the risk measure. This is expected

since forward contracts reduce the variance of the daily profit of the supplier. Con-

sequently, this reduces both the variance of cumulative profits and the covariance of

the daily profit of the supplier to natural gas spot prices.

4.6 Conclusion

In this chapter, we introduce a new dynamic model that is capable of analyzing and

identifying optimal natural gas procurement strategies, hydrogen storage, and cus-

tomer contract negotiations. This model can be used for a wide array of experiments

and analysis. We model the operations of an industrial gas producer with access to

a hydrogen storage cavern, a natural gas hub, an electricity grid, and a diverse set of

customers.

Our mathematical model carefully captures the distinction between a stochastic

base model and an operating policy using a parametric cost function approxima-

tion. This model pays particular attention to the planning of lagged decisions in the

management of monthly and daily natural gas deliveries and contracts.

We also design several experiments to better understand how to effectively manage

a portfolio of short term natural gas contracts and hydrogen storage cavern. First, we

illustrate the relationship between the optimal level of hydrogen reserve and the relia-

bility of production plants. Second, we evaluate multiple strategies for minimizing the

exposure of the industrial gas supplier to volatile energy prices. In addition to this,

we investigate the relationship between optimal natural gas procurement strategies

and market volatility. The results of our experiments show that the optimal hydro-

gen reserve level increases with both the duration and frequency of steam-methane

reformer outages. However, the optimal reserve level is invariant once the penalty for
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not satisfying customer demands exceeds $10 per unit. Our analysis of natural gas

procurement strategies shows we can reduce the absolute correlation of our daily prof-

its to natural gas prices by nearly 22% and only sacrifice about 1% of our expected

cumulative profit by satisfying 78% of our forecasted natural gas demand through

forward contracts. We also show the optimal natural gas procurement strategy is

invariant when the volatility of natural gas spot prices is positive.

Future extensions of this work can include the addition of other risk-measure and

gradient-free optimization methods (see Powell and Ryzhov (2012)).
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Chapter 5

Conclusion & Future Research

This thesis introduces and formalizes a new class of decision making polices known

as parametric cost function approximations (CFA) which use deterministic optimiza-

tion problems that have been parametrically modified to account for uncertainty. In

Chapter 2, we formally introduce the concept of parametric cost function approxima-

tions and the CFA Gradient Algorithm. We show how these parametrically modified

linear programs and the CFA Gradient Algorithm allows us to exploit the structural

properties of stochastic sequential problems while capturing the complex dynamics of

the full base model. In this chapter we demonstrate this class of policies in the con-

text of a complex, time-dependent energy storage problem with forecasts. In Chapter

3, we demonstrate the parametric cost function approximation in the context of the

difficult problem of making lagged commitments while managing a portfolio of energy

resources. This setting requires the decision maker to consider the tradeoff between

forecast reliability and cost. We provide a proper base model of a stochastic, lagged

resource allocation problem in the context of energy portfolio management. We also

demonstrate empirically that our method produces high quality solutions relative

to unmodified deterministic lookahead policies on a library of these lagged energy

portfolio problems. In Chapter 4, we introduce a new dynamic model, which uses a
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parametric cos function approximation, that is capable of analyzing and identifying

optimal natural gas procurement strategies, hydrogen storage, and customer contract

negotiations. We design a several experiments to better understand how to effectively

manage a portfolio of short term natural gas contracts and hydrogen storage cavern.

We use this model to illustrate the relationship between the optimal level of hydro-

gen reserve and the reliability of production plants, evaluate multiple strategies for

minimizing the exposure of the industrial gas supplier to volatile energy prices, and

investigate the relationship between optimal natural gas procurement strategies and

market volatility.

Though this work has introduced the concept of the Parametric Cost Function

Approximation and demonstrated its potential in a multitude of settings, there exist

significantly more research to be done. This new class of policies offers a new breadth

of research possibilities such as identifying other appropriate problem classes and

policy structures. We also recognize that gradient-based search mechanism are not

always possible. Therefore developing derivative-free stochastic search methods for

tuning CFAs is another potential area of future work, as well as designing methods

to do adaptive search in an online setting.
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