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1 Disclaimer

It is not guaranteed that I have every single bit of necessary information for
the course. This happened to be some of what I needed to know this specific
semester in my course. For example, Stokes’ Theorem is not even mentioned.

2 Vectors Between Two Points

Given : P (x1, y1) & Q(x2, y2)

−−→
PQ =

(
x2 − x1

y2 − y1

)

3 Vectors in the Plane

let v =

(
v1

v2

)
& u =

(
u1

u2

)

0 =

(
0
0

)

3.1 Simple Operations

cv =

(
cv1

cv2

)
|v| =

√
v2

1 + v2
2

v + u =

(
v1 + u1

v2 + u2

)
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3.2 Unit Vectors

i =

(
1
0

)
& j =

(
0
1

)
v = v1i + v2j

3.3 Vectors of a Specified Length∣∣∣∣ cv|v|
∣∣∣∣ = |c|

± cv
|v|
‖ v

4 Vectors in Three Dimensions

4.1 Notes

Everything in the above section can be expanded to three dimensions. Simply
add another component.

k =

 0
0
1


4.2 Random Equations

xy-plane {(x, y, z) : z = 0}

xz-plane {(x, y, z) : y = 0}

yz-plane {(x, y, z) : x = 0}

Sphere: (x− a)2 + (y − b)2 + (z − c)2 = r2

5 Dot Product

5.1 Definitions

u · v = u1v1 + u2v2 + u3v3 = |u||v| cos θ

u ⊥ v⇔ u · v = 0

u ‖ v⇔ u · v = ±|u||v|
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5.2 Projections

The orthogonal projection of u onto v is denoted projvu and the scalar compo-
nent of u in the direction of v is denoted scalvu.

projvu = |u| cos θ

(
v

|v|

)
=
(u · v

v · v

)
v

scalvu = |u| cos θ =
u · v
|v|

6 Cross Product

|u× v| = |u||v| sin θ (1)

u ‖ v⇔ u× v = 0

u× v =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


Note: u × v is orthogonal to both u and v and the direction is defined by the
right-hand rule.

7 Lines and Curves in Space

7.1 Vector-Valued Functions

r(t) = 〈x(t), y(t), z(t)〉

7.2 Lines

〈x, y, z〉 = 〈x0, y0, z0〉+ t〈a, b, c〉, for −∞ < t <∞

7.3 Line Segments

Given : P1(x1, y1, z1) & P2(x2, y2, z2)

−−−→
P1P2 = 〈x1, y1, z1〉+ t〈x2 − x1, y2 − y1, z2 − z1〉, for 0 ≤ t ≤ 1

7.4 Curves in Space

r(t) = 〈f(t), g(t), h(t)〉

Equation 1 is also equal to the area of the parallelogram created by the two vectors.
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7.5 Limits

lim
t→a

r(t) =
〈

lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)
〉

8 Calculus of Vector-Valued Functions

8.1 Derivative and Tangent Vector

r′(t) = f ′(t)i + g′(t)j + h′(t)k

Note: r′(t) is the tangent vector to r(t) at the point (f(t), g(t), h(t)).

8.2 Indefinite Integral∫
r(t) dt = R(t) + C

Note: C is an arbitrary constant vector and R = F i +Gj +Hk.

8.3 Definite Integral∫ b

a

r(t) dt =

[∫ b

a

f(t) dt

]
i +

[∫ b

a

g(t) dt

]
j +

[∫ b

a

h(t) dt

]
k

9 Motion in Space

9.1 Definitions

a(t) = v′(t) = r′′(t)

Speed = |v(t)|

9.2 Two-Dimensional Motion in a Gravitational Field

Given : v(0) = 〈u0, v0〉 & r(0) = 〈x0, y0〉

v(t) = 〈x′(t), y′(t)〉 = 〈u0,−gt+ v0〉

r(t) = 〈x(t), y(t)〉 =

〈
u0t+ x0,−

1

2
gt2 + v0t+ y0

〉
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9.3 Two-Dimensional Motion

Given : v(0) = 〈|v0| cos θ, |v0| sin θ〉 & r(0) = 〈0, 0〉

Time =
2|v0| sin θ

g

Range =
|v0|2 sin 2θ

g

MaxHeight = y

(
T

2

)
=

(|v0| sin θ)2

2g

10 Planes and Surfaces

10.1 Plane Equations

The plane passing through the point P0(x0, y0, z0) with a normal vector n =
〈a, b, c, 〉 is described by the equations:

a(x− x0) + b(y − y0) + c(z − z0) = 0

ax+ by + cz = d, where d = ax0 + by0 + cz0

In order to find the equation of a plane when given three points, simply create
any two vectors out of the points and take the cross product to find the vector
normal to the plane. Then use one of the above formulae.

10.2 Parallel and Orthogonal Planes

Two planes are parallel if their normal vectors are parallel. Two planes are
orthogonal if their normal vectors are orthogonal.

10.3 Surfaces

10.3.1 Ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

10.3.2 Elliptic Paraboloid

z =
x2

a2
+
y2

b2

It would be worth it to learn how to derive sections 9.2 and 9.3.
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10.3.3 Hyperboloid of One Sheet

x2

a2
+
y2

b2
− z2

c2
= 1

10.3.4 Hyperboloid of Two Sheets

−x
2

a2
− y2

b2
+
z2

c2
= 1

10.3.5 Elliptic Cone

x2

a2
+
y2

b2
=
z2

c2

10.3.6 Hyperbolic Paraboloid

z =
x2

a2
− y2

b2

11 Graphs and Level Curves

11.1 Functions of Two Variables

R2 → R

z = f(x, y)

F (x, y, z) = 0

11.2 Functions of Three Variables

R3 → R

w = f(x, y, z)

F (w, x, y, z) = 0

11.3 Level Curves

Imagine stepping onto a surface and walking along a path with constant eleva-
tion. The path you walk on is known as the contour curve, while the projection
of the path onto the xy-plane is known as a level curve.
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12 Limits and Continuity

12.1 Limits

The function f has the limit L as P (x, y) approaches P0(a, b).

lim
(x,y)→(a,b)

f(x, y) = lim
P→P0

f(x, y) = L

If f(x, y) approaches two different values as (x, y) approaches (a, b) along two
different paths in the domain of f , then the limit does not exist.

12.2 Continuity

The function f if continuous at the point (a, b) provided:

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

13 Partial Derivatives

13.1 Definitions

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h

So basically just take the derivative of one (the subscript) given that the other
one is a constant.

13.2 Notation for Higher-Order Partial Derivatives

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
= (fx)x = fxx

∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2
= (fy)y = fyy

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
= (fy)x = fyx

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
= (fx)y = fxy

Note: fxy = fyx for nice functions.

13.3 Differentiability

Suppose the function f has partial derivatives fx and fy defined on an open
region containing (a, b), with fx and fy continuous at (a, b). Then f is differen-
tiable at (a, b). This also implies that it is continuous at (a, b).
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14 Chain Rule

14.1 Examples

You can use a tree diagram to determine the equation for the chain rule. You
can also just think about it. Refer to the following examples.

z is a function of x and y, while x and y are functions of t

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

w is a function of x, y, and z, while x, y, and z are functions of t

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

z is a function of x and y, while x and y are functions of s and t

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

w is a function of z, z is a function of x and y, x and y are functions of t

dw

dt
=
dw

dz

(
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

)

14.2 Implicit Differentiation

Let F be differentiable on its domain and suppose that F (x, y) = 0 defines y as
a differentiable function of x. Provided Fy 6= 0,

dy

dx
= −Fx

Fy

15 Directional Derivatives and Gradient

15.1 Definitions

Let f be differentiable at (a, b) and let u = 〈u1, u2〉 be a unit vector in the
xy-plane. The directional derivative of f at (a, b) in the direction of u is

Duf(a, b) = 〈fx(a, b), fy(a, b)〉 · 〈u1, u2〉 = ∇f(a, b) · u

Gradient
∇f(x, y) = 〈fx(x, y), fy(x, y)〉 = fx(x, y)i + fy(x, y)j
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15.2 Directions of Change

• f has its maximum rate of increase at (a, b) in the direction of the gradient
∇f(a, b). The rate of increase in this direction is |∇f(a, b)|.

• f has its maximum rate of decrease at (a, b) in the direction of the gradient
−∇f(a, b). The rate of decrease in this direction is −|∇f(a, b)|.

• The directional derivative is zero in any direction orthogonal to ∇f(a, b).

15.3 Expanding to Three Dimensions

It’s really intuitive how it expands into three dimensions. Just add another
component or fz where you think it should go.

16 Tangent Plane and Linear Approximation

16.1 Tangent Plane for F(x,y, z) = 0

The tangent plane passes through the point P0(a, b, c).

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

16.2 Tangent Plane for z = f(x,y)

The tangent plane passes through the point (a, b, f(a, b)).

z = fx(a, b)(x− a) + fy(a, b)(y − b) + f(a, b)

16.3 Linear Approximation

Firstly, calculate the equation of the tangent plane of a point near the point you
wish to approximate. Then simply plug in the point and you’re done.

16.4 The differential dz

The change in z = f(x, y) as the independent variables change from (a, b) to
(a+ dx, b+ dy) is denoted ∆z and is approximated by the differential dz:

∆z ≈ dz = fx(a, b)dx+ fy(a, b)dy

17 Max-Min Problems

17.1 Derivatives and Local Maximum/Minimum Values

If f has a local maximum or minimum value at (a, b) and the partial derivatives
fx and fy exist at (a, b), then fx(a, b) = fy(a, b) = 0.
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17.2 Critical Points

A critical point exists if either

• fx(a, b) = fy(a, b) = 0

• one (or both) of fx or fy does not exist at (a, b)

17.3 Second Derivative Test

Let D(x, y) = fxxfyy − f2
xy

• If D(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).

• If D(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).

• If D(a, b) < 0, then f has a saddle point at (a, b).

• If D(a, b) = 0, then the test is inconclusive.

17.4 Absolute Maximum/Minimum Values

Let f be continuous on a closed bounded set R in R2. To find absolute maximum
and minimum values of f on R:

1. Determine the values of f at all critical points in R.

2. Find the maximum and minimum values of f on the boundary of R.

3. The greatest function value found in Steps 1 and 2 is the absolute maxi-
mum value of f on R, and the least function value found in Steps 1 and 2
is the absolute minimum values of f on R.

18 Double Integrals

18.1 Double Integrals on Rectangular Regions

Let f be continuous on the rectangular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤
d}. The double integral of f over R may be evaluated by either of two iterated
integrals: ∫∫

R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx
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18.2 Double Integrals over Nonrectangular Regions

Let R be a region bounded below and above by the graphs of the continuous
functions y = g(x) and y = h(x), respectively, and by the lines x = a and x = b.
If f is continuous on R, then∫∫

R

f(x, y) dA =

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx

Let R be a region bounded on the left and right by the graphs of the continuous
functions x = g(y) and x = h(y), respectively, and by the lines y = c and y = d.
If f is continuous on R, then∫∫

R

f(x, y) dA =

∫ d

c

∫ h(y)

g(y)

f(x, y) dx dy

18.3 Areas of Regions by Double Integrals

area of R =

∫∫
R

dA

19 Polar Double Integrals

19.1 Double Integrals over Polar Rectangular Regions

Let f be continuous on the region in the xy-plane R = {(r, θ) : 0 ≤ a ≤ r ≤
b, α ≤ θ ≤ β}, where β − α ≤ 2π. Then∫∫

R

f(r, θ) dA =

∫ β

α

∫ b

a

f(r, θ) r dr dθ

19.2 Double Integrals over More General Polar Regions

Let f be continuous on the region in the xy-plane

R = {(r, θ) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β}

where β − α ≤ 2π. Then.∫∫
R

f(r, θ) dA =

∫ β

α

∫ h(θ)

g(θ)

f(r, θ) r dr dθ

If f is nonnegative on R, the double integral gives the volume of the solid
bounded by the surface z = f(r, θ) and R.
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19.3 Area of Polar Regions

A =

∫∫
R

dA =

∫ β

α

∫ h(θ)

g(θ)

r dr dθ

20 Triple Integrals

Let D = {(x, y, z) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x), G(x, y) ≤ z ≤ H(x, y)}, where
g, h, G, H are continuous functions. The triple integral of a continuous function
f on D is evaluated as the iterated integral∫∫∫

D

f(x, y, z) dV =

∫ b

a

∫ h(x)

g(x)

∫ H(x,y)

G(x,y)

f(x, y, z) dz dy dx

21 Cylindrical and Spherical Coordinates

21.1 Definitions

21.1.1 Cylindrical Coordinates

(r, θ, z) An extension of polar coordinates into R3. Simply add a z component.

21.1.2 Spherical Coordinates

(ρ, ϕ, θ)

• ρ is the distance from the origin to a point P .

• ϕ is the angle between the positive z-axis and the line OP .

• θ is the same angle as in cylindrical coordinates; it measure rotation about
the z-axis relative to the positive x-axis.

21.2 Rectangular to Cylindrical

r2 = x2 + y2

tan θ =
y

x
z = z

21.3 Cylindrical to Rectangular

x = r cos θ

y = r sin θ

z = z

12



21.4 Integration in Cylindrical Coordinates∫∫∫
D

f(r, θ, z) dV =

∫ β

α

∫ h(θ)

g(θ)

∫ H(r cos θ,r sin θ)

G(r cos θ,r sin θ)

f(r, θ, z) dz r dr dθ

21.5 Rectangular to Spherical

ρ2 = x2 + y2 + z2

You have to solve for ϕ and θ with trigonometry.

21.6 Spherical to Rectangular

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

21.7 Integration in Spherical Coordinates∫∫∫
D

f(ρ, ϕ, θ) dV =

∫ β

α

∫ b

a

∫ h(ϕ,θ)

g(ϕ,θ)

f(ρ, ϕ, θ)ρ2 sinϕdρ dϕdθ

22 Change of Variables

22.1 Jacobian Determinant of a Transformation of Two
Variables

Given a transformation T : x = g(u, v), y = h(u, v), where g and h are differen-
tiable on a region of the uv-plane, the Jacobian determinant of T is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
22.2 Change of Variables for Double Integrals∫∫

R

f(x, y) dA =

∫∫
S

f(g(u, v), h(u, v))|J(u, v)| dA

22.3 Change of Variables for Triple Integrals

I am SO not typing out the expansion of the above into triple integrals. It’s
intuitive. Just add stuff where you think it should go.
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22.4 YOU have to Choose the Transformation

Just cry.

23 Vector Fields

23.1 Vector Fields in Two Dimensions

F(x, y) = 〈f(x, y), g(x, y)〉

23.2 Radial Vector Fields in R2

Let r = (x, y). A vector field of the form F = f(x, y)r, where f is a scalar-valued
function, is a radial vector field.

F(x, y) =
r

|r|p
=
〈x, y〉
|r|p

p is a real number. At every point (sans origin), the vectors of this field are

directed outward format he origin with a magnitude of |F| =
1

|r|p−1
. You can

also apply all of this to R3 by just adding a z component.

23.3 Gradient Fields and Potential Functions

Let z = ϕ(x, y) and w = ϕ(x, y, z) be differentiable functions on regions of R2

and R3, respectively. The vector field F = ∇ϕ is a gradient field, and the
function ϕ is a potential function for F.

24 Line Integrals

24.1 Evaluating Scalar Line Integrals in R2

Let f be continuous on a region containing a smooth curve C : r(t) = 〈x(t), y(t)〉,
for a ≤ t ≤ b. Then∫

C

f ds =

∫ b

a

f(x(t), y(t))|r′(t)| dt =

∫ b

a

f(x(t), y(t))
√
x′(t)2 + y′(t)2 dt

24.2 Evaluating Scalar Line Integrals in R3

Simply add a z component to the above where it obviously belongs.
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24.3 Line Integrals of Vector Fields

24.3.1 Definition

Let F be a vector field that is continuous on a region containing a smooth
oriented curve C parametrized by arc length. Let T be the unit tangent vector
at each point of C consistent with the orientation. The line integral of F over
C is

∫
C

F ·T ds.

24.3.2 Different Forms

F = 〈f, g, h〉 and C has a parametrization r(t) = 〈x(t), y(t), z(t)〉, for a ≤ t ≤ b∫ b

a

F ·r′(t) dt =

∫ b

a

(fx′(t)+gy′(t)+hz′(t)) dt =

∫
C

f dx+g dy+h dz =

∫
C

F ·dr

For line integrals in the plane, we let F = 〈f, g〉 and assume C is parametrized
in the form r(t) = 〈x(t), y(t)〉, for a ≤ t ≤ b. Then∫

C

F ·T ds =

∫ b

a

(fx′(t) + gy′(t)) dt =

∫
C

f dx+ g dy =

∫
C

F · dr

24.4 Work

F is a force field

W =

∫
C

F ·T ds =

∫ b

a

F · r′(t) dt

24.5 Circulation

F is a vector field

Circulation =

∫
C

F ·T ds

24.6 Flux

Flux =

∫
C

F · n ds =

∫ b

a

(fy′(t)− gx′(t)) dt

n = T× k, and a positive answer means a positive outward flux.

25 Conservative Vector Fields

25.1 Test for Conservative Vector Field

Let F = 〈f, g, h〉 be a vector field defined on a connected and simply connected
region D of R3, where f , g, and h have continuous first partial derivatives on
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D. Then, F is a conservative vector field on D (there is a potential function ϕ
such that F = ∇ϕ) if and only if

• ∂f

∂y
=
∂g

∂x

• ∂f

∂z
=
∂h

∂x

• ∂g

∂z
=
∂h

∂y

For vector fields in R2, we have the single condition
∂f

∂y
=
∂g

∂x
.

25.2 Finding Potential Functions

Suppose F = 〈f, g, h〉 is a conservative vector field. To find ϕ such that F = ∇ϕ,
take the following steps:

1. Integrate ϕx = f with respect to x to obtain ϕ, which includes an arbitrary
function c(y, z.

2. Compute ϕy and equate it to g to obtain an expression for cy(y, z).

3. Integrate cy(y, z) with respect to y to obtain c(y, z), including an arbitrary
function d(z).

4. Compute ϕz and equate it to h to get d(z).

Beginning the procedure with ϕy = g or ϕz = h may be easier in some cases.
This method can also be used to check if a vector field is conservative by seeing
if there is a potential function.

25.3 Fundamental Theorem for Line Integrals∫
C

F ·T ds =

∫
C

F · dr = ϕ(B)− ϕ(A)

25.4 Line Integrals on Closed Curves

Let R in R2 (or D in R3) be an open region. Then F is a conservative vector
field on R if and only if

∮
C

F ·dr = 0 on all simple closed smooth oriented curves
C in R.

26 Green’s Theorem

26.1 Circulation Form∮
C

F · dr =

∮
C

f dx+ g dy =

∫∫
R

(
∂g

∂x
− ∂f

∂y

)
dA
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26.2 Area of a Plane Region by Line Integrals∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

(x dy − y dx)

26.3 Flux Form∮
C

F · n ds =

∮
C

f dy − g dx =

∫∫
R

(
∂f

∂x
+
∂g

∂y

)
dA

27 Divergence and Curl

27.1 Divergence of a Vector Field

div(F) = ∇ · F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z

27.2 Divergence of Radial Vector Fields

div(F) =
3− p
|r|p

F =
r

|r|p
=

〈x, y, z〉
(x2 + y2 + z2)p/2

27.3 Curl

curl(F) = ∇× F

Just derive the curl by doing the cross product.

27.4 Divergence of the Curl

∇ · (∇× F) = 0

28 Surface Integrals

28.1 Parameterization

28.1.1 z is Explicitly Defined

Use x = x, y = y, and since z is explicitly defined, you already have what z
equals.

28.1.2 Cylinder

Simply use cylindrical coordinates to parameterize the surface in terms of θ and
z.
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28.1.3 Sphere

Simply use spherical coordinates to parameterize the surface in terms of ϕ and
θ.

28.1.4 Cone

Use:

• x = v cosu

• y = v sinu

• z = v

0 ≤ u ≤ 2π and 0 ≤ v ≤ h

28.2 Surface Integrals of Parameterized Surfaces∫∫
Σ

f(x, y, z) dσ =

∫∫
R

f(x(u, v), y(u, v), z(u, v))

∣∣∣∣∂r

∂s
× ∂r

∂t

∣∣∣∣ dA
29 Divergence Theorem

Let F be a vector field whose components have continuous first partial deriva-
tives in a connected and simply connected region D enclosed by a smooth ori-
ented surface S. Then ∫∫

S

F · n dS =

∫∫∫
D

∇ · F dV

where n is the outward normal vector on S.
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