MULTIVARIABLE
CONTROL SYSTEMS

DESIGN*®

by lan K. Craig

* These viewgraphs are based on notes prepared by Prof. Michael
Athans of MIT for the course "Multivariable Control Systems 1 & 2"

° These viewgraphs should be read in conjunction with the textbook:
S Skogestad, | Postlehwaite, Multivariable Feedback Control,
Second Edition, Wiley, Chichester, 2005.
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Introduction

General Control Problem (l)

Real world Mathematical world

Modelling

Implementation
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Introduction

General Control Problem (ll)

Summary

Analyze the plant for control purposes

Obtain an adequate mathematical model
for the plant

Controller design and control system
analysis

Controller implementation
Controller evaluation

Analyze the plant (G,) for control purposes

obtain process knowledge
perform an initial cost benefit analysis
determine initial control objectives

determine measurements, manipulated and
control variables

determine the role of the operator, before
and after the implementation of the controller

Obtain an adequate mathematical model (G,)

for the plant

use first principles and empirical
relationships and/or plant input-output data

simplify the model to fit purpose
analyse the resulting model (input-output

analysis)
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Introduction

General Control Problem (lll)

Controller design (K,) and control system

analysis
- select controller configuration and type

- decide performance specifications

- design controller and analyse it to see if
specifications are satisfied

Controller implementation (K;)

- simulate controller (hardware-in-loop; pilot
plant)

- select hardware and software and implement

Controller evaluation

- test and validate for functional and economic
specifications

References:

- S. Skogestad, |. Postlehwaite, Multivariable
Feedback Control, Second Edition, Wiley,
Chichester, 2005. Page 1.

- Craig |.K., and Henning, R.G.D., Evaluation
of advanced industrial control projects: a
framework for determining economic
benefits, Control Engineering Practice, Vol.
8, No. 7, 2000, pp. 769-780.
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Introduction

Main thrust of the course

e Description of:
- Analysis tools (block 1)
- Synthesis tools (block 2)

e Analysis and synthesis as part of the
engineering design process

e Analysis: the process of determining
whether a given system has the desired
characteristics

Tools

- linear systems theory
- linear algebra

- functional analysis

e Synthesis: the process of finding a
particular system component to achieve
desirable characteristics

Tools
- dynamic optimal control theory
- optimal estimation theory
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Introduction

Classes of system equations

Classes of
[ systems ]
|
| |

Distributed Lumped
parameter parameter
Stochastic Deterministic
Continuous Discrete
time time
Nonlinear Linear
Time Constant
varying coefficient
Nonhomogeneous Homogeneous

This couse deals with:

Lumped parameter, deterministic,
continuous-time, linear, constant coefficient
systems
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Modeling of Dynamic Systems

What is a dynamic system?

e Physical property
- physical dynamic systems contain energy-
storage elements

- energy-storage elements are usually
interconnected

e Physical energy changes as a function of
time
- Potential energy < kinetic energy
- Dissipation of energy
- Change in energy from external inputs

e Dynamic evolution of energy is the key to
understanding the behaviour of dynamic
systems
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Modeling of Dynamic Systems

What is a MIMO system?

e MIMOQO: Multi-Input Multi-Output

e Plant model example

> 811(8) —;Q—Y;(S)
+

o]

uy(s)

g21(8)

="
U,(S) +  y,(s)

> 822(5) >O >

+

o Mathematical description

g,,(8) g,(5)
2,,(8) g,,(5)

»(s)
V,($)

ul(S)J

1, (S)

y(s) = G(s)u(s)

G(s): Transfer function matrix
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Modeling of Dynamic Systems

Physical MIMO systems

Aerospace

- aircraft

- missiles

- satellites

- space platforms

Biological

- immune system

- glucose—insulin feedback system
- disease transmission

Chemical
- reactors
- distillation columns

Electrical
- power systems
- motors

Mechanical
- robots
- automotive

Metallurgical

- grinding milling circuits
- furnances

- rolling machines

376_069 Multivariable feedback control V1

9 of 42



Modeling of Dynamic Systems

Simple dynamic systems

e Pendulum

vy / /7 / vy /S S S

L

g

6 = potential energy
® = kinetic energy

e Mass-spring system

A

?C, Jl 7(1_ _
% -1 ]
A
pd
CAX2 A /V]’ Catla M:.
/
v k' kl—/
—_— —
% %

X,, X, = potential energy

V., V, = Kinetic energy
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Modeling of Dynamic Systems

Physical state variables

e Associate one state with each energy
storage element

e Mechanical system state variables

Positions = potential energy
Velocities = kinetic energy

e Electrical circuit state variables

Inductor currents = kinetic energy
Capacitor voltages =~ = potential energy

e Thermodynamic systems

Pressures = "potential energy"
Temperatures = "kinetic energy"
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Modeling of Dynamic Systems

Properties of dynamic systems

e Physical systems are interconnections of
energy storage and dissipative elements

e State dynamics are described by coupled
first order differential equations

e Unforced dynamic systems (no external
inputs)

- Assume valid model

- If we know the numerical values of the
state variables now, then we can
calculate all future values of:

- all state variables
 other variables of interest

- State variables are continuous functions
of time
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Modeling of Dynamic Systems

Forced dynamic systems

e External inputs (controls, disturbances)

- can modify temporal evolution of energy
(state) variables

- add or subtract finite energy to/from
system

- bounded, piece-wise continuous

o |f we know
- state variables now
- inputs from now on

Then we can calculate:
- future values of all state variables
- future values of all output variables
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Modeling of Dynamic Systems

Forced state variable models (l)

e Finite dimensional time invariant models

e Notation
- State vector:  x'(t) = [x4(t), X5(t), ..., X, ()]

- Input vector:  u'(t) = [uy(t), us(t), ..., u (O]
- Output vector:  y'(t) = [y4(1), yo(1), ..., Yo

e Nonlinear model description

- State dynamics
dxq (t)/dt = f4(x(t),u(t))

dxo(t)/dt = fo(x(t),u(t))

:dxn(t)/dt = fq(x(t),u(t))
Collectively: dx(t)/dt = f(x(t),u(t))

- Output equations
y1(t)  =gq(x(t),u(t))
yo(t)  =go(x(t)u(t))

V) =gp(x(®).u()
Collectively: y(t) = g(x(t),u(t))
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Modeling of Dynamic Systems

Forced state variable models

(11)

e Linear model description

- State dynamics:i=1,2, ..., n

a; (t)—Zay ](t)+2bkuk(t)

= dx(t)/dt = Ax(t) + Bu(t)
- Qutput equation: =1, 2, ..., p
yq(t):chl.xl.(t)+2quuk(t)
=1 k=1

= y(t) = Cx(t) + Du(t)
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Modeling of Dynamic Systems

Pendulum example

s S/ / S

/‘w(t)

e State variables

0(t)
(1)

X4(t) = angular position

Xo(t) = angular velocity

e Control variable: torque u(t)

e State dynamics (without friction)

dx4 (t)/dt = xo(t)

dxo(t)/dt = (g/L)sin(x1 (1)) + (1/ML)u(t)
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Modeling of Dynamic Systems

Linearization of nonlinear
dynamics

e Most dynamic systems are nonlinear

- quantitative and qualitative properties not
transparent

e Motivation for linearizing

- lack of systematic design methodology
for direct design of nonlinear feedback
control systems

- linearized dynamic models are useful

o analysis: qualitative and quantitative
insight

o design: general and integrated CAD
methodologies

e Linearized models have obvious limitations

e Pendulum example
Linear approximation for small x4 (t)

sineze—%?+§_?—1< ~6

Thus  dxo(t)/dt = (g/L)x4(t) + (1/ML)u(t)
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Linear Dynamic Systems

Linear Dynamic Systems:
Issues to be discussed

e Open-loop stability : MIMO poles

Transient response : MIMO zeros

- nature provides poles
- control engineers regulate the zeros

Modes of dynamic systems

Solutions: time- and frequency-domain
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Linear Dynamic Systems

Structure

e Work with finite dimensional linear time
invariant (FDLTI) models

e LTI model describes some nonlinear
system near steady-state equilibrium

e Notation
State: x(t) e R
Control: u(t) e RM
Output: y(t) € RP
e Dynamics
dx(t)/dt = Ax(t) + Bu(t) :X(0)
y(t) = Cx(t) + Du(t)
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Linear Dynamic Systems

Transfer function matrix

e Time-domain state-space model

dx(t)/dt = Ax(t) + Bu(t) X(0) =0
y(t) = Cx(t) + Du(t)

e Vector Laplace transforms
X(s) = Lx(t)} with {dx(t)/dt} =sIx(s) -0
u(s) = Lu(t)}
y(s) = Ly(t)}

e |Laplace transform of state-space

sIx(s) = Ax(s) + Bu(s)
y(S) = CXx(s) + Du(s)

or Xx(s) = (sI - A)'Bu(s)

¢ |nput-output description

y(s) = [C(sI - A)'B + D]u(s)
y(s) = G(s)u(s)

G(s)isa pxmTFM
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Linear Dynamic Systems

Finite dimensional LTI models

e State-space block diagram

dx(t)/dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
> D
u(t) + () x(t) + vty
LUt
+

i

e Frequency-domain block diagram
y(s) = G(s)u(s)
G(s) =C(sI-A)Y'B+D

(sI-A)1

4
o)
v

\
(@]
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Linear Dynamic Systems

Unforced LTI systems

e Set inputs to zero: ignore outputs
dx(t)/dt = Ax(t) Xx(0) =&

e Time-domain solution

e |aplace transform of state-space model

sIx(s) - = AX(s)
or X(s) = (sI- A)E
thus  [{er} =(sI- A" ;(nxn)

LY(sI-A)1}  =eM
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Linear Dynamic Systems

Modal analysis (l)

e Eigenstructureof A;i=1,2,...,n
AVi = Xi Vi ; W'iA = Ki W'i
e Dyadic formula

n 1
A= zl,}“i"iwi
l:

Fact:
AkVi = Kki Vi ; W'iAk= in W'i

n
k_ -
A4 _21/11 ViW;
l:

Fact:
j=0J i=1J:

J=0

n

At =\ )

thus ¢ _Zl,el"iwi
=

A ~— 1 :
with €7 =Y —(At)
= A
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Linear Dynamic Systems

Modal analysis (ll)

Unforced dynamics solution

x(t)=eH1E =Y v wé]
=1

Definition of i" mode:

ekit Vi

- State consists of sum of modes associated
with right eigenvector directions

- [wi&] : Degree that initial state & excites ith
mode

Important relation
w'j Vj = aij ;(Kronecker delta)
W'j V; =1 ;i=]j
W'j Vi =0 ;i#]

Laplace transform

L{eﬂzf}:s__l/f

l

x()=3 L)

i=1

n
thus sl-A)1= L ow
u (sI-A) ;S_ﬂivlwl
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Linear Dynamic Systems

Eigenvector interpretation

e Unforced dynamics
dx(t)/dt = Ax(t) Xx(0) =&
e To excite single mode
pick initial state & colinear with eigenvector U
l.e.. &= kvj

e Solution

w0)=y gl

n 1
= Zkeﬂitvi[wiv ]
J
i=1
At

=ke’v.
J

e Solution contains single mode!
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Linear Dynamic Systems

Stability and multivariable poles

e Open-loop dynamics
dx(t)/dt = Ax(t) X(0) =§

x(t)=ediE= ielitvi[w'if]
=1

e If Re{Aj} >0 then it mode eit v; is
unstable

e System is stable iff
Re{Ai[A]l} <0 foralli=1,2,...,n

thus x(t) — 0 forall =0

o Definition: multivariable poles are the
eigenvalues of A
- definition makes sense in terms of natural
frequencies
- MIMO poles are roots of characteristic
polynomial: det(Al - A)
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Linear Dynamic Systems

Forced LTI systems

e Model
dx(t)/dt = Ax(t) + Bu(t)  ;x(0) =&
y(t) = Cx(t) + Du(t)

e Standing assumption:

Components of control vector u(t)
- bounded
- piece-wise continuous functions of time

e Complete solution

‘
x()=edlg +JeA(t_T)Bu(T)d T
0

e Proof: use vector calculus facts

(d/dt)et = AeAt
(drdt) [ f(T)dT=f(2)
0

[
and differentiate  x(¢)=e4[E+ je—ATBu(’L')d 7]
0

to get dx(t)/dt = Ax(t) + Bu(t)
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Linear Dynamic Systems

The complete solution

e Dynamics
dx(t)/dt = Ax(t) + Bu(t) Xx(0) =&
y(t) = Cx(t) + Du(t)

e Laplace transform
sIx(s) - = AX(s) + Bu(s)

thus X(s) = (sI- A€ + (sI - A) 1Bu(s)

e Compare with time-domain solution
t
L{[e" D Bu(z)dr} = (s1 - A)'Bu(s)
0

e Complete solution

Time-domain
t
y(t) = CeMtE + JCeA("T)Bu(T)dT+ Du(t)
0

Frequency-domain
y(s) = C(sI - A) 1€ +[C(sI - A)'B + D]u(s)
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Linear Dynamic Systems

Modal forms (I)

e State dynamics : x(0) =

dx(t)/dt = Ax(t

with  B=[b, b,

Solution x(t)=Y" [/ e4‘~)b,u, (z)dz
k=1

Recall 400 = ZeMH)

e Time-domain solution

x(z)=iﬁvl.(w;bk)jeﬂf(f‘f)uk(r)dr
0

i=1 k=1

e Frequency-domain solution

x(s)= iﬁvl (w 1 T u,(s)

i=1 k=1
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Linear Dynamic Systems

Modal forms (ll)

e Solution with x(0) == 0

)=y Wéwe +3 v, (v@bk)jeﬂf(f‘f)u (D)7
=1 0

i=1 k=l

e Alternate form
n {
x(0)=3 ™| WE+Y (Wi [ Fu, (D)dr
i=l1 k=l 0

e Modal directions preserved

e Natural time evolution (exit) is changed by
controls

e Insight

(W'E):  degree that initial state & excites itl
mode
(wW'b,): degree that kth control u, influences

ith mode
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Linear Dynamic Systems

Output response

e LTI model
dx(t)/dt = Ax(t) + ¥ b u®  x(0) = &.
k=1

y(t) = Cx(t) + Du(t)
e Individual outputs:q=1,2, ..., p
yq(t) = c'qx(t) + d'qu(t)

e Qutput response

yq(o:ﬁl(c’qvi)(w’if)eﬂf

i=1k=1
+d’ u(t)

I Jn ’ ’ t (71—
Y Y (DO b)) [ u (1)dr
0

e Insight

(c'qvi): degree to which ith mode will be

visible in q’[h output
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Linear Dynamic Systems

Frequency domain solutions

e Recall
(SI-A)‘Ei Loyw
Hs—A T
e State

x(s)= Zfﬁvi[w;f] + iﬁviw;Bu(s)

e Qutput
v | !
V(6= = O]

1

+ZZI‘S—_1/€Cvl.wl'.Bu(S) +Du(s)
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Controllability

Controllability

Background

e Formalized by R.E. Kalman in 1960

e Key concept in dynamic systems and
control theory

e Formalizes intuitive notions about being
able to control state variables and modes

o Will present "modern" and classical
controllability tests

o Used with observability to understand
MIMO input-output properties

- MIMO pole-zero cancellations
- minimum realizations
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Controllability

Controllability definition

e Deals only with state dynamics

e Applicable to both linear and nonlinear
systems

e Definition:
The system dx(t)/dt = f(x(t),u(t))  ;x(0) = &

is called controllable if for any initial state
£ e RN and any terminal state e R", we

can find a piece-wise continuous function
u(t), 0 <t < T, with T finite, such that
X(T) =6

Otherwise the system is called uncontrollable
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Controllability

Remarks

e No easy test for general nonlinear systems

e Easy test exist for finite-dimensional linear-
time-invariant (FDLTI) dynamic systems

e Two tests
"modern" - modal approach
"classical" - Via Caley-Hamilton theorem

e Warning: A dynamic model which is
mathematically controllable, might be
uncontrollable from a practical point of view
- Test does not say how states behave, e.g.
might not be possible to hold states at given
value 0

- The required inputs u(t) may be very large

- Some of the states may be of no practical
importance

- Definition does not provide a degree of
controllability

e What does the controllability result tell us?

- If our model includes states that we cannot
affect

- If we can save on computer time by deleting
uncontrollable (stable!) states
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Controllability

Modal solutions

e State dynamics with x(0) = §
dx(t)/dt = Ax(t) + Bu(t)

dx(t)/dt = Ax(t) + 3 by ug(t)
k=1

e Recall eigenstructure
Avi=2 vy SWiA =)\ Wi WJ Vj =
e State response
Lo At
X(0)=3 (e
+i§vz (wb )_[eﬂL =0y, u, (7)dt

i=l k=1
e Modal uncontrollability

If w'ib, =0 for some k, then mode i is
uncontrollable from control u(t)
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Controllability

Modal uncontrollability

e Mode i is uncontrollable (from all inputs) iff
forallk=1,2,....m

wib, =0 or wiB=0

e System is uncontrollable iff one or more of
its modes are uncontrollable

e Reasoning using state response
Pick initial state E =0

Pick terminal state 0 colinear to
uncontrollable mode i, i.e. 6 = kv;

n m RN A W
x(T)=22vj(wj k)Je 77 (T)dT
Jj=lk=1 0

X(T) # kv; - directions do not match
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Controllability

Visualization

e 2 modes and 2 controls:n=2; k=2

e Suppose mode v1e7‘1t is uncontrollable

X,
A
Va, 6
/v\/’//
- 7z x,
- > (s)z 0

e Response restricted along v» direction. 6
cannot be reached

e Time-domain solution

x(t)= v, (wb, =0) j;e%“‘”ul(r)dr
+v,(u1b, =0) [ 1y (v)d
+v,y (b [ (1) dr

+v,(wyby)[ € Puy(2)dr
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Controllability

Modal controllability

e The i" mode is controllable (from one or
more inputs) iff

W'iB #0
w': left eigenvector associated with ith mode,
W'iA = Xi W'i

e System is controllable iff all the modes of
the system are controllable

Test: wiB=0 foralli=1,2,..,n

e Notation

Refer to the controllability of a matrix pair:
[A, B]

A = n X n matrix
B = n x m matrix
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Controllability

Complex modes

o |f 7\4 = }\‘*j
then Vi = V*j and Wi = W*j

- ith mode is uncontrollable from kth input

= Wb, =0

let  w; = oy + B

thus (o + jBj)ok =0

= a'ib =0 and Bibk =0

but Wj = o - jBl = W*;
= (0 -jBj)'bk =0

= ijk=0

= j"h mode is also uncontrollable from kil
input

e Complex mode is thus uncontrollable
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Controllability

Stabilizability

o Useful concept for design

e If mode viekit is uncontrollable but Re{\A;} <0,
then mode i is stabilizable

¢ If all uncontrollable modes are stabilizable,
then [A, B] is called stabilizable

e Notes

- If [A, B] is controllable, then it is stabilizable

- If every unstable mode is controllable, then
[A, B] is stabilizable
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Controllability

Classical controllability test

e Form the n x (m x n) controllability matrix
M.

Mc=[B AB A2B .. A™1B]

e If out of the m x n columns M, there are n
that are linearly independent, i.e.

Rank (Mg) =n

Then [A, B] is controllable

o |f Rank (Mg) <n

Then [A, B] is uncontrollable

- it may be stabilizable

e No modal information

e No stabilizability information
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