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MULTIVARIABLE 
CONTROL SYSTEMS 

DESIGN*°  
 
 
 
 
 

by  Ian K. Craig 
 
 
 
 

* These viewgraphs are based on notes prepared by Prof. Michael 
Athans of MIT for the course "Multivariable Control Systems 1 & 2" 
° These viewgraphs should be read in conjunction with the textbook: 
S Skogestad, I Postlehwaite, Multivariable Feedback Control, 
Second Edition, Wiley, Chichester, 2005. 
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General Control Problem (II) 
 
Summary 
• Analyze the plant for control purposes 
• Obtain an adequate mathematical model 

for the plant 
• Controller design and control system 

analysis 
• Controller implementation 
• Controller evaluation 
 
 
 

Analyze the plant (Gr) for control purposes 
- obtain process knowledge  
- perform an initial cost benefit analysis 
- determine initial control objectives 
- determine measurements, manipulated and 

control variables 
- determine the role of the operator, before 

and after the implementation of the controller 
 
 
Obtain an adequate mathematical model (Gn) 
for the plant 

- use first principles and empirical 
relationships and/or plant input-output data 

- simplify the model to fit purpose 
- analyse the resulting model (input-output 

analysis) 
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General Control Problem (III) 
 
Controller design (Kn) and control system 
analysis 

- select controller configuration and type 
- decide performance specifications 
- design controller and analyse it to see if 

specifications are satisfied 
 
 
Controller implementation (Kr) 

- simulate controller (hardware-in-loop; pilot 
plant) 

- select hardware and software and implement 
 
 
Controller evaluation 

- test and validate for functional and economic 
specifications 

 
 
References:  

- S. Skogestad, I. Postlehwaite, Multivariable 
Feedback Control, Second Edition, Wiley, 
Chichester, 2005. Page 1. 

- Craig I.K., and Henning, R.G.D., Evaluation 
of advanced industrial control projects: a 
framework for determining economic 
benefits, Control Engineering Practice, Vol. 
8, No. 7, 2000, pp. 769-780. 
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Main thrust of the course 
 
• Description of:  

- Analysis tools (block 1) 
- Synthesis tools (block 2) 

 
 
• Analysis and synthesis as part of the 

engineering design process 
 
 
• Analysis:  the process of determining 

whether a given system has the desired 
characteristics 

 
 Tools 
 - linear systems theory 
 - linear algebra 
 - functional analysis 
 
 
• Synthesis:  the process of finding a 

particular system component to achieve 
desirable characteristics 

 
 Tools 
 - dynamic optimal control theory 
 - optimal estimation theory 
 
  



Introduction 

376_069 Multivariable feedback control V1  6 of 428 

Classes of system equations 
 

 
 
This couse deals with: 
Lumped parameter, deterministic, 
continuous-time, linear, constant coefficient 
systems 
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What is a dynamic system? 
 
• Physical property 

- physical dynamic systems contain energy-
storage elements 

- energy-storage elements are usually 
interconnected 

 
 
• Physical energy changes as a function of 

time 
- Potential energy ⇔ kinetic energy 
- Dissipation of energy 
- Change in energy from external inputs 

 
 
• Dynamic evolution of energy is the key to 

understanding the behaviour of dynamic 
systems 
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What is a MIMO system? 
 
• MIMO: Multi-Input Multi-Output 
 
• Plant model example 
 

 
 
• Mathematical description 
 

 1 11 12 1

2 21 222

( ) ( ) ( )
( ) (

(s)
( ) ) ( )

s s s
s

y g g u
y s g g sus

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

=  

 
 y(s) = G(s)u(s) 
 
 G(s): Transfer function matrix 
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Physical MIMO systems 
 
• Aerospace 

- aircraft 
- missiles 
- satellites 
- space platforms 

 
• Biological 

- immune system 
- glucose–insulin feedback system 
- disease transmission 

 
• Chemical 

- reactors 
- distillation columns 

 
• Electrical 

- power systems 
- motors 

 
• Mechanical 

- robots 
- automotive 

 
• Metallurgical 

- grinding milling circuits 
- furnances 
- rolling machines 
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Simple dynamic systems 
 
• Pendulum 

 
θ   ⇒ potential energy 
ω  ⇒  kinetic energy 
 
• Mass-spring system 

 
x1, x2 ⇒  potential energy 
v1, v2  ⇒  kinetic energy 
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Physical state variables 
 
• Associate one state with each energy 

storage element 
 
• Mechanical system state variables 
 
Positions  ⇒  potential energy 
Velocities  ⇒  kinetic energy 
 
• Electrical circuit state variables 
 
Inductor currents   ⇒ kinetic energy 
Capacitor voltages  ⇒ potential energy 
 
 
• Thermodynamic systems 
 
Pressures    ⇒  "potential energy" 
Temperatures   ⇒  "kinetic energy" 
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Properties of dynamic systems 
 
• Physical systems are interconnections of 

energy storage and dissipative elements 
 
• State dynamics are described by coupled 

first order differential equations 
 
• Unforced dynamic systems (no external 

inputs) 
 

- Assume valid model 
- If we know the numerical values of the 

state variables now, then we can 
calculate all future values of: 

 
  • all state variables 
  • other variables of interest 
 

- State variables are continuous functions 
of time 
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Forced dynamic systems 
 
• External inputs (controls, disturbances) 

- can modify temporal evolution of energy 
(state) variables 

- add or subtract finite energy to/from 
system 

- bounded, piece-wise continuous 
 
 
• If we know 

- state variables now 
- inputs from now on 

 
Then we can calculate: 

- future values of all state variables 
- future values of all output variables 
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Forced state variable models (I) 
 
• Finite dimensional time invariant models 
 
• Notation 
- State vector:  x'(t)   =  [x1(t), x2(t), ..., xn(t)]' 
- Input vector:  u'(t)   =  [u1(t), u2(t), ..., um(t)]' 
- Output vector:  y'(t)   =  [y1(t), y2(t), ..., yp(t)]' 
 
 
• Nonlinear model description 
 
- State dynamics 
 dx1(t)/dt  = f1(x(t),u(t)) 
 dx2(t)/dt  = f2(x(t),u(t)) 
 : 
 : 
 dxn(t)/dt  = fn(x(t),u(t)) 
 Collectively:  dx(t)/dt = f(x(t),u(t)) 
 
- Output equations 
 y1(t)  = g1(x(t),u(t)) 
 y2(t)  = g2(x(t),u(t)) 
 : 
 : 
 yp(t)  = gp(x(t),u(t)) 
 Collectively:  y(t) = g(x(t),u(t)) 
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Forced state variable models 
(II) 

 
• Linear model description 
 
- State dynamics: i = 1, 2, ..., n 
 

1 1

( ) ( ) ( )
n m

ij j ik k
j k

idx a x t b udt
t t

= =
= +∑ ∑   

 
⇒  dx(t)/dt = Ax(t) + Bu(t) 
 
 
- Output equation: q = 1, 2, ..., p 

 

1 1
( ) ( ) ( )

n m
q qi i qk k

i k
y t c x t d u t

= =
= +∑ ∑

 
 

⇒  y(t) = Cx(t) + Du(t) 
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Pendulum example 
 

 
• State variables 
  
 θ(t) ≡  x1(t) = angular position 
 ω(t) ≡  x2(t)  = angular velocity 
 
• Control variable: torque u(t) 

 
• State dynamics (without friction) 
 
 dx1(t)/dt  = x2(t) 
 
 dx2(t)/dt  = (g/L)sin(x1(t)) + (1/ML)u(t) 
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Linearization of nonlinear 
dynamics 
 
• Most dynamic systems are nonlinear 

- quantitative and qualitative properties not 
transparent 

 
 
• Motivation for linearizing 

- lack of systematic design methodology 
for direct design of nonlinear feedback 
control systems 

- linearized dynamic models are useful 
o analysis: qualitative and quantitative 

insight 
o design: general and integrated CAD 

methodologies 
 
 
• Linearized models have obvious limitations 
 
• Pendulum example 
 Linear approximation for small x1(t) 

 
3 5

3!s 5!in θ θθ θ θ= − + − ≈K   
 
 Thus   dx2(t)/dt = (g/L)x1(t) + (1/ML)u(t) 
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Linear Dynamic Systems: 
Issues to be discussed 

 
 
• Open-loop stability : MIMO poles 
 
 
• Transient response : MIMO zeros 
 
 - nature provides poles 
 - control engineers regulate the zeros 
 
 
• Modes of dynamic systems 
 
 
• Solutions: time- and frequency-domain 
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Structure 
 

• Work with finite dimensional linear time 
invariant (FDLTI) models 

 
 
• LTI model describes some nonlinear 

system near steady-state equilibrium 
 
 
• Notation 
 
 State:  x(t) ∈ Rn 
 
 Control:  u(t) ∈ Rm 
 
 Output:  y(t) ∈ Rp 
 
 
• Dynamics 
 
 dx(t)/dt  = Ax(t) + Bu(t)  ;x(0) = ξ 
 
 y(t)   = Cx(t) + Du(t) 
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Transfer function matrix 
 
• Time-domain state-space model 
  
 dx(t)/dt  = Ax(t) + Bu(t)  ;x(0) = 0 
 y(t)   = Cx(t) + Du(t) 
 
• Vector Laplace transforms 
 
 x(s) = L{x(t)}   with  L{dx(t)/dt} = sΙx(s) - 0 
 u(s) = L{u(t)} 
 y(s) = L{y(t)} 
 
• Laplace transform of state-space 
  
 sΙx(s)  = Ax(s) + Bu(s) 
 y(s)   = Cx(s) + Du(s) 
 
or  x(s)   = (sΙ - A)-1Bu(s) 
 
 
• Input-output description 
 
 y(s)  = [C(sΙ - A)-1B + D]u(s) 
 y(s)  = G(s)u(s) 
 
 G(s) is a  p x m TFM 
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Finite dimensional LTI models 
 
• State-space block diagram 
 
  dx(t)/dt  = Ax(t) + Bu(t)   
  y(t)   = Cx(t) + Du(t) 
 

 
 
• Frequency-domain block diagram 
 
 y(s) = G(s)u(s) 
 
 G(s) = C(sΙ - A)-1B + D 
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Unforced LTI systems 
 
• Set inputs to zero: ignore outputs 
 
 dx(t)/dt = Ax(t)   ;x(0) = ξ   
 
• Time-domain solution 
 
  x(t) = eAt ξ 
 
 with  

0

1
!k

kAte Atk
⎛ ⎞
⎜ ⎟⎝ ⎠

∞

=
=∑   

 
• Laplace transform of state-space model 
 
  sΙx(s) - ξ  = Ax(s) 
 
or  x(s)    = (sΙ - A)-1ξ 
 
thus  L{eAt}   = (sΙ - A)-1 ;(n x n) 
 
 L-1{(sΙ - A)-1}   = eAt 
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Modal analysis (I) 
 
• Eigenstructure of A ; i = 1, 2, ... , n 
 
 Avi = λi vi  ; w'iA = λi w'i 
 
• Dyadic formula 
  '

1

n
i i i

i
A v wλ

=
=∑   

 
• Fact: 

  Akvi = λki vi ; w'iAk= λki w'i 

   '

1

n
k k

i i i
i

A v wλ
=

=∑
 

 
• Fact: 

  
0 0 1

1 1( ) ( )! !
nj jAt

i i i
j j i

e At t v wj j λ
∞ ∞

= = =
′= =∑ ∑∑    

 

 thus       
1

i
n tAt

i i
i

e e v wλ

=
′=∑   

  

 with     
0

1 ( )!
it j

i
j

e tj
λ λ

∞

=
=∑  
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Modal analysis (II) 
 
• Unforced dynamics solution 

 '

1
( ) [ ]i

n tAt
i i

i
x t e e v wλξ ξ

=
= =∑  

 
• Definition of ith mode: 

eλit vi 
 

- State consists of sum of modes associated 
with right eigenvector directions 

- [w'i ξ] : Degree that initial state ξ excites ith 
mode 

 
• Important relation 
 w'j vi = ∂ij   ;(Kronecker delta) 
 w'j vi = 1    ; i = j 
 w'j vi = 0    ; i ≠ j   
 
• Laplace transform 
 
   1it

i
e s
λ

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭

= −L   

 
   '

1

1( ) [ ]
n

i i
i i

x s v ws ξλ=
= −∑  

 
thus  (sΙ - A)-1= '

1

1n
i i

i i
v ws λ= −∑  
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Eigenvector interpretation 
 
• Unforced dynamics 
 
 dx(t)/dt = Ax(t)   ;x(0) = ξ   
 
• To excite single mode 
 
pick initial state ξ colinear with eigenvector vj, 
i.e.:  ξ = kvj 
 
• Solution 
 

  

'

1
'

1

( ) [ ]

[ ]

i

i

j

n t
i i

i
n t

i i j
i

t
j

x t e v w

ke v wv

ke v

λ

λ

λ

ξ
=

=

=

=

=

∑

∑   

 
 
• Solution contains single mode! 
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Stability and multivariable poles 
 
• Open-loop dynamics 
  dx(t)/dt = Ax(t)   ;x(0) = ξ 
 

1
( ) [ ]i

n tAt
i i

i
x t e e v wλξ ξ

=
′= =∑  

 
 

• If Re{λi} > 0 then ith mode eλit vi is 
unstable 

 
 
• System is stable iff 
  Re{λi[A]} < 0  for all i = 1, 2, ..., n 
  thus x(t)  → 0  for all ξ ≠ 0 
 
• Definition: multivariable poles are the 

eigenvalues of A 
- definition makes sense in terms of natural 

frequencies 
- MIMO poles are roots of characteristic 

polynomial: det(λΙ - A) 
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Forced LTI systems 
 
• Model 
 dx(t)/dt  = Ax(t) + Bu(t) ;x(0) = ξ 
 y(t)   = Cx(t) + Du(t) 
 
• Standing assumption: 
 
Components of control vector u(t) 
 - bounded 
 - piece-wise continuous functions of time 
 
• Complete solution 
 
 ( )

0
( ) ( )

t
A tAtx t e e Bu dτξ τ τ−+= ∫  

 
• Proof: use vector calculus facts 

 
  (d/dt)eAt = AeAt 

  (d/dt)

� 

f (τ)dτ
0

t
∫ = f (t)

 
 

and differentiate  
  

x(t)= eAt[ξ + e−Aτ Bu(τ )dτ
0

t

∫ ] 

 
to get    dx(t)/dt = Ax(t) + Bu(t)  
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The complete solution 
 
• Dynamics 
 dx(t)/dt  = Ax(t) + Bu(t)  ;x(0) = ξ 
 y(t)   = Cx(t) + Du(t) 
 
• Laplace transform 
 sΙx(s) - ξ  = Ax(s) + Bu(s) 
 
thus   x(s)  = (sΙ - A)-1ξ + (sΙ - A)-1Bu(s) 
 
 
• Compare with time-domain solution 
 L{ ( )

0
( )

t
A te Bu dτ τ τ−∫ } = (sΙ - A)-1Bu(s) 

 
 
• Complete solution 
 
Time-domain 
 y(t) = CeAtξ + ( )

0
( )

t
A tCe Bu dτ τ τ−∫ + Du(t) 

  
Frequency-domain 
  y(s) = C(sΙ - A)-1ξ + [C(sΙ - A)-1B + D]u(s) 
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Modal forms (I) 
 
• State dynamics : x(0) = 0 
  
  dx(t)/dt = Ax(t) + Bu(t). 
               = Ax(t) + 

1

m

k=
∑ bk uk(t) 

with  B = [ b1  b2  ...  bm] 
 
Solution ( )

01
( ) ( )

m t A t
k k

k
x t e b u dτ τ τ−

=
=∑∫  

 
Recall    '( )( )

1
i

i

n tA t v wi
i

e eλ ττ −−

=
=∑   

 
 
• Time-domain solution  
 

 
( )'

1 1 0
( ) ( ) ( )i

tn m t
i i k k

i k
x t v wb e u dλ τ τ τ−

= =
=∑∑ ∫   

 
 
• Frequency-domain solution 
 

 '

1 1

1( ) ( ) ( )
n m

i i k k
i k i

x s v wb u ss λ= =
= −∑∑  
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Modal forms (II) 
 
• Solution with x(0) = ξ ≠ 0 
 

( )' '

1 1 1 0
( ) ( ) ( ) ( )i i

tn n mt t
i i i i k k

i i k
x t w v e v wb e u dλ λ τξ τ τ−

= = =
= +∑ ∑∑ ∫  

 
 
• Alternate form 
 

' '

1 1 0
( ) ( ) ( ) ( )i i

tn mt
i i i k k

i k
x t v e w wb e u dλ λτξ τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

= =
= +∑ ∑ ∫   

 
• Modal directions preserved 
 
• Natural time evolution (eλit) is changed by 

controls 
 

• Insight 
 
(w'iξ): degree that initial state ξ excites ith 
mode 
(w'ibk): degree that kth control uk influences 
ith mode 
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Output response 
 
• LTI model 
 dx(t)/dt = Ax(t) + 

1

m

k=
∑ bk uk(t) ;x(0) = ξ. 

 
 y(t) = Cx(t) + Du(t) 
 
• Individual outputs: q = 1, 2, ... , p 
 
 yq(t) = c'qx(t) + d'qu(t) 
 
• Output response 

 

1

( )

1 1 0

( ) ( )( )

( )( ) ( )

( )

i

i

n t
q q i i

i
tn m t

q i i k k
i k

q

y t c v w e

c v w b e u d

d u t

λ

λ τ

ξ

τ τ
=

−

= =

′ ′=

′ ′+

′+

∑

∑∑ ∫  

 
• Insight 
 
(c'qvi): degree to which ith mode will be 
visible in qth output 
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Frequency domain solutions 
 
• Recall 
    (sΙ - A)-1= 

1

1n
i i

i i
v ws λ=

′
−∑  

 
 
• State  

' '

1 1

1 1( ) [ ] ( )
n n

i i i i
i ii i

x s v w vwBu ss sξλ λ= =
= +− −∑ ∑  

 
 
• Output 

'

1
'

1

1( ) [ ]

1 ( ) ( )

n
i i

i i
n

i i
i i

y s Cv ws

Cv wBu s Du ss

ξλ

λ

=

=

= −

+ +−

∑

∑
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Controllability 
 
Background 
 
• Formalized by R.E. Kalman in 1960 
 
• Key concept in dynamic systems and 

control theory 
 
• Formalizes intuitive notions about being 

able to control state variables and modes 
 
• Will present "modern" and classical 

controllability tests 
 
• Used with observability to understand 

MIMO input-output properties 
 

- MIMO pole-zero cancellations 
- minimum realizations 
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Controllability definition 
 
• Deals only with state dynamics 
 
• Applicable to both linear and nonlinear 

systems 
 
• Definition: 
 
The system   dx(t)/dt = f(x(t),u(t))  ;x(0) = ξ 
 
is called controllable if for any initial state 
ξ ∈ Rn and any terminal state θ ∈ Rn, we 
can find a piece-wise continuous function 
u(t), 0 ≤ t ≤ T, with T finite, such that  
 
   x(T) = θ 
 
Otherwise the system is called uncontrollable 
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Remarks 
 
• No easy test for general nonlinear systems 

 
• Easy test exist for finite-dimensional linear-

time-invariant (FDLTI) dynamic systems 
 
• Two tests 
 
"modern"  - modal approach 
 
"classical" - Via Caley-Hamilton theorem 
 
• Warning: A dynamic model which is 

mathematically controllable, might be 
uncontrollable from a practical point of view 
- Test does not say how states behave, e.g. 

might not be possible to hold states at given 
value θ 

- The required inputs u(t) may be very large 
- Some of the states may be of no practical 

importance 
- Definition does not provide a degree of 

controllability 
 
• What does the controllability result tell us? 

- If our model includes states that we cannot 
affect 

- If we can save on computer time by deleting 
uncontrollable (stable!) states 
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Modal solutions 
 
• State dynamics with x(0) = ξ 
  
 dx(t)/dt  = Ax(t) + Bu(t) 
 
 dx(t)/dt  = Ax(t) + 

1

m

k=
∑ bk uk(t)  

 
• Recall eigenstructure 
 
Avi = λi vi ; w'iA = λi w'i;  w'j vi = ∂ij 
 
• State response 
 

'

1
( )'

1 1 0

( ) ( )

( ) ( )

i

i

n t
i i

i
tn m t

i i k k
i k

x t w v e

v wb e u d

λ

λ τ

ξ

τ τ
=

−

= =

=

+

∑

∑∑ ∫
 

 
 
• Modal uncontrollability 
 
If  w'ibk  = 0  for some k, then mode i is 
uncontrollable from control uk(t) 
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Modal uncontrollability 
 
• Mode i is uncontrollable (from all inputs) iff 

for all k = 1, 2, ..., m 
 
 w'ibk  = 0        or          w'iB = 0 
 
• System is uncontrollable iff one or more of 

its modes are uncontrollable 
 
• Reasoning using state response 
 
 Pick initial state ξ = 0 
 Pick terminal state θ colinear to 
 uncontrollable mode i, i.e.  θ = kvi 
 

( )'

1 1 0
( ) ( ) ( )j

Tn m t
j j k k

j k
x T v w b e u dλ τ τ τ−

= =
=∑∑ ∫  

 
x(T) ≠ kvi  - directions do not match 
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Visualization 
 
• 2 modes and 2 controls: n = 2; k = 2 
 

• Suppose mode  v1eλ1t  is uncontrollable 
 

 
 
• Response restricted along  v2 direction.  θ 

cannot be reached 
 
• Time-domain solution 

 

  

x(t)= v1( ′w1b1=0) eλ1(t−τ )u1(τ )dτ
0

t
∫

+v1( ′w1b2 =0) eλ1(t−τ )u2(τ )dτ
0

t
∫

+v2( ′w2b1) eλ2(t−τ )u1(τ )dτ
0

t
∫

+v2( ′w2b2) eλ2(t−τ )u2(τ )dτ
0

t
∫
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Modal controllability 
 
• The ith mode is controllable (from one or 

more inputs) iff 
 
   w'iB ≠ 0 
 
w'i: left eigenvector associated with ith mode, 
 
   w'iA = λi w'i 
 
• System is controllable iff all the modes of 

the system are controllable 
 
Test: w'iB ≠ 0   for all i = 1, 2, ..., n 
 
• Notation 
 
Refer to the controllability of a matrix pair: 
[A, B] 
 
 A = n x n matrix 
 B = n x m matrix 
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Complex modes 
 
• If   λi = λ*j 
 
then  vi = v*j and   wi = w*j 
 
• ith mode is uncontrollable from kth input 
 
  ⇒ w'ibk = 0 
  let wi = αi + jβi 
  thus (αi + jβi)'bk = 0 
  ⇒ α'ibk = 0  and  β'ibk = 0 
 
  but  wj = αi - jβi = w*i 
  ⇒ (αi - jβi)'bk = 0 
  ⇒ w'jbk = 0 
 
⇒  jth mode is also uncontrollable from kth 
input 
 
• Complex mode is thus uncontrollable 
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Stabilizability 
 
• Useful concept for design 
 
• If mode vieλit  is uncontrollable but  Re{λi} < 0, 

then mode i is stabilizable 
 
• If all uncontrollable modes are stabilizable, 

then [A, B] is called stabilizable 
 
• Notes 
 
- If [A, B] is controllable, then it is stabilizable 
 
-  If every unstable mode is controllable, then     

[A, B] is stabilizable 
 
 
 
 
 
 
 



Controllability 
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Classical controllability test 
 
• Form the n x (m x n) controllability matrix 

Mc 
 
Mc = [B   AB   A2B   ...   An-1B] 
 
• If out of the m x n columns Mc there are n 

that are linearly independent, i.e. 
 
  Rank (Mc) = n 
 
Then [A, B] is controllable 
 
 
• If  Rank (Mc) < n 
 
Then [A, B] is uncontrollable 
 
- it may be stabilizable 
 
 
• No modal information 
 
• No stabilizability information 
 
 


