MULTIVARIABLE CONTROL SYSTEMS DESIGN*°

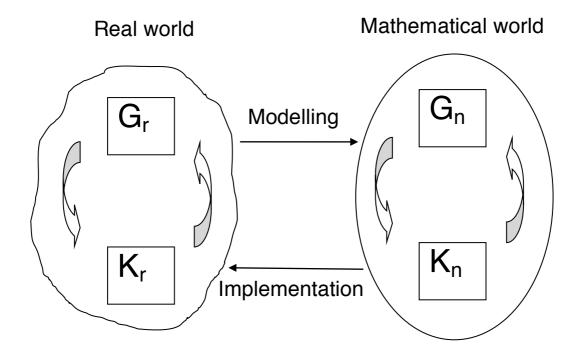
by Ian K. Craig

 * These viewgraphs are based on notes prepared by Prof. Michael Athans of MIT for the course "Multivariable Control Systems 1 & 2"
 ^o These viewgraphs should be read in conjunction with the textbook: S Skogestad, I Postlehwaite, Multivariable Feedback Control, Second Edition, Wiley, Chichester, 2005.

376_069 Multivariable feedback control V1

Introduction

General Control Problem (I)



General Control Problem (II)

Summary

- Analyze the plant for control purposes
- Obtain an adequate mathematical model for the plant
- Controller design and control system analysis
- Controller implementation
- Controller evaluation

Analyze the plant (G_r) for control purposes

- obtain process knowledge
- perform an initial cost benefit analysis
- determine initial control objectives
- determine measurements, manipulated and control variables
- determine the role of the operator, before and after the implementation of the controller

Obtain an adequate mathematical model (G_n) for the plant

- use first principles and empirical relationships and/or plant input-output data
- simplify the model to fit purpose
- *analyse the resulting model (input-output analysis)*

Introduction

General Control Problem (III)

Controller design (K_n) and control system analysis

- select controller configuration and type
- decide performance specifications
- <u>design controller and analyse it to see if</u> <u>specifications are satisfied</u>

Controller implementation (K_r)

- simulate controller (hardware-in-loop; pilot plant)
- select hardware and software and implement

Controller evaluation

- test and validate for functional and economic specifications

References:

- S. Skogestad, I. Postlehwaite, *Multivariable Feedback Control*, Second Edition, Wiley, Chichester, 2005. Page 1.
- Craig I.K., and Henning, R.G.D., Evaluation of advanced industrial control projects: a framework for determining economic benefits, *Control Engineering Practice*, Vol. 8, No. 7, 2000, pp. 769-780.

Main thrust of the course

- Description of:
 - Analysis tools (block 1)
 - Synthesis tools (block 2)
- Analysis and synthesis as part of the engineering design process
- <u>Analysis</u>: the process of determining whether a given system has the desired characteristics

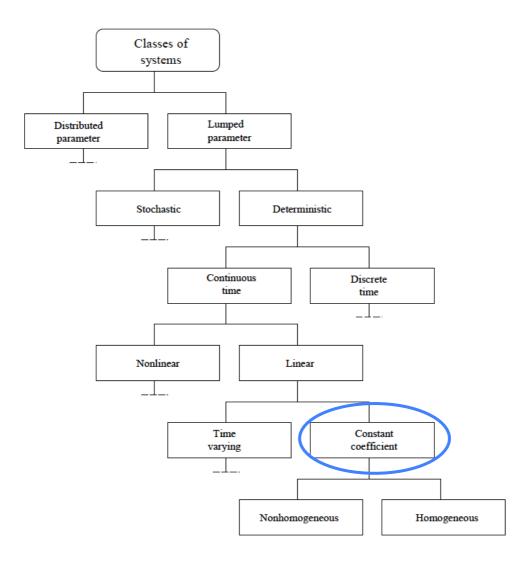
Tools

- linear systems theory
- linear algebra
- functional analysis
- <u>Synthesis</u>: the process of finding a particular system component to achieve desirable characteristics

Tools

- dynamic optimal control theory
- optimal estimation theory

Classes of system equations



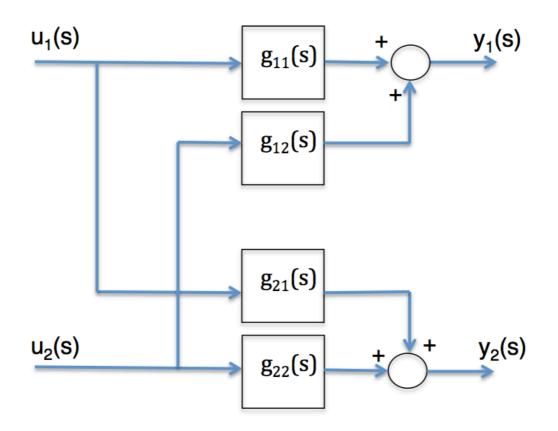
This couse deals with: Lumped parameter, deterministic, continuous-time, linear, constant coefficient systems

What is a dynamic system?

- Physical property
 - physical dynamic systems contain energystorage elements
 - energy-storage elements are usually interconnected
- Physical energy changes as a function of time
 - Potential energy \Leftrightarrow kinetic energy
 - Dissipation of energy
 - Change in energy from external inputs
- Dynamic evolution of energy is the key to understanding the behaviour of dynamic systems

What is a MIMO system?

- MIMO: Multi-Input Multi-Output
- Plant model example



• Mathematical description

$$\begin{pmatrix} y_1(s) \\ y_2(s) \end{pmatrix} = \begin{pmatrix} g_{11}(s) & g_{12}(s) \\ g_{21}(s) & g_{22}(s) \end{pmatrix} \begin{pmatrix} u_1(s) \\ u_2(s) \end{pmatrix}$$
$$y(s) = G(s)u(s)$$

G(s): Transfer function matrix

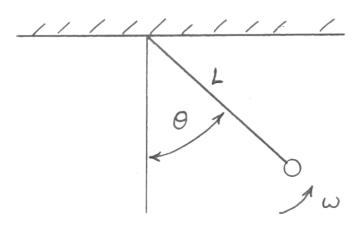
376_069 Multivariable feedback control V1

Physical MIMO systems

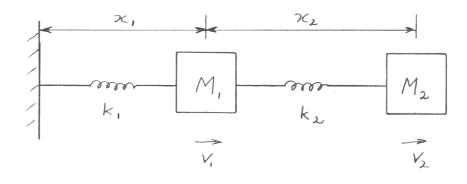
- Aerospace
 - aircraft
 - missiles
 - satellites
 - space platforms
- Biological
 - immune system
 - glucose-insulin feedback system
 - disease transmission
- Chemical
 - reactors
 - distillation columns
- Electrical
 - power systems
 - motors
- Mechanical
 - robots
 - automotive
- Metallurgical
 - grinding milling circuits
 - furnances
 - rolling machines

Simple dynamic systems

• Pendulum



- $\theta \Rightarrow$ potential energy
- $\omega \Rightarrow$ kinetic energy
- Mass-spring system



Physical state variables

- Associate one state with each energy storage element
- Mechanical system state variables

Positions	\Rightarrow potential energy
Velocities	\Rightarrow kinetic energy

• Electrical circuit state variables

Inductor currents	\Rightarrow kinetic energy
Capacitor voltages	\Rightarrow potential energy

• Thermodynamic systems

Pressures	\Rightarrow "potential energy"
Temperatures	\Rightarrow "kinetic energy"

Properties of dynamic systems

- Physical systems are interconnections of energy storage and dissipative elements
- State dynamics are described by coupled first order differential equations
- Unforced dynamic systems (no external inputs)
 - Assume valid model
 - If we know the numerical values of the state variables now, then we can calculate all future values of:
 - all state variables
 - other variables of interest
 - State variables are continuous functions of time

Forced dynamic systems

- External inputs (controls, disturbances)
 - can modify temporal evolution of energy (state) variables
 - add or subtract finite energy to/from system
 - bounded, piece-wise continuous
- If we know
 - state variables now
 - inputs from now on

Then we can calculate:

- future values of all state variables
- future values of all output variables

Forced state variable models (I)

• Finite dimensional time invariant models

 Notation 		
- State vector:	x'(t)	$= [x_1(t), x_2(t),, x_n(t)]'$
- Input vector:	u'(t)	$= [u_1(t), u_2(t),, u_m(t)]'$
- Output vector:	y'(t)	$= [y_1(t), y_2(t),, y_p(t)]'$

• Nonlinear model description

- State dynamics

$$dx_{1}(t)/dt = f_{1}(x(t),u(t))$$

$$dx_{2}(t)/dt = f_{2}(x(t),u(t))$$

$$\vdots$$

$$dx_{n}(t)/dt = f_{n}(x(t),u(t))$$

$$Collectively: dx(t)/dt = f(x(t),u(t))$$
- Output equations

$$y_{1}(t) = g_{1}(x(t),u(t))$$

$$y_{2}(t) = g_{2}(x(t),u(t))$$

: $y_p(t) = g_p(x(t),u(t))$ **Collectively**: y(t) = g(x(t),u(t))

Forced state variable models (II)

- Linear model description
- State dynamics: i = 1, 2, ..., n

$$\frac{dx_i(t)}{dt} = \sum_{j=1}^n a_{ij} x_j(t) + \sum_{k=1}^m b_{ik} u_k(t)$$

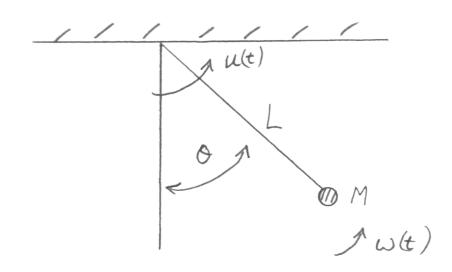
 \Rightarrow dx(t)/dt = Ax(t) + Bu(t)

- Output equation: q = 1, 2, ..., p

$$y_q(t) = \sum_{i=1}^n c_{qi} x_i(t) + \sum_{k=1}^m d_{qk} u_k(t)$$

$$\Rightarrow$$
 y(t) = Cx(t) + Du(t)

Pendulum example



• State variables

 $\theta(t) \equiv x_1(t) = angular position$ $\omega(t) \equiv x_2(t) = angular velocity$

- Control variable: torque u(t)
- State dynamics (without friction)

 $dx_{1}(t)/dt = x_{2}(t)$ $dx_{2}(t)/dt = (g/L)sin(x_{1}(t)) + (1/ML)u(t)$

Linearization of nonlinear dynamics

- Most dynamic systems are nonlinear
 - quantitative and qualitative properties not transparent
- Motivation for linearizing
 - lack of systematic design methodology for direct design of nonlinear feedback control systems
 - linearized dynamic models are useful
 - analysis: qualitative and quantitative insight
 - design: general and integrated CAD methodologies
- Linearized models have obvious limitations
- Pendulum example Linear approximation for small x₁(t)

$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - K \approx \theta$$

Thus $dx_2(t)/dt = (g/L)x_1(t) + (1/ML)u(t)$

Linear Dynamic Systems: Issues to be discussed

- Open-loop stability : MIMO poles
- Transient response : MIMO zeros
 - nature provides poles
 - control engineers regulate the zeros
- Modes of dynamic systems
- Solutions: time- and frequency-domain

Structure

- Work with finite dimensional linear time invariant (FDLTI) models
- LTI model describes some nonlinear system near steady-state equilibrium
- Notation

State:	$x(t) \in R^n$
Control:	u(t) ∈ R ^m
Output:	$y(t) \in R^p$

• Dynamics

 $dx(t)/dt = Ax(t) + Bu(t) \qquad ;x(0) = \xi$ y(t) = Cx(t) + Du(t)

Transfer function matrix

• Time-domain state-space model

 $\begin{array}{ll} dx(t)/dt &= Ax(t) + Bu(t) & ; x(0) = 0 \\ y(t) &= Cx(t) + Du(t) \end{array}$

• Vector Laplace transforms

 $\begin{aligned} x(s) &= \pounds\{x(t)\} & \text{with } \pounds\{dx(t)/dt\} = sIx(s) - 0 \\ u(s) &= \pounds\{u(t)\} \\ y(s) &= \pounds\{y(t)\} \end{aligned}$

• Laplace transform of state-space

$$sIx(s) = Ax(s) + Bu(s)$$

 $y(s) = Cx(s) + Du(s)$

or
$$x(s) = (sI - A)^{-1}Bu(s)$$

• Input-output description

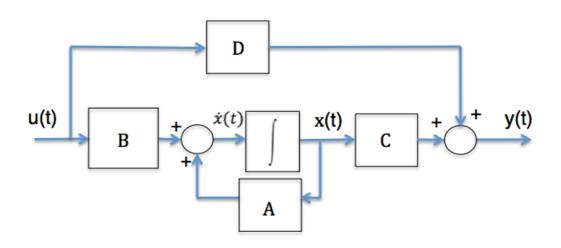
$$y(s) = [C(sI - A)^{-1}B + D]u(s)$$

y(s) = G(s)u(s)
G(s) is a p x m TFM

Finite dimensional LTI models

• State-space block diagram

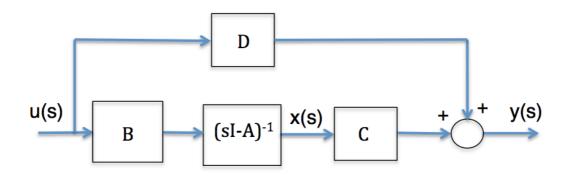
 $\begin{array}{ll} dx(t)/dt &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{array}$



• Frequency-domain block diagram

y(s) = G(s)u(s)

$$G(s) = C(sI - A)^{-1}B + D$$



Unforced LTI systems

• Set inputs to zero: ignore outputs

$$dx(t)/dt = Ax(t) \qquad ; x(0) = \xi$$

• Time-domain solution

x(t) =
$$e^{At} \xi$$

with $e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} (At)^k$

• Laplace transform of state-space model

$$sIx(s) - \xi = Ax(s)$$
or
$$x(s) = (sI - A)^{-1}\xi$$
thus
$$\mathcal{L}\left\{e^{At}\right\} = (sI - A)^{-1} ;(n \times n)$$

$$\mathcal{L}^{-1}\left\{(sI - A)^{-1}\right\} = e^{At}$$

Modal analysis (I)

• Eigenstructure of A ; i = 1, 2, ... , n

$$Av_{i}=\lambda_{i}\;v_{i}\qquad \qquad ;\;w'_{i}A=\lambda_{i}\;w'_{i}$$

• Dyadic formula $\frac{n}{n}$

$$A = \sum_{i=1}^{n} \lambda_i v_i w_i'$$

• Fact:

$$A^{k}v_{i} = \lambda^{k}{}_{i}v_{i}$$
; $w'_{i}A^{k} = \lambda^{k}{}_{i}w'_{i}$
 $A^{k} = \sum_{i=1}^{n} \lambda_{i}^{k}v_{i}w'_{i}$

• Fact:

$$e^{At} = \sum_{j=0}^{\infty} \frac{1}{j!} (At)^j = \sum_{j=0}^{\infty} \sum_{i=1}^{n} \frac{1}{j!} (\lambda_i t)^j v_i w'_i$$

thus

$$e^{At} = \sum_{i=1}^{n} e^{\lambda_i t} v_i w'_i$$

with

$$e^{\lambda_i t} = \sum_{j=0}^{\infty} \frac{1}{j!} (\lambda_i t)^j$$

Modal analysis (II)

- Unforced dynamics solution $x(t) = e^{At} \xi = \sum_{i=1}^{n} e^{\lambda_i t} v_i [w_i \xi]$
- Definition of ith mode:

$$e^{\lambda_j t}\,v_j$$

- State consists of sum of modes associated with right eigenvector directions
- [w'_i ξ] : Degree that initial state ξ excites ith mode
- Important relation
 - w'_j v_i = ∂_{ij} ;(Kronecker delta) w'_j v_i = 1 ; i = j w'_j v_i = 0 ; i ≠ j
- Laplace transform

$$\mathcal{L}\left\{e^{\lambda_{i}t}\right\} = \frac{1}{s - \lambda_{i}}$$
$$x(s) = \sum_{i=1}^{n} \frac{1}{s - \lambda_{i}} v_{i}[w_{i}'\xi]$$
$$(\text{SI} - \text{A})^{-1} = \sum_{i=1}^{n} \frac{1}{s - \lambda_{i}} v_{i}w_{i}'$$

thus

Eigenvector interpretation

• Unforced dynamics

$$dx(t)/dt = Ax(t) \qquad ; x(0) = \xi$$

• To excite single mode

pick initial state ξ colinear with eigenvector $v_{j},$ i.e.: ξ = kv_{j}

• Solution

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} v_i [w'_i \xi]$$
$$= \sum_{i=1}^{n} k e^{\lambda_i t} v_i [w'_i v_j]$$
$$= k e^{\lambda_j t} v_j$$

• Solution contains single mode!

Stability and multivariable poles

• Open-loop dynamics dx(t)/dt = Ax(t); $x(0) = \xi$

$$x(t) = e^{At} \xi = \sum_{i=1}^{n} e^{\lambda_i t} v_i [w'_i \xi]$$

- If Re{ λ_i } > 0 then ith mode e^{λ_i t v_i is unstable}
- System is stable iff $\begin{array}{ll} \mbox{Re}\{\lambda_{j}[A]\} < 0 & \mbox{for all } i=1,\,2,\,...,\,n \\ \mbox{thus } x(t) \rightarrow 0 & \mbox{for all } \xi \neq 0 \end{array}$
- Definition: multivariable poles are the eigenvalues of A
 - definition makes sense in terms of natural frequencies
 - MIMO poles are roots of characteristic polynomial: det(λI - A)

Forced LTI systems

- Model $\begin{array}{rl} dx(t)/dt &= Ax(t) + Bu(t) & ;x(0) = \xi \\ y(t) &= Cx(t) + Du(t) \end{array}$
- Standing assumption:

Components of control vector u(t)

- bounded
- piece-wise continuous functions of time
- Complete solution

$$x(t) = e^{At} \xi + \int_{0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau$$

• Proof: use vector calculus facts

$$(d/dt)e^{At} = Ae^{At}$$
$$(d/dt)\int_{0}^{t} f(\tau)d\tau = f(t)$$

and differentiate $x(t) = e^{At} [\xi + \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau]$

to get
$$dx(t)/dt = Ax(t) + Bu(t)$$

The complete solution

- Dynamics $\begin{array}{ll} dx(t)/dt &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{array} ; x(0) = \xi$
- Laplace transform
 sIx(s) ξ = Ax(s) + Bu(s)

thus $x(s) = (sI - A)^{-1}\xi + (sI - A)^{-1}Bu(s)$

- Compare with time-domain solution $\mathcal{L}\left\{\int_{0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau\right\} = (sI - A)^{-1}Bu(s)$
- Complete solution

Time-domain

$$\mathbf{y}(\mathbf{t}) = \mathbf{C}\mathbf{e}^{\mathsf{A}\mathbf{t}}\boldsymbol{\xi} + \int_{0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + \mathsf{D}\mathbf{u}(\mathbf{t})$$

Frequency-domain

 $y(s) = C(sI - A)^{-1}\xi + [C(sI - A)^{-1}B + D]u(s)$

Modal forms (I)

• State dynamics : x(0) = 0

 $\begin{aligned} dx(t)/dt &= Ax(t) + Bu(t). \\ &= Ax(t) + \sum_{k=1}^{m} b_k u_k(t) \\ \text{with} \qquad B &= [b_1 \ b_2 \ \dots \ b_m] \end{aligned}$

Solution $x(t) = \sum_{k=1}^{m} \int_{0}^{t} e^{A(t-\tau)} b_{k} u_{k}(\tau) d\tau$

Recall
$$e^{A(t-\tau)} = \sum_{i=1}^{n} e^{\lambda_i(t-\tau)} v_i w_i$$

• Time-domain solution

$$x(t) = \sum_{i=1}^{n} \sum_{k=1}^{m} v_i(w_i b_k) \int_{0}^{t} e^{\lambda_i(t-\tau)} u_k(\tau) d\tau$$

• Frequency-domain solution

$$x(s) = \sum_{i=1}^{n} \sum_{k=1}^{m} v_i (w_i' b_k) \frac{1}{s - \lambda_i} u_k(s)$$

Modal forms (II)

• Solution with
$$x(0) = \xi \neq 0$$

$$x(t) = \sum_{i=1}^{n} (w_{i}^{'}\xi) v_{i} e^{\lambda_{i}t} + \sum_{i=1}^{n} \sum_{k=1}^{m} v_{i} (w_{i}^{'}b_{k}) \int_{0}^{t} e^{\lambda_{i}(t-\tau)} u_{k}(\tau) d\tau$$

• Alternate form

$$x(t) = \sum_{i=1}^{n} v_i e^{\lambda_i t} \left[(w_i' \xi) + \sum_{k=1}^{m} (w_i' b_k) \int_{0}^{t} e^{-\lambda_i \tau} u_k(\tau) d\tau \right]$$

- Modal directions preserved
- Natural time evolution $(e^{\lambda} i^t)$ is changed by controls
- Insight

 $(w'_i\xi): \quad \text{degree that initial state } \xi \text{ excites } i^{th}$ mode

(w'_ib_k): degree that k^{th} control u_k influences i^{th} mode

Output response

• LTI model $dx(t)/dt = Ax(t) + \sum_{k=1}^{m} b_k u_k(t) \quad ;x(0) = \xi.$

y(t) = Cx(t) + Du(t)

• Individual outputs: q = 1, 2, ... , p

$$y_{q}(t) = c'_{q}x(t) + d'_{q}u(t)$$

• Output response

$$y_{q}(t) = \sum_{i=1}^{n} (c'_{q}v_{i})(w'_{i}\xi)e^{\lambda_{i}t} + \sum_{i=1}^{n} \sum_{k=1}^{m} (c'_{q}v_{i})(w'_{i}b_{k}) \int_{0}^{t} e^{\lambda_{i}(t-\tau)}u_{k}(\tau)d\tau + d'_{q}u(t)$$

Insight

 $(c'_{q}v_{i})$: degree to which ith mode will be visible in qth output

Frequency domain solutions

- Recall (sI - A)⁻¹= $\sum_{i=1}^{n} \frac{1}{s - \lambda_i} v_i \dot{w_i}$
- State $x(s) = \sum_{i=1}^{n} \frac{1}{s - \lambda_{i}} v_{i}[w_{i}^{'}\xi] + \sum_{i=1}^{n} \frac{1}{s - \lambda_{i}} v_{i}w_{i}^{'}Bu(s)$
- Output $y(s) = \sum_{i=1}^{n} \frac{1}{s - \lambda_i} Cv_i[w'_i \xi]$ $+ \sum_{i=1}^{n} \frac{1}{s - \lambda_i} Cv_i w'_i Bu(s) + Du(s)$

Controllability

Background

- Formalized by R.E. Kalman in 1960
- Key concept in dynamic systems and control theory
- Formalizes intuitive notions about being able to control state variables and modes
- Will present "modern" and classical controllability tests
- Used with observability to understand MIMO input-output properties
 - MIMO pole-zero cancellations
 - minimum realizations

Controllability definition

- Deals only with state dynamics
- Applicable to both linear and nonlinear systems
- Definition:

The system dx(t)/dt = f(x(t),u(t)); $x(0) = \xi$

is called controllable if for <u>any</u> initial state $\xi \in \mathbb{R}^n$ and any terminal state $\theta \in \mathbb{R}^n$, we can find a piece-wise continuous function $u(t), 0 \le t \le T$, with T finite, such that

 $x(T) = \theta$

Otherwise the system is called uncontrollable

Remarks

- No easy test for general nonlinear systems
- Easy test exist for finite-dimensional lineartime-invariant (FDLTI) dynamic systems
- Two tests

"modern" - modal approach

"classical" - Via Caley-Hamilton theorem

- Warning: A dynamic model which is mathematically controllable, might be uncontrollable from a practical point of view
 - Test does not say how states behave, e.g. might not be possible to hold states at given value $\boldsymbol{\theta}$
 - The required inputs u(t) may be very large
 - Some of the states may be of no practical importance
 - Definition does not provide a degree of controllability
- What does the controllability result tell us?
 - If our model includes states that we cannot affect
 - If we can save on computer time by deleting uncontrollable (stable!) states

Modal solutions

- State dynamics with $x(0) = \xi$ dx(t)/dt = Ax(t) + Bu(t) $dx(t)/dt = Ax(t) + \sum_{k=1}^{m} b_k u_k(t)$
- Recall eigenstructure

$$Av_{i} = \lambda_{i} v_{i} \qquad ; w'_{i}A = \lambda_{i} w'_{i}; \qquad w'_{j} v_{i} = \partial_{ij}$$

• State response

$$x(t) = \sum_{i=1}^{n} (w_i'\xi) v_i e^{\lambda_i t} + \sum_{i=1}^{n} \sum_{k=1}^{m} v_i (w_i'b_k) \int_{0}^{t} e^{\lambda_i (t-\tau)} u_k(\tau) d\tau$$

• Modal uncontrollability

If $w'_i b_k = 0$ for <u>some</u> k, then mode i is uncontrollable from control $u_k(t)$

Modal uncontrollability

 Mode i is uncontrollable (from all inputs) iff for all k = 1, 2, ..., m

 $w'_i b_k = 0$ or $w'_i B = 0$

- System is uncontrollable iff one or more of its modes are uncontrollable
- Reasoning using state response

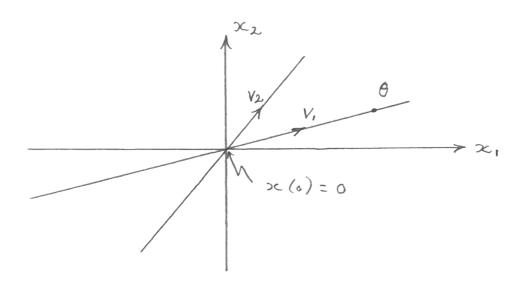
Pick initial state $\xi = 0$ Pick terminal state θ colinear to uncontrollable mode i, i.e. $\theta = kv_i$

$$x(T) = \sum_{j=1}^{n} \sum_{k=1}^{m} v_j (w'_j b_k) \int_{0}^{T} e^{\lambda_j (t-\tau)} u_k(\tau) d\tau$$

 $x(T) \neq kv_i$ - directions do not match

Visualization

- 2 modes and 2 controls: n = 2; k = 2
- Suppose mode $v_1 e^{\lambda_1 t}$ is uncontrollable



- Response restricted along v_2 direction. θ cannot be reached
- Time-domain solution

$$\begin{aligned} x(t) &= v_1(w_1'b_1 = 0) \int_0^t e^{\lambda_1(t-\tau)} u_1(\tau) d\tau \\ &+ v_1(w_1'b_2 = 0) \int_0^t e^{\lambda_1(t-\tau)} u_2(\tau) d\tau \\ &+ v_2(w_2'b_1) \int_0^t e^{\lambda_2(t-\tau)} u_1(\tau) d\tau \\ &+ v_2(w_2'b_2) \int_0^t e^{\lambda_2(t-\tau)} u_2(\tau) d\tau \end{aligned}$$

376_069 Multivariable feedback control V1

38 of 42

Modal controllability

 The ith mode is controllable (from one or more inputs) iff

w'_i: left eigenvector associated with ith mode,

$$w'_i A = \lambda_i w'_i$$

• System is controllable iff all the modes of the system are controllable

Test: $w'_i B \neq 0$ for all i = 1, 2, ..., n

Notation

Refer to the controllability of a matrix pair: [A, B]

> A = n x n matrixB = n x m matrix

Complex modes

• If $\lambda_i = \lambda^*_j$

then $v_i = v_j^*$ and $w_i = w_j^*$

ith mode is uncontrollable from kth input

$$\begin{array}{lll} \Rightarrow & w'_{i}b_{k} = 0 \\ \text{let} & w_{i} = \alpha_{i} + j\beta_{i} \\ \text{thus} (\alpha_{i} + j\beta_{i})'b_{k} = 0 \\ \Rightarrow & \alpha'_{i}b_{k} = 0 & \text{and} & \beta'_{i}b_{k} = 0 \\ \text{but} & w_{j} = \alpha_{i} - j\beta_{i} = w^{*}_{i} \\ \Rightarrow & (\alpha_{i} - j\beta_{i})'b_{k} = 0 \\ \Rightarrow & w'_{j}b_{k} = 0 \end{array}$$

 \Rightarrow j^{th} mode is also uncontrollable from ${\sf k}^{th}$ input

• Complex mode is thus uncontrollable

Stabilizability

- Useful concept for design
- If mode $v_i e^{\lambda_i t}$ is uncontrollable but $\text{Re}\{\lambda_i\} < 0$, then mode i is stabilizable
- If all uncontrollable modes are stabilizable, then [A, B] is called stabilizable
- Notes
- If [A, B] is controllable, then it is stabilizable
- If every unstable mode is controllable, then [A, B] is stabilizable

Classical controllability test

• Form the n x (m x n) controllability matrix M_c

 $M_{C} = [B AB A^{2}B \dots A^{n-1}B]$

• If out of the m x n columns M_c there are n that are linearly independent, i.e.

Rank $(M_c) = n$

Then [A, B] is controllable

• If Rank $(M_c) < n$

Then [A, B] is uncontrollable

- it may be stabilizable
- No modal information
- No stabilizability information