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Abstract Mycorrhizal symbiosis is a key component of a sustainable soil-
plant system, governing the cycles of major plant nutrients and vegetation
cover. The mycorrhizosphere includes plants roots, the mycorrhizal fungi, and
a complex microbial compartment. A large number of methods have been used
to characterize the genetic and functional diversity of these soil microbial com-
munities. We present here a review of the multivariate data analysis methods
that have been used in 16 research articles published in the 2005-2009 period.
“Descriptive” multivariate data analysis methods have been priviledged over
classical “predictive” methods and univariate statistical tests. Data sets, mul-
tivariate data analysis methods, graphical outputs and interpretation results
are presented and explained in details on several examples coming from some
of the 16 articles. These multivariate and graphical methods are available in
the ade4 package for the R statistical software. The discussion underlines the
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importance of using appropriate statistical methods to obtain a good descrip-
tion of soil microbiological and biochemical indicators and a good evaluation
of soil quality.

Keywords Mycorrhizal symbiosis · Soil microbial diversity · Descriptive
multivariate data analysis · BGA · Coinertia analysis · ade4

1 Introduction

Mycorrhizal fungi are a ubiquitous component of most ecosystems throughout
the world (Brundrett, 2002). By governing major plant nutrient cycles and
sustaining the vegetation cover (Schreiner et al, 1997; Johansson et al, 2004),
they are also a key component of sustainable soil-plant systems. Benefits de-
rived by plants from mycorrhizal symbiosis include (i) increased plant uptake
of low mobility minerals (i.e. phosphorus), micronutrients and nitrogen, (ii) en-
hanced water absorption and (iii) improved plant health by acting against some
pathogens (Smith and Read, 2008). Arbuscular mycorrhizas (AM) symbiosis is
the most widespread mycorrhizal association and affects about 80-90% of land
plants with true roots (i.e. pteridophytes, gymnosperms and angiosperms) in
natural and agricultural ecosystems (Brundrett, 2002).

The trophic translocations between the host plant and the fungal symbionts
results from the close relationship between each component of the symbiotic
association. It has been clearly established (Wirsel, 2004; Smith and Read,
2008; van der Heijden et al, 1998) that, in addition to increasing the absorp-
tive surface area of their host plant root systems, the extrametrical mycelium
provide an increased area for interactions with soil microbiota. The zone in-
fluenced by both the root and the mycorrhizal fungus has been named “myc-
orrhizosphere” and includes one microbial compartment subjected to the dual
influence of the root and the mycorrhizal symbionts (the “mycorrhizosphere”
sensu stricto) and the other under the influence of mycorrhizal hyphae (the
“hyphosphere”) (Linderman, 1988).

In the present paper, we speak about controlled mycorrhizal inoculation.
As it has been reported by Ouahmane et al (2006) in revegetation schemes,
two main reclamation strategies could be proposed: (i) inoculation of plants
with selected mycosymbionts (Ouahmane et al, 2007) and/or (ii) management
of the native soil mycorrhizal potential through drought-tolerant, native and
highly mycotrophic plant species (Duponnois et al, 2001; Azcon-Aguilar et al,
2003). According to the characteristics of the mycorrhizal soil potential and
its associated microflora (abundance, diversity), the introduction of mycor-
rhizal propagules into the soil could induce strong modifications in the soil
microbial characteristics that could decrease the potential effect of these fun-
gal symbionts on soil biofunctioning and plant growth (Dabire et al, 2007).
Hence, the structure of mycorrhizal communities has to be evaluated in or-
der to adopt one of these cultural strategies (controlled mycorrhization when
the soil mycorrhizal potential is to low too ensure its effects on plant growth
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and soil functions or soil mycorrhizal management in order to increase native
fungal diversity and abundance).

Beside the effects of the mycorrhizal symbiosis on soil microbiota, it has
also been demonstrated that mycorrhizal symbiosis had a selective pressure on
bacterial communities and favored soil microorganisms potentially beneficial
to the symbiosis and to the host plant (Frey-Klett et al, 2005; Ouahmane
et al, 2009). Hence, the relationships between the fungal symbiont and the
host plant have been enlarged to the soil microbiota to create a multitrophic
mycorrhizal complex (Frey-Klett et al, 2005).

The mycorrhizosphere compartment is usually characterized by a high mi-
crobial activity which could contribute to the biocontrol of pathogens and
improve supply of nutrients in degraded soils to maintain health and growth
of plant species (Johansson et al, 2004). Hence, the positive impact of the myc-
orrhizal symbiosis on nutrition, N uptake, and disease resistance of host plants
could be considered as an indicator of soil quality, in conjunction with the my-
corrhizosphere microbiota. Soil quality has been defined as “the capacity of a
soil to function, within the limits imposed by the ecosystem, to preserve the
biological productivity and environmental quality, and promote plant, animal
and human health” (Doran and Parkin, 1994).

The quantification of the soil quality was usually based on physical and
chemical indexes. It has been clearly established (Giller et al, 1997; Smith and
Read, 2008) that soil functioning resulted from complex interactions between
soil physical, chemical and biological processes. Hence, soil quality cannot be
assessed with one variable but with a combination of these factors (Barrios
et al, 2006) showing the state of soil (Dumanski and Pieri, 2000). Soil microbial
functional diversity is a good indicator of soil quality, as it is integrative of
multiple processes taking place in the soil. A large number of methods have
been used to characterize the genetic and functional diversity of complex soil
microbial communities. All these methods generate high volumes of data that
cannot be analyzed by conventional methods, due to several problems: i) the
high number of variables measured compared to the number of samples, ii) the
potentially high correlations between these variables, and iii) the low density of
information that they contain individually. Appropriate statistical tools must
be used to investigate these complex microbial interactions and to provide
relevant analyses on the role of each variable involved in soil quality.

This review is focussed on the potential benefits of using “descriptive” mul-
tivariate statistical methods such as Principal component analysis, Between-
Group analysis, and Co-inertia analysis instead of other common statistical
data analysis techniques (called here “predictive” methods), such as linear
discriminant analysis (LDA), redundancy analysis (RDA) and canonical cor-
respondence analysis (CCA). These “descriptive” methods should help us to
get new insights into the functioning of the mycorrhizosphere and to develop
indicators of soil quality and ecological resilience. The resulting outputs could
be of great of relevance to describe and explain biological interactions that
are considered key components in the stability and productivity of terrestrial
ecosystems.
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The objectives of this paper are twofold. First, we want to report on some
of the “descriptive” methods used by the authors, comparing them with the
common “predictive” multivariate techniques (see for example the paper by
Ramette (2007), who recently published a good review of these methods in the
field of microbial ecology). Secondly, we also want to discuss the potential for
these methods to provide new insights into the functioning of the mycorrhi-
zosphere and help develop indicators of soil quality and ecological resilience,
although this last step is still a work in progress. The data sets needed for
these studies must take into account all the actors that participate in this
story, namely: fungi, bacteria, plants and environment (i.e. abiotic character-
istics).

To achieve these goals, we analyzed 16 research studies published during the
2005-2009 period, in which we used various multivariate data analysis methods,
mainly Principal Component Analysis (PCA), Between-Group Analysis [BGA,
(Doledec and Chessel, 1987; Culhane et al, 2002)], and Co-Inertia Analysis
[CoIA, (Doledec and Chessel, 1994; Dray et al, 2003)]. We first present the kind
of data tables that we analyzed in these studies, and we give a short summary
of the properties of the data analysis methods, in the framework of the duality
diagram (Escoufier, 1987; Holmes, 2006) and of the ade4 package (Chessel
et al, 2004; Dray and Dufour, 2007) for the R environment (R Development
Core Team, 2010). We also show the advantages of using these methods on
several examples taken from these studies. Lastly, we present several types of
graphics used with BGA and CoIA to facilitate the interpretation of results.

2 Data sets

The data needed to analyze the mycorrhizosphere effect on the structure and
functioning of soil microbial communities are very diverse. They can be classi-
fied according to the subject of measure: fungi, bacteria, plant and environment
(i.e. abiotic characteristics).

Fungus measures can be based on the mycorrhization rate, the mycor-
rhizal hyphal length, the fungal species, or the genetic fungal strain. Bacterial
communities are too complex to be analyzed exhaustively, but their genetic
diversity can be approached by PCR-based molecular biology methods, like
for example denaturing gradient gel electrophoresis (DGGE) (Nakatsu et al,
2000), or by the use of fatty acid patterns of phospholipids and lipopolysac-
charides (Zelles, 1999). Their functional diversity can also be easily charac-
terized by measurement of the patterns of in situ catabolic potential (ISCP)
(Degens and Harris, 1997; Degens et al, 2001). Patterns of ISCP provide a
real time measure of microbial functional diversity since they assess substrate
catabolism by microbial communities in soils without extracting organisms as
it is required in the cultured-based methods. ISCP is based on the measure-
ments of CO2 production of soils moistened with a range of simple organic
compounds. This process is called Substrate Induced Respiration (SIR).
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Plants can be described by growth variables, dry weight of the whole plant
or of particular organs (shoot, root), nitrogen and phosphorus content, and
many other variables. Lastly, soil samples provide numerous physico-chemical
variables (particle size, pH, concentration of many chemical compounds) that
determine environmental conditions.

The 16 research studies on which this review is based have been summa-
rized in two tables: table 1 for studies using BGA, and table 2 for studies using
CoIA. These tables give, for each paper, the bibliographic reference, the main
ecological questions, and a summary of biological variables and environmental
factors analysed in the study.

3 Multivariate analysis methods

We have seen that five types of tables can be involved in the analysis of the
mycorrhizosphere effect on the structure and functioning of soil microbial com-
munities: fungal variable tables, plant variable tables, soil variable tables, ISCP
tables, and molecular fingerprint tables. Each type of table can be analyzed
separately, and further analyses can be performed according to the scientific
question under study, like the examination of relationships between some of
these tables, or the search for structures common to all tables.

Multivariate analysis methods can be used to attain several distinct ob-
jectives. The simplest one is dimensionality reduction, in which the user just
wants to reduce the size of the data table, without losing too much information.
This is particularly useful in the analysis of DNA fingerprints (RFLP, AFLP,
DGGE, TTGE, ARISA, etc). In these profiles, each individual electrophoresis
band brings almost no usable information. It is only the combination of many
bands that makes the profile useful to discriminate between samples.

Other objectives can be, for example, to find a sample score with maxi-
mal correlation with original variables, or finding a set of orthogonal variables
in a regression problem (orthogonal regression). But what is important here,
compared to univariate approaches, is that the multivariate approach allows
to retain the relationships between variables and between samples. It is the
correlation structure between variables (and between samples) that brings in-
formation, not the values of one variable independently from the others.

PCA is the most basic multivariate analysis method. Several theoretical
models lead to the same computational algorithm, based on eigenvalues and
eigenvectors decomposition. The most simple of these models is the geometrical
model (LeRoux and Rouanet, 2004), which is not based on any distributional
hypothesis, and imposes no particular constraint on the data table (as opposed,
for example to the multinormal adjustment model). In this geometrical model,
PCA can be applied to any numeric data table, regardless of the number of
variables, of their correlations, and of their distribution. Moreover, if the data
table contains a mixture of quantitative and qualitative variables, then the
Hill and Smith procedure can be used (Hill and Smith, 1976; Kiers, 1991).
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Two other methods are of general interest: between-group analysis and
coinertia analysis. BGA can be applied when samples belong to several groups.
This is the case for example when we want to compare the effect of different
treatments, like different levels of amendment, or different rates of mycorrhizal
inoculation, on plant growth or on microbial communities. CoIA is useful to
analyze the relationships between two tables having the same samples in rows.
It can be used for example to explore the relationships between in situ catabolic
potential (ISCP, representing bacterial functional diversity) and plant growth
variables, or between soil variables and DNA fingerprints.

The absence of constraint on the number of samples compared to the num-
ber of variables, on the correlation between variables, and on their distribution
is also true for BGA and COIA. This is very important, as the number of vari-
ables can be extremely high: several hundreds for the number of bands in
DNA fingerprints, or even several thousands for the probes on a DNA chip.
Less sophisticated techniques, such as ISCP, can also result in data tables that
have more columns than rows. Many statistical methods cannot be used when
the number of samples is lower than (or even comparable to) the number of
variables, or when the number of explanatory variables is too high. This is the
case for example of LDA, CCA and RDA (Ramette, 2007).

3.1 Between group analysis

BGA can be seen as a robust alternative to linear discriminant analysis (Hu-
berty, 1994) when the number of samples is too small compared to the number
of variables. The aim of discriminant analysis is to separate groups, or, more
precisely, to seek a linear combination of the variables that has a maximal ratio
of the separation of the class means to the within-class variance (Venables and
Ripley, 2002). Here, the groups correspond to treatments used to analyze the
mycorrhizosphere effect on soil microbial communities. For example, it can be
the level of phosphorus amendment, or the rate of mycorrhizal inoculation, or
the origin of soil samples. When the number of samples is high, discriminant
analysis gives the coefficients of the discriminant functions that best separate
groups. But when the number of samples is low, and particularly when it is
lower than the number of variables, discriminant analysis cannot be used. In
this case, BGA can be very useful, and provides illustrative graphical displays
of between-groups differences.

BGA can also be presented as a particular case of RDA. It corresponds
to the case where explanatory variables (also called “constraining variables”
in the vegan package) are reduced to a single dummy variable describing the
groups.

Here is a short presentation of BGA in the framework of the duality di-
agram (Holmes, 2006). Let us first define the duality diagram of a simple
PCA. Let X = [xij ](n,p) be the data table, with n rows (sampling sites) and p
columns (variables). XT is the transpose of X. Let Dn be the diagonal matrix
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(n x n) of site weights: Dn = diag(w1, ..., wn), and let Dp be a metric on Rp.
The duality diagram of the general analysis of this data table is:

Rp

Dp

// Rp∗

X

��

Rn∗

XT

OO

Rn

Dn

oo

This is called a “duality diagram” because Rp∗ and Rn∗ are the dual spaces
of Rp and Rn, and because the dual operators XT DnXDp and XDpXT Dn

share the same spectrum. This diagram is completely defined by the “triplet
notation”: (X,Dp,Dn), and the total inertia of this statistical triplet is:

IX = trace(XDpXT Dn)

The generalized PCA (gPCA) of this triplet corresponds to the spectral
decomposition of XT DnXDp. When Dn is the matrix of uniform row weights
(wi = 1/n), and Dp is the identity (euclidean metric), then this analysis is a
simple PCA, and if the variables are centered, the total inertia is the sum of
their variances.

We can now define the duality diagram of Between-Group Analysis. In
Between-Group Analysis, samples belong to g groups, namely G1, . . . , Gg, with
group counts n1, . . . , ng, and

∑
nk = n. Between-Group Analysis is the anal-

ysis of triplet (XB ,Dp,Dg), where XB is the (g, p) matrix of group means:

XB = [x̄k
j ](g,p).

The term x̄k
j = 1

nk

∑
i∈Gk

xij is the mean of variable j in group k. In matrix
notation, if B is the matrix of class indicators: B = [bk

i ](n,g), with bk
i = 1 if

i ∈ Gk and bk
i = 0 if i /∈ Gk, then we have:

XB = DgBT X.

Matrix Dg = Diag( 1
nk

) is the diagonal matrix of group weights, and BT

is the transpose of B. The corresponding duality diagram is the following:
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Between-Group Analysis is therefore the analysis of the table of group
means, leading to the diagonalization of matrix XT

BDgXBDp. It’s aim is to
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highlight the differences between groups, and the row scores maximize the
between-group variance. The statistical significance of these differences can
be tested by a permutation test (Monte-Carlo test), with a criterion equal
to the between/total variance ratio. Row scores of the initial data table can
be computed by projecting the rows of table X on the principal component
subspaces.

3.1.1 Using BGA

One of the advantages of BGA is the simplicity of its use: in the case of a
table of quantitative variables, it is just the PCA of the table of group means,
followed by a projection of the original samples as additional elements in this
PCA. This second step provides sample scores that can be used to draw useful
graphical displays.

But the biggest advantage of BGA is that it can be used on any type
of analysis. In the ade4 package for the R software, basic one-table analy-
sis methods include PCA, CA (correspondence analysis, for count tables),
MCA (multiple correspondence analysis, for qualitative variables) and PCO
(principal coordinates analyses, for distance matrices). Using BGA on these
analyses leads to original methods, like between-group analysis on qualitative
variables, between-group analysis on distance matrices, or between-group cor-
respondence analysis. The underlying duality diagram framework ensures that
all these methods are coherent and can be used according to the characteris-
tics of the data. There are many other types of analyses in the ade4 package,
such as FPCA and FCA (for fuzzy PCA and fuzzy CA), NSCA (non sym-
metric correspondence analysis), and several other variants. All these analyses
are adapted to particular data sets or particular data analysis objectives, and
BGA can be used on all these analyses.

3.1.2 BGA Examples

Nine of the 16 research studies used BGA (see table 1). In eight analyses, BGA
was done on ISCP data, and in one analysis (Faye et al, 2009), it was on plant
and fungal variables. The groups corresponded to different things: the effect
of Pisolithus sp. inoculation compared with other factors such as phosphorus
amendment (Ouahmane et al, 2009), the introduction of an exotic plant species
(an Australian Acacia, Acacia holosericea) (Remigi et al, 2008), symbiotic bac-
terial inoculation (Faye et al, 2009), the nurse plants effect (Ouahmane et al,
2006; Duponnois et al, 2009), or the effect of soil disinfection (Ramanankierana
et al, 2007). The other papers were focused on the interactions between Euca-
lyptus camaldulensis seedlings, Glomus intraradices inoculation, and fertilizer
amendment (Kisa et al, 2007), on cadmium resistance induced by termite
mounts powder amendment (Duponnois et al, 2006a), and on the compari-
son of functional microbial diversity between rhizosphere, hyphosphere, and
mycorrhizosphere soil compartments (Ramanankierana et al, 2006).



Multivariate data analysis of the mycorrhizosphere effect 9

In all but 3 of these analyses, the number of samples was less than the
number of variables (ISCP substrates), which means that we could not have
used “predictive” methods like LDA to separate groups and test the statistical
significance of the multivariate between-group differences. BGA allowed us to
analyze these data sets and to test the significance of differences.

3.1.3 BGA graphics

The aim of graphical displays after a BGA is to underline the differences
between groups when these differences are statistically significant. Three ex-
amples of BGA graphics are presented here: convex hulls [Figure 1, Faye et al
(2009)], stars [Figure 2, Kisa et al (2007)], and Gauss curves [Figure 3, Ouah-
mane et al (2009)].

In the first example (Figure 1), Faye et al (2009) use BGA to show that
the biomass increase of Faidherbia albida seedlings is positively linked to the
inoculation of Bradyrhizobia spp. Furthermore, this effect varies according
to the origin of Bradyrhizobia isolates. Bradyrhizobia strains were isolated
from a controlled mycorrhization experiment with an exotic Acacia species
(A. holosericea) and an ectomycorrhizal fungus, Pisolithus albus IR100. This
plantation was located in Senegal. Three origins of isolates were compared, and
four variables were measured on F. albida seedlings: shoot and root biomass
(SB and RB) and total number and dry weight of nodules (TN and DW). The
three isolate origins were:

1. Bacterial strains isolated from the soil of a plantation of A. holosericea pre-
viously inoculated with the ectomycorrhizal fungus P. albus IR100 (IR100S
in Figure 1)

2. Bacterial strains isolated from the soil of a plantation of A. holosericea
uninoculated with the ectomycorrhizal fungus (NIS in Figure 1)

3. Bacterial strains isolated from the soil of the F. albida parkland surround-
ing the A. holosericea plantation (PS in Figure 1).

On Figure 1, the three origins were represented with convex hulls surround-
ing the corresponding samples. A multivariate permutation test showed that
the differences were statistically significant (p < 0.01), and the use of convex
hulls on Figure 1 helped underline these differences. Faye et al (2009) con-
cluded that exotic plant species introduction (A. holosericea is an Australian
Acacia) can drastically affect the structure and symbiotic effectiveness of na-
tive Bradyrhizobia populations and noted that this could limit the natural
regeneration of native (Sahelian) plant species such as F. albida.

In the second example (Figure 2), Kisa et al (2007) use BGA to show that
the functional diversity of soil microbial communities (measured by ISCP)
is altered by the exotic tree species Eucalyptus camaldulensis, and that the
inoculation of an arbuscular mycorrhizal fungus (Glomus intraradices) can
counterbalance this negative influence. Figure 2 shows Substrate Induced Res-
piration (SIR) substrates (top) and the position of soil samples on which SIR
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Fig. 1 Between-group analysis (BGA) of Faidherbia albida growth (shoot and root biomass:
SB and RB, respectively) and nodule formation (total number and dry weight of nodules per
plant: TN and WN, respectively). A: plot of variable loadings. B: plot of sample scores. The
scale is given by the value in the upper right corner: this value represents the length of the
side of background grid squares. The second principal component opposes the shoot biomass
(up) to the nodule dry weight (down). The plot of sample scores (B) is split in three groups,
according to the origin of the Bradyrhizobia isolates: PS, soil of F. albida parkland collected
outside the A. holosericea plantation, NIS, soil of plantation with not inoculated trees, and
IR100S, soil of plantation with IR100-inoculated trees. The circle inside each convex hull
gives the position of the gravity center of each group. [Reprinted from Faye et al (2009) with
kind permission from Elsevier].



Multivariate data analysis of the mycorrhizosphere effect 11

Fig. 2 Between-group analysis (BGA) of the SIR responses with respect to the soil treat-
ments. WEC, without Eucalyptus camaldulensis seedlings. FA, preplanting fertilizer appli-
cation. 1, L-phenylalanine; 2, L-glutamine; 3, L-serine; 4, L-arginine; 5, L-asparagine; 6,
L-histidine; 7, L-lysine; 8, L-glutamic acid; 9, L-tyrosine; 10, L-cystein; 11, D-glucose; 12,
D-mannose; 13, sucrose; 14, D-glucosamine; 15, N-methyl-D-glucamine; 16, succinamide; 17,
ascorbic acid; 18, citric acid; 19, fumaric acid; 20, gluconic acid; 21, quinic acid; 22, malonic
acid; 23, formic acid; 24, ketoglutaric acid; 25, ketobutyric acid; 26, succinic acid; 27, tartaric
acid; 28, uric acid; 29, oxalic acid; 30, gallic acid; 31, malic acid; 32, DL-hydroxy-butyric
acid. [Reprinted from Kisa et al (2007) with kind permission from John Wiley and Sons].
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profiles were measured (bottom). The five pointed irregular stars on this fig-
ure show the five experimental repeats and their mean position (circle at the
center of the star). The permutations test of BGA confirmed that the differ-
ence between the four groups was highly significant (p < 0.001). The effect
of Eucalyptus camaldulensis on bacterial functional diversity (difference be-
tween WEC and FA), and the influence of Glomus intraradices inoculation,
are indeed very clear. Kisa et al (2007) conclude that arbuscular mycorrhizal
symbiosis with Glomus intraradices can counterbalance the negative influence
of exotic tree species on soil microbial communities.

In Figure 3, Ouahmane et al (2009) shows a third example of BGA graph-
ical display, with only one principal axis. The aim of this analysis was to
show that the inoculation of Pinus halepensis with the ectomycorrhizal fun-
gus Pisolithus sp. strain PH4 had a strong effect on soil microbial functional
diversity and on rock phosphate (Khodjari Rock Phosphate, KRP) solubilisa-
tion. The first axis of BGA very clearly shows the effect of PH4 inoculation on
functional diversity (ISCP profiles), so using the second axis to draw a factor
map was not appropriate. In the upper part of the graph, substrate labels are
ordered according to the substrate score on the first BGA axis. In the lower
part, Gauss curves are adjusted to the variables (mean and standard deviation)
of sample scores in each treatment. The mean and standard deviation of the
fives samples belonging to each of the four treatments (Control, KRP, PH4,
PH4+KRP) are computed and the corresponding Gauss curves are drawn.
This presentation shows, for each treatment, the optimal substrates (posi-
tion of Gauss curves) and the functional diversity (Gauss curve width). The
permutation test showed that the difference between treatments was highly
significant (p < 0.001).

3.2 Co-inertia analysis

There are many methods to analyze the relationships between two data tables.
In ecology, these methods play a major role because they can be used to analyse
the relationships between species distribution and environmental variables.
These methods are applied to a species data table, containing the number of
individuals of various species (columns) found in a series of places (rows), and
an environmental data table, containing the values of environmental variables
(columns) measured at the same places (rows). The statistical significance of
the relationships between the two tables can be tested by a permutation test,
using a criterion that depends on the particular method. In coinertia analysis,
this permutation test is based on the total coinertia criterion (i.e., the sum
of the squared cross-covariances between the variables of the two tables, see
paragraph 3.2.1).
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Fig. 3 Graphical display (biplot) of BGA axes showing the Substrate Induced Respirations
with respect to the soil treatments. The upper part of the figure shows the scores of the
31 substrates on the first BGA axis. The four Gauss curves in the lower part of the figure
represent the mean and the variance of the scores of the soil samples on the first BGA axis.
Control: un-inoculated and un-amended soil, KRP: soil amended with Khouribga Rock
Phosphate, PH4: soil inoculated with Pisolithus sp. strain PH4, PH4 + KRP: soil amended
with Khouribga Rock Phosphate and inoculated with Pisolithus sp. strain PH4. [Reprinted
from Ouahmane et al (2009) with kind permission from Springer Science+Business Media].

3.2.1 CoIA and other methods

Dray et al (2003) gives a detailed mathematical description of CoIA and
compares it with several methods, particularly canonical correlation analy-
sis (CANCOR), CCA, and RDA. They note that CoIA is the only method
that has no constraint on the number of samples compared to the number of
species or environmental variables. They also underline the problems occur-
ring when the number of samples is low, or when “explanatory variables” are
correlated. For example, if the number of samples is lower than the number of
environmental variables, then CCA is equivalent to a simple CA, and the po-
tential relationship with environmental variables disappears. In the same way,
RDA is reduced to a simple PCA, and the relationship with the environment
is lost.

The main difference between CoIA and constrained methods like CCA and
RDA is the difference between the “descriptive strategy” and the “predictive
strategy” (Thioulouse, 2011). The aim of the first strategy is an objective de-
scription of the data set and of the relationships between its components. The
second approach is orientated toward the prediction of “explained” (or “depen-
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dent”) variables by “explanatory” (or “independent”) ones. This distinction
implies an asymmetry of predictive methods and a symmetry of descriptive
ones. This difference also implies computational constraints: predictive meth-
ods have a matrix inversion step that is not present in descriptive methods.
This matrix inversion step has negative consequences on the data sets that can
be analyzed: it means that “explanatory” variables must be independent (in
the statistical sense), because the rank of their correlation matrix must not be
less than its dimension. This also implies that the number of cases (samples)
must not be less than the number of explanatory variables.

In the same way as BGA can be viewed as the analysis of the table of group
means in the case of quantitative variables, CoIA can be seen as the analysis
of the table of cross-covariances between the variables of the two tables. The
number of rows and columns of this crossed table is equal to the number of
variables of the two tables. The sample scores are computed by projection of
the rows of the two tables as additional elements into the vector space defined
by this analysis. This means that CoIA provides two sets of sample scores (one
for each of the two initial tables). A description of CoIA in terms of duality
diagram is given by Thioulouse (2011), and we give here a short summary of
this presentation.

Let X be the first table (environment variables table), with n rows (sam-
pling sites) and p columns (variables), and let Y be the second table (species
data), with the same n rows, and q columns (species). XT and YT are the
transpose of X and Y. Let Dn be the diagonal matrix (n x n) of site weights:
Dn = diag(w1, ..., wn), and let Dp and Dq be two diagonal metrics on Rp and
Rq respectively. Co-Inertia Analysis is defined by its “coupled diagram”, that
shows that CoIA is the eigenanalysis of matrix XT DnYDqYT DnXDp:

Rp

Dp

��

Rn∗
XT

oo
YT

// Rq

Dq

��

Rp∗

X

// Rn
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OO

Rq∗

Y

oo

The triplet notation of this diagram is (YT DnX,Dp,Dq). If the columns
of both tables are centered, then the total inertia of each table is simply a sum
of variances: IX = trace(XDpXT Dn) and IY = trace(YDqYT Dn). And the
co-inertia between X and Y is in this case a sum of squared covariances:

CoIXY = trace(XDpXT DnYDqYT Dn)

It is this criterion that is used in the permutation test to check for the
statistical significance of the relationship between the two tables.

Co-inertia analysis is also related to partial least squares (PLS) regression:
the first step of PLS regression is equivalent to the first CoIA axis. It is sim-
ilar to WA-PLS (ter Braak and Juggins, 1993) and has the same advantages,
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allowing the use of any number of variables without having to select some
of them through questionable methods like stepwise regression with forward
and/or backward selection.

3.2.2 CoIA examples

Seven of the 16 articles used CoIA (see table 2). In six analyses, it was used
to study the relationship between microbial functional diversity (ISCP data)
and another type of data, and in one analysis (Diallo et al, 2006), it was
used to study the effects of native and exotic plant residues (leaf powders) on
plant growth and microbial communities. CoIA was used to analyze the rela-
tionship between the microbial functional diversity, the plant growth and the
mycorrhizal symbiosis establishment under different soil treatments (mycor-
rhizal inoculation and phosphorus amendment) (Ouahmane et al, 2007). It was
also used in a study on the relationship between microbial functional diver-
sity, Sorghum growth and Striga development with or without termite mount
powder amendment (Andrianjaka et al, 2007). Another example is given by
Ouahmane et al (2006) in a study focused on the effect of nurse plants (La-
vandula species) on Cupressus arizonica growth, and soil microbial functional
diversity. Duponnois et al (2006b), Duponnois et al (2005a) and Duponnois
et al (2005a) use CoIA to analyze the relationships between soil microbial func-
tional diversity, plant growth and mycorrhizal variables in various conditions
of termite mound powder amendment, rock phosphate amendment, and inoc-
ulation with an ectomycorrhizal fungus, Scleroderma dictyosporum. The last
example is the use of CoIA to analyze the effect of rock phosphate amendment
and Glomus intraradices inoculation on the relationships between microbial
functional diversity and plant growth and some soil microbial characteristics
(Duponnois et al, 2005b).

In most of these examples, the number of samples is low: these are field data
and each sample represents a lot of time and work. While many data analysis
methods could not be applied on such data sets, CoIA allows researchers to
analyze them and to test the significance of observed structures.

3.2.3 CoIA graphics

The aim of graphical display in CoIA is to reveal the relationships between the
two data tables. CoIA provides four sets of coordinates: one set for the rows
and one set for the columns of the two tables. Figure 4 is taken from Ouahmane
et al (2007) and shows an example of the four graphics that can be drawn with
these four sets of coordinates. In this example, the objective of the authors was
to show the difference between native (AM) and allochtonous (GI) arbuscular
mycorrhizal fungi inoculation on soil bacterial functional diversity and on rock
phosphate alteration. They used CoIA to analyze the relationship between a
table of SIR profiles and a table of plant variables. In the SIR profiles table, the
columns correspond to the 28 substrates, and the rows to the 18 soil samples. In
the plant variables table, the columns are Cupressus atlantica seedling height
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(H), shoot and root biomass (SB, RB), leaf P content (P), and mycorrhizal
colonization (MC). The rows correspond to the same 18 soils as in the first
table. The CoIA permutation test showed that the relationship between these
two tables was highly significant.

The first graph (Figure 4A) is the factor map of plant variables. The
five variables are all oriented toward the left of the graph. This is a “size
effect”, meaning that the left side of the graph corresponds to samples where
plant growth is better, while conversely the right side corresponds to a lesser
growth of Cupressus atlantica seedlings. On Figure 4C, we can see that this
better growth is correlated with the inoculation of native arbuscular mycor-
rhizal fungi (CAM), and that this effect is even stronger when rock phosphate
amendment is done (CAMP). Inoculation with the allochtonous fungi Glomus
intraradices (GI) is also correlated with a better plant growth, but there is no
additional rock phosphate amendment effect (GIP).

On Figures 4B and 4D, we can see that plant growth is also linked to
the functional diversity of the soil microbial community. The SIR substrates
located on the left side of Figure 4B (particularly organic acids) correspond
to a better plant growth, and are correlated with the inoculation of native
arbuscular mycorrhizal fungi (CAM), alone or combined with rock phosphate
amendment (CAMP). The effect of Glomus intraradices inoculation (GI) alone
or combined with rock phosphate amendment (GIP) is also positive on plant
growth, but clearly less than the effect of native arbuscular mycorrhizal fungi.
Rock phosphate amendment alone (CP) is also positive, but less than in com-
bination with fungi inoculation.

Authors concluded that the use of native arbuscular mycorrhizal fungi
and their selective effect on soil microflora have to be considered in order to
optimize the sustainable re-establishment of plant species in a degraded soil.

4 Discussion and conclusion

The results reported in these articles show that: (i) soil biofunctioning is driven
by a multitude of microbiological components and biochemical pathways, (ii)
the mycorrhizal symbiosis plays a key role in the complexity of microbial life
in soil and (iii) it is necessary to use appropriate statistical tools to assess
the patterns of soil microbiological and biochemical indicator aggregation for
evaluating soil quality. Patterns of indicator aggregation are used to describe
the state of a given ecosystem by integrating and summarizing the information
contained in a larger set of indicators. It has been hypothesized that decreases
in the diversity of soil organisms will lead to a lower resistance of soils to
stress or disturbance (Brussaard et al, 1997). The quantification of the impacts
of various treatments on soil quality and more particularly on soil microbial
functional diversity, is therefore of great relevance in the cultural strategies
required in conservation programs.

This paper has pointed out some original multivariate analysis techniques
that offer opportunities to analyze soil data and to determine interactions be-
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Fig. 4 Co-inertia analysis of the SIR responses of the soils inoculated with Glomus in-
traradices or the mixture of native arbuscular mycorrhizal fungi and/or Khouribga Rock
Phosphate, plant growth, phosphorus leaf content and mycorrhizal colonization. (A) Factor
map of plant growth and mycorrhizal colonization variables (H, height; SB, shoot biomass;
RB, root biomass; P, leaf P content; MC, mycorrhizal colonization). (B) Factor map of
SIR responses (D-mannose, 1; L-serine, 2; L- histidine, 3; L-tyrosine, 4; gluconic acid, 5;
uric acid, 6; L-lysine, 7; L-glutamic acid, 8; sucrose, 9; succinamide, 10; cyclohexane, 11; L-
glutamine, 12; citric acid, 13; ketobutyric acid, 14; tartaric acid, 15; DL-hydroxybutyric acid,
16; N-methyl-D-glucosamine, 17; D-glucose, 18; quinic acid, 19; L-asparagine, 20; succinic
acid, 21; malic acid, 22; oxalic acid, 23; fumaric acid, 24; ascorbic acid, 25; malonic acid,
26; ketoglutaric acid, 27; L-arginine, 28). (C) Factor map of plant growth and mycorrhizal
colonization (C, control (not inoculated); CP, Khouribga Rock Phosphate amendment; GI,
Glomus intraradices inoculation; GIP, Glomus intraradices inoculation and Khouribga Rock
Phosphate amendment; CAM, mixture of native arbuscular mycorrhizal fungi inoculation;
CAMP, CAM inoculation and Khouribga Rock Phosphate amendment). (D) Factor map of
SIR responses soil samples (for the legend, see (C)). [Reprinted from Ouahmane et al (2007)
with kind permission from Elsevier].
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tween plants, microbial communities, mycorrhizal fungi and physico-chemical
environmental variables. Data reviewed from the 16 articles have outlined the
fundamental role of mycorrhizal symbiosis in soil biofunctioning and the impor-
tance of interactions with other variables such as soil chemical characteristics,
amendments (for example rock phosphate amendment) or the composition of
plant cover. All these studies have been realized in different environmental
conditions, with different biological models and with replicates for each treat-
ment.

In the present paper, most of the reviewed studies were based on examin-
ing patterns of ISCP. Numerous studies have outlighted the importance of the
functional diversity of soil microbial communities for the sustained function-
ing of terrestrial ecosystems (Degens et al, 2000). The functional diversity of
microbial communities includes a wide range of activities including decompo-
sition, nutrient transformations, plant growth promotion or suppression and
various soil physical processes. The ISCP assessment provides a more realistic
measure compared with other methods since it reveals a direct measurement
of substrate catabolism by soil microflora without prior culturing of microbes
usually necessary in the culture-based methods. The main objective of this
technical approach is to give an indicator of the soil microflora capacity to
mobilize some nutrients (i.e. P and N) from the organic matter or minerals
and to keep a level of soil fertility required for the productivity and stability of
an ecosystem. Among soils subjected to different cultural practices or different
plant covers (more or less degraded), ISCP patterns will differ according to the
functional diversity of microbial communities. Hence ISCP measurement will
give informations on the soil quality and the resistance of a soil to stress and
disturbance (Remigi et al, 2008) and consequently on the resilience capacity
of an ecosystem.

It is well known that ecological stability (resistance and resilience) of a soil
system is a key factor influencing ecosystem properties and processes (Orwin
and Wardle, 2004). Resistance is usually considered as the amount of change
caused by a disturbance and resilience as the speed with which an ecosys-
tem returns to its pre-disturbance level following a disturbance (Pimm, 1984).
In this context, mycorrhizal development has a great role in the stability of
soil ecosystems. Numerous indices on both resistance and resilience have been
proposed in the literature to quantify soil ecosystem stability (Lavorel, 1999;
Orwin and Wardle, 2004), but they are not easy to use and interpret. It is nec-
essary to have indices that provide a relative quantitative measure of resilience
and resistance of a response variable in all possible scenarios to compare the
stability of different systems. Most indices currently in use are not able to do
this or are difficult to interpret particularly because of lack of standardization
in experimental conditions.

All these approaches have to be compared and the variables hierarchised in
order to provide robust indices measuring the level of an ecosystem stability
that can be used in a wide range of environmental situations. Using the syn-
thetic capacity of factor scores computed by multivariate analyses is probably
a good choice in this area. With these statistical tools, different environmental
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conditions and different studies can be quantitatively compared more easily
than with other univariate statistical methods. However, real operational in-
dicators based on this approach are still to be developped. The idea here is to
synthetize the information from these experimental studies in order to identify
the cultural practices that are able to enhance some biological indicators po-
tentially involved in the resistance and stability of the ecosystems. The main
objective is to highlight or underline one or several indicators which contribute
the most to the synthetic measures of stability.

Since a lot of biological and chemical variables can be analysed together
and as links can be identified between variables, this approach can provide
useful information from different environmental conditions and contribute to
a generalization of the effect of a cultural practice (i.e. controlled mycorrhiza-
tion, soil mycorrhizal potential management) on the stability of the ecosystem.

Lastly, the availability of appropriate software is also a key component
of this approach. In this area, the R software offers a wide range of statisti-
cal methods, and the ade4 package includes many multivariate data analysis
techniques in addition to PCA, BGA and CoIA. Other R packages are useful
for ecological data analysis, particularly the vegan package (Oksanen et al,
2010), but the ade4 package has the particularity of being based on the dual-
ity diagram. This means that it proposes a synthetic and coherent theoretical
framework for all the multivariate analysis methods. This is described in the
forthcoming articles presented in de la Cruz and Holmes (2011). For example,
Thioulouse (2011) present several k-table analysis methods like STATICO and
COSTATIS, and a simple generalization of BGA and CoIA, named between-
group coinertia analysis (BGCoIA) that could be particularly interesting for
the study of the resilience capacity of an ecosystem after a stress or disturbance
of soil variables.

Acknowledgements Authors are extremely grateful to the reviewer for the countless com-
ments and very relevant suggestions that greatly helped improve the successive versions of
this paper.
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Table 1 Bibliographic reference, ecological questions and targeted factors in the nine papers where BGA was used.

Paper reference Ecological question Analysed factors

Duponnois et al. (2006a), Sci-
ence of the Total Environment

Impact of termite mound amendment on the sorghum toler-
ance to soil Cd content

Plant growth, fluorescent Pseudomonads
abundance and functional diversity, ISCP

Duponnois et al. (2009) in Mi-
crobial Strategies for Crop Im-
provement

Nurse plant effect in reforestation programs Plant growth, abundance and functional diver-
sity, ISCP

Faye et al. (2009), Soil Biology
and Biochemistry

Response of native Bradyrhizobial community diversity (struc-
ture and functional diversity) to the introduction of an exotic
tree species (Australien Acacia species)

Genetic and functional diversity, symbiotic
performance of Bradyrhizobial strains on the
Acacia species Faidherbia albida

Kisa et al. (2007), FEMS Mi-
crobiology Ecology

Response of soil microbial functions and diversity to the in-
troduction of an exotic tree species and assessment of the role
of the mycorrhizal symbiosis in plant co-existence

Plant growth, herbaceous plant species layer
composition, soil microbial diversity, ISCP

Ouahmane et al. (2009), Plant
and Soil

Ectomycorrhizal impact on plant growth, rock phosphate sol-
ubilization and soil microbial functions

Plant growth, plant nutrition, mycorrhizal col-
onization, ISCP

Ramanakierana et al. (2006),
International Journal of Soil
Science

Effect of ectomycorrhizal symbiosis on soil microbial functions Mycorrhizal colonization, soil microbial func-
tional diversity, fluorescent Pseudomonads,
ISCP

Ouahmane et al. (2006b),
Plant Ecology

Impact of shrub species on soil microbial and chemical charac-
teristics and consequences on the early growth of C. atlantica

Plant growth, plant nutrition, mycorrhizal col-
onization, soil chemical characteristics, ISCP

Ramanakierana et al. (2007),
Mycorrhiza

Potentiel benefits of ionoculation with mycorrhizal fungi (ec-
tomycorrhizal and/or arbuscular mycorrhizal fungi) on plant
growth and on functional diversity of soil microflora

Plant growth, plant nutrition, mycorrhizal col-
onization, ISCP

Remigi et al. (2008), Appl. En-
viron. Microbiol.

Response of native soil microflora functions to the introduc-
tion of an exotic tree species

ISCP
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Table 2 Bibliographic reference, ecological questions and targeted factors in the seven papers where COIA was used.

Paper reference Ecological question Analysed factors

Andrianjaka et al. (2007), Ap-
plied Soil Ecology

Impact of termite mound amendment on Striga development Plant growth, mycorrhizal colonization, acti-
nomycete abundance, ISCP

Duponnois et al. (2006b),
FEMS Microbiology Ecology

Impact of termite mound amendment on ectomycorrhizal sym-
biosis between Acacia holosericea and Scleroderma dictyospo-
rum.

Plant growth, mycorrhizal colonization, rhizo-
bial colonization, ISCP

Diallo et al. (2006), European
Journal of Soil Biology

Impact of litter amendments on plant growth, soil fertility and
soil microbial biomass

Plant growth, litter chemical characteristics,
soil microbial biomass, soil nitrogen content

Duponnois et al. (2005a), Geo-
derma

Impact of termite mound amendments on plant growth, rock
phophate dissolution and soil microbial characteristics

Plant growth, plant mineral nutrition, mycor-
rhizal colonization, ISCP

Ouahmane et al. (2006a), Ap-
plied Soil Ecology

Impact of Lavandula species on mycorrhizal soil potential, soil
microbial functions and on the regeneration process of Cupres-
sus spp.

Plant growth, plant nutrition, mycorrhizal soil
potential, ISCP

Ouahmane et al. (2007), Forest
Ecology and Management

Influence of native or exotic fungal symbionts on the plant
growth, soil microbial functional diversity and rock phosphate
alteration

Plant growth, plant nutrition, mycorrhizal col-
onization, ISCP

Duponnois et al. (2005b), Soil
Biology and Biochemistry

Arbuscular mycorrhizal effect on plant growth, soil microbial
functions, rock phosphate solubilization and plant P uptake

Plant growth, plant nutrition, mycorrhizal col-
onization, ISCP


