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1. GENERAL INTRODUCTION

In the last years the number and range of chemometric applications has 

increased considerably due to an increase in both demand and supply. 

On the demand side it has been the development, automation and 

digitization of chemical analytical techniques that has stimulated the need 

for applied chemometric techniques. Not only is a spectrum or 

chromatogram hardly ever plotted anymore on paper as primary way of 

recording, the nowadays common digital storage also opens the possibility 

of advanced data analyses long after the chemical analysis is finished. 

Furthermore, the technical improvements of the analytical instruments have 

led to a much higher flow of data resulting typically in data file sizes in the 

order of megabytes per experiment. These developments have 

consequently led to a flow of analytical data that cannot be handled 

anymore in the traditional ways. Another type of demand is stimulated not 

so much by the complexity of the data analysis but by the necessary speed: 

The development of fast, versatile but non-selective spectroscopic process 

analyzers. These new instruments and methods are optimized for short 

analysis time, instrumental robustness and linear response over a wide 

range rather than selectivity and accuracy. Consequently they can often 

only be used in combination with multivariate calibration methods that are 

able to compensate for the lack of selectivity and consequent interferences. 

On the supply side two major trends make it possible to meet the increased 

demand described above. A first aspect is that chemometrics, - as all other 

computationally intensive disciplines -, can take advantage from the fact 

that computing power and data storage capacities double every 1½ to 2 

years. Second, and perhaps as a consequence of the first, chemometrics 

has created a vast and even still growing collection of algorithms and tools 

applicable to a wide spectrum of analytical problems. This does not mean 

that theoretical advancement has become unnecessary. The data analysis 

of multidimensional measurements is still an evolving field, but the work of 
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the average chemometrician is shifting from algorithm development towards 

application and method development. 

In this more practical line of work robustness, simplicity and data 

preprocessing play an equally important role in the model as the 

multivariate algorithm itself. Generally, while assessing which methods, 

algorithms or strategies are possible, different aspects have to be 

addressed. Before evaluating the possible choices, the aim and setting of 

the model to be built have to be considered: Is the model only descriptive, 

predictive or both; how many samples can be measured; what is known 

about the analysis and its environment? These considerations give the 

boundaries between which a solution must be found. In a next step, the 

more technical aspects have to be addressed; a few examples are given 

below:

• Interference: Measurements are influenced by variation other than 

the one induced by the analyte or entity to be modeled. Noise or 

interfering species with different gradations of correlation can make 

modeling more difficult and complex, especially if the interferences 

are difficult to map or quantify a priori. 

• Linearity: The question is whether the problem at hand is 

fundamentally linear (Lambert-Beer’s law) or not (exponential decay). 

Furthermore, the problem might be linear in principle but not in 

practice due to a deviation from the ideal case, e.g., saturation 

effects. The method to tackle the non-linearity, e.g. linearization by 

preprocessing, approximation with a linear model or use of a non-

linear algorithm, will vary and depend on the data.

• Time, stability and long term effects: Depending on the application, a 

model has to be valid over different time spans. In the case of a 

“long-life” model changes in environment or aging of apparatus might 

lead to the necessity of additional standardization strategies. 
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Considerations and aspects mentioned above are obviously only the most 

common and can be extended considerably in more specific cases. 

Therefore, the work presented in the next chapters cannot be 

comprehensive but will deal with only certain aspects of linearity and 

interference. 

More specifically, the work concentrates on non-linear interferences on 

spectra hampering the use of linear multivariate models and the possible 

ways to deal with it. As an illustration, temperature-induced absorption shifts 

in short-wave Near-Infrared spectra are chosen for the non-linear 

interference. The shifting absorption bands are fundamentally non-linear 

because they can be described as response-shifts between information 

channels: Each wavelength represents an information channel where the 

information about the concentration and identity are represented by the 

absorption (response) and wavelength (channel) respectively. An 

absorption shift over different wavelengths, or in other words a leakage 

between the channels, can never be described by a linear function. Partial 

Least Squares (PLS) regression models will stand as example for linear 

models, since PLS is one of the most often applied multivariate linear 

calibration models. Due to the non-linear nature of the interference, the 

multivariate linear model will either identify the shifted bands as “new” 

components, incorporating them in a more complex model, or significantly 

loose accuracy in a model with constant complexity. The exact effect of the 

non-linearity on the model depends on the calibration and preprocessing 

strategy used.

Therefore, Chapters 2 to 5 will attempt to give an overview of the 

possibilities to deal with and eventually correct for non-linear interferences. 

Generally two main strategies can be identified: the either implicit or explicit 

inclusion of the interference into the model or the correction for the 

interference previous to the calibration model itself. Chapter 2 describes 

how the temperature fluctuations affect the short-wave Near-Infrared 

spectra of the chosen mixtures, leading to a shifting absorption band. Using 
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a synthetic set of signals (a shifting Gaussian peak) and a simple 

descriptive multivariate model (Principal Component Analysis) the effects of 

response shifts on linear models are visualized. Finally, different ways to 

include the interfering temperature into the regression models are compared 

to the regression without the non-linear interference. In Chapter 3 methods 

with a more explicit inclusion of the temperature into the model and a 

variable elimination method using the same PLS algorithm as for the final 

regression model are tested and compared to the previous models. 

Furthermore the (im)possibilities of linear basis transformations are 

evaluated more fundamentally in order to assess the limits of linear 

approaches to tackle non-linearities. In Chapter 4 an extension of a 

preprocessing algorithm for discrete correction situations (Piecewise Direct 

Standardization correction for e.g. two instruments, PDS) is developed to 

accommodate the continuous character of temperature fluctuations. This 

continuous PDS technique results in a non-linear pre-processing without 

resorting to elimination or selection of variables. In Chapter 5, a variable 

selection based on a probabilistic algorithm (Simulated Annealing) is 

examined in order to assess the possibilities of a more sophisticated 

variable selection technique and in order to compare the results with those 

of some of the earlier models. 

All the above-described models and strategies use inclusion or pre-

processing and may require information about and/or additional 

measurements of the non-linearly interfering temperature. In order to enable 

a quick overview of the approaches used and information needed, the most 

important characteristics of the presented methods are summarized in the 

following table (Table 1-1).
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Table 1-1: Models and strategies used
Temp. known for

Category  and  Model Type Chapter

Pre-

processing Calibration Prediction

Implicit 

inclusion

Global
2 None � �

Local + 

interpolation
2 None � �

Incl. in X 3 None � �
Explicit 

inclusion in 

calibration 

model Incl. in Y 3 None � �
2-step PLS 3 Linear � �
Basis 

projection
3 Linear � �

Var. selection 

PLS-UVE
3 Non-linear � �

CPDS 4 Non-linear � �

Data pre-

processing

Var. selection 

SA
5 Non-linear � �

�: Knowledge of temperature is required in order to be able to use the model.

�: Temperature is not required but in case of calibration it should be possible to 

assume, by e.g. the size of the dataset, that the temperature variation is well 

spread in order to be excluded as a confounding factor.
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2. INFLUENCE OF TEMPERATURE ON VIBRATIONAL SPECTRA 

AND CONSEQUENCES FOR THE PREDICTIVE ABILITY OF 

MULTIVARIATE MODELS.

Abstract

Temperature, pressure, viscosity and other process variables fluctuate 

during an industrial process. When measuring vibrational spectra on- or in-

line for process analytical and control purposes, the fluctuations influence 

the shape of the spectra in a non-linear manner. The influence of these 

temperature induced spectral variations on the predictive ability of 

multivariate calibration models is assessed. Short wave NIR spectra of 

ethanol/water/2-propanol mixtures are taken at different temperatures and 

different local and global partial least squares calibration strategies are 

applied. The resulting prediction errors and sensitivity vectors of a test set 

are compared. For data with no temperature variation, the local models 

perform best with high sensitivity but the knowledge of the temperature for 

prediction measurements cannot aid in the improvement of local model 

predictions when temperature variation is introduced. The prediction errors 

of global models are considerably lower when temperature variation is 

present in the dataset but at the expense of sensitivity. In order to be able to 

build temperature-stable calibration models with high sensitivity, a way of 

explicitly modeling the temperature should be found.

Based on: Wülfert, F.; Kok, W.Th.; Smilde, A.K.; Anal. Chem. 1998, 70, 

1761-1767. 
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Introduction

General

Mid infrared, Near-Infrared (NIR) and short-wave NIR spectroscopic 

techniques in combination with multivariate calibration are finding an 

increasing range of applications in process analysis 1 , 2 , 3 , 4 , 5 , 6 , 7 . The 

spectroscopic analysis can be done in- or on-line and, in contradiction to 

slower classical off-line techniques, the results can be used for process 

control purposes. 

The high sensitivity and consequently short pathlengths (in the range of a 

few µm) of mid-IR instrumentation is often not compatible with industrial 

environments. With the orders of magnitude lower absorbance of the 

overtones in NIR and short-wave-NIR , much more robust flow cells can be 

used which are not susceptible to blockage.

By moving the measurement from the well controlled laboratory to the 

process environment, external process variables such as temperature, 

pressure, flow turbulence will also affect the measurements. The difficulty to 

keep these variables constant or even the inevitability to change their value 

during the process (e.g. temperature programming in batch processes) 

makes it necessary to study the influence on the spectra and therefore also 

on the calibration models.

Temperature effects on vibrational spectra

Vibrational spectra from liquid and solid samples do not only show isolated 

molecular features, such as structure and functional groups, but also inter-

or intramolecular features, such as hydrogen bonding. These weaker forces 

influence the vibrational modes8, 9, 10, 11, 12, 13, 14, 15, 16, 17 of molecular bonds 

but are themselves affected by conditions such as temperature and 

pressure. Therefore the variations in, e.g., temperature translate via the 

changes in intermolecular forces to modifications of the vibrational spectra. 
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The influence of the temperature on the O-H stretch band and its overtones 

has been described in various articles18, 19, 20, 21, 22. The hydroxyl group gives 

rise to two bands for its stretching mode: a sharper band for the “free” O-H 

groups and a broader one for the stretch mode of hydrogen-bonded O-H 

groups. The broad band, which can be seen as an overlay of many bands 

that belong to different cluster sizes formed by hydrogen bonding, is shifted 

towards lower energies (higher wavelength) relative to the free O-H stretch. 

Rising the temperature decreases the average cluster size and increases 

the relative absorbance of free groups23. 

This can be seen most clearly in water spectra where the hydroxyl band 

shifts to the lower wavelengths and becomes sharper when the temperature 

is increased. The increase of free O-H groups can also be observed for 

alcohols, but a combination C-H stretch mode that absorbs in the same 

region makes the effect less apparent. Similar effects can be observed for 

spectra of polyamides and polyurethane, where the N-H groups can form 

hydrogen bonds24, 25, 26. The bands originating from N-H stretching modes 

are influenced by the temperature much in the same way as for hydroxyl 

groups. 

Effects of shifts and peak distortion on multivariate regression

Due to a lack of selectivity NIR applications consist mostly of spectroscopic 

measurements in combination with multivariate data analysis. Partial Least 

Squares (PLS) and Principal Component Regression (PCR) are the most 

common methods. Both methods assume linear additivity. This means that 

absorption spectra are supposed to increase linearly with the concentration 

(linearity) and that a mixture of components gives a spectrum that is a linear 

combination of the pure spectra (additivity). Any deviation from this ideal 

behavior has to be approached by using more components in the PLS or 

PCR model. 

Spectra that exhibit shifts or other changes in their shape do not conform to 

the linearity demand and consequently a multivariate model will have to use 
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more regression factors than is to be expected by the chemical rank 

(number of components in the mixture). 

Scope of this chapter

To study the effect of external variation on the predictive ability of 

multivariate calibration for spectral data, the temperature has been chosen 

as the external variable. Short-wave NIR spectra, measured at different 

temperatures, of mixtures containing ethanol, water and 2-propanol are 

used as data and PLS regression is employed as data analysis method. 

Two different types of PLS models are compared: local models that apply to 

samples of one temperature and global models that can be used for 

samples at different temperatures. The difference in prediction error for the 

different models is used to evaluate which calibration strategy can handle 

temperature-influenced spectra. Explanation of the differences in predictive 

ability is sought by inspecting the sensitivity vectors for the analytes. 
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Experimental section

Apparatus

Mixtures of ethanol, water and 2-propanol have been prepared using an 

analytical balance and kept in airtight sample flasks. Fresh p. a. quality 

alcohols and sub-boiled water have been used. Closed quartz cells with 

1 cm path length have been used in order to prevent dissipation of the 

alcohols during the measurement. The spectra have been taken on a HP 

8453 Spectrophotometer with a thermostatically controlled cell holder and 

cell stirring module (Hewlett Packard, Palo Alto, CA, USA). The wavelength 

range used was 580 to 1091 nm with 1 nm resolution and the integration 

time was 20 s. The collection of the spectra was done on a Hewlett Packard 

Vectra XM2 PC using the UV-Visible Chemstation software (Rev A.02.04). 

The temperature of the sample has been regulated using an external Pt-100 

sensor immersed in the sample and linked to the controller of a Neslab 

microprocessor EX-111 circulator bath. 

For simulations and the data processing Matlab (ver. 4.2 and 5; The 

Mathworks Inc.) and the PLS toolbox (ver. 1.4) were used on a Pentium-

class computer.
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Mixture design

In order to span the concentration variation a mixture design (Figure 2-1) 

has been set up. The mole fraction levels that obey this design have been 

mixed and are given in Table 2-1. In order to perform linearity and additivity 

tests, the spectra of the pure components have also been measured.

The 19 mixtures and the three pure components have been measured at 

temperatures of 30, 40, 50, 60 and 70°C (± 0.2°C).

17

13

1098 11

161514

1918

12

4 5 6 7

1 2 3

100%
Ethanol

100%
water

100%
2-propanol

Figure 2-1: Mixture design for ethanol, water and 2-propanol mole 

fractions.
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Table 2-1: Mole-fractions of the samples in %
ethanol water 2-prop.

1 66.4 33.6 0
2 67.2 16.3 16.5
3 66.6 0 33.4
4 50.0 50.0 0
5 50.0 33.3 16.7
6 49.9 16.7 33.3
7 50.0 0 50.0
8 33.3 66.7 0
9 33.2 50.0 16.7

10 33.3 33.4 33.3
11 32.2 16.6 51.2
12 33.5 0 66.5
13 16.6 66.7 16.7
14 16.7 50.0 33.3
15 16.6 33.3 50.1
16 16.2 16.3 67.5
17 0 66.7 33.3
18 0 50.0 50.0
19 0 33.4 66.6
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Data analysis

Pretreatment and analysis of experimental data

The measured spectra are pretreated to remove instrumental baseline drift. 

Straight lines are fitted through the wavelength range 749-849 nm, where 

no absorbance bands are present, and subtracted from the spectra. The 

data analysis is performed on the region 850-1049 nm. The absorption at 

lower wavelengths is too low to be considered significant and absorption 

above 1050 nm is very noisy due to instrumental effects. 

The data analysis consists of PLS1 regressions using the mean-centered 

pretreated spectra as X-block and mean-centered mole fractions for each 

chemical component separately as y-vector. For the different models that 

will be used the data is always split into a training set for building the 

respective model and a test set for estimating the predictive quality of that 

model. When building the model, cross validation techniques are used to 

estimate the number of latent variables (LV’s). 

PLS models have been built for each temperature separately (local models) 

and for the full dataset containing all temperatures (global models). These 

two cases are fundamentally different when used for prediction of new 

samples. 

Local models 

When building small, local models for each temperature it is also necessary 

to know the temperature of the new samples in the prediction step, 

otherwise it is not possible to choose one of the local models. If a model 

and a prediction sample are measured at the same temperature, the mole 

fraction can directly be predicted (case a). Another possibility is that the 

temperature of the new sample falls in between the model-temperatures 

(case b). In the latter case the estimated concentration of the new sample 

from one of the models is expected to be biased. In order to achieve a 



Chapter 2

15

better prediction, the mole fraction can be estimated by interpolating 

between the results of the models.

Case a: At each temperature models for each chemical compound are built 

from samples that are on the “edge” of the experimental design (samples 1, 

2, 3, 4, 7, 8, 12, 13, 16, 17, 18, 19) and the sample in the “center” (sample 

10). The test set is given by the remaining concentration levels (samples 5, 

6, 9, 11, 14, 15). As can be seen from the graphical representation in Figure 

2-2 A, no extrapolating prediction will be done. The results from local 

models case a can also bee seen as a “best case scenario” considering that 

temperature does not play any role.

Leave-one-out cross validation is used to establish the number of LV’s in all 

models, using the prediction error for the left-out samples and visual 

examination of the loading as criteria.
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A B

C D

 

Figure 2-2: Graphical representation of training (gray circles and areas) 

and test (white circles and areas.) sets. A: Local models case 

a; B: Local models case b; C: Global models case a; D: Global 

models  case b; .

Case b: Since the test set consists of samples measured at a different 

temperature all samples from the experimental design can be used for 

building the model. Three models are built from the spectra at 30, 50 and 

70°C and the prediction samples are the spectra measured at 40 and 60°C 

(See Figure 2-2 B).
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The models are build with the same number of LV’s as established for the 

models in case a. The mole fractions of the test set are estimated by 

averaging the predicted mole fraction resulting from the two models at the 

nearest temperatures [1]. 

( ) ( )CCCCCC °°°°°° +=+= 70502
1

6050302
1

40 ˆˆˆ;ˆˆˆ yyyyyy [1] 

 

Global models

With one global model for all temperatures it is neither necessary to know 

the temperature of a new sample to be predicted nor that of the training set 

samples. The global model treats temperature as an unknown interferent. 

PLS uses the covariance between X and y to establish a regression model 

that explains the variation in y with variation in X. If the spectrum of the 

interferent correlates perfectly with that of the analyte, the PLS algorithm 

cannot distinguish between analyte and interferent. The weaker the 

correlation between interferent and analyte becomes, the easier the PLS 

algorithm can distinguish between them. The spectrum of temperature (if 

seen as interferent) is strongly non-linear and different from that of the 

chemical compounds. It may therefore be advantageous but not necessary 

to know the temperatures of the training samples and to vary temperature 

independently from the concentrations in order to minimize the covariance 

between them. 

The differences between a prediction sample with a temperature that “fits” 

into a model (case a) or a sample with a temperature that falls in between 

models (case b) does not apply to general models. The temperature is 

assumed unknown and the cases can therefore not be distinguished. 

For comparison of the predictive abilities however, it is useful to build global 

models that use exactly the same test and training data as the local models. 
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Case a: The same mixtures are used as training and test sets as in the local 

models. Instead of building 5 models for the 5 temperatures, all training 

sample measurements are used to build one global model and to predict all 

measurements of the test set (see Figure 2-2 C)

Leave more out cross validation was performed on the training set leaving 

one concentration out for all temperatures at each cross validation step. In 

this way the disturbance of the design by the left out samples is comparable 

to that during the cross validation used in the local case. Because of the 

higher number of training samples it is possible to apply additionally a 

stratified leave out procedure for verification.  The difference between 

stratified and leave-one-concentration-out strategies is, that with stratified 

five different mixtures (one per temperature) are left out at random, which is 

repeated until all concentrations have been left out once for each 

temperature.

Case b: Again the same data is used for training and test sets as with the 

local models. Two models are made: one using all mixtures at 30 and 50°C 

for building the model and all mixtures at 40°C for prediction. The other 

model uses all mixtures at 50 and 70°C as training set and all mixtures at 

60°C as test set (see Figure 2-2 D). 

The number of LV’s used is equal to that of the global model case a.

Performance measures 

Prediction errors: The root mean squared error (RMSE) is used as 

performance criterion in cross validation (RMSECV), where it is used to 

estimate the necessary number of LV’s, as well as in prediction (RMSEP), 

where it is used to asses the predictive power of the model. In both cases 

the RMSE is calculated in the common way as:
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where $yi  and yi  are respectively the predicted and real values of sample i

of the n samples in either the cross validation or test set.

In order to place the prediction error in a more recognizable setting the 

mean relative error (MRE) is also used to summarize the results for each 

type of model. This way an impression can be given on how many percent 

the prediction is inaccurate.

Sensitivity vectors: In classical first order univariate calibration the sensitivity 

is an important characterization of a calibration model. It can be calculated 

as the difference in net analyte signal (response without the offset) of two 

measurements at different concentrations resulting in the slope of the 

calibration line. The higher the sensitivity, the better the model performs, 

since even slight differences in analyte concentration give a distinctively 

different response. 

Recently a method has been proposed to determine the net analyte signal 

(NAS) and the sensitivity vector not only for classical univariate and 

multivariate calibration but also for inverse multivariate calibration methods 

such as PLS27. This extension means that no longer all pure spectra and all 

concentrations have to be known. The method consists of reconstructing 

the X data (response matrix) by its description used in the calibration model 

(product of x-loading and x-score blocks). By applying rank annihilation it is 

possible to eliminate the part of the reconstructed response which is 

contributed by the analyte. The result is an estimation of the response 

matrix of only the interferents without the analyte. In classical multivariate 

calibration the pure spectrum is needed for the rank annihilation step. 
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Lorber et al.27 show that a linear combination of mixed spectra can also be 

used, as long as the analyte is present in those spectra. The NAS can then 

be estimated as the part of a new measurement that is not described by and 

therefore orthogonal to the interferents-response matrix. The norm of the 

NAS vector is (for the linear case) proportional to the concentration. Division 

of the NAS vector by the sample concentration leads to a sensitivity vector 

for each of the new measurements. Ideally all sensitivity vectors for new 

samples are the same but in practice they form only estimates of the 

concentration-normalized pure spectrum. 

When applying net analyte signal, its norm and sensitivity as figures of 

merit, precautions have to be taken in the case of mean centered data. The 

linear combination of mixed spectra used in the rank annihilation step 

cannot be the sum of all spectra from the training set, since they sum up to 

zero. Therefore spectra with the highest analyte concentration (for ethanol: 

samples 1, 2, 3; for water: samples 8, 13, 17; for 2-propanol: samples 12, 

16, 19) have been chosen. Furthermore, prediction samples with an analyte 

concentration very near to the mean concentration show a sensitivity vector 

consisting only of amplified measurement noise, since both NAS and

concentration will become almost zero. Because of this artifact, only 

sensitivity vectors of test samples with a different mole fraction than the 

mean (one third) and common to all test sets are used for interpretation and 

comparison (for ethanol: samples 5, 6, 14, 15; for water: samples 6, 9, 11, 

14; for 2-propanol: samples 5, 9, 11, 15) .
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Results and Discussion

Simulations

To assess the influence of spectral shifts and broadening on multivariate 

models simulations have been carried out. Especially the increase of 

complexity (the number of principal components needed to describe the 

data) was estimated. 

Three data sets of Gaussian peaks showing either an increase in area, a 

shift or changing width were generated and Principal Component Analysis 

(PCA) was applied to these mean centered datasets. The loadings and 

scores of the datasets (Figure 2-3) show that only variation in area is a 

linear phenomenon. Variation in the position of the maximum or in the width 

of the Gaussian peaks lead to a PCA description with more then one 

principal component (PC).
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It is shown clearly that for the area variation, only the first loading vector has 

any meaning whilst the second and third merely describe the white noise 

that has been added. The score plots also show the linearity for the area 

increase data, since only the first PC contains significant score values. 

Contrary, the loadings for the shift and broadening datasets show 

systematic information even at higher PC’s than shown here, until finally 

noise level is reached. Their respective score plots have a clear 3-D 

character (corkscrew) since they are non-linear effects and have to be 

approached by several principal components. An increase in complexity can 

therefore also be expected for spectra that show shift or broadening of 

bands.

Qualitative analysis of the data set

Spectra of the pure components have been measured for qualitative 

evaluation of the temperature effects and testing linearity. Figure 2-4 gives a 

good impression of the temperature effects on the absorption bands, the 

band assignments were done using the spectra shown by Bonanno et al.17. 

For water a temperature increase leads to a band shift towards lower 

wavelengths together with an absorption increase and band narrowing. 

Rising the temperature decreases the cluster size of hydrogen bonded 

molecules and increases therefore the fraction of “free” hydroxyls. The 

alcohols show a very slight decrease of the 3rd C-H overtone, an increase in 

free O-H and probably some increase in the C-H combination band. 
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Figure 2-4: Spectra of the pure components at different temperatures 

( 30°C 40°C 50°C 60°C and 70°C); A

ethanol, B water, C 2-propanol

In order to test the linearity and additivity synthetic spectra have been 

composed by addition of the pure component-spectra multiplied with the 

concentration levels as in Table 2-1. These synthetic spectra were 

compared with the measured spectra. In Figure 2-5 the differences between 

some synthetic and real spectra are shown. Deviation from linearity and 

additivity were especially found with mixtures containing a high fraction of 

water (sample 13). In comparison, the differences between the real and the 

synthetic spectra were much smaller for mixtures without water (sample 7).
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Figure 2-5: Difference between real and synthetic spectra. 

Solid line sample: 13 (1/6 ethanol, 2/3 water, 1/6 2-propanol). 

Dashed line: sample 7 (½ ethanol / ½  2-propanol) .

A PLS regression of the spectra on their mole fractions is therefore 

expected to need more LV’s than would be expected by the chemical 

rank28.

Local models 

Case a: Leave one out cross-validation is performed on the training set (see 

Figure 2-2) for calibration models for each of the three chemical compounds 

at each of the 5 temperatures. 

For all local models the RMSECV does decrease considerably until 4 LV's 

are included, staying more or less constant for more LV's. The models for 

water give an about factor three lower RMSECV but show the same 

behavior. This is due to the fact that water has a higher absorption in the 

wavelength range studied than the alcohols. 

Visual inspection of the loading plots indicates for all models that only the 

first four loadings show systematic spectral information; higher LV’s consist 

primarily of noise. Therefore, 4 LV’s have been used to build the PLS-

models for predicting the mole fractions in the test set. Note that in the ideal 
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case (linearity and additivity) the model would only consist of two LV’s since 

the chemical rank is two (3 components with closure) and the spectra are 

mean centered 29 . The non-additive behavior of especially water is 

responsible for the higher number of LV’s necessary in practice.

The individual predicted mole fractions for each test sample and

temperature did not show any anomalies such as outliers or systematic 

errors. The results will therefore be summarized by giving the values for the 

RMSEP and MRE per model only (see Table 2-2). The error for the 

prediction of water is considerably lower than for the alcohols. On the 

average a prediction for one of the components at any temperature would 

be about 3% inaccurate. 

Table 2-2: RMSEP (·10-2) and MRE for the different models.
Temperature [°C] of ethanol water 2-propanol

Sample Model RMSEP MRE RMSEP MRE RMSEP MRE

30 30 1.77 4.0% 0.92 3.2% 1.24 3.2%
40 40 1.06 2.1% 0.67 1.3% 0.93 2.4%
50 50 1.66 4.0% 1.11 2.8% 2.18 7.4%
60 60 0.98 3.0% 0.43 1.4% 0.83 2.3%
70 70 1.12 3.4% 0.38 1.3% 1.47 2.5%

a

Mean 1.32 3.3% 0.70 2.0% 1.33 3.6%

40 30 & 50 1.81 3.8% 0.51 1.4% 2.74 7.5%
60 50 & 70 2.77 8.5% 1.13 3.1% 1.92 5.6%

L
o

ca
l

b

Mean 2.29 6.1% 0.82 2.3% 2.33 6.5%

30 30-70 1.38 4.9% 1.25 3.4% 1.13 3.1%
40 30-70 1.32 5.0% 0.55 1.9% 1.64 5.1%
50 30-70 3.77 13.1% 0.79 2.3% 4.08 14.9%
60 30-70 1.59 5.5% 0.84 3.1% 1.74 4.0%
70 30-70 1.75 4.9% 0.76 2.1% 1.75 4.6%

a

Mean 1.96 6.7% 0.84 2.6% 2.07 6.3%

40 30 & 50 1.17 3.4% 0.95 2.9% 1.03 2.2%
60 50 & 70 1.24 4.4% 0.93 2.1% 1.30 3.7%

G
lo

b
al

b

Mean 1.21 3.9% 0.94 2.5% 1.17 3.0%
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The higher signal of water translates to a higher norm of the NAS’s and 

sensitivities for water (Table 2-3). The increase in absorption with the 

increase in temperature for all three components (Figure 2-4) also gives rise 

to higher sensitivity at higher temperatures. The sensitivity vectors for all 

samples (except the samples with mole fraction 1/3 as explained in 

Performance measures) are very similar, as shown for ethanol in Figure 

2-6a. 
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Figure 2-6: Sensitivity vector plots for ethanol prediction of samples 5, 

6, 14 and 15 measured at 40°C. A: Local model case 

a at 40°C. B : Local model case b, vectors (model at 30°C).
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Table 2-3: Norm of the sensitivities for prediction samples: 5, 6, 14 ,15 for 

ethanol, 6, 9, 11, 14 for water and 5, 9, 11, 15 for 2-propanol.

Temperature [°C] of Sensitivity norm (·10-2 ) for:

Sample Model ethanol water 2-prop

30°C 30°C 5.60 9.33 6.47
40°C 40°C 5.40 10.6 6.47
50°C 50°C 5.77 10.4 6.54
60°C 60°C 5.81 12.3 7.20
70°C 70°C 6.56 13.4 8.47

a

Mean 5.83 11.2 7.03

40°C 30°C 8.45 12.3 9.61
40°C 50°C 8.35 11.2 7.62
60°C 50°C 7.68 13.0 9.55
60°C 70°C 10.0 14.0 9.64

L
o

ca
l

b

Mean 8.63 12.7 9.11

30°C 30-70°C 3.46 7.32 3.10
40°C 30-70°C 4.00 7.33 3.37
50°C 30-70°C 3.77 7.20 3.09
60°C 30-70°C 3.66 7.54 3.09
70°C 30-70°C 3.67 7.72 3.35

a

Mean 3.71 7.42 3.20

40°C 30 & 50°C 3.97 8.47 3.64
60°C 50 & 70°C 3.83 7.89 3.25

G
lo

b
al

b

Mean 3.90 8.18 3.45
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Case b: With these models predictions for a test temperature are calculated 

as the average prediction based on local models built for the two 

“neighboring” temperatures. The prediction errors found are given in Table 

2-2. 

The models can obviously not predict with a good accuracy measurements 

done at a different temperature. Averaging the predicted mole fraction 

improves the prediction error to approximately half of the prediction error 

given by the PLS models at the two nearest temperatures. Still, the 

prediction errors are almost twice as high as in case a. 

The sensitivities (Table 2-3) are higher than for local models case a. This is 

due to the fact that the NAS does not describe only the analyte but also the 

temperature difference between the training set and prediction samples. 

This is shown by comparing the plots in Figure 2-6, revealing the difference 

between the sensitivities of case a and b. The same test samples measured 

at 40°C exhibit very different and irregular sensitivity vectors when predicted 

by a model at 30°C. The rank annihilation step causes the net analyte signal 

to describe everything except absorption due to water and 2-propanol at 

30°C. The difference between the sensitivities for samples 5,6 and 14,15 

shows clearly that the temperature effect, now incorrectly included in the 

NAS and sensitivities, is dependent on the concentrations. 

Global models 

Case a: The training set for all five temperatures is used to build the model 

and the mole fractions of the test set at all temperatures are predicted. 

For both cross validation strategies the RMSECV steadily decreases with 

the number of LV’s up to seven LV's included in the model when it stops 

decreasing significantly. The loading plots show that the LV’s higher than 

seven describe mostly noise. Therefore models with 7 latent variables were 

built form the training sets. 



Influence of temperature on vibrational spectra and consequences for the predictive ability of
multivariate models.

30

Apparently, the nonlinearity of the temperature effects forces the PLS 

algorithm to model some systematic information in such high LV’s. Roughly, 

the number of LV’s can be rationalized as two LV’s necessary to describe 

the chemical problem, two further to explain the non-additive behavior of 

water (see local models) and three more LV’s for the description of the 

nonlinearities due to temperature variation. 

The prediction errors for the test set at the different temperatures are given 

in Table 2-2. In absolute terms (RMSEP) the global model performs worse 

than the local model case a and comparable to case b. The high mean 

relative error compared to the equivalent predictions by the local models is 

caused by the fact that the model makes a relative high error when 

predicting lower mole fractions. 

The norms of the sensitivity vectors (Table 2-3) are considerably lower than 

those for the local models. This leads to the conclusion that, due to the 

variation caused by temperature, the model is forced to use a smaller 

amount of the spectra for prediction of the analyte. 

Case b: In this case data at two temperatures (30 and 50°C or 50 and 70°C) 

are used for building a model and the spectra at the temperature in between 

(40 or 60°C resp.) are used as prediction set. As it was the case for the 

local models, the global models case b are built with the same number of 

LV’s (7) as in case a. Table 2-2 displays the RMSEP and MRE values for 

the two test sets. When compared to the results of the corresponding local 

model, the global model predicts more accurate in almost all cases. As a 

whole, the predictive performance is comparable to that of local models 

case a, being slightly better for the alcohols and slightly worse for water. 

Considering that the local models are in a way a “best case scenario” it 

means that the temperature effect on the predictions is reduced to a 

minimum. 
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The sensitivity-norms (Table 2-3) are only little higher than for global models 

case a, especially for the test set at 40°C predicted with the spectra at 30 

and 50°C. The smaller temperature span and mainly the higher number of 

calibration samples improves the predictive ability in comparison to case a. 

Still, a considerable part of a spectrum is not used for prediction due to the 

temperature effects as can be seen from comparing the sensitivity-norms 

with the local model case a.
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Conclusions

Global models in which the temperature is modeled as an unknown 

interferent perform only slightly inferior to local models which are calibrated 

and used for a specific temperature. Global models, however, have a 

tendency to become (very) complex. The obtained global models needed 

seven LV’s, three to describe the temperature interference, two for the non-

additive behavior of water whilst the chemical system is of rank two. If 

temperature is treated as an unknown interferent, it is more important to 

span the variation due to concentration rather than for many temperature 

levels.

Interpolation between local models, to accommodate temperatures not 

present in the calibration set, performs poorly. 

Further research will aim to describe the temperature effects explicitly; 

either by preprocessing data before calibration or by inclusion of 

temperature into a calibration model itself.
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3. LINEAR TECHNIQUES TO CORRECT FOR TEMPERATURE 

INDUCED SPECTRAL VARIATION IN MULTIVARIATE 

CALIBRATION.

Abstract

The influence of external physical variation such as temperature fluctuations 

on NIR spectra and their effect on the predictive power of calibration models 

such as PLS has been studied. Different methods to correct for the 

temperature effect by explicitly including the temperature in a calibration 

model have been tested. The results are compared to the implicit inclusion 

which takes the temperature into account only through the calibration 

design. Two data sets are used, one well designed data set measured in 

the laboratory and one industrial data set consisting of measurements for 

process samples. For both data sets the explicit inclusion of the 

temperature in the calibration models did not result in an improvement of 

the prediction accuracy compared to implicit inclusion.

Based on: Wülfert, F.; Kok, W.Th.; de Noord, O.E.; Smilde, A.K.;

Chemom. Intell. Lab. Syst. 2000, 51, 189-200. 
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Introduction

Near-Infrared (NIR) spectroscopy in combination with multivariate 

calibration models has an increasing application range in process analysis1, 

2, 3, 4, 5, 6, 7, 8. The fast spectroscopic methods make in- or on-line analysis 

attractive in industrial applications. However, as the measurements are not 

done under well-controlled laboratory circumstances, they will also reflect 

variations in physical variables such as temperature, pressure and viscosity 
9, 10. These external variations give rise to changes in band shapes by 

changing the weaker inter- and intramolecular forces. The strongest effects 

can be observed for bands of functional groups with H-bonding, such as 

hydroxyl groups, due to the fact that the intermolecular forces have much 

stronger effects on them11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29. 

The resulting shifting and broadening of bands are non-linear phenomena 

which complicate the application of linear multivariate models. As shown in 

a previous study30, it is still possible to build global multivariate regression 

models by including the temperature as an interferent in the calibration 

design (implicit inclusion). The resulting global models can then 

approximate the non-linear temperature effects in the X data matrix by 

including more latent variables than expected from the chemistry of the 

problem. As the temperature is neither used explicitly as predicting (X) or 

dependent (y) variable the accuracy is not expected be optimal. 

In order to achieve a better handling of the temperature influences, explicit 

inclusion of the temperature into the model is often expected to improve the 

accuracy. In this study explicit inclusion of the temperature is done along 

different lines: by direct inclusion in the calibration models, by preprocessing 

of the spectra and by expression of the spectra on a different basis. Two 

very different data sets are used: the first (data set A) contains spectra of 

ternary mixtures of ethanol, water and 2-propanol, following a calibration 

design, with the mole fractions as the variables to be predicted. The second 

(data set B) originates from industrial samples, containing spectra of heavy 
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oil fractions with the density as predicted variable. The prediction accuracies 

obtained with the different explicit models are compared with those obtained 

with the implicit models described previously30. 

Theory

In the following the calibration models with explicit inclusion of temperature 

variation and the data preprocessing steps that have been used are 

described and their choice is shortly justified. All models are PLS31, 32, 33

regression models, which are inverse calibration models of the type:

Y XB F= +

where Y represents the k dependent variable(s), e.g., concentrations of k

chemical components, X the independent variables, e.g., n spectra with m

wavelengths, B the regression coefficients and F the residuals. 

Method 1, Temperature as X variable: In most cases temperature 

measurements are readily available at the same time that spectra are 

measured. Since the temperature is therefore a known quantity it can be 

appended to the spectra and used as independent variable in order to 

improve prediction. The X block contains then the spectra and the 

appended temperature while the y vector contains either the mole fractions 

for one component, or the density (data set A or B, respectively.).

The collinearity between temperature affected regions of the spectrum and 

the appended temperature variable could lead to regression models that 

recognize the temperature effects more easily and either are able to correct 

for it or give less weight to these regions. Since the X block does now 

contain incomparable variables (temperature and absorptions) the data has 

to be scaled, i.e. all variables are scaled to unit variance (auto scaling) or 

the variance of the temperature variable is scaled to match the variance of 

the spectra (block scaling). Through these scalings the temperature can be 



Linear techniques to correct for temperature induced spectral variation in multivariate calibration.

38

given the same weight as either only one wavelength or a complete 

spectrum. 

Method 2, T as Y variable in PLS2: Adding the temperature as a predicted 

variable results in an X block containing only the spectra and an Y block 

containing the temperature and one of the mole fractions (A) or the density 

(B). 

The simultaneous prediction of the y variable and the temperature is seen 

as a way to enable the model to identify the spectral regions which are 

temperature dependent. This is in line with inverse calibration, where the 

underlying variable(s) causing the variation in the spectra are collected in 

the Y block. In this case the temperature is also causing variation in the 

spectra. Note that the temperature of the unknown sample does not have to 

be known; it will be predicted from the spectrum. The calibration method 

used is PLS2, where the suffix '2' indicates that there is more than one 

variable in the Y block. PLS2 uses the fact that there is correlation in the Y

block. In this special case, such a correlation is not present due to the 

design of the data. Hence, PLS2 might give poor results in this case. Yet it 

is worthwhile to examine this approach.

Method 3, T in Y for two step PLS: Instead of  simultaneous prediction 

with the dependent variable, a temperature model can also be built prior to 

the final calibration model. 

In step one, a PLS model is built between all calibration spectra (X-block) 

and the temperature (y-block). This model is calculated with one component 

and describes the covariation between the spectra and the temperature. In 

step two the X-residuals from the first model are used to build the calibration 

model for predicting y. The temperature induced variation is supposed to be 

removed by the preprocessing model but the success of this model will 

depend on how independent temperature and concentration manifest 

themselves in the spectra. 
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Method 4, Robust variable selection: Another approach to eliminate the 

temperature effects on the prediction is to select only the X-variables 

(wavelengths) which are insensitive to temperature. Contrary to the 

previous method, rather than removing the temperature induced variation 

from whole spectra, a variable selection method tries to exclude the 

temperature effects by eliminating the variables that carry the temperature 

variation. 

In order to assess which variables are informative for the prediction of the y

variable but do not reflect temperature induced variation, the uninformative-

variable-elimination (UVE) method34 is adapted. The UVE method uses a 

comparison between the spectral variables and appended artificial noise in 

order to estimate whether a spectral variable has predictive power or not. 

Several calibration models are built (using a jackknife leave-one-out 

method) and the resulting regression coefficients of the spectral and 

artificial noise variables are compared with each other. This is done by 

calculating a reliability coefficient from the mean and standard deviation 

over the several models for each regression coefficient. Spectral variables 

that are not considerably more reliable than the artificial noise variables are 

eliminated. 

The UVE method is extended for this application by applying it for both the 

y-variable and temperature prediction. This allows the building of the final 

calibration model from only those wavelengths that are considered 

informative for y but not for the temperature.

Method 5, Basis projection: By expressing spectra on a different basis, a 

separation of the temperature effects from the concentration information is 

sought. Ideally a spectrum projected on the new basis would result in an 

expression of temperature and concentration effects on different 

coefficients. Such a new basis can either be formed by the data itself or by 

mathematical functions. 
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A data-driven basis can be formed from the spectra at different 

temperatures that represent the extreme points of a calibration design (for 

instance pure component spectra). Ideally a spectrum measured at a 

certain temperature would result in high concentration related coefficients 

on the extreme spectra which are measured at the same temperature.

For a mathematical basis, Wavelet Packets (WP) represent a possibility as 

they are localized in both frequency and location (compact support). WP 

Transform is therefore ideal to describe and filter local effects and has found 

chemical applications in the denoising and compression of signals35, 36, 37, 38. 

The need for well designed data limits the data-driven approach to the first 

data set (A). The Wavelet Packet transform will only be applied in a 

tentative study on a small simulated data set due to the intensive 

calculations needed for selecting different WP-bases. A more general 

analysis of the possibilities of transformations between orthogonal bases is 

given in the Appendix.
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Experimental section

Apparatus and experimental details

Data set A: Using an analytical balance, mixtures of ethanol, water and 

2-propanol have been prepared from p. a. grade alcohols and subboiled 

water. Airtight sample flasks and a closed 1 cm quartz cell have been used 

in order to prevent evaporation and consequent concentration changes 

during storage and measurements. A HP 8453 Spectrophotometer linked to 

a HP Vectra XM2 PC (Hewlett Packard, Palo Alto, CA, USA) was used to 

take the spectra in the wavelength range 580 to 1091 nm (1 nm resolution, 

20 s integration time). The wavelength range from 850 to 1049 was used for 

building the calibration models. The sample temperature during the 

measurements has been controlled using a thermostatically controlled cell 

holder and cell stirring module with an accuracy of 0.2°C. 

Data set B: Spectra of heavy oil products were measured in a temperature 

controlled flow cell on a Bomem MB 160 FTNIR spectrometer in the 

spectral range between 6206 and 3971 cm-1. Baseline correction was 

applied by subtracting the average absorbance in the range 4810-4800 cm-1 

and the last 400 variables (4740-3971 cm-1) were used for the calibration 

models. The quality variable to be predicted is the density at 15°C, which 

was measured according to ASTM D4052. This method has a long term 

standard deviation of 0.0015 g/ml for the current type of product.

Small simulated data set: Two vectors of 16 data points were made using 

the Gaussian function with a width (standard deviation) of 1 data point . The 

shift between the two Gaussians peaks has been set at 1 data point (see 

Figure 3-8 in Appendix).

Simulations and data processing were done on a Pentium-class computer 

using Matlab (ver. 4.2 and 5; The Mathworks Inc.) and the PLS toolbox (ver. 

1.4, Eigenvector Research).
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Calibration design

Data set A: Samples from a mixture design which include all possible 

secondary and ternary mixtures with mole fraction levels of 1/6, 1/3, 1/2 and 

2/3 (see Figure 3-1) have been measured at temperatures of 30, 40, 50, 60 

and 70°C (± 0.2°C). Models are built using a training set consisting of the 

samples that are on the edge of the experimental design (samples 1, 2, 3, 

4, 7, 8, 12, 13, 16, 17, 18, 19) and the sample in the “center” (sample 10) 

measured at all temperatures. The other samples are used as independent 

test set. 

1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19
100%

2-propanol

100%
ethanol

100%
water

Figure 3-1: Graphical representation of mixture design for data set A.

Data set B: The data set consists of 232 spectra taken from 64 heavy oil 

product samples measured at 95, 100 and 105°C. On the 168 spectra of the 

56 samples that are neither duplicate measurements nor quality control 
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samples a PCA model is applied and the score values of the first two 

principal components are plotted against each other (see Figure 3-2). From 

this score plot 14 samples are selected evenly from all regions to be added 

to all duplicate and quality control sample measurements to form the test 

set. The training set consists therefore of 42 samples measured at all 

temperatures (126 spectra, 42 densities). The test set consists of 14 unique 

samples, 7 duplicates and the quality control sample (total of 106 spectra, 

22 densities).
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Figure 3-2: PCA on data set B, the  temperature effect can clearly be 

seen; circles: measurements at 105°C, squares: 

measurements at 100°C and triangles: measurements at 

95°C.



Linear techniques to correct for temperature induced spectral variation in multivariate calibration.

44

Results and Discussion

Figure 3-3 shows some exemplary spectra for data set A and the 

temperature effect for one of the mixtures. 
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Figure 3-3: Spectra of different ternary mixtures taken at 50°C (top), 

temperature effect on one mixture, spectra taken at 30, 40, 

50, 60 and 70°C.

The figure shows that a distinction between spectral regions containing 

composition information and regions with temperature interference can not 

be made intuitively. 
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The same conclusion can be drawn for Figure 3-4, showing a similar set of 

spectra obtained with heavy oil samples (data set B). 
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Figure 3-4: Spectra of different heavy oil products taken at 100°C (top), 

temperature effect on one sample, spectra taken at 95, 

100,105°C.

In order to assess model complexity, for all methods leave-one-out 

cross-validation has been applied on the training set, leaving the data of 

one sample at all temperatures out for each cross-validation step. 
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The model complexity and prediction errors (RMSEP's) are given in Table 

3-1 and Table 3-2 for data sets A and B respectively. In the following only 

deviating behavior and differences between the models will be discussed.

Table 3-1: Results for data set A.

No. of lv's
RMSEP
Ethanol

RMSEP
water

RMSEP
2-prop

RMSEP
Mean

Reference 7 0.0196 0.0084 0.0207 0.0162

Reference 
auto scaled 7 0.0276 0.0094 0.0279 0.0216

Method 1. 7 0.0201 0.0117 0.0232 0.0183

Method 2. 7 0.0189 0.0116 0.0202 0.0169

Method 3. 1 ; 6* 0.0581 0.1323 0.0816 0.0907

Method 4. 4 0.0231 0.0127 0.0265 0.0208

Method 5. 7 0.0224 0.0102 0.0294 0.0207

* 1st value (1) for preprocessing model, 2nd value (6) for calibration model.

Table 3-2: Results for data set B.

No. of lv's RMSEP
Density

Reference 6 0.00324

Reference 
auto scaled

6 0.00356

Method 1. 6 0.00363

Method 2. 6 0.00410

Method 3. 1 ; 5* 0.01303

Method 4. 6 0.00414

* 1st value (1) for preprocessing model, 2nd value (5) for calibration model.
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Reference method, Global model:. In a previous article30 it was shown 

that the implicit inclusion of the temperature through the calibration design 

results in reasonable predictions for data set A but at the cost of an 

increased model complexity by 3 latent variables when compared to models 

without temperature effects. The results of the global model will be used as 

a reference and are visualized in the parity plot in Figure 3-5. 
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Figure 3-5: Predicted versus real mole fraction for all three components for 

the reference method applied on data set A. 

Data set B: This data set has not been used with the reference method 

earlier and the results will therefore be given in short: Cross-validation 
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results in a model with 6 latent variables (only one higher than for a model 

on data at one temperature) as the RMSECV decreases steeply until the 6th

latent variable where it stabilizes, only decreasing very slightly for more 

complex models. The good agreement between prediction and off-line 

measurement is shown in the parity plot Figure 3-6. 
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Figure 3-6: Predicted versus real density for the reference method applied 

on data set B. 

Method 1, T as X variable: For both data sets, the cross-validation shows 

no significantly different behavior for auto scaled or block scaled data and 

therefore only the results for auto scaling are given. The similar behavior for 
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the different scaling methods can be sought in the fact that the PLS 

algorithm compensates with different values in the weight vectors. The 

results for both data sets indicate that no significant gain can be achieved 

by including the temperature in the X block. Whether the lack of 

improvement can be attributed to the necessary scaling (see also the 

results for an auto scaled reference method) or whether the PLS model was 

unable to identify the temperature affected regions could not be determined. 

Method 2, T as Y variable in PLS2: For this method the use of a Y matrix 

instead of a vector leads to the necessity to auto scale the Y-block and use 

of the iterative NIPALS PLS2 algorithm. Convergence of the NIPALS 

algorithm was slow for the prediction of 2-propanol for data set A and even 

slower for data set B, needing more than 100 iterations. 

The difference between the results for data sets A and B (reasonable 

results for A and the much worse convergence problems for B) can be 

explained by their different structure: data set A contains 5 temperature 

levels while data set B contains only 3. While it was possible to predict the 

temperature simultaneously with the y-variable (an error of 2°C on a range 

of 40°C for data set A and an error of 1°C on a range of 10°C for data set 

B), no gain in the accuracy in interest could be observed. This is most 

probably due to the fact that PLS2 needs correlated Y-variables for an 

improved performance over “normal” PLS1 models.

Method 3, T as Y for two step PLS: Although for both models cross-

validation resulted in final calibration models with one latent variable less 

than the reference method, these models are not simpler as one additional 

latent variable has been used for the first temperature correcting PLS 

model.

For both data sets the prediction errors are much larger than for the 

reference method. The preprocessing correction model seems to be 

successful in modeling the temperature by using much of the variance 
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present in the spectra, even though only one latent variable was used. 

Since 95% of the variance of X for data set A and 60% of the variance for 

data set B have been used up, the residual matrices used for the prediction 

models do not contain enough variance for modeling the mole fractions or 

density. This can be explained by the fact that the concentration and 

temperature induced effects on the spectra are not independent of each 

other; both parameters have influence on hydrogen bonding and other 

intermolecular forces. Consequently, they manifest themselves on the 

spectra in a very similar way and a separation of these effects with PLS 

based models is thus not achievable.

Method 4, Robust variable selection: After elimination of the 

uninformative and temperature sensitive spectral variables a considerable 

data reduction is achieved: Out of the 200 spectral variables for data set A, 

only 32, 44 and 45 variables were retained for water, ethanol and 

2-propanol prediction respectively. For data set B, 243 out of 400 

wavelength were considered as robust by this method. 

For both data sets the resulting calibration models were not more accurate 

than the reference method, but for data set A the calibration models were 

more parsimonious. The better data reduction and conciseness for data set 

A is a consequence of the larger temperature range and the higher number 

of temperature levels present in that data set, enabling the UVE method to 

identify the variables to be left out. 

Interpretation of the variable selection is possible, especially for data set A 

where also pure components have been measured. In Figure 3-7 the pure 

spectra of water measured at two temperatures are shown to illustrate this. 

The selection of informative variables for the water content in mixtures (a), 

the temperature (b) and the final selection of robust variables (c) are shown 

in the plots. 
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Figure 3-7: Pure spectra of water at 30°C (dashed line) and 70°C (solid 

line). Circles represent the wavelengths selected by UVE for 

prediction of water content (a), temperature (b) and variables 

only selected for water but not for temperature prediction (c).

The spectra have been divided in 5 regions for easier explanation. In the 

first region (i) the absorbances are low, the UVE method for water rejects 

almost all wavelengths but selects most for temperature since some 

temperature induced variation is present. In the second region (ii), there are 

higher water absorbances present but in the upper half of this region the 

temperature effects and the CH-band of the alcohols interfere. Only some 

wavelengths in the lower half are therefore selected. The highest 
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absorbances but also the largest temperature effects are found in the third 

region (iii) where also the free OH-band of the alcohols adds to the 

interference. Almost no wavelengths are considered informative for water 

and uninformative for temperature. In the next region (iv) most of the 

wavelengths can be selected: water absorption is high and temperature 

effects as well as alcohol interference are relatively low. The last region (v) 

again results in almost no selected wavelengths due to the interference of 

the temperature and alcohols.

Method 5, Base projection: For a data-driven basis the data set A has 

been used. As new basis vectors the ternary mixtures at the border of the 

calibration design have been used (samples #2, 13 and 16). This leads to 

15 data-driven base vectors at 5 different temperatures on which the data is 

projected. The projection did not result in a few high coefficients belonging 

to base spectra measured at the same temperature as the projected 

spectrum. Moreover no systematic distribution of the signal over the new 

coefficients could be discovered. Prediction errors are therefore expectedly 

higher than those obtained with global models.

For the tentative study on the small simulated data set different wavelet 

families have been used. For each family 677 complete bases are possible 

to describe the 16-points data space and a complete search over all bases 

was performed. The basis which distinguished the best between 

temperature effects (represented by a shift of one wavelength) and 

concentration effects was selected. For details see the Appendix. 

While a solution had been found, applying this solution on Gaussians with a 

2 points shift instead of one point resulted in totally different signals. 

Apparently, the solution is not applicable to other shifts indicating that no 

general solution to filter out shifts can be formulated by means of WPT. This 

is in accordance with the findings described in the Appendix, which prove 

that transforms from one orthogonal basis to another (like WPT) cannot 

isolate non-linear effects on a few dedicated coefficients. 
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Furthermore an extensive basis search on real data would gain 

unmanageable proportions (for data with 256 points: 1.9x1045 possible 

bases per family). Because of the unsatisfactory results of the small 

simulation, the computational power needed and more principally the 

theoretical considerations explained in the Appendix, a further study on 

spectroscopic data was not considered. 
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Conclusions

Summarizing, it can be noted that none of the different methods for explicit 

inclusion of the temperature into the calibration models leads to an 

improvement when compared to the more basic idea of implicit inclusion. 

For none of the considered methods the predictive ability improved (lower 

RMSEP) and in general the models also did not become simpler (i.e., lower 

number of latent variables). The consistency of these results for two 

completely different data sets (simple mixtures of known composition and 

complex oil fractions) indicates that non-linearities such as the temperature 

effects cannot be corrected for nor modeled further with linear techniques 

than already done by the implicit inclusion through a good calibration 

design. 

Furthermore, it can be concluded from the Appendix that non-linear effects 

(such as the temperature induced band shifts and broadening) cannot be 

filtered out or resolved by an orthogonal basis transformation. The effect 

can only be linearized to different degrees of efficiency by different linear 

transformations. A full description and inclusion of non-linear effects into a 

calibration model is therefore only possible by using non-linear 

transformations. Further research must consequently be focused on non-

linear approaches. 
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Appendix

As described in the theory chapter, the idea is that application of WPT35, 36, 

38 on spectra with temperature induced variation should concentrate the 

temperature effects on certain WP coefficients. A tentative study on a small 

artificial data set (see Figure 3-8) has been performed to assess the 

possibilities of such a transform. 

Figure 3-8: Two data vectors with shift used for study on WPT.

Different wavelet basis functions (families) have been used (Haar, Beylkin,

Coiflet 1-5,  Daubechies 4-20 even, and Symmlet 4-10). For each family, 

667 different complete basis sets are possible to describe the data space 

with 16 variables, which can be calculated recursively by:

N Nj j= +−1
2 1

resulting in 2, 5, 26, 677, basis sets for signals with length of 2, 4, 8, 16, 

data points. 

The selection of one basis is often described as a path in consecutive 

filtering operations with low and high pass filters resulting in the detail and 
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approximation of the signal. The path, where only the approximation is 

filtered again in the following step, is called the Wavelet Transform and is 

therefore only one of the possible Wavelet Packet Transforms (see Figure 

3-9). 

G
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GH H

a d

a ad d

i i i

i i ii v

F i g u r e  3-9: All possible filter operations H and G resulting in approximation 

a and detail d (left). Representation of the 4 paths (right), 

selecting linearly independent and complete bases; the fifth 

path, the non-transform is obviously not represented.

All bases are orthogonal (orthonormal basis vectors) like the Dirac basis 

where the signal is expressed originally in. Therefore, the transformation 

consists of the multiplication of the signal vector with an orthogonal matrix 

composed of the chosen wavelet packet functions. 

The following ranking criteria were applied to ensure that transforms would 

score high when effectively removing the shift without too much loss of 

signal and shape:

Select a complete basis. 

Project the signal and the shifted version on this basis. 

Compare coefficients of both signals on the wavelet basis. 
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Count the number of basis functions for which: 

both signals give high coefficients (>1% of the total power of the signal) and

both signals give equal coefficients (difference < 1% of the value of the 

coefficients).

Zero the coefficients for all other basis functions. 

Transform signals back and calculate the power (norm) of the reconstructed 

signals. 

The extensive search and ranking resulted in a number of good transforms, 

the best solution being a basis set of the Haar family which removed 

effectively the difference but retained most of the signal power (96%) and 

peak shape (see Figure 3-10). However, when applying this solution on 

vectors with a 2 points shift, the resulting signals were totally different of 

each other. Apparently, the solution found for a 1 point shift is not applicable 

to other shifts. In the following, this result will be discussed in two manners, 

first a more intuitive, geometric approach and later a more formalistic 

mathematical explanation. 
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Figure 3-10: WP coefficients for best basis (top), coefficients marked with 

arrows were zeroed before the back transform, resulting in 

almost identical data vectors (bottom).

For comprehensibility a signal with 3 data points is taken as an example. A 

linear effect like a pure intensity change will manifest itself in the three 

dimensional data space as a straight line. It is possible to rotate (perform a 

transform with an orthogonal matrix) the basis vectors in such a way that 

the line lies on one of the rotated basis vectors. On the new rotated basis 

only one dimension is needed to describe the intensity change.

On the contrary, a shape changing effect like a shift does not manifest itself 

in the data space as a line but rather as a more complex shape, e.g. a spiral 
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(in the case of a signal with more than 3 data points this is still possible to 

see by projecting into fewer dimensions with e.g. PCA30). Intuitively it can be 

understood that by rotating the basis vectors whilst preserving their 

orthogonality it will not be possible to find a position where the spiral 

becomes a sinus or even a straight line. Even when dropping the 

orthogonality demand, new basis vectors will not be able to bring the spiral 

into a two or one dimensional form, the shift will therefore also influence all 

three coefficients on the new basis. The 1-point shift solution found in the 

small WPT study is nothing more than the solution that finds the straight line 

between 2 points on the spiral. A third situation (2 point shift) does not lie on 

this line. 
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For the more formalistic approach, consider two signals A(x) and B(x) of 

four data points (where x stands for the position in the vector so x=1,2,3,4) 

shifted by a positive integer ∆. In general a signal is expressed on the Dirac 

basis with the orthonormal basis vectors δi(x) and coefficients ai and bi. The 

basis vectors δi(x) are the Kronecker delta functions which are one for x=i 

and zero for x≠i:

A x a x a x a x a x

B x b x b x b x b x

B x A x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

= + + +
= + + +
= −

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

δ δ δ δ
δ δ δ δ

∆

[ 1] 

The goal of the WP transform is to concentrate the shift on a limited number 

of basis functions, so that the signals on the new WP basis fi(x) would have 

the following form:

A x c f x c f x c f x c f x

B x c f x c f x d f x d f x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= + + +
= + + +

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4
 

[ 2] 

Where the shift is concentrated on the basis functions f3 and f4 (with 

different coefficients) and the common features of the two signals are 

expressed on the basis functions f1 and f2 (having equal coefficients c1 and 

c2). Furthermore the sought solution is needed to be general, which means 

that for all possible coefficients ai and bi some coefficients on the new basis 

should always be identical (e.g. c1 and c2).

Since both bases (Dirac and Wavelet Packets) are orthonormal the 

following holds:
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The following integral:
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can also be rewritten since B(x)=A(x-∆):

B x f x dx c A x f x dx

c f x f x dx c f x f x dx

c f x f x dx c f x f x dx

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1 2 2 1

3 3 1 4 4 1
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∞
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∞
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∆

∆ ∆

∆ ∆

 

[ 5].

This can only be equal to c1 for all ci ∈ |R when:
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Combining equations 3 and 6 results in the following equality:

f x f x dx f x f x dx1 1 1 1 1( ) ( ) ( ) ( )
−∞

∞

−∞

∞

∫ ∫= − =∆  

[ 7] 

 

which cannot be true.

Therefore, it can be concluded that it is not possible to find a transform 

between orthonormal bases (WPT, FT) which gives a general solution for 

concentrating a shift on a few coefficients. 
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4. CORRECTION OF TEMPERATURE INDUCED SPECTRAL 

VARIATION BY CONTINUOUS PIECE-WISE DIRECT 

STANDARDIZATION

Abstract

In process analytical applications it is not always possible to keep the 

measurement conditions constant. However, fluctuations in external 

variables such as temperature can have a strong influence on 

measurement results. For example, non-linear temperature effects on 

Near-infrared (NIR) spectra may lead to a strongly biased prediction result 

from multivariate calibration models such as PLS. A new method, called 

Continuous Piece-wise Direct Standardization (CPDS) has been developed 

for the correction of such external influences. It represents a generalization 

of the discrete PDS calibration transfer method and is able to adjust for 

continuous non-linear influences such as the temperature effects on 

spectra. It was applied to short-wave NIR spectra of ethanol/water/ 

2-propanol mixtures measured at different temperatures in the range 30 - 70 

°C. The method was able to remove almost completely the temperature 

effects on the spectra and prediction of the mole fractions of the chemical 

components was close to the results obtained at constant temperature.

Based on: Wülfert, F.; Kok, W.Th.; de Noord, O.E.; Smilde, A.K.; Anal. 

Chem. 2000, 72, 1639-1644. 
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Introduction

Fast spectroscopic techniques such as near-infrared (NIR) spectroscopy 

play a prominent role in process analysis1, 2, 3, 4, 5, 6, 7. The possibility to 

measure in-line or on-line and the short analysis time (in the order of 

milliseconds to seconds) make NIR spectroscopy an interesting alternative 

to classical process analytical methods such as chromatography, since 

speed is obviously of paramount importance in process control and 

monitoring. Since the selectivity of NIR spectroscopy is low, multivariate 

methods such as partial least squares (PLS) 8, 9, 10 are often necessary for 

calibration. However, in-line and on-line NIR measurements in an industrial 

environment can be influenced by fluctuations of external variables such as 

temperature or pressure11 , 12 . A multivariate calibration model is easily 

disturbed by such fluctuations and will perform poorly when the effect of the 

external variation on the NIR spectra is not taken into account.

One possibility to address external fluctuations is by implicit modeling 

through the inclusion of temperature into the calibration design. In previous 

work the effect of a fluctuating temperature on the predictive ability of a 

calibration model for NIR spectra was studied13. It was found that with the 

implicit inclusion of the temperature in the model the predictive ability was 

still satisfactory; however, the complexity of the calibration model was 

strongly increased. 

Alternative approaches are the explicit inclusion of the fluctuating external 

variable into the calibration model (as an additional variable) or linear 

preprocessing methods. However, it has been shown14 that such methods 

do not work to correct for temperature effects on NIR spectra and do not 

lead to better results than implicit modeling. It appears that it is not possible 

to correct for temperature influences with linear techniques because of the 

non-linear character of the effects (shape changes caused by an influence 

on the long range intermolecular and intramolecular forces such as 

hydrogen bonding15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31). 
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For the correction of complex non-linear spectral effects the technique of 

piece-wise direct standardization (PDS) 32  has been developed, which 

consists of the multiplication of the spectra with a banded transformation 

matrix. It has widespread use in situations for calibration transfer between 

measurements performed on two different instruments or under two 

different sets of conditions33, 34, 35 , 36, 37 , 38, 39. Although PDS is a linear 

operation, it can find a linear solution to correct for complex and non-linear 

differences between two discrete situations, comparable to a straight line 

that can always be drawn between two points, even if the underlying 

function is curved. 

Since temperature is not a discrete variable, the original PDS method is not 

suitable for correction of temperature fluctuations. To transform spectra 

measured at many different (discrete) temperatures, numerous individual 

PDS models would have to be built, based on an impractical large number 

of standardization measurements. Moreover, it is not possible to use PDS 

models for intermediate temperatures (see Figure 1) and the utilization of 

the experimental data is not optimal, since for each discrete PDS correction 

model only part of the standardization measurements is used 

(measurements at two temperatures).
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Figure 4-1: Illustration of how the linear PDS correction can deal with 

discrete temperature differences (black dots) but does not 

give a solution for measurements at other levels (gray dots). 

In this paper a newly developed technique is presented for the correction of 

external fluctuations on spectral data: continuous piece-wise direct 

standardization (CPDS). This CPDS technique can be regarded as a 

generalization of PDS to continuous variables. The method has been 

evaluated with a set of NIR data measured on ternary mixtures of water, 

ethanol and 2-propanol at different temperatures. The results are compared 

with implicit inclusion of the temperature in the calibration model.
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Theory 

For ease of understanding, the data set which will be used further on as an 

application is also used as an example in this section. The data set consists 

of ternary mixtures of ethanol, water and 2-propanol, prepared according to 

a mixture design13 and SW-NIR spectra taken at 5 different temperatures 

(30, 40, 50, 60 and 70°C). Goal of the procedure is to enable the usage of a 

calibration model built from training spectra and mole fractions (Xtrain, ytrain) 

at a certain reference temperature for prediction of samples measured at 

different temperatures without loosing precision. 

Table 4-1: Steps representing the construction and application of CPDS

Description Parameters Data used Result

Build 
calibration 
model :

cal. temperature; 
# of latent variables 

Cal. Spectra Xtrain;
mole fractions ytrain

regr. vector bpls

Build PDS 
transfer 
matrices:

Window size*; 
# of lv’s*

Standard spectra 
Xstand ;
bpls

discr. transf. 
matrices P∆T

Build CPDS 
model:

Degree of 
polynomial*

∆Τ
discr. Transf. matr. 
P∆T

cont. transf. model P̂
(∆Τ) 

Application and 
Validation:

Xtest ; ytest ; bpls

Τ; P̂ (∆Τ)

pred. mole fract. 
ypred;
RMSEP

* Estimation of window size, number of latent variables and degree of polynomial is 
performed in one cross-validation procedure. 

To achieve this a correction model is built from standardization spectra 

(Xstand) taken at different temperatures which will be valid for a whole 

temperature range. In the following, the method will be explained in detail, a 

short scheme is given in Table 4-1. 

A Partial Least Squares (PLS) calibration model between spectra and mole 

fractions is built at the calibration temperature from the training set. For the 

selection of the calibration temperature two possibilities are considered, the 
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lowest and the midpoint temperature are logical choices. The choice of the 

lowest calibration temperature might be advantageous from practical and 

instrumental viewpoint. An example for choosing the lowest temperature is 

the monitoring or control of a batch process that follows or induces a 

temperature gradient or program. The calibration temperature would then 

be chosen as the temperature at which the batch process is started. A 

midpoint calibration temperature would be preferred for a continuous 

process application, where the temperature fluctuates around this midpoint. 

Next, discrete calibration transform solutions are found by PDS models, 

which form the foundation of CPDS. The solutions consist of banded 

transformation matrices P that can correct for the variation in spectra 

between two distinct measurement situations A and B:

X X PA B= ⋅ Equation 1

where XA and XB are matrices of dimensions I×J representing the spectra of 

I samples taken over a spectral range of J wavelengths and P represents 

the banded transformation matrix of dimensions J×J. 

The transformation matrix P is obtained from the standardization spectra 

Xstand by regressing the absorbance values xA,j (wavelength j, situation A) on 

a window xB,j-k to xB,j+k (wavelengths ±k around j, situation B). The 

regression vectors bj (column vector with length 2·k+1) are calculated using 

PLS and are given by:

[ ]x x x x x ej j k j k j k j k j jA B B B B, , , , ,= ⋅ +− − + + − +1 1L b Equation 2
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After calculation of all regression vectors bj, these form the diagonal band of 

the transformation matrix P by placing bj on the j-th column, ranging from 

row j-k until j+k (see Figure 4-2). 

Multiplying spectra measured under condition B with the found P matrix will 

then transform the spectra into a form as if they were measured under 

condition A (Equation 1). Calculating the P matrices for transforming the 

spectra at the different temperatures (e.g. 40, 50, 60 and 70°C) back to the 

calibration temperature (e.g. 30°C) gives 4 discrete solutions, that is: P∆T=10, 

P∆T=20, P∆T=30 and P∆T=40. Each P∆T gives the discrete transformation from a 

temperature which is ∆T higher but interpolation for other temperature 

differences is not possible. 

A B

=            •

xA = XB    •  b

{

P

j j-k … j+k

j

I

J J

J

J

j-k

j+k

A B
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Figure 4-2: Schematic representation of one step of the PDS algorithm, 

the absorption values at one wavelength (j ) under situation A

are regressed on the absorption values in a window (j-k…j+k) 

of wavelengths measured under situation B. The resulting 

regression vector forms the j-th column on the band of the 

transformation matrix.
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In order to overcome this restriction a CPDS correction model has to be 

applied which consists of polynomial fits of the discrete PDS transformation 

matrices. For each position (m,n) on the band of the matrices P∆T, a 

polynomial regression is done for the values pm,n on the band against the 

temperature difference ∆T. 

p T a T b T c e

p T a T b T c

m n m n m n m n m n

m n m n m n m n

, , , , ,

, , , ,

( )

$ ( )

∆ ∆ ∆

∆ ∆ ∆

= + + +

= + +

2

2

Equation 3

This results in estimated transformation matrices P̂ (∆T) for all temperature 

differences that lie in the standardization range. Choosing a first order 

(straight line) or, as given in Equation 3, a second order (parabolic curve) 

polynomial gives furthermore the possibility to either describe the 

temperature dependency of the transformation matrices with a linear or non-

linear model. An example of such a fit for one position at the transformation 

matrices is given in Figure 4-3. 



Chapter 4

75

P∆T=10 P∆T=20 P∆T=30 P∆T=40

P(∆T=25)
^

10 20 30 40

p 5
0,

60
(∆

T
)

∆T

Figure 4-3: Graphical representation of the estimation of the 

transformation matrix: for each position (e.g. m=50, n=60) the 

pm,n values from the PDS matrices are fitted with a 2nd degree 

polynomial. Through the polynomial, an estimated 

transformation matrix can be found for every ∆∆∆∆T.

For each new spectrum x measured at a certain known temperature 

(T=Tcal+∆T), the right transformation matrix P̂ (∆T) can be built from Equation 

3. The temperature influences are consequently removed and the spectrum 

brought to its temperature corrected version (x̂Tcorr) by:
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$ $ ( )′ = ′ ⋅x x PTcorr T∆ Equation 4

The method can now be used for correction of spectra prior to prediction of 

the mole fractions with the PLS calibration model. This is also done for the 

spectra of the independent test set Xtest, where the known concentrations 

ytest are compared to the predicted ŷtest to estimate the model accuracy. A 

Root Mean Square Error of Prediction (RMSEP) is calculated according to:

( )
RMSEP

y y

N
i test i test

testi

Ntest

=
−

=
∑ , ,

$ 2

1

Equation 5

Three parameters have to be estimated to build the CPDS correction 

method: The number of latent variables and the width of the band (window 

size 2k+1) for the discrete PDS and the degree of the polynomial to 

generalize these solutions into the CPDS method. The best values for the 

three parameters are assessed with a leave-one-out cross-validation, 

although information about e.g. the non-linearity of the external effect (the 

temperature in this case) can lead to an a priori choice of the polynomial 

degree. 

Two measures can be chosen in order to assess the quality of the 

temperature correction for each cross-validation step of the CPDS models. 

First, the difference between a temperature corrected spectrum and a 

spectrum of the same sample measured at the calibration temperature can 

be considered. This error (Ecorr) is a measure of the uncorrected 

temperature effects and artifacts of the correction model in the spectral (or 

X-) space:

( )
E

x x

Jcorr

j T corr j Tcal

j

J

=
−

=
∑ $ , . ,

2

1

Equation 6
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where x̂j,Tcorr and xj,Tcal represent the absorbance values of the temperature 

corrected and at calibration temperature measured spectra with lengths (J) 

for one sample.

Second, a measure (Emod) for how the spectral differences translate into a 

difference in prediction of mole fractions (y-space) can also be used as 

cross-validation criterion. For this, the difference between the temperature 

corrected (x̂Tcorr) and at calibration temperature measured spectrum (xTcal) is 

multiplied with the regression vector from the calibration model (bPLS):

( ) ( )2
.

2

.mod ˆˆˆ TcalcorrTPLSTcalcorrT yyE −=


 ⋅′−= bxx
Equation 7

This is not the same as a prediction error used for cross-validation or 

assessing the final model quality (see Equation 5), since it does not 

compare a predicted and a real but two predicted mole fractions. Therefore, 

the y-values for the standardization samples do not have to be known, 

which can be advantageous. But more importantly, the error only due to 

correction is minimized without mixing it with an calibration error, which 

should be minimized with the proper calibration model.

Considering that the performance of the CPDS method can vary for different 

spectral ranges, Emod does not have to follow the same trend as Ecorr. By 

using Emod the spectral difference is weighed with the regression vector of 

the calibration model. Remaining temperature effects or introduced 

correction artifacts are thus allowed for wavelengths where the values in 

bPLS are near zero. 



Correction of temperature induced spectral variation by Continuous Piece-Wise Direct Standardization

78

Experimental Section

The ternary mixtures of ethanol, water and 2-propanol were prepared using 

an analytical balance. Short-wave NIR spectra of the mixtures were taken 

from 580 to 1091 nm, the spectral range between 749-849 nm was used for 

slope and offset correction and the range from 850 to 1049 nm was used for 

data analysis. The measurements were done using an HP 8454 

spectrophotometer equipped with a thermostatically controlled  cell holder 

with stirring module. The temperature was measured and controlled in the 

closed quartz cells using a Pt-100 sensor linked to a Neslab EX-111 

circulator bath. The data analysis was done on a Pentium class computer 

using Matlab ver.5.2 (Mathworks Inc.) and the PLS toolbox ver.1.5.3b 

(Eigenvector Research Inc.). Training and standardization sets were chosen 

from samples representing the edge and center of the mixture design while 

the samples in between were used as test set. Training and standardization 

samples do not necessarily have to be the same, usually the 

standardization samples form a subset of the training set. For this article, 

however, the training and standardization samples were chosen to be the 

same to make a fair comparison possible with results obtained with local 

and global models13. The local models were built separately for each 

temperature and only used for prediction at the same temperature. As they 

are free of temperature influences, their prediction error can be considered 

a lower limit. Global models were built from the training samples measured 

at all 5 temperatures and also used for prediction at all temperatures. They 

implicitly include temperature effects by using more latent variables (7) than 

the local models (4). The predictive ability of global models has been shown 

to be a good indication for how well linear techniques are able to cope with 

temperature effects14. 
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Results and Discussion

Mean centered spectra and mole fractions of ethanol, water and 2-propanol 

are used as predicting (X) and predicted (y) variables respectively. For each 

chemical component one calibration model is built from the training samples 

using PLS1. As described in an earlier article, leave-one-out cross-

validation leads to calibration models requiring 4 latent variables13. The 

study is performed with both 30°C and 50°C as calibration temperature, 

spectra from the test set measured at the calibration temperature can be 

predicted directly without correction. 

The samples that are used as training set for the calibration model are also 

used as standardization set but no mean centering is performed. For both 

calibration temperatures (30, 50°C) the leave-one-out cross-validation was 

done varying the following factors: the number of latent variables (1 to 5) 

and the window size (number of neighboring wavelengths k) used to build 

the P∆Τ matrices (2 to 20), and the degree of the polynomials (1 to 2) used 

to build the estimated transformation matrices P̂  (∆Τ). For both errors, the 

spectral difference (Ecorr; Equation 6) and the prediction difference (Emod; 

Equation 7), the average square sum over the cross-validation samples is 

minimized.

The spectral difference (Ecorr) decreases steeply with increasing window 

size until it stabilizes around k=10 to 15 (window sizes 21 to 31) giving the 

best results for 3 latent variables used for PDS and a 2nd order polynomial 

fitting in order to estimate P̂ (∆Τ). The model error due to the uncorrected 

difference (Emod) shows generally the same trend up to k=12 (window size 

25), from where on a increase in prediction difference can be noticed. 

Therefore, a temperature correction model with window size of 25 (k=12), 3 

latent variables for calculating P and 2nd degree polynomials to estimate P̂

(∆T) was chosen to build the final CPDS correction models. Note that the 

2nd degree polynomial estimation gave not only significantly better results 



Correction of temperature induced spectral variation by Continuous Piece-Wise Direct Standardization

80

than an 1st order estimation, which can be expected from the non-linearity of 

the temperature effect, but was in most cases even better than direct 

correction with the discrete PDS solutions (P∆T). This indicates that, through 

the polynomial fit, using the information at all measured temperature levels 

smoothes the transformation matrices, which is advantageous. As an 

example for the cross-validation results the prediction difference of water 

using a calibration temperature of 30°C is shown in Figure 4-4. 
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Figure 4-4: Prediction difference for water plotted against the window size. 

Top: PDS with 2 (squares), 3 (circles) and 4 (triangles) latent 

variables. Bottom: correction with original (triangles), with 1 st

degree polynomials estimated (squares) and 2nd degree 

polynomials (circles) estimated transformation matrices.
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For finally assessing the prediction error, the spectra of the test set samples 

were corrected with estimated transformation matrices. Figure 4-5 shows 

how the temperature effect is effectively removed from the spectra. The 

corrected test set spectra are then used with the calibration model and the 

prediction error of the resulting mole fractions is estimated with the root 

mean squared error (RMSEP, Equation 5), 
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Figure 4-5: Spectra of a test sample before (left) and after correction (right) 

to lowest temperature. Temperatures of the sample were 30°C 

(solid line), 40°C (long dashed line), 50°C (dashed line), 60°C 

(dash-dotted line), 70°C (dotted line).

The errors are given in Table 4-2 for both considered calibration 

temperatures. Choosing a midpoint calibration temperature leads to better 

results as the temperature correction does only need to correct for a 

maximum difference of 20°C and does not need to extrapolate from the 

higher temperatures to the lowest temperature. Choosing a calibration 

temperature on the extremes of the temperature range is therefore only to 

be considered when the application leaves no other option (e.g. following a 

reaction in temperature programmed batch process) and the results of the 

midpoint temperature will be considered in the following. 
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Table 4-2: Prediction errors (RMSEP) of test set after application of CPDS 

correction model.
Temp. of Ethanol Water 2-propanol
Calibration→→→→

↓↓↓↓Prediction
30°C 50°C 30°C 50°C 30°C 50°C

30°C 0.0177 0.0152 0.0092 0.0094 0.0124 0.0107

40°C 0.0119 0.0111 0.0058 0.0074 0.0148 0.0128

50°C 0.0149 0.0166 0.0187 0.0111 0.0218 0.0218

60°C 0.0156 0.0091 0.0088 0.0059 0.0118 0.0048

70°C 0.0156 0.0154 0.0131 0.0070 0.0080 0.0136

mean: 0.0152 0.0135 0.0111 0.0082 0.0138 0.0127

For comparison the performance of local and global models are given in 

Table 4-3. It is evident that the CPDS temperature correcting model 

performs considerably better than a linear method for prediction of the 

alcohols and comparable for prediction of water. It also leads to simpler 

calibration models since no extra latent variables are needed for describing 

the temperature effects. But an extra effort is needed for building and 

validating the temperature correction model. 

Table 4-3: Comparison of average prediction errors for local, global and 

CPDS-corrected calibration models. 
Temperature (°C) RMSEPModel

Calibration Prediction Ethanol Water 2-propanol

Local* 30,40,…,70 30,40,…,70 0.013 0.0070 0.013

Global 30-70 30-70 0.020 0.0084 0.021

CPDS 30 30-70 0.015 0.0111 0.014
CPDS 50 30-70 0.014 0.0082 0.013

* 5 separate models, calibration and predictions at the same temperature.

Comparing with the prediction errors of the local models it can be stated 

that the temperature correction model removes the temperature effect 

almost completely for prediction of the alcohols, as the results are 
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comparable, but not for water where the prediction still is slightly worse than 

for local models. 

The difference in the results for the alcohols and water can be explained 

from the sources of variation present in the spectra. Water has higher 

absorption coefficients and larger temperature effects than the alcohols and 

therefore the variance present in the spectra is dominated by water and its 

temperature effect. Since the PLS calibration model maximizes the 

covariance between spectra and mole fractions, water is easier to predict, 

as can be observed from the local models. Furthermore, the temperature 

influence on water is so large, that it is to some extent indicative for water 

presence in mixtures. This can explain the good performance of global 

models for water. While the high temperature effects and absorbances for 

water aid the prediction of water itself, they represent a large interference to 

models for prediction of both alcohols. Therefore mainly the alcohol 

predictions will benefit from a removal of the temperature effects by the 

CPDS method.
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Conclusions

It has been shown that spectroscopic measurements under influence of 

temperature can very well be used for analytical purposes by applying a 

temperature correction model. This is achieved by transforming the discrete 

PDS calibration transfer method into the continuous CPDS model by finding 

a relation between the transformation matrices of the discrete PDS 

solutions. Choosing a non-linear model as a function of temperature for 

these relations provides the means to find a model that can correct for non-

linear and non-discrete effects. The found solution is superior to implicit or 

explicit inclusion of temperature by the calibration model itself, as evidenced 

by the lower prediction errors found. 

Additionally the CPDS approach makes it possible to combine in one single 

model the conventional use of PDS calibration transfer with the correction 

for continuous temperature effects. The calibration set can be measured 

with high precision instrumentation under well controlled laboratory 

conditions while the standardization samples (except for those at calibration 

temperature) are measured on a more robust industrial process system. 

A limiting factor for the usage of a temperature correction model is the 

requirement to measure and know the temperature for every spectrum, not 

only for building the correction model but also for samples to be predicted. 

This is not necessary for global models because of the treatment of 

temperature as an unknown interferent. Furthermore, it is necessary for a 

CPDS model that the standardization measurements are made for exactly 

the same standardization samples. Global models do not require this, 

enabling the use of e.g. historical process data. 

From the encouraging results of this study it can be concluded that the 

combination of spectroscopic analysis with the right chemometric tools can 

lead to more a prominent role for analytical chemistry in technical 

application fields such as industrial process monitoring and control.
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5. DEVELOPMENT OF ROBUST CALIBRATION MODELS IN NIR

SPECTROSCOPIC APPLICATIONS

Abstract

When spectral variation caused by factors different from the parameter to 

be predicted (e.g. external variations in temperature) is present in 

calibration data, a common approach is to include this variation in the 

calibration model. For this purpose, the calibration sample spectra 

measured under standard conditions and the spectra of a smaller set 

measured under changed conditions are combined into one dataset and a 

global calibration model is calculated. However, if highly nonlinear effects 

are present in the data, it may be impossible to capture this external 

variation in the model. Recently, a new technique based on selection of 

robust variables was proposed for constructing robust calibration models. In 

this technique, a calibration model is developed which uses a subset of 

spectral values that are insensitive to external variations. 

This new technique is compared to global calibration models for 

constructing robust models in spectroscopic applications. Both techniques 

are applied to two different NIR spectroscopic applications. The first 

application is the determination of the ethanol, water, and iso-propanol 

concentrations in a ternary mixture of these components and the second 

application is the determination of the density of heavy oil products. In both 

applications the calibration set spectra have been measured at standard 

sample temperature, and a subset has been measured at sample 

temperatures deviating from the standard temperature. It has been found 

that models based on robust variable selection are similar or sometimes 

better than global calibration models with respect to their predictive ability at 

different sample temperatures. 
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Introduction

Multivariate calibration models are often associated with vibrational 

spectroscopic techniques in order to predict physical or chemical sample 

properties from the spectra. To construct a multivariate calibration model, 

the spectra and corresponding properties of many samples need to be 

measured in order to capture the variation in the sample properties to be 

predicted. Once the model has been developed, it is supposed to be valid 

for a long period of time. This implies that after this period the model's 

prediction error is not significantly different from the prediction error 

obtained during calibration. However, there may be various reasons why the 

model makes erroneous predictions: replacement of the instrument or part 

of it, ambient changes such as temperature, and changes in physical 

sample conditions.1

If the calibration model loses its validity, a new calibration model needs to 

be constructed. Therefore, a set of calibration samples, representative of 

the original calibration samples should be remeasured under the changed 

conditions. If the original calibration samples are not stable, this calls for 

collecting or preparing new samples, measuring of the reference values, 

and measuring the corresponding spectra, which may involve a large 

amount of work. Recently, more efficient methods, known as multivariate 

calibration standardization methods, became available to establish a new 

calibration model.1 Multivariate calibration standardization methods can be 

divided into two categories: 1) Improvement of robustness of the calibration 

model; and 2) Adaptation of the calibration model.2 The first category aims 

to improve the selectivity of the calibration model by data preprocessing 

(e.g. variable selection), the incorporation of measurement conditions into 

the calibration model (global calibration models) and/or the application of 

robust multivariate calibration techniques such as IVS-PLS.3 The second 

category includes techniques that transform the measured spectra, the 

model’s regression parameters or the predictions by the calibration model 

(e.g. bias/slope correction, direct standardization and piecewise direct 
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standardization). One of the disadvantages of this category is that the same 

sample subset needs to be measured in both the old and the new situation, 

which is not possible when unstable samples are involved. Another 

disadvantage of techniques of category two is that they are only applicable 

to discrete situations such as instrumental changes. Frequently, however, 

external conditions (e.g. sample temperature) which influence the model’s 

predictions change continuously and, consequently, techniques of category 

two cannot be applied. In the applications studied in this chapter, the 

sample temperature is a continuously changing condition, and we therefore 

focused on two techniques of the first category: a) Global calibration 

models;4 and b) Robust variable selection models.5

Although often not recognized, global calibration models are frequently 

used. The construction of a global calibration model involves measurement 

of calibration samples under normal conditions, measurement of these 

samples or a sample subset under changed conditions and the combination 

of the data to one dataset. Besides spectral variation caused by the 

variation in the reference parameter, this dataset includes external spectral 

variation introduced by the new situation. Subsequently, a new calibration 

model is calculated on the basis of the joint dataset. Thus, global calibration 

models try to model the external spectral variation and implicitly include the 

external variation into the calibration model. 

Recently, a new technique based on variable selection was presented in 

order to enhance the robustness of a calibration model.5 Instead of using 

the whole spectral range for modeling, this technique uses a subset of 

spectral values which is not sensitive to the changing conditions and rejects 

those spectral regions that are sensitive to these changing conditions. 

There are various reasons why the predictive ability and the robustness of a 

calibration model are enhanced by variable selection: 1) some spectral 

regions related to the parameter of interest may contain large variation 

caused by external influences such as temperature variations or 

interferents; 2) there may be spectral regions whose intensities 
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(absorbances) are not linearly related to the parameter to be predicted; and 

3) there may be spectral regions which exhibit an indirect correlation with 

the parameter of interest (apparent causalities). This makes variable 

selection especially suitable for situations in which the spectral variation 

caused by external changes are localized in the spectra. Thus, instead of 

modeling the external variation, robust variable selection excludes external 

spectral variation before modeling.

In this chapter global calibration models are compared to the new technique 

for enhancement of model robustness, namely calibration models based on 

robust variable selection. In order to select the robust variables, simulated 

annealing was used. Both techniques were applied to two different NIR 

spectroscopic applications. The first application is the determination of the 

ethanol, water, and iso-propanol concentration in a ternary mixture of these 

components and the second application is the determination of the density 

of heavy oil products. In both applications the model’s predictions should be 

insensitive to sample temperature variations within a predefined 

temperature range. In this chapter only partial least squares (PLS) 

regression models are considered, but the above-mentioned techniques 

can be applied to other multivariate calibration techniques as well.
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Theory

Global calibration models

Global models try to include implicitly the variation due to external effects in 

the model, in much the same way as unknown chemical interferents can be 

included in an inverse calibration model. As long as the interfering variation 

is present in the calibration set, an inverse calibration model can, in the 

ideal case of additivity and linearity, easily correct for the variation due to 

the unknown interferents. It is assumed in global calibration models that the 

new sources of spectral variation can be modeled by including a limited 

number of additional PLS factors.4 Due to the increase of the calibration 

model’s dimensionality, it becomes necessary to measure a large number 

of samples under changed conditions in order to make a good estimation of 

the additional parameters.6 When highly nonlinear effects are present in the 

spectra, a lot of additional PLS factors will be necessary to model the 

spectral differences while, sometimes, it is not even possible to model these 

spectral differences. Therefore, other strategies need to be used to make 

modeling of nonlinear data possible.7

Robust variable selection models

Whereas global models try to capture the external variation into the model, 

robust variable selection attempts to exclude the external variation before 

modeling. Basically, it selects those spectral regions that are important for 

the parameter to be predicted and those that can correct for the spectral 

differences caused by external conditions, at the same time rejecting those 

regions that are sensitive to the spectral differences caused by the external 

variations. It is assumed that a calibration on the robust wavelengths will be 

free of influences by external factors and may be more parsimonious, as it 

only needs to model the spectral variation caused by the parameter of 

interest. However, it is difficult to compare variable selection with other 

calibration models with respect to parsimony because it is difficult to assess 
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the degrees of freedom lost in the selection of the robust variables (a lot of 

models are calculated during optimization).8

While global calibration models are straightforward and the model 

calculations can be performed in a short time by commercially available 

software packages, the robust variable selection by simulated annealing 

requires more sophisticated software and faster computers. Furthermore, 

some additional parameters need to be optimized for the simulated 

annealing algorithm (number of PLS factors, the number of variables 

selected, representation of problem, length of Markov chain, initial 

temperature, or control parameter). Therefore, special expertise about the 

simulated annealing techniques is necessary. 

Since the number of selected variables will be seriously reduced and a lot of 

models are calculated during optimization, there is a possibility of overfitting; 

the selected variable subset should not include irrelevant noise-containing 

variables and overfitting should be prevented. Recently, Jouan-Rimbaud et 

al. developed a method to evaluate the performance of variable selection by 

genetic algorithms (GAs) with respect to overfitting.9 For this purpose, they 

added random variables to the original spectral data matrix and performed a 

GA run using this extended dataset. The amount of selected random 

variables is a measure of the selection of randomly correlated variables 

from the original spectral data. Leardi et al. proposed a stopcriterion for a 

variable subset search by a genetic algorithm in order to prevent 

overfitting.10 This stopcriterion is based on a random permutation test of the 

original Y variables.

All problems associated with robust variable selection result from the use of 

simulated annealing and not from the principle of using a spectral subset for 

PLS modeling instead of using the whole spectral range. If knowledge were 

available about the relation between external variables and the spectral 

intensities, these problems would disappear. Usually, however, no physical 

model is available for estimating the influence of external variations on the 
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spectral variables. As a result, variable selection techniques need to be 

used to make the spectral subset selection.

Simulated annealing

Since no prior knowledge is available, the selection of the robust variables 

from the whole spectral range is a large optimization problem which can be 

solved by optimization techniques such as simulated annealing or genetic 

algorithms. In this chapter, simulated annealing is used for variable 

selection. Simulated annealing is a probabilistic global optimization 

technique based on the physical annealing process of solids. In contrast to 

deterministic optimization techniques (e.g. simplex optimization), 

probabilistic optimization techniques allow acceptance of an inferior solution 

during optimization. Consequently, probabilistic optimization techniques 

have the ability to escape from a local optimum and find the global optimal 

solution. More detailed description about simulated annealing can be found 

in ref. 5 and 11.

A simulated annealing solution is represented as a numerical string 

containing k values (integers) representing the variables to be selected from 

the whole spectral range of N variables. These k variables are selected from 

the calibration set spectra and in combination with the reference values of 

the corresponding samples, a PLS model with a predefined number of 

factors is calculated. Subsequently, the same k variables are selected from 

the standardization set spectra (spectra measured under changed 

circumstances) and the reference parameters are predicted using the 

calibration set and the standardization set variable subset spectra. On the 

basis of these prediction results an error value is calculated. This error 

value comprises the predictive ability of the model at the standard 

temperature and the predictive ability of the model when it is used at 

different temperatures. The goal of the simulated annealing is to minimize 

the error value; which implies that the prediction error of the model is 

minimized at all temperatures. In order to find the proper k value, various 

simulated annealing runs are performed using different values for k.
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Comparison of predictive accuracy of models 

Usually, two models are compared with respect to their predictive ability on 

a representative independent data set (i.e. dataset not used for model 

calculation). Frequently, the predictive ability of a model is expressed in the 

mean squared error of prediction (MSEP). During the development of a 

calibration model, a minimal MSEP value is aimed at. Recently, Swierenga 

et al. proposed a strategy which uses the prediction error and, 

simultaneously, the sensitivity to external variations for selecting a 

multivariate calibration model.12 Van der Voet proposed a randomization t-

test to compare the predictive accuracy of two models using the distribution 

of prediction errors.13 In this chapter this randomization t-test is applied in 

order to compare the predictive ability of global models and robust variable 

selection models. 
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Experimental

Dataset A: Ternary mixture of ethanol, water, and iso-propanol

The mixtures (19 samples) were prepared from p. a. quality alcohols and 

subboiled water according to a mixture design (Figure 5-1).4 Short-wave 

NIR measurements (580 to 1091 nm, 1 nm resolution, 20 s integration time) 

were performed on a Hewlett Packard HP 8453 spectrophotometer with a 

thermostatically controlled cell holder and cell stirring module. Closed quartz 

cells with 1 cm path length were used with an external Pt-100 sensor 

immersed in the sample linked to a circulator bath for temperature control 

and measurement. Instrumental baseline drift and offset of the spectra was 

corrected with straight line fits using the wavelength range 749-849 nm. The 

data analysis was performed on the region 850-1049 nm. 

The spectra of these nineteen ternary mixtures of ethanol, water and iso-

propanol were measured at 50°C. The dataset was split into a calibration 

set (Figure 5-1A) containing the samples 1, 2, 3, 4, 7, 8, 10, 12, 13, 16, 17, 

18, 19 and a test set (Figure 5-1C) containing the samples 5, 6, 9, 11, 14, 

15. The calibration set will be denoted as Xcal
50  and the test set as Xtest

50 . A 

subset of the calibration set (Figure 5-1B) containing the samples 1, 3, 8, 

10, 12, 17, 19 was measured at 30, 40, 60, and 70°C and will be denoted 

as Xstand
30 , Xstand

40 , Xstand
60 , Xstand

70 , respectively. The test set samples were 

measured at the same temperatures and will be denoted as Xtest
30 , Xtest

40 , 

Xtest
60 , Xtest

70 , respectively. These datasets were used to calculate and 

validate the global calibration model and the calculation of a model 

containing robust wavelengths. 
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Figure 5-1 Construction of datasets used for multivariate calibration

A) calibration set measured at one temperature (50°C)

B) standardization set (subset of calibration set) measured at 

30, 40, 60, and 70°C

C) test set measured at 30, 40, 50, 60, and 70°C

Local calibration model

Local models were built to evaluate the influence of temperature on the 

model's predictions if temperature effects are not taken into account at all. A 

PLS1 calibration model was calculated based on the spectra Xcal
50 . The 

number of PLS factors is four, which was determined by leave-one-out 

cross-validation. The datasets Xtest
30 , Xtest

40 , Xtest
50 , Xtest

60 , and Xtest
70  were used 

as independent test sets.

Global calibration model

Datasets Xstand
30 , Xstand

40 , Xcal
50 , Xstand

60 , and Xstand
70  were used to calculate global 

calibration (PLS1) models, and datasets Xtest
30 , Xtest

40 , Xtest
50 , Xtest

60 , and Xtest
70

were used as independent test sets. The number of PLS factors for the 

model was determined by leave-one-sample-out cross-validation and the 

optimal model complexity is seven factors for all three components in the 

ternary mixtures.
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Robust variable selection

Out of the whole set of possible variables (200 variables), a subset of k

variables was proposed as a possible solution by the simulated annealing 

algorithm. This subset of variables was selected from dataset Xcal
50 , and a 

PLS model was calculated using four PLS factors (number of factors for 

local models). Subsequently, this model was used to make predictions of 

the contents using the spectra from sets Xstand
30 , Xstand

40 , Xstand
60 , and Xstand

70 . On 

the basis of the prediction results, an error value was calculated 

representing the predictive ability of the model at various temperatures (30, 

40, 50, 60, and 70°C). During a simulated annealing run this error value was 

minimized. At the end of the simulated annealing search the calculated 

model was tested using the independent datasets Xtest
30 , Xtest

40 , Xtest
50 , Xtest

60 , 

and Xtest
70 . Ten random initialized simulated annealing runs were performed 

at a certain k value.

Dataset B: Density of heavy oil products

NIR spectra (6206 - 3971 cm-1, 1.9 cm-1 data point and 3.8 cm-1 spectral 

resolution) of the heavy oil products were measured on a Bomem MB 160 

FTNIR spectrometer in a temperature controlled flow cell. The density 

measurements were performed following the ASTM D4052 method. 

Baseline offset correction of the spectra was applied by subtracting the 

average absorbance in the range 4810-4800 cm-1. The last 400 variables 

(4740-3971 cm-1) were used for the data analysis.

The spectra of 42 heavy oil samples were measured at 100°C. This 

calibration set of 42 samples will be denoted as Xcal
100 . Subsequently, 15 

samples were selected from the calibration set using the Kennard Stone 

algorithm 14, 15 and this subset was measured at 95 and 105°C. These 

standardization sets will be denoted as 95
standX  and 105

standX , respectively. 
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Furthermore, a test set containing 35 samples was measured at 95, 100, 

and 105°C and the test set spectra will be denoted as Xtest
95 , Xtest

100 , and Xtest
105 , 

respectively.

Local model

Dataset Xcal
100 was used to calculate the local model for the prediction of the 

density. The model complexity was determined by leave-one-out cross-

validation and was set to five factors. Datasets Xtest
95 , Xtest

100 , and Xtest
105  were 

used as independent test sets.

Global calibration model

Datasets Xstand
95 , Xcal

100 , and Xstand
105  were used to calculate a global calibration 

model and datasets Xtest
95 , Xtest

100 , and Xtest
105  as independent test sets. The 

number of PLS factors for the model was determined by leave-one-sample-

out cross-validation and the optimal model complexity is six factors.

Robust variable selection

Out of the whole set of possible variables (400 variables), a subset of k

variables was proposed as a possible solution by the simulated annealing 

algorithm. This subset of variables was selected from dataset Xcal
100 , and a 

PLS model was calculated for these spectral variables and the 

corresponding density using five PLS factors. Subsequently, this model was 

used to make predictions about the density using the spectra of sets Xstand
95 , 

and Xstand
105 . On the basis of the prediction results, an error value is calculated 

which represents the predictive ability of the model at various temperatures 

(95, 100, and 105°C). During a simulated annealing run this error value was 

minimized. At the end of the simulated annealing search the calculated 

model was tested using the independent datasets Xtest
95 , Xtest

100 , and Xtest
105 . Ten 

random initialized simulated annealing runs were performed at a certain k

value.
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Model validation

The test sets were used to validate the constructed calibration models 

(dataset A: Xtest
30 , Xtest

40 , Xtest
50 , Xtest

60 , Xtest
70  and dataset B: Xtest

95 , Xtest
100 , 

and Xtest
105 ). These datasets were used to predict the component 

concentrations in the ternary mixtures (dataset A) and the density in the oil 

samples (dataset B). The difference between the predicted and the 

reference values is expressed in the prediction error:
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where N is the number of samples in the test set; $yn  and yn are the 

predictions and the reference values of the samples of the test set, 

respectively. 

Software and algorithms

For local and global models Matlab 16 and the PLS Toolbox 17 for Matlab
were used. For the robust variable selection a simulated annealing toolbox 

has been written in ANSI C. Additionally, some PLS routines from the PLS 

Toolbox for Matlab were integrated, using the MATCOM compiler (version 

2). The programs were compiled for the DOS/windows operating system 

using DJGPP, version 2.01. The configuration of the simulated annealing for 

the different datasets are shown in Table 5-1. A detailed description of the 

configuration can be found in a previous paper.5
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Table 5-1 Parameters for the different simulated annealing runs used in 

this chapter
Application

Simulated annealing 
parameter 5

Component concentrations in 
ternary mixture

Density of heavy 
oil products

Number of spectral
variables to select 
from (N)

200 400

Disturbance 
generation

N(0,5) N(0,5)

Initial control 
parameter (c1)

0.05 0.01

Cooling schedule geometric with α = 0.90 geometric with α = 
0.85

Length of Markov 
Chain

1,000 1,000

Exit Markov Chain minimum number of accepted transitions (250) or 
maximum number of transitions tested (1,000)

Exit Simulated 
Annealing

minimum control parameter c = 1*10-6 or minimum 
acceptance ratio χ = 0

Acceptance criterion Metropolis Metropolis 

Randomization t-test

The randomization t-test was performed in order to compare the test set 

prediction results of global models and models based on robust variable 

selection. To this end, for e.g. the ternary mixtures, the component 

concentrations were predicted from spectra measured at various 

temperatures by the two models to be compared (global and robust variable 

selection model). Subsequently, two vectors were constructed from these 

predictions: one containing the global model predictions for one component 

at various temperatures and one containing the variable selection model 

predictions for the same component at various temperatures (vector 

containing number of temperatures times N elements, where N is the 

number of samples in test set). These vectors, along with the known 

reference values, were used for the randomization t-test.  
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Results and discussion

Dataset A: Ternary mixture of ethanol, water, and iso-propanol

Temperature influence on vibrational spectra

A NIR spectrum consists of overtones and combination bands (resulting 

from the interaction between two or more different vibrations of neighboring 

bonds). These absorption bands provide information about features such 

as: chemical nature (e.g. bond types and functional groups) and molecular 

conformation (e.g. gauche and trans conformations). It provides information 

about the individual molecular bonds and information about the interaction 

between different types of molecules (intermolecular bonds). Since the 

molecular vibrations are influenced by these intermolecular interactions,

absorption bands in mixtures change in relation to pure analytes. Usually, 

the intermolecular interaction such as hydrogen bonding is very weak and 

can be broken by increasing the temperature. Consequently, the vibrational 

spectrum will change due to these temperature changes. In Figure 5-2, the 

temperature effect on the pure water spectrum is shown; an increase in the 

temperature results in an intensity increase, peak shift towards lower 

wavelengths, and band narrowing. As mentioned in ref. 4, an increase in 

temperature results in a decrease of the amount of hydroxyl groups involved 

in a hydrogen bonding and, consequently, the absorption band of “free” 

hydroxyl increases. Also, the second overtone absorption band of the 

hydroxyl group in ethanol and iso-propanol (~970 nm) increases as the 

sample temperature increases. On the other hand, in both the ethanol and 

iso-propanol spectrum the third overtone C-H stretch vibration (~910 nm) of 

the CH3 group and the C-H stretch vibration (third overtone at ~920-930 nm) 

of the CH2 group in ethanol change slightly due to temperature changes. 

Some increase in the C-H combination band of the CH3 group (~1020 nm) 

in ethanol and iso-propanol is observed in the spectra when the 

temperature is increased. 



Development of robust calibration models in NIR spectroscopic applications

102

Determination of ethanol content

The test set prediction results of various PLS models for determination of 

the ethanol content are shown in Table 5-2. 

Table 5-2 Prediction results for determination of ethanol content
RMSEP

Model type
# 
vars

#PLS 
factors 30°C 40°C 50°C 60°C 70°C mean

local 200 4 0.018 0.011 0.017 0.010 0.011 0.014
Local (50°C) 200 4 0.063 0.028 0.017 0.043 0.079 0.051
Global 200 7 0.014 0.012 0.037 0.016 0.014 0.021
var. sel. a 30 4 0.007 0.011 0.023 0.015 0.009 0.014

a From ten SA runs the best model (smallest overall prediction error in standardization 

sets) is selected.

In the first row of Table 5-2, the test set prediction errors of the individual 

local models at each temperature are shown. These values are taken from 

ref. 3. Similar test set prediction results are observed in the models. 

Subsequently, the local model based on spectra measured at 50°C is used 

to make predictions from spectra measured at temperatures deviating from 

50°C (second row Table 5-2). The prediction error increases if the 

predictions are performed with samples measured at temperatures 

deviating from 50°C. Thus the sample temperature influences the NIR 

spectra and, consequently, the model’s predictions.

In order to make the model insensitive to temperature variations, a global 

model and robust variable selection models are constructed. For both the 

global model and the variable selection model the prediction errors of the 

test set samples measured at different temperatures are shown (third and 

fourth row Table 5-2). As ten simulated annealing runs were performed, ten 

robust variable selection models were obtained. From these models, the 

model that possesses the smallest overall prediction error in the 

standardization sets is selected. The test set prediction errors (RMSEP 

values) obtained using the global model at different temperatures are 

compared to the predictions obtained using the variable selection model at 

those temperatures. The overall prediction error obtained using the variable 
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selection model (overall RMSEP is 0.014) turns out to be significantly 

smaller than the overall prediction error obtained using the global model 

(overall RMSEP is 0.021) according to the randomization t-test (1999 trials 

and α = 0.05).13

Besides having a smaller test set prediction error, the robust variable 

selection model is based on a smaller number of variables (30 instead of 

200) and uses four PLS factors instead of seven as for the global models. It 

is difficult to say whether the SA model is really more parsimonious, 

because the variable selection part of the SA model takes away degrees of 

freedom.8 However, on the basis of the prediction error, the robust variable 

selection model may be preferred. 

Determination of water content

Table 5-3 shows the prediction results for the models used to predict the 

water content of the NIR spectra.

Table 5-3 Prediction results for determination of water content
RMSEP

Model type
# 
vars

# PLS 
factors 30°C 40°C 50°C 60°C 70°C mean

Local 200 4 0.009 0.007 0.011 0.004 0.004 0.008
Local (50°C) 200 4 0.053 0.023 0.011 0.014 0.028 0.030
Global 200 7 0.015 0.007 0.009 0.008 0.005 0.009
Var. sel. a 30 4 0.009 0.004 0.011 0.008 0.009 0.009

a From ten SA runs the best model (smallest overall prediction error in standardization

sets) is selected.

In ref. 4 separate models are calculated using calibration samples 

measured at various temperatures (calibration models at 30, 40, 50, 60, or 

70°C). The test set prediction errors of these models are shown in Table 5-3 

(first row). Similar prediction results are obtained for the models. 

Subsequently, the local 50°C model is used to make predictions of the 

water content using test set spectra measured at temperatures other than 

50°C. The prediction error in the test set measured at temperatures other 

than 50°C increases compared to the prediction error obtained at 50°C. 
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In order to make the calibration model insensitive to temperature changes, 

global and robust variable selection models were constructed. The test set 

prediction results are shown in Table 5-3. If the test set predictions of the 

best variable selection model (overall RMSEP is 0.009) and the global 

model (overall RMSEP is 0.009) at various temperatures are compared, no 

significant difference is observed between the models according to the 

randomization t-test (1999 trials and α = 0.05). The models are therefore 

comparable with respect to their predictive power. 

Determination of iso-propanol content

Table 5-4 shows the prediction results of the iso-propanol content for the 

local, global and robust variable selection models.

Table 5-4 Prediction results for determination of iso-propanol content
RMSEP

Model type
# 
vars

# PLS 
factors 30°C 40°C 50°C 60°C 70°C mean

Local 200 4 0.012 0.009 0.022 0.008 0.015 0.014
Local (50°C) 200 4 0.055 0.028 0.022 0.048 0.088 0.054
Global 200 7 0.011 0.016 0.042 0.017 0.015 0.023
Var. sel. a 10 4 0.009 0.020 0.035 0.014 0.010 0.020

a From ten SA runs the best model (smallest overall prediction error in standardization

sets) is selected.

In the first row of Table 5-4, the test set prediction results of the local 

models (test samples and calibration samples measured at the same 

temperature for each model) are shown. Similar test set prediction errors of 

the various models are obtained. Only the measurements at 50°C show a 

systematically higher prediction error, even when predicted from a model 

constructed at the same temperature. This is most probably due to minor 

instrumental difficulties with the temperature control during the 

measurement at 50°C. The spectra do not show a visible deterioration and it 

was wrongly assumed that it would most probably not affect the quality of 

models.
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The calibration model based on calibration spectra measured at 50°C is 

used to predict the iso-propanol content of samples measured at 

temperatures other than 50°C (second row); the prediction error in the test 

set measured at temperatures other than 50°C is larger than the prediction 

error at 50°C. Therefore, the model’s predictions are sensitive to sample 

temperature variations.

Subsequently, robust variable selection and global calibration models were 

calculated in order to develop robust models. If the test set predictions of 

the best variable selection model (smallest overall RMSEP value) and the 

global model at various temperatures are compared, the overall prediction 

error of the robust variable selection model (RMSEP is 0.020) is significantly 

smaller than the overall prediction error of the global model (RMSEP is 

0.023) according to the randomization t-test.

Interpretation of variable selection results

Generally, several spectral regions can be distinguished in vibrational 

spectra of mixtures of chemical compounds with external variation included. 

These spectral regions can be classified into the following categories:

Regions which only show variation due to variation in the reference

parameter (e.g. spectral variation caused by variations in water, ethanol and 

iso-propanol content in ternary mixtures).

Regions which only show variation caused by an external factor and no 

variations caused by changes in the parameter of interest (in this study 

spectral variation caused by sample temperature variations).  

Regions which both contain variation due to the parameter of interest and 

variation caused by external factors.

Regions which do not contain variations of spectral region category one or 

two (e.g. spectral baseline).
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Figure 5-2 Selected variables for the determination of ethanol, water, and 

iso-propanol content in ternary mixtures. 

Lower dots (pro.) = selected variables (10) for determination 

of iso-propanol (ten SA runs)

Center dots (eth.) = selected variables (30) for determination 

of ethanol (ten SA runs)

Upper dots (wat.) = selected variables (30) for determination 

of water (ten SA runs).

Additionally, the NIR spectra of pure ethanol (), water ( −⋅−) 

and iso-propanol (−−) measured at 30, 40, 50, 60, and 70°C 

are plotted. A baseline of 0.075 AU was added to the ethanol 

spectra for visualization purposes



Chapter 5

107

The variable selection/rejection results for the ethanol, water, and iso-

propanol models are shown in Figure 5-2. In this figure a selected variable 

(wavelength) is represented as a dot. For every component in the mixture, 

ten simulated annealing runs are performed (10 rows each containing k

dots). As can be seen in Figure 5-2, almost the entire range of the water 

spectrum belongs to category three, i.e. spectral regions containing 

information about the water concentration and showing variations caused by 

sample temperature. Since water is present in all samples (Figure 5-1), 

almost all spectral regions contain variations caused by sample temperature 

variations. The variables found by the SA are a combination of the selection 

of the informative variables for the parameter of interest, the rejection of 

variables influenced by external factors and the selection of spectral regions 

which can compensate for selected informative variables possibly affected 

by external variations. Therefore, interpretation of the variable selection and 

rejection results is very difficult. However, some selected and rejected 

spectral regions for the determination of the ethanol, water and iso-propanol 

concentration can be assigned. 

The spectral region between 1029 and 1050 nm is hardly ever selected in 

any model. This region is very “noisy” compared to the other regions in the 

NIR spectra. Selection of this region may lead to an increased prediction 

error. Since variable selection is based on minimization of the prediction 

errors at different temperatures, this region is sparsely sampled. In both 

alcohol models, the region around 970 nm, which corresponds to the 

second overtone absorption band of the hydroxyl group, is rejected 

(ethanol: 964 to 972 nm; and iso-propanol: 958 to 975 nm). As can be seen 

in Figure 5-3, the intensity of this absorption band is proportional to the 

temperature. Therefore, this temperature-sensitive region is rejected from 

the entire spectral range. A very densely sampled region for both the 

ethanol and iso-propanol model is observed at ~915 nm, which corresponds 

to the third overtone C-H stretch vibration of the CH3 group. This region 

(911 to 918 nm) shows almost no variation caused by changes in sample 

temperature and possesses ethanol/iso-propanol concentration information. 



Development of robust calibration models in NIR spectroscopic applications

108

Furthermore, this region is located at a peak wing. As peak wings are less 

sensitive to temperature variations, this region is preferred. Additionally, the 

spectral regions 939 to 947 nm and 950 to 954 nm are densely sampled for 

the ethanol model. The former region, which corresponds to the C-H stretch 

vibration of CH2 in ethanol, may be selected in order to distinguish between 

ethanol and iso-propanol. The latter region (950 to 954 nm) may be 

selected to compensate for the temperature sensitivity of the water hydroxyl 

band in this region. Similar regions are selected for the iso-propanol model 

in order to distinguish between alcohols and compensate for temperature 

influences. 

For the water model, some very densely sampled spectral regions can be 

distinguished: 891 to 902 nm, 911 to 919 nm, 934 to 940 nm, 858 to 866 

and 956 to 959 nm. The first two spectral regions (891 to 902 nm and 911 to 

919 nm) are probably selected to compensate for the alcohol hydroxyl 

contribution to the water hydroxyl absorption band as can be seen in Figure 

5-2 and the loading plot shown in Figure 5-3. 
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Figure 5-3 Loading plot of first PLS factor in model for water content 

determination. First factor captures 97% of variance in X and 

94% of variance in Y. Furthermore, the selected variables for 

the determination of water content are shown (same SA runs 

as shown in Figure 5-2) 

 

The variables are selected in a spectral region which shows negative 

loading values in the first PLS factor. This region corresponds to the third 

overtone C-H stretch vibration of the CH3 group in ethanol and iso-propanol 

(~915 nm). These spectral regions, especially the second one, are also 

selected in the ethanol and iso-propanol model and hardly any spectral 

variation caused by variation in the water content is present in this region. 

Furthermore, in this region the intensities are not very sensitive to variations 

in the sample temperature. Therefore, the spectral variables (891 to 902 nm 

and 911 to 919 nm) located at important ethanol and iso-propanol 

absorption bands are probably used to compensate for the alcohol hydroxyl 

absorption band at the water hydroxyl band. Especially, the wings of the 
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absorption bands are selected because the wings are less sensitive to 

intensity variation caused by temperature variations.

Other selected regions for determination of the water content are located at 

the hydroxyl absorption band. These selected regions have a large variation 

due to water content and sample temperature variations (e.g. 956 to 959 

nm). In order to compensate for these temperature variations, some 

additional regions are selected (e.g. 934 to 940 nm). An explanation for this 

compensation selection can be found in a paper by Wülfert et al.18 They 

developed a UVE-PLS model for predicting the water content and a UVE-

PLS model for predicting the temperature of the same ternary mixtures as 

used in the current study (more details about this method can be found in 

the next section). It was found that the region of 956 to 959 nm was used for 

both the water content model and temperature model while the region of 

934 to 940 nm was used for the temperature model.  

In conclusion, both global calibration and robust variable selection models 

can be used to calculate calibration models that are less sensitive to 

external variations and more selective for the parameter of interest. For the 

water model, the techniques are comparable (the prediction results of both 

techniques are not significantly different). Long-term validation in practice 

should indicate which technique works better. For the alcohol models, 

robust variable selection yields significantly better results than the global 

calibration model. To what extent robust variable selection yields better 

results, is probably determined by the relative amount of contribution of the 

above-mentioned categories. For robust variable selection, spectral regions 

of category one, two, and four are preferred. Especially in the water models, 

almost the entire spectral range belongs to category three (spectral 

intensities show variation caused by variation in water content and 

temperature variations) or category four (no variation in intensities) and the 

variable selection does not yield better results than the global models. On 

the other hand, in the ethanol models the prediction results of the robust 

variable selection model are better than those of the global model. In the 
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spectra of ethanol, spectral regions of all categories are present and, 

consequently, the majority of the selected variables belongs to category 

one. However, there are variables selected from the other categories as 

well. 

Comparison with other robust variable selection technique

Recently, Wülfert et al.18 applied uninformative-variable-elimination by PLS 

(UVE-PLS) to select robust variables. UVE-PLS, originally developed by 

Centner et al.,19 eliminates variables from PLS models by judging a criterion 

based on the regression vector. In UVE-PLS, the variables are eliminated 

on the basis of the quotient of the regression coefficient and the uncertainty 

in the calculated regression coefficients (confidence limits are estimated by 

leave-one-out jackknifing). Variables that give smaller quotients than a 

certain threshold value are considered to be uninformative. The threshold 

value is estimated by adding artificial random spectral variables to the 

original spectral data and calculating the above-mentioned quotients for 

these random variables. The maximum absolute quotient is taken as the 

threshold value. In the variable selection method of Wülfert et al.,18 a UVE-

PLS model is constructed for predicting the parameter of interest 

(concentration) and another UVE-PLS model is constructed for predicting 

the parameter causing the external spectral variation (temperature). The 

variables that are selected in the model of the parameter of interest and 

rejected in the external variation model are supposed to be robust. Category 

1 variables are selected in the concentration UVE-PLS model and rejected 

in the temperature UVE-PLS model. Consequently, category 1 variables are 

selected by the robust UVE-PLS model. As category 2 variables are 

rejected in the concentration UVE-PLS model and selected in the 

temperature UVE-PLS model, they are rejected in the robust UVE-PLS 

model. Category 3 variables can be selected or rejected in the 

concentration UVE-PLS model and/or the temperature UVE-PLS model 

dependent on the ratio between spectral variations caused by temperature 

and concentration in the variables. As a result, only those variables that are 

both selected in the concentration model and rejected in the temperature 
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model are selected in the robust UVE-PLS model. Category 4 variables are 

rejected in the concentration model and rejected in the temperature model. 

Consequently, these variables are rejected by the robust UVE-PLS model.

In this study, we have calculated models based on the variables and 

number of PLS factors found in ref. 18. For each component in the ternary 

mixtures, these variables were selected from the datasets Xstand
30 , Xstand

40 , 

Xcal
50 , Xstand

60 , and Xstand
70 . Subsequently, from the joint dataset a four factor 

PLS1 model (determined by cross-validation on selected variables) was 

calculated for each component and the datasets Xtest
30 , Xtest

40 , Xtest
50 , Xtest

60 , and 

Xtest
70  were used as independent test sets. The prediction results are shown 

in Table 5-5. 

Table 5-5 Prediction results for determination of component concentration 
in ternary mixtures using models based on variable subset 
selection

RMSEP
Model type

# 
vars

# PLS 
factors 30°C 40°C 50°C 60°C 70°C Mean

Ethanol:
SA a 30 4 0.007 0.011 0.023 0.015 0.009 0.014
UVE-PLS b 44 4 0.013 0.010 0.028 0.024 0.035 0.024
Water:
SA a 30 4 0.009 0.004 0.011 0.008 0.009 0.009
UVE-PLS b 32 4 0.022 0.011 0.009 0.007 0.010 0.013
iso-propanol:
SA a 10 4 0.009 0.020 0.035 0.014 0.010 0.020
UVE-PLS b 45 4 0.020 0.016 0.032 0.026 0.039 0.028

a From ten SA runs the best model (smallest overall prediction error in standardization 
sets) is selected.

b PLS1 model based on spectral subset from the datasets: 30
standX , Xstand

40 , Xcal
50 , Xstand

60 , and 

Xstand
70

Using the randomization t-test (1999 trials and α = 0.05), the independent 

test set prediction results of these UVE-PLS models are compared to the 

calibration models based on a spectral subsets found by simulated 

annealing. For predicting the water content, the SA variable selection model 

performs significantly better than the UVE-PLS model with respect to the 
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prediction error at different temperatures. For predicting the ethanol content, 

the model based on variables selected by simulated annealing is 

significantly better than the UVE-PLS based selection. Finally, the SA 

variable selection model for prediction of iso-propanol content has a 

significantly smaller overall prediction error than the UVE-PLS models at 

various temperatures.

A disadvantage of the UVE-PLS based method is that PLS (or UVE-PLS) 

must be capable of modeling external variations. Frequently, external 

factors cause complex effects on the spectra, which may be difficult to 

model by PLS. Furthermore, robust variable selection based on UVE-PLS 

selects those variables which are kept in the parameter of interest model 

but rejected in the external variation model (category 1 regions) as well. As 

a result, problems may arise from the fact that some spectra only contain 

regions belonging to spectral region category 3 (both spectral variation 

caused by variations in parameter of interest and external variations). In 

such case it may be possible that no robust variable is maintained in the 

final robust model. On the other hand, robust variable selection as 

described in ref. 5 and this chapter can select regions of category 3 and 

compensate the external effects in these regions by selecting other regions 

of category 3. Another disadvantage of robust variable selection based on 

UVE-PLS is due to the fact that the temperature is modeled. As a 

consequence, the temperature of the calibration and standardization 

samples need to be known with a high degree of accuracy. 

Dataset B: Density of heavy oil products

In Figure 5-4, the mean of the calibration set spectra of heavy oil products 

measured at 100°C is shown. The major components in crude oil are 

hydrocarbons including aromatics, paraffins and naphtenes. The bands at 

~4350, ~4260 and ~4065 cm-1 are CH2 and CH3 combination bands and the 

spectral region between 4550 and 4650 cm-1 is assigned to the vibration of 

the aromatic C-H bonds.
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Figure 5-4 Mean spectrum of heavy oil calibration samples measured at 

100°C

The prediction results of the local model, the global model, and the robust 

variable selection model for the density determination of heavy oil products 

from their NIR spectrum are shown in Table 5-6. 

 Table 5-6 Prediction results for density determination of heavy oil 

products
RMSEP

Model type
# vars # PLS 

factors 95°C 100°C 105°C mean
local (100°C) 400 5 0.0101 0.0027 0.0067 0.0072
Global 400 6 0.0035 0.0033 0.0032 0.0033
var. sel. a 25 5 0.0030 0.0026 0.0022 0.0026

a From ten SA runs the best model (smallest overall prediction error in standardization 

sets) is selected.
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From the calibration spectra measured at 100°C and corresponding 

densities, a local calibration model is calculated. This model is used to 

predict the density of the test set samples from the corresponding spectra 

measured at 95°C, 100°C, and 105°C. The prediction error in the test set 

samples measured at 95°C and 105°C increases, compared to the 

prediction error of these samples measured at 100°C. 

In order to make the models predictions insensitive to temperature 

variations, a global calibration model and models based on robust variables 

are constructed. The prediction results of these models are shown in Table 

5-6. Using the randomization t-test (1999 trials and α = 0.05), the best 

robust variable selection model is compared to the global calibration model 

with respect to their prediction errors at various temperatures. The robust 

variable selection model gives significantly better overall prediction results 

(RMSEP is 0.0026) than the prediction results of the global model (RMSEP 

is 0.0033).
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Interpretation of variable selection results
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Figure 5-5 Selected variables for the density determination of heavy oil 

products. Plotted spectra are "difference spectra" between the 

mean test set spectra measured at 95°C and 105°C (−−) and

the mean test set spectra measured at 95°C and 100°C (). 
Dots represent the selected variables of ten SA runs at k = 25

In Figure 5-5 the variable selection results of the simulated annealing 

algorithm are presented (ten random initialized simulated annealing runs). 

The variables selected by the simulated annealing algorithm are 

represented as dots (10 rows containing 25 dots). Furthermore, the 

difference spectra between the mean test set spectra measured at 95°C 

and the other temperatures are plotted. It can be seen from this figure that 

the spectral differences caused by temperature variations are mainly 
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intensity variations. As the heavy oil products are complex mixtures 

containing many types of hydrocarbons, it is very difficult to interpret the 

variable selection results. However, some selected and rejected regions can 

be assigned. A large region which is rejected by robust variable selection is 

4362 to 4318 cm-1. If the temperature increases, the absorbance in this 

region decreases and the absorbance peak shifts slightly to higher 

wavenumbers. It is known that a peak shift can result in erroneous model 

predictions, and therefore this region is rejected from the whole spectral 

range. In the other regions, the main difference in absorbance between the 

different sample temperatures shows a multiplicative effect (Figure 5-4 and 

Figure 5-5). Consequently, important peaks for density determination are 

selected (e.g. 4252 cm-1). Other regions are selected to correct for this 

selection (e.g. 4375 to 4365 cm-1, 4308 to 4272 cm-1, or 4171 to 4156 cm-1). 

Another densely sampled region is the one between 4452 and 4411 cm-1. 

Probably, this region on the wing of an absorbance peak is selected 

because the wings of a peak are less sensitive to changes in peak 

intensities than those at the top of an absorbance peak. This is also 

observed in the above-mentioned alcohol models.  

Comparison with other robust variable selection technique

In order to compare robust variable selection by simulated annealing with 

variable selection based on UVE-PLS, the models presented in ref. 18 were 

used. A six factor PLS1 model is calculated using the variables selected by 

UVE-PLS and the datasets Xstand
95 , Xcal

100 , and Xstand
105 . Subsequently, this model 

is used for predicting the density of the independent datasets Xtest
95 , Xtest

100 , 

and Xtest
105 . The prediction results are shown in Table 5-7. 
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Table 5-7 Prediction results for density determination using models based 

on variable subset selection
RMSEP

Model type
# vars # PLS 

factors 95°C 100°C 105°C mean
SA a 25 5 0.0030 0.0026 0.0022 0.0026
UVE-PLS b 157 6 0.0066 0.0042 0.0044 0.0052

a From SA runs the best model (smallest overall prediction error in standardization sets) is 

selected.
b PLS1 model based on spectral subset from the datasets: Xstand

95 , Xcal
100 , and Xstand

105 .

Using the randomization t-test, the UVE-PLS based model is compared with 

the model based on a variable subset found by simulated annealing. The 

SA variable selection model possesses a significantly smaller overall 

prediction error (RMSEP is 0.0026) than the UVE-PLS model (RMSEP is 

0.0052) at the different temperatures. 
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Conclusions

In this chapter, robust variable selection models are compared to global 

calibration models for different applications in order to decrease the 

influence of temperature variations on the model’s predictions. It is shown 

that models based on robust variable selection are sometimes better than or 

similar to global calibration models with respect to prediction errors at 

different sample temperatures. However, a disadvantage related to the 

simulated annealing approach used for variable selection is that special 

expertise and software are needed. 

It is shown that robust variable selection models are less complex, because 

they are based on a smaller number of variables and use fewer PLS factors 

than global calibration models. However, it is difficult to say whether the 

robust variable selection models are more parsimonious, because many 

degrees of freedom are lost during variable selection. Therefore, long-term 

validation in practice is necessary to indicate which method works best. 
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6. SUMMARY AND GENERAL CONCLUSIONS

The influence of temperature on spectra and consequently on multivariate 

calibration models has been studied. This is intended to serve as an 

example for the more general problem of influence of external factors in the 

practical or industrial application of spectroscopic measurements for 

multivariate process analysis, monitoring and control. 

Different methods have been applied for two data sets exhibiting 

temperature influences that reduce the predictive quality of calibration 

models: 

Table 6-1: Models and strategies used
Temp. known for

Category Model Type Chapter Calibration Prediction

Implicit inclusion Global 2 � �
Local + 

interpolation
2 � �

Incl. in X 3 � �
Explicit inclusion in 

calibration model

Incl. in Y 3 � �
2-step PLS 3 � �Linear Data pre-

processing Basis projection 3 � �
Var. selection 

PLS-UVE
3 � �

CPDS 4 � �
Non-linear Data 

pre-processing

Var. selection SA 5 � �
�: Knowledge of temperature is required in order to be able to use the model.

�: Temperature is not required but in case of calibration it should be possible to assume, 

by e.g. the size of the dataset, that the temperature variation is well spread in order to 
be excluded as a confounding factor.
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Table 6-1 summarizes the characteristics of the applied methods and 

models in terms of strategies used and necessity to know the interfering 

temperature. The strategies to handle the temperature influences can be 

grouped into 4 different categories:

1. Global models: These models can include the temperature implicitly in 

the calibration model through experimental design. They are simple to 

set up and performed remarkably well. However, global models become 

more complex in terms of latent variables and are therefore more prone 

to instabilities. Another drawback lies in the assumption that the 

temperature is fully covered and balanced in the calibration design. 

Already a slight deviation from this assumption can provoke large 

prediction errors, since the regression model will confound the 

temperature effect with the analyte to be predicted. This issue did not 

prove to be a major issue in the present work because only well 

designed calibration sets were used, but this cannot be guaranteed in 

the daily practice of e.g. industrial applications.

2. The explicit inclusion of temperature in the calibration model itself forms 

the second category and has been tried in three different ways: The 

correction on values predicted by local models (models at one 

temperature), the inclusion of the temperature in the predicting X- and 

the inclusion in the predicted Y-block. The correction of local model does 

not work due to the non-linearity of the temperature effect. A response 

shift is fundamentally non-linear and additionally the effect of the 

temperature on the spectra does depend on the analyte-concentrations 

too. Therefore, it is impossible to correct for temperature influences by a 

simple correction factor after prediction. The inclusion into the X-block 

does intend to use the temperature as a corrective input and therefore to 

aid in the prediction of the analyte. But, - by the experimental design - , 

there is no correlation between the analyte concentration and 

temperature what leads to only a small influence of the temperature in 

the model. Additionally, the correlation between the temperature and its 



Chapter 6

123

effects on the spectra is, as explained earlier, very complex. The PLS-

regression models are therefore not able to use the temperature 

information when using it as predictor-variable. The third approach in 

this category, using the temperature as a y-variable and predicting it 

simultaneously with the analyte, is more logical since, - like the analyte -

, the temperature also generates the spectrum. The inclusion in y should 

therefore enable the PLS model to use the most temperature-affected 

spectral regions for temperature prediction and predict with the less 

affected regions the analyte. In most cases the performance is therefore 

comparable to the global models. Only in the case where the 

temperature interference overlaps strongly with the spectral region of the 

analyte (i.e. water) this strategy demonstrates an inferior performance. 

This is probably due to the model using up large part of the variance for 

the temperature prediction, leaving too little to predict the analyte as 

well. 

3. The third category uses linear data preprocessing to correct for 

temperature interference. One approach is to lead further the last 

mentioned idea of correction through temperature prediction (inclusion in 

y) and build a separate temperature regression model prior to building 

the analyte regression model on the remaining variance. Even more 

extremely than in the case of water prediction, the temperature model 

now uses up most of the variance. Consequently, the prediction of the 

analyte can be only very poor. Another linear preprocessing strategy is 

to express the data on a new basis on which the analyte signal and 

temperature interference could be separated. The growth of wavelet 

transform applications led to a closer inspection of the possibility to 

apply it to the “temperature problem”. However, this inspection led to the 

conclusion that, since the wavelet transform is a linear operation which 

transforms from one orthogonal to another orthogonal basis, the non-

linearity cannot be separated from the analyte signal in a better way than 

in the original domain. 
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4. The fourth and final category studied in the presented work is the 

correction for temperature with non-linear data preprocessing methods. 

Three methods, namely a variable elimination method based on 

predictive stability (PLS-UVE), a simulated annealing based variable 

selection method and a continuous spectra-correction method (CPDS) 

were chosen as exponents of this category. The non-linear strategies 

worked well, compensating for the largest part the temperature effects 

on the calibration accuracy and leading to less complex calibration 

models. However it should be noted that, while the calibration models 

become less complex in terms of the number of latent variables used, 

the complexity of the method does not decrease as it incorporates either 

a non-linear correction or variable selection. The methods differ on 

several points and have their own strengths and weaknesses. The PLS-

UVE method makes only use of fast linear algorithms (although a 

variable selection or elimination is non-linear by itself) but needs the 

temperature to be known during calibration. The simulated annealing 

based variable selection does not need the temperature to be measured 

for calibration and prediction. On the other hand, the algorithm is a 

probabilistic approach, leading to different solutions when repeated. The 

CPDS method is very straightforward and leads to a very interpretable 

correction result but will only work when the effect to be corrected for is 

continuous.

The strategies presented in this work show, that multivariate calibration 

models can be made robust enough to handle the external non-linear 

interferences that can be expected when applying the models in an 

industrial environment. In the end it will depend on the problem at hand 

which technique will be the most suitable. A global model may be used for 

its ease of implementation. In the case of a strongly non-linear interference 

in combination with a need for higher prediction accuracy one of the non-

linear strategies may be more appropriate. In any case, the large 

differences in predictive quality imply that the choice of the calibration 
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algorithm becomes secondary to the successful correction for interferences 

and good calibration design. 
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Samenvatting en Algemene Conclusies

De invloed van de temperatuur op spectra en daarmee op multivariate 

kalibratie modellen is onderzocht. Dit kan als voorbeeld gezien worden voor 

het algemenere probleem van invloed van externe factoren in de 

praktijkgerichte of industriële toepassing van spectroscopische 

meetmethoden in de multivariate procesanalyse en monitoring.

Verschillende methoden zijn toegepast op 2 datasets met 

temperatuurinvloeden die de voorspellingskwaliteit van de 

kalibratiemodellen aantasten. 

Tabel 6-2: Gebruikte modellen en strategieën
Temp. bekend voor:

Categorie Model Type Hoofdstuk Kalibratie

Voor-

spelling

Impliciete opname Globaal 2 � �
Lokaal + 

interpolatie 
2 � �

Incl. in X 3 � �
Expliciete opname 

in kalibratie model 

Incl. in Y 3 � �
2-staps PLS 3 � �Lineaire Data 

voorbewerking Basis projectie 3 � �
Var. selection 

PLS-UVE
3 � �

CPDS 4 � �
Niet-lineaire Data 

voorbewerking

Var. selection SA 5 � �
�: Temperatuur moet bekend zijn om model te kunnen gebruiken.

�: Temperatuur hoeft niet bekend te zijn maar in geval van kalibratie moet ervan uit 

gegaan kunnen worden (b.v. door de grootte van de dataset) dat de 
temperatuursvariatie goed is opgespannen en dat deze niet verwisselt kan worden 
met de analiet variatie
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Tabel 6-2 vat de gebruikte methoden en modellen samen in termen van 

gebruikte strategieën en noodzakelijkheid van kennis van de interfererende 

temperatuur. De strategieën kunnen in 4 verschillende categorieën worden 

ingedeeld:

1. Globale modellen: Deze modellen kunnen de temperatuur incorporeren 

door middel van het experimental design. Zij zijn makkelijk te 

implementeren en hebben redelijk goed gepresteerd. Deze prestatie 

gaat ten koste van een grotere complexiteit van het kalibratie model (in 

termen van aantallen latente variabelen) en zal daardoor eerder 

instabiel kunnen worden. De eis dat de temperatuur door middel van 

een goede proefopzet (design) is opgespannen leidt tot het gevaar dat 

ook een kleine afwijking ervan tot grote fouten kan leiden. In het 

gepresenteerde onderzoek was dit geen probleem omdat een volledig 

design is gebruikt, in de praktijk kan dit echter lang niet altijd 

gegarandeerd worden.

2. De expliciete opname van de temperatuur in het kalibratie model vormt 

de tweede categorie en is op drie manieren uitgevoerd: Een 

temperatuurscorrectie achteraf op de voorspelling van 

kalibratiemodellen bij maar één temperatuur, de opname van de 

temperatuur als voorspellende variabele (in het X-block) of de opname 

in y als te voorspellen variabele. De niet-lineariteit van de 

temperatuursinvloeden op de spectra maken een goede correctie 

achteraf onmogelijk. De door de temperatuur geïnduceerde 

signaalverschuiving is een niet-lineair verschijnsel dat bovendien 

afhankelijk is van de analietconcentratie. Daardoor is het onmogelijk om 

achteraf met een simpele correctiefactor voor een correcte voorspelling 

te zorgen. De opname van de temperatuur in het X-block moet zorgen 

voor een correctieve variabele in het kalibratie model. Door de 

proefopzet is er echter geen correlatie tussen de analietconcentratie en 

de temperatuur, waardoor het gewicht van de temperatuur in het model 

laag zal zijn. Bovendien is het verband tussen de temperatuur en de 
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spectrale invloeden ervan uiterst complex zoals al eerder aangegeven. 

Daardoor is een PLS algoritme uiteindelijk niet in staat om de 

temperatuur als correctieve X-variabele te benutten. De derde manier, 

het opnemen van de temperatuur in het te voorspellen Y block is 

logischer. De temperatuur ligt immers – net als de analiet – ten 

grondslag aan het spectrum. Een PLS model kan daardoor het spectrale 

gedeelte dat het meest wordt beïnvloed door de temperatuur ook voor 

de temperatuursvoorspelling gebruiken, en wordt daardoor in staat 

gesteld om de analietconcentratie juist met de andere gebieden te 

voorspellen. Alleen in gevallen waarin de temperatuur een sterke 

invloed op het analiet spectrum heeft zal deze grote overlap ertoe 

zorgen dat er te weinig variantie voor een deugdelijke analiet-

voorspelling is, zoals dat met de water modellen ook inderdaad 

gebeurde.

3. De derde categorie gebruikt lineaire datavoorbewerking om voor 

temperatuurseffecten te corrigeren. Één mogelijkheid hiervoor is het 

verder doorvoeren van laatstgenoemde correctie door 

temperatuursvoorspelling (temperatuur in y block). Nu wordt echter 

vooraf een apart model gebruikt om de temperatuur te voorspellen en 

daarna met alleen de resterende variantie voor de analiet gekalibreerd. 

Maar hier geldt in nog veel sterkere mate dan bij de bovengenoemde 

moeilijkheden bij de water voorspelling dat er bij lange na niet genoeg 

variantie overblijft voor een goede analiet voorspelling. Een andere 

mogelijkheid tot lineaire datavoorbewerking is het uitdrukken van de 

data op een andere basis om het analiet signaal beter van de 

temperatuur interferentie te scheiden. De groeiende 

toepassingsgebieden van wavelettransform leidden tot een verdere 

evaluatie van de mogelijkheden om een wavelettransform op de 

temperatuur-beïnvloede spectra uit te voeren. Maar omdat een wavelet 

transform alleen een lineaire operatie is die van de ene naar de andere 

ortoghonale basis projecteert, is het onmogelijk om op de waveletbasis 
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een betere scheiding tussen signaal en temperatuurinterferentie te 

verkrijgen.

4. De vierde en laatste categorie die binnen dit onderzoek aan de orde is 

gekomen is de temperatuurscorrectie door middel van niet-lineaire 

datavoorbewerking. Drie methoden, een op stabiliteit gebaseerde 

variabelen eliminatie methode (UVE-PLS), een op simulated annealing 

gebaseerde variabelen selectie en een continue spectrale correctie 

methode zijn als exponenten van deze categorie gekozen. Deze niet-

lineaire  preprocessing methoden zijn in staat om voor een groot 

gedeelte de temperatuur invloeden te compenseren en tot simpelere 

kalibratie modellen te leiden. Er moet echter opgemerkt worden dat het 

data analyse model in zijn totaliteit natuurlijk niet simpeler wordt, omdat 

de preprocessing stappen op zich ook modelcomplexiteit en daarmee 

een verlies aan vrijheidsgraden betekenen. De voorgestelde methoden 

verschillen op een aantal punten en hebben elk zowel voor- als nadelen. 

De PLS-UVE methode maakt alleen gebruik van snelle lineaire 

algoritmen (ook al is een variabele selectie methode zelf per definitie 

niet lineair) maar heeft de meting van de temperatuur voor de kalibratie 

nodig. De op simulated annealing gebaseerde variabelenselectie heeft 

de temperatuur noch gedurende de kalibratie fase noch tijdens de 

voorspellingsfase nodig. Aan de andere kant is dit algoritme een 

probabilistische methode en geeft deze bij herhaling verschillende 

oplossingen. De CPDS methode daarentegen is rechttoe rechtaan en 

geeft goed interpreteerbare correctieresultaten maar zal alleen 

functioneren als het te corrigeren effect continu is.

De in dit werk gepresenteerde strategieën geven weer dat multivariate 

modellen robuust gemaakt kunnen worden voor externe interferenties die te 

verwachten zijn wanneer de modellen in een industriële omgeving 

toegepast worden. Uiteindelijk zal het van het voorhanden zijnde probleem 

afhankelijk zijn welke techniek het meest geschikt is. Een globaal model kan 

gekozen worden vanwege zijn toepassingsgemak. Als de interferentie sterk 
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niet-lineair is in combinatie met een noodzaak voor hoge 

voorspellingsprecisie kan ook een van de twee niet-lineaire strategieën 

geschikter zijn. Duidelijk wordt hoe dan ook geïllustreerd dat ondanks dat er 

iedere keer hetzelfde kalibratie-algoritme gebruikt wordt, de uiteindelijke 

voorspellingskwaliteit vooral van een succesvolle correctie voor de 

temperatuurs interferenties afhangt.
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