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Abstract: The feasibility of rating the octane number of gasoline using near infrared
(NIR) spectroscopy and three different genetic algorithm-based multivariate calibra-
tion methods was demonstrated. The three genetic multivariate calibration methods
are genetic regression (GR), genetic classical least squares (GCLS), and genetic in-
verse least squares (GILS). The sample data set was obtained from the ftp address
(ftp://ftp.clarkson.edu/pub/hopkepk/Chemdata/) with the permission of Professor. J. H.
Kalivas. This data set contains the NIR spectra of 60 gasoline samples collected us-
ing diffuse reflectance as log (1/R) with known octane numbers and covers the range
from 900 to 1700 nm in 2 nm intervals. Of these 60 spectra, 20 were used as the cali-
bration set, 20 were used as the prediction set, and 20 were reserved for the validation
purposes. Several calibration models were built with the three genetic algorithm-based
methods, and the results were compared with the partial least squares (PLS) predic-
tion errors reported in the literature. Overall, the standard error of calibration (SEC),
standard error of prediction (SEP), and standard error of validation (SEV) values were
in the range of 0.15–0.32 (in the units of motor octane number) for the GR and GILS,
which are comparable with the literature. However, GCLS produced relatively large
results (0.36 for SEC, 0.39 for SEP and 0.52 for SEV) when compared with the other
two methods.

Keywords: near infrared spectroscopy, multivariate calibration, genetic algorithms,
genetic regression, CLS, ILS, octane number

INTRODUCTION

Gasoline is a highly complex mixture of various hydrocarbons and oxy-
genates, such as methyl t-butyl ether (MTBE). Therefore, the resulting spec-
trum of gasoline is the summation and highly overlapped spectral features
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1140 D. Özdemir

of each component in gasoline. The spectral features of gasoline are dom-
inated by overtone and combination bands of CH, CH2, and CH3, groups,
and the most useful spectral information is located in the 1100–1650 nm
and 1800–2100 nm spectral ranges (Hoeil, Hyeseon, and Chi Hyuck, 2001).
There have been a number of reports in the past years about the prediction of
octane number of gasoline using spectroscopic techniques (Kelly and Callis,
1990; Fodor, Kohl, and Mason, 1996; Litani-Barzilai et al., 1997; Kalivas,
1997; Brenchley, Hörchner, and Kalivas, 1997). However, the conventional
method used to determine the octane number in the petroleum industry is the
knocking engine, which requires long analysis times and is not suitable for
online monitoring.

Near infrared (NIR) spectroscopy (McClure, 1994) has become a popular
method for simultaneous chemical analysis and is being studied extensively
in a number of different fields, such as process monitoring (DeThomas, Hall,
and Monfre, 1994), biotechnology (Arnold et al., 2000), and pharmaceutical
and food industry (Wählby and Skjöldebrand, 2001), because of the potential
for online, rapid, nondestructive, and noninvasive instrumentation. The NIR
portion of the electromagnetic spectrum covers the range from 780 nm to
2500 nm, and most of the absorption bands observed in this region are due to
overtones and combinations of the fundamental mid-IR molecular vibrational
bands. Although all the fundamental vibrational modes can have overtones,
the most commonly observed bands arise from the C–H, O–H, and N–H
bonds in the molecules.

Modern spectroscopic instruments are so fast that they can produce hun-
dreds of spectra in a few minutes for a given sample that contains multiple
components. Unfortunately, univariate calibration methods are not suitable
for this type of data, as they require an interference-free system. Multivari-
ate calibration deals with data-containing instrument responses measured on
multiple wavelengths for a sample that usually contains more than one com-
ponent. In recent years, advances in chemometrics and computers have led
to the development of several multivariate calibration methods (DeThomas
et al., 1994; Arnold et al., 2000; Wählby and Skjöldebrand, 2001) for the
analysis of complex chemical mixtures.

Genetic regression (GR) (Paradkar and Williams, 1997; Özdemir, Mosley,
and Williams, 1998a, 1998b; Mosley and Williams, 1998; Özdemir and
Williams, 1999) is a calibration technique that optimizes linear regression
models using a genetic algorithm (GA) and has been applied to a number of
multi-instrument calibration and wavelength selection problems. GAs (Luca-
sius and Kateman, 1993; Hörchner and Kalivas, 1995) are nonlocal search and
optimization methods that are based upon the principles of natural selection.
For given full spectrum data, GR selects an optimum linear combination of
wavelengths and simple mathematical operators to build a linear calibration
model using the simple least squares method.

Classical least squares (CLS) extends the classical Beer’s Law model
in which the absorbance at each wavelength is directly proportional to the
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Determination of Octane Number 1141

component concentrations. Inverse least squares (ILS) is based on the inverse
Beer’s Law, where concentrations of an analyte are modeled as a function of
absorbance measurements. Genetic classical least squares (GCLS) and genetic
inverse least squares (GILS) are modified versions of original CLS and ILS
(Haaland and Thomas, 1988; Geladi and Kowalski, 1986) methods in which
a small set of wavelengths is selected from a full spectral data matrix and
evolved to an optimum solution using a GA. The CLS, ILS, and PLS methods
were well described by Haaland and Thomas (1988); Geladi and Kowalski
(1986); Wentzell, Andrews, and Kowalski (1997); and Esbensen, Geladi, and
Wold (1987).

In this work, three different genetic multivariate calibration methods,
GR, GCLS, and GILS, were tested with the aim of establishing calibration
models that have a high predictive capacity for the determination of the octane
number of gasoline using the NIR spectroscopic technique.

THEORY

Genetic Regression

GAs are global search and optimization methods based upon the principles
of natural evolution and selection as developed by Darwin. Computationally,
the implementation of a typical GA is simple and consists of five basic steps,
including initialization of a gene population, evaluation of the population,
selection of the parent genes for breeding and mating, crossover and mutation,
and replacing parents with their offspring. These steps have taken their names
from the biological foundation of the algorithm.

GR is an implementation of a GA for selecting wavelengths and math-
ematical operators to build linear calibration models. GR is a hybrid cali-
bration between univariate and multivariate calibration techniques in which
it optimizes simple linear regression models through an evolving selection
of wavelengths and simple mathematical operators (+, −, *, /). GR follows
the same basic initialize/breed/mutate/evaluate algorithm as other GAs, but
it differs in the way it encodes genes. A gene is a potential solution to a
given problem, and the exact form may vary from application to applica-
tion. Here, the term “gene” is used to describe the collection of instrument
response pairs combined with the above-mentioned operators. These pairs,
called “base pairs,” are then combined with an addition operator to produce
a score, which relates the instrument response to component concentration.
The term “population” is used to describe the collection of individual genes
in the current generation.

In the initialization step, the first generation of genes is created randomly
with a fixed population size. Although random initialization helps to minimize
bias and maximize the number of possible recombinations, GR is designed
to select initial genes in a somewhat biased random fashion in order to start
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1142 D. Özdemir

with genes better suited to the problem than those that would be randomly
selected. Biasing is done with a correlation coefficient by plotting the scores
of initial genes against the component concentrations. The size of the gene
pool is a user-defined even number in order to allow for the breeding of each
gene in the population. It is important to note that the larger the population
size, the longer the computation time. The number of base pairs in a gene is
determined randomly between a fixed low limit and high limit. The lower limit
was set to two in order to allow single-point crossover, whereas the higher
limit was set to eliminate overfitting problems and reduce computation time.
Once the initial gene population is created, the next step is to evaluate and
rank the genes using a fitness function, which is the inverse of the standard
error of calibration (SEC).

The third step is where the basic principle of natural evolution is put
to work for GR. This step involves the selection of the parent genes from
the current population for breeding using a roulette wheel selection method
according to their fitness values. The goal is to give a higher chance to
those genes with high fitness so that only the best-performing members of
the population will survive in the long run and will be able to pass their
information to the next generations. Because of the random nature of the
roulette wheel selection method, however, genes with low fitness values will
also have some chance to be selected. Also, there will be genes that are
selected multiple times, and some genes will not be selected at all and will
be thrown out of the gene pool. After the selection procedure is completed,
the selected genes are allowed to mate top-down without ranking, whereby
the first gene mates with the second gene and the third one with the fourth
one and so on, as illustrated in the following example:

Parents:

S1 = (A347 ∗ A251)# + (A379 + A218) (1)

S2 = (A225 ∗ A478)# + (A343/A250) + (A451 − A358) + (A231 − A458) (2)

The points where the genes are cut for mating are indicated by #.

Offspring:

S3 = (A347 ∗ A251) + (A343/A250) + (A451 − A358) + (A231 − A458) (3)

S4 = (A225 ∗ A478) + (A379 + A218 (4)

Here, the first part of the S1 is combined with the second part of the S2 to
give the S3, and likewise, the second part of the S1 combined with the first
part of the S2 to give S4. This process is called the single-point crossover and
is the one used in GR. The single-point crossover will not provide different
offspring if both parent genes are identical, which may happen in the roulette
wheel selection, and broken at the same point. Also note that mating can
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Determination of Octane Number 1143

increase or decrease the number of base pairs in the offspring genes. After
crossover, the parent genes are replaced by their offspring, and the offspring
are evaluated. The ranking process is based on their fitness values following
the evaluation step. Then the selection for breeding/mating starts all over
again. This is repeated until a predefined number of iterations are reached.

Mutation that introduces random deviations into the population was also
introduced into the GR during the mating step at a rate of 1%, as is typical
in GAs. This is usually done by replacing one of the base pairs in an existing
gene with a randomly generated new base pair. Mutation allows the GR
to explore the search space and incorporate new material into the genetic
population. It helps keep the search moving and can eject GR from a local
minimum on the response surface. However, it is important not to set the
mutation rate too high, because it may keep the GA from being able to
exploit the existing population.

In the end, the gene with the lowest SEC (highest fitness) is selected
for the model building, which is done by simple least squares. This model
is used to predict the concentrations of the component being analyzed in
the validation (test) sets. The success of the model in the prediction of the
validation sets is evaluated using standard error of prediction (SEP). Because
the random processes are heavily involved in the GR as in all the GAs, the
program has been set to run several times for each component in a given
multicomponent mixture analysis. The best run (i.e., the one generating the
lowest SEC for the calibration set and at the same time producing SEPs for
validation sets that are in the same range with the SEC) was subsequently
selected for evaluation and further analysis. The termination of the algorithm
can be done in many ways. The easiest way is to set a predefined iteration
number for the number of breeding/mating cycles.

GR has some major advantages over classical univariate and multivariate
calibration methods. It is a hybrid calibration method that uses full spectral
information and reduces it to a single score upon which simple calibration
models are built. First, it is as simple as univariate calibration in terms of
the mathematics involved in the model building and prediction steps, but at
the same time, it has the advantages of the multivariate calibration methods,
because it uses the full spectrum to extract genetic scores. It automatically
corrects baseline fluctuations with the use of simple mathematical operators
while forming the base pairs. Note that data pretreatment is not necessary
before calibration, which saves extra time in data processing.

Genetic Classical Least Squares

The CLS method extends the classical Beer’s Law model in which the ab-
sorbance at each wavelength is directly proportional to the component concen-
trations. Model errors are assumed to be in the measurement of the instrument
responses, as they were in the classical univariate method. In matrix notation,
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1144 D. Özdemir

the CLS model for m calibration samples containing l chemical components
with spectra that contain n wavelengths is described as follows:

A = CK + EA (5)

where A is the m×n matrix of the calibration spectra; C is the m× l matrix
of the component concentrations; K is the l × n matrix of absorptivity-
pathlength constants; and EA is the m × n matrix of the spectral errors or
residuals not fit by the model. Here, the K matrix represents the first-order
estimates of the pure component spectra at unit concentration and unit path
length. The method of least squares can be used to estimate the K matrix.
The least-squares estimate of the K is defined as follows:

K̂ = (C′C)−1C′A (6)

Once the estimated K̂ matrix is obtained, the concentrations of an unknown
sample can be predicted from its spectrum by

ĉ = (K̂K̂ ′)−1K̂a (7)

where a is the spectrum of the unknown sample, and ĉ is the vector of the
predicted component concentrations.

GCLS is a modified version of the original CLS method in which a
small set of wavelengths is selected from full spectral data using a genetic
algorithm. The algorithm used to select the optimum number of wavelengths
in GCLS is similar to the GR algorithm but differs in the way it encodes the
gene. In GCLS, the term “gene” describes a vector with elements that are
randomly selected wavelengths. The size of the vector is also determined in
a random fashion with an upper limit to reduce computation time.

In the initialization step, an even number of genes are formed from a
full spectral data matrix, and each gene is used to form a CLS model. These
models are then evaluated and ranked using the fitness function described
in GR. The roulette wheel method is then used to select the gene population
for breeding. After the selection procedure is completed, the selected genes
are allowed to mate top-down without ranking, whereby the first gene mates
with the second gene and the third one with the fourth one and so on as
described above with one difference. Because the genes used in GCLS are
only vectors of wavelengths and contain no base pairs as described in GR, for
each gene, a random number is generated between one and the length of the
gene, and the single-point crossover process is performed using this number.
After crossover, the parent genes are replaced by their offspring, and the
offspring are evaluated. The ranking process is based on their fitness values
and follows the evaluation step. Then the selection for breeding/mating starts
all over again. This is repeated until a predefined number of iterations are
reached. During each iteration, the best gene with the lowest SEC is stored
in order to compare it with the best gene of the next generation. If the next
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Determination of Octane Number 1145

generation produces a better gene, then it is replaced with the older one;
otherwise, the old one is kept for further iterations. At the end, the gene with
the lowest SEC is selected for model building. This model is used to predict
the concentrations of the component being analyzed in the validation (test)
sets as described in GR.

Genetic Inverse Least Squares

The major drawback of the CLS is that all of the interfering species must be
known and their concentrations included in the model. This need can be elim-
inated by using the inverse least squares (ILS) method that uses the inverse
of Beer’s Law. In the ILS method, concentrations of an analyte are modeled
as a function of absorbance measurements. Because modern spectroscopic
instruments are very stable and provide excellent signal-to-noise (S/N) ratios,
it is believed that the majority of errors lie in the reference values of the cal-
ibration sample, not in the measurement of their spectra. The ILS model for
m calibration samples with n wavelengths for each spectrum is described by

C = AP + EC (8)

where C and A are the same as in CLS, P is the n× l matrix of the unknown
calibration coefficients relating l component concentrations to the spectral
intensities, and EC is the m × l matrix of errors in the concentrations not fit
by the model. In the calibration step, ILS minimizes the squared sum of the
residuals in the concentrations. The biggest advantage of ILS is that Eq. (8)
can be reduced for the analysis of a single component at a time, as analysis
based on an ILS model is invariant with respect to the number of chemical
components included in the analysis. The reduced model is given as follows:

c = Ap + ec (9)

where c is the m × 1 vector of concentrations for the analyte that is being
analyzed, p is the n×1 vector of calibration coefficients, and ec is the m×1
vector of concentration residuals not fit by the model. During the calibration
step, the least-squares estimate of p is

p̂ = (A′A)−1A′ · c (10)

where p̂ is the estimated calibration coefficient. Once p̂ is calculated, the
concentration of the analyte of interest can be predicted with the equation
below:

ĉ = a′ · p̂ (11)

where ĉ is the scalar estimated concentration, and a is the spectrum of the
unknown sample. The ability to predict one component at a time without
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1146 D. Özdemir

knowing the concentrations of interfering species has made ILS one of the
most frequently used calibration methods. However, the identities of interfer-
ing species still need to be known to prepare a good calibration sample set.

The major disadvantage of ILS can be seen in Eq. (10) where the matrix,
which must be inverted, has dimensions equal to the number of wavelengths
in the spectrum, and this number cannot exceed the number of calibration
samples. This is a big restriction, because the number of wavelengths in a
spectrum will generally be more than the number of calibration samples, and
the selection of wavelengths that provide the best fit for the model is not
a trivial process. Several wavelength selection strategies, such as stepwise
wavelength selection and all possible combination searches, are available to
build an ILS model that fits the data best. Here, we used the same genetic
algorithm described in GCLS to build GILS models with one difference. This
difference is in the way the mating and single-point crossover operations are
carried out. Because the number of wavelengths is restricted in response
matrix A in the ILS, the size of the largest gene is restricted to one less
than the number of calibration samples in the concentration vector. However,
if the single-point crossover is set to take place in any point of a gene,
then the mating step could produce new genes that have a larger number
of wavelengths than the number of calibration samples, even though all the
genes in the initial gene pool were set to have smaller numbers of wavelengths
than the size of the concentration vector. In order to avoid this problem, the
crossover operation is only performed in the middle of each gene in GILS,
so that the new generations will never have larger sizes than the number of
calibration samples. The rest of the algorithm is the same as the one used
in GCLS. As can be seen, the genetic algorithm used in GR, GCLS, and
GILS is not only used to select a set of wavelengths but also to put them in
a competition through an evolving algorithm.

EXPERIMENTAL

Instrumentation

The NIR spectra of gasoline samples used in this study were obtained from the
ftp server (ftp://ftp.clarkson.edu/pub/hopkepk/Chemdata/) with the permission
of Professor J. Kalivas. The details of the data set can be found elsewhere
(Kalivas, 1997; Brenchley et al., 1997). This data set consists of 60 gasoline
samples with specified octane numbers. Samples were measured using diffuse
reflectance as log (1/R) from 900 to 1700 nm in 2 nm intervals, and no
further data pretreatment was applied. Of these 60 spectra, 20 were used as
the calibration set, 20 were used as the prediction set, and 20 were reserved
for the validation purposes. The octane numbers of these samples are shown
in Table 1 for calibration, prediction, and validation sets, respectively.
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Determination of Octane Number 1147

Table 1. Octane numbers of the 60 gasoline samples
used in calibration, prediction, and validation sets

Octane number

Sample Calibration Prediction Validation
number set set set

1 85.3 85.25 88.45
2 83.4 88.9 85.5
3 87.9 88.3 88.45
4 88.7 88.25 88.75
5 88 87.3 88.6
6 85.5 88.7 87.05
7 88.75 88.65 87.25
8 87.15 85.4 86.85
9 88.65 87 86

10 86.3 86.6 86.1
11 84.4 86.5 84.6
12 84.5 84.7 88.1
13 88.2 88.4 85.25
14 88.2 88.4 88.55
15 88 88.35 88.5
16 88.85 85.3 88.25
17 87.6 88.7 88.45
18 84.7 88.1 88.35
19 89.6 85.1 85.1
20 87.1 87.2 86.6

Software

The new GA-based multivariate calibration methods (GR, GCLS, and GILS)
were written in MATLAB programming language using MATLAB 5.3 (Math-
Works Inc., Natick, MA).

RESULTS AND DISCUSSION

The data set used in this study was selected to demonstrate the applicability of
three new GA-based multivariate calibration methods to the octane number
determination of gasoline based on NIR spectroscopy. Figure 1 shows the
NIR spectra of three gasoline samples with specified octane numbers (84.7,
87.2, and 89.6). Because of structural similarities, the spectral features of
these three samples are very much alike, and only minute differences exist
in some parts of the whole spectrum. To illustrate these minute differences,
a small portion of the spectra are also shown on the same figure, which
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1148 D. Özdemir

Figure 1. Near infrared spectra of three different gasoline samples collected in diffuse
reflectance mode. The octane numbers of each are shown on top of each peak in the
small figure. (Note that the peak around 1150 nm is enlarged in order to show the
small absorbance difference between the three samples.)

is an enlarged view of the region between 1140 and 1155 nm. As can be
seen from this magnified view of the spectra, there are small differences for
these samples not only in the wavelength scale but also in the absorbance
scale. Throughout the multivariate calibration process, it is expected that
these differences will reveal the information necessary to build successful
calibration models otherwise almost impossible with univariate calibration
methods.

The SEC, SEP, and SEV results obtained with the three GA-based meth-
ods (GCLS, GILS, and GR) are plotted in Figure 2 as a bar graph along
with the corresponding values on each bar. All the GA-based methods ex-
cept GCLS generated similar results with the earlier reported PLS results
(Kalivas, 1997). Even though the results obtained with GR and GILS were
comparable, it was observed that the SEC, SEP, and SEV values produced
by GR were in better agreement compared to the results of GILS. On the
other hand, the results obtained with GCLS were about twice those obtained
with GR and GILS. One possible reason that GCLS did not work well with
this octane data is that Beer’s law applies to for the concentration of analyte,
whereas in this study, it is the octane number of gasoline samples. Also, the
CLS method requires that in order to produce successful calibration models,
composition of the sample must be well defined, which is not the case here.

The genetically selected wavelengths for the best modes generated with
the three methods are illustrated in Table 2. As can be seen from the table, the
GR method needed only eight specific wavelengths to generate a successful
calibration model. Even though this is a very small gene with only four base
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Determination of Octane Number 1149

Figure 2. The standard error of calibration (SEC), standard error of prediction (SEP),
and standard error of validation (SEV) results obtained from the three genetically
modified calibration methods (GCLS, GILS, and GR).

pairs, we have observed that, for the most of the time, the successful models
were the ones that have a small number of base pairs (usually between two
and five) that are formed with the use of a subtraction operator. The most
probable reason for the relatively small gene size is because of the over-
fitting problem as in all multivariate calibration methods. When the gene gets
larger, each additional base pair is actually fitting the small variations in the
calibration set, but these variations may not present in the prediction set.

The number of selected wavelengths for GILS is 10 and for GCLS is 23.
There were many other genes that had more or less wavelengths than these
values, but these were the ones that produced the best SEC and SEP results.
When one closely examines these wavelengths, notice that for the two meth-
ods, the GA selects similar wavelengths. Figure 3 shows the reference octane
numbers versus the predicted octane numbers for the gasoline samples using

Table 2. Genetically selected wavelengths for the best modes generated with the
GR, GILS, and GCLS methods

Name of
the method Selected wavelengths (nm)

GR Gene = (1230 − 1362) + (1636/1672) + (1464/1360) + (1208 + 1634)

GILS 1148, 1180, 1522, 1002, 1118, 1434, 1462, 1582, 1214, 1374
GCLS 1250, 1092, 1556, 1582, 1328, 1336, 1582, 1008, 1146, 1136, 1378, 1106,

1096, 1250, 1092, 1556, 1336, 1582, 1278, 1106, 1086, 1336, 1582
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1150 D. Özdemir

Figure 3. Actual octane numbers versus the predicted octane numbers for the gasoline
samples contained in calibration, prediction, and validation sets. (a) with GR, (b) with
GILS, and (c) with GCLS (�: calibration set, �: prediction set, and �: validation
set).

three GA-based multivariate calibration methods. The regression coefficients
for the GILS and GR were around 0.99 and for the GCLS was 0.95.

In order to determine whether the GA-selected wavelengths correspond
to the particular information, the GR method was also set to run 50 times
with 20 genes and 100 iterations. The overall distribution of the selected
wavelengths along with a gasoline sample spectrum is shown in Figure 4 for
the GR method. As can be seen from the figure, the GR method selected
the wavelengths that correspond to certain regions of the spectrum that best
relates the octane number to the spectral intensities. Notice that the algorithm
starts with the whole spectrum information at the beginning of each run, and
each wavelength has an equal chance of being selected. The explanation of
this is in the evolutionary nature of the GA, where the wavelengths that are
suited for the particular information survive in the long run of iterations and
others do not. This gives an advantage to the GA-based methods, where only
the information related to the particular component is used to construct the
model, thereby reducing the noise in the overall information.

CONCLUSIONS

This study shows that wavelength selection based on a GA can improve the
accuracy of hard modeling multivariate calibration techniques (ILS and CLS)
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Determination of Octane Number 1151

Figure 4. Distribution of the selected wavelengths by genetic algorithm in GR
method for a total of 50 runs with 20 genes and 100 iterations along with a gasoline
sample spectrum.

for NIR spectra. It is also interesting to note that the GR method was able
to give standard calibration and prediction errors in the range of the other
three methods, even though the GR generates the models based on the simple
least-squares procedure.
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