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Spectrum imaging (SI) methods are displacing traditional spot analyses as the predominant paradigm

for spectroscopic analysis with electron beam instrumentation. The multivariate nature of SI provides

clear advantages for qualitative analysis of multiphase specimens relative to traditional gray-scale

images acquired with non-spectroscopic signals, where different phases with similar average atomic

number may exhibit the same intensity. However, with the improvement in qualitative analysis with

the SI paradigm has come a decline in the quantitative analysis of the phases thus identified, since the

spectra from individual pixels typically have insufficient counting statistics for proper quantification.

The present paper outlines a methodology for quantitative analysis within the spectral imaging

paradigm, which is illustrated through X-ray energy-dispersive spectroscopy (EDS) of a multiphase

(Pb,La)(Zr,Ti)O3 ceramic in scanning transmission electron microscopy (STEM). Statistical analysis of

STEM-EDS SI is shown to identify the number of distinct phases in the analyzed specimen and to

provide better segmentation than the STEM high-angle annular dark-field (HAADF) signal. Representa-

tive spectra for the identified phases are extracted from the segmented images with and without

exclusion of pixels that exhibit spectral contributions from multiple phases, and subsequently

quantified using Cliff–Lorimer sensitivity factors. The phase compositions extracted with the method

while excluding pixels from multiple phases are found to be in good agreement with those extracted

from user-selected regions of interest, while providing improved confidence intervals. Without

exclusion of multiphase pixels, the extracted composition is found to be in poor statistical agreement

with the other results because of systematic errors arising from the cross-phase spectral contamination.

The proposed method allows quantification to be performed in the presence of discontinuous phase

distributions and overlapping phases, challenges that are typical of many nanoscale analyses performed

by STEM-EDS.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

A spectrum image (SI, sometimes called a hyperspectral
image), is a dataset produced by the acquisition and storage of
full spectra at many spatially distinct points in a sample [1–3].
Typical materials science applications of spectrum imaging
include secondary ion mass spectroscopy (SIMS) [4], proton-
induced X-ray emission (PIXE) [5], and X-ray photoelectron
spectroscopy (XPS) [6]. In electron microscopy, techniques
commonly performed in a spectrum imaging mode include energy
dispersive spectroscopy (EDS) [7,8], electron backscatter diffrac-
tion (EBSD) [9], cathodoluminescence (CL) [10], and electron
energy loss spectroscopy (EELS) [2,3,11–13].
ll rights reserved.

y, Oak Ridge, TN 37831, USA.
An important and growing application of scanning transmis-
sion electron microscopy (STEM)-EDS spectrum imaging is in the
quantification of atomic species present at each pixel. Hunneyball
et al. [14] produced the first quantitative STEM-EDS maps. Later
authors [7,15–19] were able to push quantitative mapping to near-
one-nanometer spatial resolution and very high chemical sensi-
tivity. As shown by Watanabe et al. [20], using principal
component analysis (PCA) [a type of multivariate statistical
analysis (MVSA) ] as a noise-filter allows very minor (o1 wt%)
components to be examined at high spatial resolution (o5 nm),
especially when combined with the very bright probe of an
aberration-corrected cold-field-emission STEM. Following that
work, we have recently used PCA noise-filtering to produce
quantitative maps of cation fractions in (Pb,La)(Zr,Ti)O3 (PLZT)
thin-film materials [21].

Traditionally, quantitative STEM-EDS studies were performed
by analyzing individual points, or a few points in a linescan [22],
rather than quantifying pixel-by-pixel in a map or SI. These results

www.elsevier.com/locate/ultramic
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Fig. 1. Quantitative cation fraction ratio maps of sintered PLZT material. HAADF

image is in Fig. 2a.
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would be reported by quoting an atomic or weight fraction ratio
with a specified statistical standard deviation or confidence limit,
or by presenting the data as a graph of these ratios versus linescan
position, along with error-bars on each datapoint denoting the
uncertainty at that point. In general, the uncertainties associated
with traditional STEM-EDS quantifications will be a combination
of the Poisson counting statistics and the scatter in experimen-
tally measured sensitivity factors. However, error analyses of
quantitative STEM-EDS SIs have not been reported. Fig. 1
illustrates quantitative cation fraction maps of PLZT material;
clearly, there is significant experimental scatter from one
pixel to the next, even within the same phase, indicating that
the precision and accuracy of such quantitative mapping is
uncertain. In order for quantified STEM-EDS SIs to be truly
quantitative, so as to interpret materials properties with respect
to structure and phase diagrams, the accuracy and precision
should be known.

The standard methods of calculating uncertainties in EDS
quantifications are based on the Poisson statistics of the particle-
counting nature of EDS detection. However, it is not clear a priori
that the noise structure of a SI, after PCA processing, will be
Poissonian in character. In particular, scaling for Poisson noise
before PCA and the reconstruction of the point spectra from a
small number of loading spectra may result in pixel-to-pixel
variations that Poisson noise does not describe well. If we
hypothesize that PCA-denoised SIs cannot be treated by standard
error analysis, then a new means to extract the precision must be
found.

Our goal in this paper is to determine statistical confidence
bounds for STEM-EDS SI quantifications. The method we choose is
to aggregate the raw SI data into individual phase spectra, because
addition of Poisson variables maintains their Poissonian nature in
the sum. We describe techniques to segment a STEM-EDS SI into
individual constituent phases, and then use standard quantifica-
tion techniques to calculate the chemistry and its associated
confidence bound within each phase. Qualitative segmentation of
spectrum images was suggested by Bonnet [23], and creating
binary masks and summing the raw SI data under them has been
reported previously by Kotula and Keenan [24], where it was used
for qualitative analysis of interfacial segregation measured via
STEM-EDS. Similar techniques have been used in SIMS [25] to
determine phase volume fractions. The current results are
extensions in that we then (1) perform a full quantitative analysis
upon the obtained spectra and that (2) we compare different
segmentation methods. We choose PLZT-based materials as our
examples for several reasons. (1) Pb-based ferroelectric oxides can
show instability under a bright electron beam [26–28], so the
native short dwell times of SI techniques may be beneficial for
quantification. (2) The example chosen here is not spatially simple;
that is to say, a single pixel in the SI may contain more than one
phase in the thickness of the TEM foil. This spatial non-simplicity
will provide complications to test the applicability of the
proposed method.

The proposed technique is advantageous over traditional
methods, such as a point-analysis, because the dose is spread
across a large sample area, and discontinuous regions of the same
constituent phase can be aggregated together. The disadvantage is
that pixels containing more than one phase will bias the results,
and this must be accounted for; additionally, the extracted phase
quantifications will be averaged across each phase, rather than
indicative of a given point. This is also a step towards the eventual
goal of a quantitative understanding of elemental composition
and error propagation through the PCA and quantification
procedures.
2. Experimental procedure

2.1. Ceramic processing

A ferroelectric thin-film of nominal composition
Pb0.88La0.12Zr0.70Ti0.30O3 (PLZT 12/70/30) is used as our example.
The sample was produced by pressing and sintered chemically
prepared precursor powders. The structure, as seen in Fig. 1,
consists of a matrix of PLZT grains, with La–Zr rich precipitates
and a Pb-rich film wetting many of the grain boundaries. The
phases are referred to as ‘‘matrix,‘‘ ‘‘precipitates,‘‘ and ‘‘film’’ in
this work.
2.2. Electron microscopy

Samples were prepared for STEM by milling in a FEI DB-235
dual-beam focused ion beam/scanning electron microscope (FIB/
SEM) instrument, and were lifted out and placed on carbon-filmed
copper grids. Primary milling was performed with a 30 keV
gallium ion beam; finish milling was with a 5 keV gallium ion
beam. STEM was performed in a Phillips Tecnai F30-ST Schottky
emission TEM/STEM instrument operated at 300 keV, equipped
with an EDS detector by EDAX.

Our SI quantification procedure is described in detail in our
previous work [21], but we will summarize it here. For
quantification of the cation contents, each individual pixel’s
spectrum was reconstructed from the significant principal
components as a noise-filtering step; PCA is described in the next
section. The reconstructed spectrum at each point was top-hat
filtered to remove the background contribution [29–31]. The
characteristic peaks (Pb L series, Zr K series, Ti K series, and La L
series) were deconvolved and integrated by multiple linear least
squares fitting of similarly filtered reference spectra to the
experimental spectra [32]. Reference spectra were acquired from
pure oxides PbO, ZrO2, TiO2, and La2O3. This step is necessary, in
particular, to deconvolve the Ti K/La L overlap.

Once the integrated counts IPb, IZr, etc. were found at each pixel
from the deconvolution procedure, the Cliff–Lorimer technique
[33] was used to quantify the ratios of cations. The Cliff–Lorimer
equation states that a ratio of chemical concentrations CA/CB for
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elements A and B will be related to the integrated count ratio IA/IB

via a sensitivity factor kAB:

CA

CB
¼ kAB

IA

IB
ð1Þ

In our case, CA, etc. are measured in terms of cation fraction.
The kAB factors were measured experimentally from crushed
powder standards of PbTiO3, PbZrO3, and Ti2La2O7, and whose
spectra were integrated using identical techniques as the
datapoints. From the assumption

CPbþCZrþCTiþCLa ¼ 1 ð2Þ

the cation fraction ratios can be converted to cation fraction. All
integration and analysis was performed using MATLAB scripts.

Eq. (1) gives the value of a cation fraction ratio CA/CB at some
point (x, y). The associated statistical standard deviation, D(CA/CB),
Fig. 2. Comparison of (a) HAADF, (b) count rate, (c) PCA and
is given by [34]
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Eq. 3 is based upon Poisson counting statistics where the
variance is equal to the measurement, and assumes uncorrelated
variances [35]. Here,

ffiffiffiffi
IA

p
=IA is the 1s standard deviation in the

peak A, and
ffiffiffiffi
IB

p
=IB is the 1s standard deviation in the peak B.

D(kAB) is the standard deviation in kAB. Because kAB is obtained
from multiple measurements of a standard, D(kAB) is determined
from a t-analysis of the multiple measurements [22,34]. Eq. (3) is
written for 1s, but higher standard deviation values could be
incorporated easily. This equation is used to calculate error-bars
and uncertainties below.

The Cliff–Lorimer equation assumes that the peaks IA and IB not
be absorbed at different rates by the sample, which translates to a
thin-foil assumption. As discussed elsewhere [21,36], in these
(d) MCR based segmenting of the sintered PLZT sample.
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samples, the thin-foil assumption is met to better than 5%. Eq. (3)
can only account for statistical, not systematic, errors. Systematic
errors likely present in this work are (1) surface-Pb-depletion,
Fig. 3. (a) HAADF image, (b) Eigenvalue plot and (c–e) PCA com
particularly in the matrix phase, due to FIB-based sample
preparation [36] and (2) differential absorption. When the relative
error from Eq. (3) is �3–5% or less, differential X-ray absorption in
ponents and score histograms of the sintered PLZT sample.
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Fig. 5. (a) HAADF image. The colored boxes indicate manually-defined areas where th

(b) and (c) Show these summed spectra. (d) Shows comparisons of the three phases qua

areas in (a). (e) Comparison of the quantified cation fractions. Error bars in (d) are 72

Fig. 4. Grain-boundary film (top), precipitate (middle) and matrix (bottom)

summed spectra. Insets are the associated PCA-component derived phase mask

(Fig. 2c).
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the thin-film sample will likely dominate the statistical errors.
Methods to account for thin-film differential absorption exist [15],
but our emphasis in this paper is segmentation methods, so to
avoid unnecessary complication we use the Cliff–Lorimer thin-foil
method.
2.3. Principal component analysis (PCA)

The application of PCA to spectrum images has been described
previously [11,19,37]. Because of the Poisson nature of the noise
structure in EDS spectrum images, the SI data must be pre-
processed using the ‘‘Optimal Scaling’’ method [38–40]. Other-
wise, PCA will prefer to describe variance arising from noise in
large peaks over small chemical features. This pre-processed,
Poisson-scaled SI data is then subjected to PCA as described
in detail by Keenan [37]. Following PCA analysis, the components
describing noise are discarded, leaving only the components
that carry chemical information. This result is then returned
to physical space from Poisson-space by applying the inverse of
the Poisson scaling [37]. These steps were performed using
the software package ‘‘AXSIA’’ from Sandia National Laboratories
[8]. Finally, the returned, physical-space components are
reorthogonalized using the ‘‘fPCA’’ MATLAB method described
by Keenan [37].
e SI pixels were summed to provide (nominally) single-phase reference spectra.

ntified cation fraction ratios determined from PCA segmentation and the extracted

s. PPTs=precipitates.
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A technique related to PCA is multivariate curve resolution,
MCR. Non-negativity constrained MCR using alternating least
squares is often applied to PCA solutions due to the abstract
nature of the PCA scores and loadings. The MCR solution was also
calculated using AXSIA [8,37,41,42].
Fig. 6. (a) three-color composite phase-mask for the simulated spectrum image.

(b–d) are the film, precipitate, and matrix components.

Fig. 7. 1000 count/pixel simulation results. (a) PCA-component score image of the

simulation in Fig. 6. (b) Score-image histogram. (c) Re-created phase mask.
3. Results and discussion

3.1. Initial results

In STEM, the high-angle annular dark-field (HAADF) image is
very sensitive to the mass-thickness of the sample. We hypothe-
size HAADF intensity would be a possible means to assign
segmentation of phases. Recall Fig. 1, which illustrates quantita-
tive cation fraction ratio maps of the sintered PLZT sample. Fig. 2a
shows the HAADF image of the sample, as well as a histogram of
the HAADF intensity. The HAADF image was down-sampled to
128�128 pixels in order to match the size of the spectrum image.
Also shown in Fig. 2a are a histogram of HAADF values and a
derived segmented phase map. The phase map is determined by
selecting areas in the HAADF image that have approximately the
same gray-scale intensity, and then creating a mask from these
values. Specifically, large changes in the histogram slope were
chosen as the borders between phases. The colored boxes in the
HAADF histogram indicate the HAADF pixel intensities that
contributed to the phase mask. Green denotes the inclusions
phase, red the grain-boundary film, and blue the matrix. (All
phase maps presented in this work have had a ‘‘majority’’
morphological operation applied to them. The majority
operation sets a pixel to ‘‘on’’ – i.e., red, green, or blue – if five
or more of its neighboring nine pixels are the same color, and sets
the pixel to ‘‘off’’ – black – otherwise. This removes isolated hot
and cold pixels.)

Clearly, the HAADF signal is inappropriate and does a poor job
of segmenting the phases in this case. Because this material is
multi-phase and prepared by FIB, curtaining artifacts were visible
in the HAADF image and resulted in thickness-based contrast that
dominated the chemical contrast. Similarly, using the X-ray count
rate at each pixel (Fig. 2b) provides essentially the same
(incorrect) result.

PCA or MCR, however, are inherently multivariate methods and
may be advantageous in comparison to inherently univariate
methods such as the HAADF or count-rate imaging. Fig. 3 shows
PCA results of the spectrum image. Fig. 3a shows the HAADF
image and Fig. 3b the eigenvalue plot. The eigenvalue plot
indicates a rank of 3 in the dataset. Figs. 3c–e show the three
significant PCA components, along with score image histograms.
The first component, Fig. 3c, is approximately the mean image and
mean spectrum of the dataset. As such, segmentation of the first
score image would give results similar to the count rate image
(Fig. 2b). However, the second and third PCA components,
Figs. 3d–e, carry the anti-mixing corrections and therefore their
contrast arises primarily from chemical differences.

In Fig. 2c, we use the second PCA component to segment the
image into three phases. The phase map in Fig. 2c matches much
more closely the reality of the sample. For instance, segmenting of
the HAADF or count-rate images misassigned the dark curtained
matrix area near the center of the SI to precipitate (green) identity.
The PCA-component mask correctly assigns this region to the
matrix phase. Similarly, small isolated precipitates are properly
extracted in the PCA-component phase mask, in contrast to the
other methods. Fig. 2d shows a similar analysis from an MCR
solution, and is very similar to the PCA result.

Fig. 4 shows the extracted spectra from each phase for the PCA-
component phase mask. A single SI pixel would have a full-scale
of 5–10 counts, typically. The summed spectra in Fig. 4 show
2000–35,000 counts full scale, indicating the magnitude of signal-
to-noise increase achieved by segmentation. The count rate and
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associated statistical bound will be best in phases with a large
number of pixels as compared to phases with fewer associated
pixels. Results for the MCR-derived phase mask are essentially the
same as those for the PCA phase mask, although the film-phase
derived via MCR shows slightly higher Pb-content than the film-
phase derived via PCA.

Fig. 5 allows us to make a comparison of the PCA-component
segmentation method to more traditional quantification methods.
(The MCR-component segmentation would be substantially
similar and is omitted for brevity.) In Fig. 5a, three colored
boxes are marked around areas that appear to be single phase. The
SI pixels within each box are summed, producing the spectra in
Fig. 5b (matrix) and Fig. 5c (film and precipitate). Fig. 5d compares
the quantified cation fraction ratios for the two methods
(extraction and PCA-component segmentation) for each of the
three phases. Fig. 5e shows the quantified cation fraction data. The
error bars in Fig. 5d are 72s.

The results in Fig. 5d show that the PCA-component and
extract quantifications for the matrix phase are within the
statistical bounds, indicating good agreement. However, the film
and precipitate phase quantifications do not agree well.

3.2. Comparison to simulations

In order to interpret these results, we have performed a series
of simulations. EDS spectra were simulated using the software
Fig. 8. (a) Composite masks and (b–d) individual phase masks used for simulation star

base counts/pixel. (f) Score image histogram. (g) Derived phase mask. (h–j) Compariso

shown in red. For interpretation of the references to colour in this figure legend, the re
DTSA-II, by Ritchie at the National Institute of Standards and
Technology (USA) [43]. Spectra were simulated assuming a
300 keV electron beam, a 10 nm thick foil, and a 201 take-off
angle to an ultra-thin window detector. Detector resolution of
200 eV Mn Ka was assumed, which closely matches the experi-
mental resolution of our detector under fast-mapping conditions.
Although the present implementation of DTSA-II is intended for
SEM rather than (S)TEM simulations, the simulated spectra are
physical in appearance and suit the purposes of our approxima-
tions quite well. The film phase was simulated assuming
Pb0.9La0.03Zr0.03Ti0.03O stoichiometry. The precipitate phase was
ZrLaO2, and the matrix phase was Pb0.88La0.12Zr0.70Ti0.30O3. These
simulated stoichiometries are meant to be illustrative, rather than
exact replications of the phases present in the experimental
sample. Fig. 6 illustrates the 128�128 pixel masks for the first
simulation.

In this first simulation, the three phases are assumed to be full-
thickness through the foil and to show no mixing at the
boundaries; in other words, perfect spatial simplicity. The SI
was populated with simulated spectra according to the phase
mask, and then Poisson noise was added to each pixel at a noise
level of 1000 mean counts/pixel. Fig. 7 shows the results of
application of our techniques to this simulation. Fig. 7a is the
second PCA component’s score image, and is qualitatively similar
to that seen in Fig. 2c. Fig. 7b shows the score histogram, along
with colored boxes denoting the pixels assigned to each phase
ting point. (e) PCA component-2 score image for the analyzed simulation at 1,000

n of mask-derived aggregated spectra to the known starting spectra. The error is

ader is referred to the web version of this article.
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mask in Fig. 7c. The phase mask perfectly replicates the starting
mask of Fig. 6a. Comparison of the summed spectra within each
phase mask show residuals o2% different from the starting
spectra.

This leads to the conclusion that in a spatially simple
sample without sub-thickness inclusions or tilted boundaries,
the proposed segmentation method will correctly recreate the
original structure.

However, a real STEM sample will not be spatially simple.
Fig. 8a shows a composite mask for a non-spatially simple
simulation. Figs. 8b–d show the individual phase masks used for
the starting point of the simulation. In Figs. 8b and d, the film and
matrix meet at either sharp or tilted interfaces. There are four
precipitates in the simulation (Fig. 8c). One is full thickness, one
75%, one 50%, and one 25%. The remainder of the thickness around
the precipitate is matrix phase.

Because the three phases in the experimental sample have
strongly different compositions, they exhibit different count rates
in EDS. Thus, in this simulation, the base count rate for a matrix
pixel was kept at 1000 counts, the count rate for a film pixel was
1250 counts, and for the precipitates 750 counts. Fig. 8e shows the
PCA component-2 score image and Fig. 8f the score histogram.
This score histogram again qualitatively resembles the experi-
mental histogram in Fig. 2c, although it is different in fine detail.
Defining the mask in a manner similar to the experimental case
gives the composite mask shown in Fig. 8g. The binary nature of
the mask results in inconsistencies when compared to the known
starting point, Fig. 8a.

The aggregated spectra are compared to the known starting
spectra in Figs. 8h–j. The matrix spectrum (Fig. 8j) agrees almost
perfectly, differing only by random noise. The film spectrum
Fig. 9. (a) Score image histogram with re-defined limits. (b) New composite mask. (c)

interpretation of the references to colour in this figure legend, the reader is referred to
(Fig. 8h) differs slightly, with variations at the Zr, Ti, and La lines.
However, the precipitate aggregated spectrum (Fig. 8i) is quite
incorrect. The precipitate spectrum should only contain Zr and La,
but shows large Pb and Ti contributions, which come from mixing
with the matrix in the non-full-thickness precipitate regions.

With this knowledge, we can then re-define the regions of the
histogram that contribute to the composite phase mask for
aggregation. Fig. 9a shows the same score histogram, but with
differently defined mask regions. The resulting mask is in Fig. 9b.
It can be seen that the tilted regions of the film and the non-
through-thickness precipitates are neglected. Which is to say,
black pixels in the composite mask are spatially mixed and
excluded from the analysis. The advantage of discarding the
spatially mixed pixels in seen in Fig. 9c, where the known and
aggregated precipitate spectra differ only by random noise, with
no systematic component. (The film and matrix behave similarly
and are omitted for brevity.) The disadvantage to discarding the
mixed pixels is that overall signal levels are reduced, resulting in
larger error-bars. We can now attempt to apply this insight by re-
analyzing the experimental data.
3.3. Refined results

As noted above (Section 3.1), the comparisons of manually
extracted spectra to those found from PCA-component based
segmentation and aggregation agreed for the matrix phase, but
not for the film or precipitate phases (Fig. 5d). The simulated
results (Section 3.2) indicate that discarding the non-spatially
simple pixels may assist in the extraction of aggregated spectra
that more faithfully replicate the ‘‘true’’ chemical composition of
New aggregated spectrum compared to the known spectrum. Error is in red. For

the web version of this article.



ARTICLE IN PRESS

Fig. 10. (a) PCA score histogram, showing adjustment of the precipitate region.

(b) Quantified cation fractions vs. the score of the upper edge of the histogram

region. (c) Final phase map. Precipitate: green; film: red; matrix: blue; excluded

precipitate: cyan; excluded film: yellow. For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.
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the constituent phase, although with poorer counting statistics.
However, a realistic experimental sample has a score histogram
that is much more complicated than that for the simplified
simulation, so it will be more difficult to properly decide where to
place the phase-boundaries in the histogram.

We suggest that the edge of the region can be varied
systematically, and quantities such as the number of pixels in
the associated mask, or the cation fractions quantified by
aggregating the signal under the mask, can be plotted vs. the
edge value. In Fig. 10a, we illustrate this approach for the
precipitate phase defined via PCA score histogram. (In a sample
where HAADF, count-rate images, MCR score images, or other
techniques provided better segmentation, those histograms could
be used just as easily.) In Fig. 10b the cation fractions are
calculated as a function of upper edge value. (The lower edge is
fixed.) The quantified cation fractions appear to plateau from �7
to �8 in upper edge score. (The MCR results can also be examined
in this same fashion; the differences between MCR and PCA are
minor, so we omit the MCR results.) Thus, we can select a value
of �7 for the upper edge score. The boundary for the film phase
can be selected similarly. Fig. 10c shows the final derived phase
mask; cyan pixels are nominally precipitate phase that has been
excluded, and yellow pixels nominally film phase that has been
excluded. The quantifications are shown in Fig. 11, and compared
to the extracted quantifications shown in Fig. 5.

The refined phase-mask results compare much more closely
to the extracted data quantifications. Although the La/Pb and
La/(Zr+Ti) cation fraction ratios in the film phase does not agree
between the two methods, all of the other ratios are within the
error bars. However, as more pixels are discarded in order to
eliminate the non-spatially simple pixels, the aggregate signal
levels are reduced, which results in larger statistical errors, and
concomitant broadening of the error bars in Fig. 11 as compared to
Fig. 5. However, we suggest that the improved accuracy outweighs
this loss of precision.

It is possible that none of the precipitates are through-
thickness, and therefore no spatially simple solution exists. If so,
this is a problem that could be avoided by using a thinner area of
the sample, although a thin area will result in reduced X-ray count
rates and concomitantly increased uncertainty in all measure-
ments.
4. Conclusions

Quantification of STEM-EDS SIs is a rapidly developing
technique. However, the use of multivariate statistical analysis
may invalidate traditional means of measuring the precision of
such quantifications. Here, we proposed masking and aggregation
techniques to obtain quantitative chemical analyses and asso-
ciated error analysis from STEM-EDS SIs. PCA or MCR methods
were found to be superior to HAADF or count-rate signals for
assigning segmentation. This aggregation technique provides a
result conceptually the same as would be obtained by dwelling a
STEM beam on a sample area for seconds or minutes, and then
quantifying the resulting spectrum. However, three advantages
are apparent with the proposed method compared to the long-
dwell method:
(1)
 The dwell time per point is very short in a spectrum image
(100 ms/pixel in these experiments). This will minimize
localized beam damage or contamination that might bias
the results of a longer-dwell-time acquisition.
(2)
 The aggregation of pixels from a single phase does not require
any sort of continuity or even proximity. In the case of the
inclusions, the aggregated spectrum is accumulated from
many small, spatially distinct regions in the specimen that
would be difficult to access or aggregate without a masking
technique.
(3)
 By using PCA or MCR, the multivariate analysis of the
compositional signal itself determines the boundaries of
different constituent phases through the score-image histo-
grams; the boundaries are not assigned a priori.
Comparison of the proposed method to a more traditional
analysis showed that spatial-non-simplicity of the experimental
sample resulted in systematic bias of the aggregated results.
However, a combination of Monte Carlo simulations and systema-
tic analysis of the experimental data showed that the proposed
technique can well-replicate a more traditional result while
maintaining the advantages (1–3) enumerated above. The results
presented in this work discuss the segmentation of the spectrum
image in the spatial domain. We intend to later present a follow-
up publication that discusses segmentation within the spectral
domain.
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Fig. 11. Quantified (a) cation fraction ratios and (b) cation fractions for the extracts and the final PCA-component derived phase masks. Error bars in (a) are 72s.
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