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Chapter 39

Mammalian Myocardial Regeneration

Bin Zhou'?, Zhigiang Lin">, and William T. Pu'?

!Department of Cardiology, Children’s Hospital Boston, Boston, MA, *Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences, Shanghai, China, 3Harvard Stem Cell Institute, Cambridge, MA

The adult heart is among the least regenerative organs in
the body, posing one of the greatest challenges in regen-
erative biology. Each year millions of patients die of heart
failure, which at the most fundamental level is caused by
inadequate number and function of cardiomyocytes (1). It
is estimated that during a typical myocardial infarction,
one billion or more cardiomyocytes are lost (2). In the
short term, surviving myocytes may adapt and take on a
greater work load to sustain cardiac function. However,
these adaptations cause cardiomyocyte dysfunction and
additional cardiomyocyte death. The resulting vicious
cycle causes a “cardiomyopathy of overload”, leading to
heart failure and death (3,4). Current therapy is directed
at interrupting the neurohumoral factors that sustain the
vicious cycle, and thus mitigate but do not reverse pro-
gressive heart failure.

Fundamentally changing the natural history of heart
failure requires generating new cardiomyocytes. Until
quite recently, it was accepted dogma that cardiogenesis,
the birth of new cardiomyocytes, occurs in mammals only
during fetal development. This conventional view held
that post-natal cardiac expansion under physiological or
pathological conditions results from cardiomyocyte hyper-
trophy (increase of cell size) rather than via hyperplasia
(increase of cell number through division or differentiation
of progenitors) (5). However, ground-breaking studies
over the past decade have challenged this dogma and
shown that the adult mammalian heart indeed possesses
intrinsic, albeit limited, regenerative capacity. These find-
ings have focused efforts on augmenting the heart’s natu-
ral regenerative mechanisms. In this chapter, we will
critically review studies on the endogenous regenerative
capacity of the adult heart. Transplantation of exogenous
cell populations has also been studied for use in therapeu-
tic myocardial regeneration, but this extensive literature is
outside of the scope of this review. The reader is referred
to excellent recent reviews on this topic (2,6).

The field of cardiac regeneration is replete with con-
troversy and contradictory findings. Not surprisingly, this
arises from technical factors that limit our ability to
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accurately and precisely measure the birth of new cardio-
myocytes. Thus, a nuanced understanding of the literature
requires knowledge of the technical challenges, the meth-
ods used to overcome the challenges, and the limitations
of our approaches. In this review we cover these experi-
mental facets to equip readers to best grasp the burgeon-
ing literature in this field.

NORMAL MYOCARDIAL GROWTH AND
CELL CYCLE ACTIVITY

The fetal myocardium grows by cardiomyocyte prolifera-
tion. Post-natally, cardiomyocyte cell division largely
stopped by 3 days after birth in rats (7). Subsequently,
cardiomyocyte number was constant, but cardiomyocyte
volume increased 2.5-fold between day 3 and 12, indicat-
ing that post-natal myocardial growth occurs primarily by
increasing cardiomyocyte size.

One hallmark of cellular proliferation is DNA synthe-
sis, and therefore cardiomyocyte DNA synthesis has been
exhaustively studied (reviewed in (8)). In rodents, intense
DNA synthesis peaked at post-natal day 10 (P10) and
declined to adult levels by P20 (7,9). Between P3 and
P12, cardiomyocytes no longer underwent cell division
(cytokinesis) but continued to synthesize DNA and to
undergo nuclear division (karyokinesis), a form of endor-
eduplication known as acytokinetic mitosis. As a result,
by day 12 cardiomyocytes reached their adult level of
binucleation of 90% (7,10). Acytokinetic mitosis was
associated with formation of stable, highly ordered and
functional sarcomeres, suggesting that the organized con-
tractile apparatus impairs cytoplasmic division (11,12).

In addition to increased ploidity from multinucleation,
cardiomyocytes can become polyploid through DNA syn-
thesis in the absence of karyokinesis, a form of endoredu-
plication known as endocycling or endomitosis. The
extent of endocycling was measured in mouse by FACS
sorting of cardiomyocyte nuclei (13). Murine fetal cardio-
myocyte nuclei were mononuclear and diploid. At birth,
only 65% of cardiomyocyte nuclei remained diploid, with
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most of the remaining nuclei being tetraploid. The frac-
tion of diploid nuclei reached a stable level of ~55% by
P21 (13), corresponding to the time by which intense
DNA synthesis had halted (7). Importantly, endoredupli-
cation is stimulated by cardiomyocyte stress and activa-
tion of specific signaling pathways (14,15), making it
essential for experiments that address upregulation of cell
cycle markers in myocardial injury models to demonstrate
productive formation of new cardiomyocytes rather than
more limited forms of cell cycle activity.

In the human heart, cardiomyocyte growth similarly
changes from hyperplasia to hypertrophy in infancy,
although the timing of this transition is less clearly defined
(16). From infancy to adulthood, the number of cardio-
myocytes in the normal human heart was constant (17,18).
However, unlike myocytes from mice, rats, dogs, and pigs,
mononucleated cells predominated and binucleated cells
were in the minority (77% and 22%, respectively) (18).
This proportion did not change with age or ischemic or
hypertrophic heart disease (18). Polyploidization through
endocycling continued in humans up to 10 years of age,
considerably longer than observed in rodents (19). As with
rodents, myocardial injury was observed to stimulate
endomitosis and to increase cardiomyocyte ploidity (20).

The newborn heart also grows through expansion of
the non-myocyte compartment. In mice, fetal and neona-
tal myocardium contains few non-myocytes. Post-natally,
the non-myocyte fraction expands rapidly from 13% on
post-natal day 1 (P1) to 80% at P20 (10). In adult mice,
the non-myocyte cell number fraction is ~85%. This
expansion involves fibroblast expansion as well as rapid
growth of the vascular bed, which increases by more than
four-fold during post-natal cardiac growth (17).

A series of proteins promote or inhibit cell cycle pro-
gression (Figure 39.1, reviewed in (21)). To study the
mechanisms governing post-natal cardiomyocyte cell
cycle exit, the expression of cell cycle regulators was
investigated in human and rodent heart (reviewed in
(11,22)). Cell cycle regulators that promote cell cycle
activity, including Cyclins A, B, D1/D2/D3, and cyclin-
dependent kinases (CDKs) CDKI1 (also known as CDC2)
and CDK2, were highly expressed in fetal heart and
markedly downregulated in adult heart (10,13,23-25).
The E2F family of transcription factors, pivotal regulators
of the G1/S phase transition, were also markedly downre-
gulated between neonatal and adult cardiomyocytes (26).
Activity of E2F factors is normally held in check by the
pocket protein family, containing the retinoblastoma sus-
ceptibility gene (Rb) and its relatives pl107 and p130.
During hyperplastic heart growth, CDK2/CyclinE/
CyclinA and CDK4/CyclinD complexes phosphorylate
pocket proteins, releasing inhibition of E2F and driving
cell cycle activity. During hypertrophic heart growth,
downregulation of these kinases leads to pocket protein
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FIGURE 39.1 Cell cycle regulation. Cell cycle genes that promote

cycling are shown in green, and those that inhibit cycling are shown in
red. RTK, receptor tyrosine kinase; P13K, phosphoinositol-3-kinase.
Symbols with solid blue outline have been overexpressed in mouse
heart, while those with dashed blue outlines have been knocked out in
mouse heart.

hypophosphorylation and inhibition of the cell cycle pro-
moting activity of E2F (27,28). The CDK inhibitors p21
and p27 act as important brakes on cell cycle activity by
inhibiting Cdk2/CyclinE/CyclinA and Cdk4/CyclinD
activity and thereby repressing E2F. p21 and p27 were
markedly upregulated during the transition from hyper-
plastic to hypertrophic growth (25,29). In summary, cardi-
omyocyte expression of cell cycle regulators is carefully
regulated, so that during hyperplastic growth the profile
of factors favors cell cycling. During hypertrophic
growth, the profile is reversed, leading to cell cycle exit.
Important future directions will uncover the molecular
pathways that coordinately regulate the profile of cell
cycle regulator expression.

Based on changes in expression of cell cycle regula-
tors during the transition from hyperplastic to hypertro-
phic cardiomyocyte growth, concerted efforts were made
to promote adult cardiomyocyte cell cycle reentry by
direct manipulation of cell cycle regulators (Figure 39.1).
Knockout of the cell cycle inhibitor p27 and the redun-
dant pocket protein genes Rb and pl07 increased heart
size, cardiomyocyte number, and adult cardiomyocyte
DNA synthesis (28,30). Transgenic overexpression of
SV40 T antigen robustly stimulated cardiomyocyte cell
cycle reentry, but these mice showed extensive cardiac
pathology and died before weaning (31). Ectopic cardio-
myocyte expression of the E2F family member E2F1
resulted in increased DNA synthesis, but unfortunately
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caused cardiomyocyte apoptosis and death (32). Forced
cardiomyocyte expression of Cyclin B and Cdkl drove
adult cardiomyocyte cell cycle reentry in cell culture
(33), although extension of this observation in vivo has
not been reported. D-cyclins are regarded as sensors of
the extracellular environment that link mitogenic path-
ways to the cell cycle machinery, and cyclins D1-3 are
required for fetal cardiomyocyte proliferation (34).
Transgenic overexpression of cyclin D1, D2, or D3 pro-
moted cardiomyocyte DNA synthesis and multinucleation
without affecting the cardiomyocyte differentiation
(24,35). Cardiomyocyte-specific cyclin D2 overexpres-
sion increased the fraction of cardiomyocytes labeled by
*H-thymidine by over ~500-fold in adult heart.
Immediately following experimental left anterior des-
cending coronary artery (LAD) ligation, infarct size in
cyclin D2 transgenic mice was not distinguishable from
littermate controls. However, 2 and 6 months after infarc-
tion, infarct size was markedly smaller in transgenic
mice, indicating substantial myocardial repair (35,36).
Likewise, transgenic cyclin A2 overexpression enhanced
early post-natal cardiomyocyte cell cycle activity.
Although this effect was not sustained in normal adult
heart, myocardial infarction elicited new cardiomyocyte

TABLE 39.1 Endogenous Myocardial Regeneration

Species Detection Method Injury Regeneration
Response
Zebrafish Genetic lineage Amputation Repair without scar
tracing
Newt Morphology; Dil or Amputation Fibrosis; CM
adenoviral label squeeze de-differentiation
and proliferation
Mouse  Dilution of genetic ~ None None detected
pulse labeled
differentiated CMs
Dilution of genetic ~ MI; TAC Up to 18% of CMs in
pulse labeled borderzone arise from
differentiated CMs CPCs
Genetic fate Fetal loss of Regeneration of 40%
mapping of normal  Hccs CMs  of CMs by birth
and Hccs-deficient
cells
Human  '"C cardiomyocyte  Undefined ~ ~1% CM turnover per
birth dating year
Confocal ICM; MI All CM turned over

microscopy: mitotic
figures, Ki67, IrdU
uptake

every 4.5 years;
greater turnover with
injury
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formation that improved ventricular function compared to
controls (37). The promising results from transgenic
cyclin D2 and A2 mice provide proof of concept that
driving cardiomyocyte cell cycle reentry may be a viable
strategy for stimulating cardiac regeneration.

THE EXTENT OF ENDOGENOUS
MYOCARDIAL REGENERATION
(TABLE 39.1)

Myocardial Regeneration in Lower
Vertebrates

Some lower vertebrates such as newt and zebrafish are
able to regenerate many organs, including the heart.
Understanding the regenerative process in these model
organisms will lead to insights in mammalian heart regen-
eration by defining regenerative mechanisms and regula-
tory pathways. Zebrafish is a well-developed platform for
both forward and reverse genetic approaches, and as a
result has emerged as a major model for studying myocar-
dial regeneration. After amputation of as much as 20% of
the heart ventricle, adult zebrafish fully regenerated the
heart without residual scar (38). Shortly after amputation

Regeneration Caveats References
Source
Differentiated ~ Expression of differentiated CM 40,41
CMs marker in CPCs?
Differentiated Cannot exclude other sources of 42—45
CMs CMs
NA Cannot exclude new CMs from 52
differentiated CMs
Undifferentated Cannot exclude new CMs from 52
CPCs differentiated CMs. CPC source
of new CMs not determined
Differentiated Cannot exclude new CMs also 46
CMs from CPCs
Not determined Did FACS isolation procedure 53,54
yield a biased population of
nuclei?
Differentiated Results have not been 54,56,57

CMs

reproducible in other
laboratories

Abbreviations: CM, cardiomyocyte; CPC, cardiac progenitor cell; NA, not applicable; MI, myocardial infarction; TAC, transverse aortic constriction.
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of the ventricular apex, a blastema formed around the
amputation site. Progenitor cells within the blastema pro-
liferated, expressed pre-cardiac markers, and underwent
differentiation (39). Initial studies suggested that new car-
diomyocytes of the regenerating myocardium arose from
differentiation of cardiac progenitors (39). More recently,
reports from the Poss and Belmonte groups demonstrated
that new cardiomyocytes of the regenerating myocardium
arose from preexisting cardiomyocytes (40,41). This con-
clusion was based on application of Cre/loxP genetic fate
mapping technology to zebrafish. The tamoxifen-
activated Cre recombinase CreERT2 was expressed only
in differentiated cardiomyocytes in fish that also con-
tained a Cre reporter transgene. This transgene expresses
Green Fluorescent Protein (GFP) after Cre recombination.
Treatment of these fish with a pulse of tamoxifen selec-
tively and heritably labeled differentiated cardiomyocytes
with GFP. After apex amputation (in the absence of
tamoxifen), regenerating cardiomyocytes were observed
to express GFP (40,41), indicating that regenerating cardi-
omyocytes originate from differentiated cardiomyocytes.
While these data appear to be at odds with initial studies
suggesting that new cardiomyocytes arise from undiffer-
entiated cardiac progenitors, the results may be reconciled
if differentiated cardiomyocytes proceed through a stage
of initial de-differentiation prior to formation of regener-
ating cardiomyocytes. Future studies promise to address
this question and to probe the signaling pathways respon-
sible for arresting cardiomyocyte proliferation in the nor-
mal adult heart and for stimulating cardiomyocyte
proliferation after heart injury.

Newts are capable of limited myocardial regeneration.
Amputation of the ventricular apex leads to scar forma-
tion, although cardiomyocytes populated the scar and were
likely the product of new myocyte formation (42). Cardiac
repair was enhanced when the amputated apex was
returned as a minced cardiac muscle graft, which coa-
lesced to form a regenerated ventricular wall composed
primarily of cardiac muscle (43). After cardiac injury,
adult newt cardiomyocytes de-differentiated, downregulat-
ing sarcomeric genes such as myosin heavy chain (44).
The de-differentiated cardiomyocytes then proliferated
and re-expressed cardiomyocyte sarcomeric genes, con-
tributing to functional regeneration of the heart (45).
Consistent with cardiomyocyte de-differentiation yielding
multipotent progenitor-like cells, cardiomyocytes injected
into regenerating newt limbs de-differentiated and contrib-
uted to limb regeneration by redifferentiating into skeletal
muscle. In contrast, cardiomyocytes injected into intact
newt limbs maintained their identity as cardiomyocytes
(44). Elucidation of the mechanisms that stimulate
cardiomyocyte de-differentiation and proliferation in
injured heart and limbs is an important direction for future
studies.

PART | Il Cardiac Muscle

Myocardial Regeneration in Mice

The fetal mammalian heart has robust intrinsic regenerative
capacity. This was demonstrated recently in a genetic
mouse model in which the fetal heart’s regenerative capac-
ity compensated for an effective loss of 50% of cardiac tis-
sue (46). Holocytochrome c¢ synthase (HCCS) is an
enzyme essential for normal mitochondrial respiration. The
Hces gene is located on the X chromosome. Males and
homozygous females with cardiac-specific inactivation of
Hces died between E10.5 and E14.5 (E, embryonic day,
indicates gestational age) due to cardiac mitochondrial
abnormalities. In contrast, female Hccs heterozygotes sur-
vived normally. This was surprising because early in devel-
opment of female embryos, one of the two X chromosomes
is inactivated, and the inactivated state is heritably main-
tained through successive cell divisions. Therefore female
Hcces heterozygotes were expected to be genetic mosaics,
with roughly 50% of cells being Hcces deficient. Indeed,
mitochondrial complex III activity was reduced by 50% in
E12.5 female Hccs heterozygotes, and the expected 50:50
distribution of normal and Hccs-deficient cardiomyocytes
was observed at E10.5. However, the proportion of normal
cardiomyocytes progressively increased thereafter, reach-
ing 90:10 at birth. This expansion of normal cardiomyo-
cytes was due to their selective proliferation, thus
indicating a regenerative response of healthy cardiomyo-
cytes. Enhanced cardiac differentiation of normal cardiac
progenitor cells was not excluded as a potential mecha-
nism. This study revealed the regenerative capacity of
mammalian fetal heart. Signaling pathways that regulate
fetal cardiomyocyte regeneration may be therapeutically
applied to the post-natal heart, and thus this study opened
new avenues to approach the problem of adult heart
regeneration.

The window during which mice are able to regenerate
lost myocardium appears to extend into early post-natal
life. Sadek and colleagues showed that 1-day-old mice
could regenerate myocardium removed by amputation of
the heart apex, restoring heart shape and mass without
fibrosis (47). Lineage tracing studies showed that, as in
zebrafish, regenerated cardiomyocytes arose predomi-
nantly by proliferation of preexisting cardiomyocytes.
However, this regenerative capacity was lost quickly over
the first week of life, so that apex amputation of 7-day-
old mice led to scarring rather than formation of new
myocardium. The period of regenerative competence
coincided with the window of post-natal cardiomyocyte
proliferation, which ends at 3 days of life (7), suggesting
that loss of cardiomyocyte proliferative capacity and loss
of regenerative ability are linked.

The regenerative capacity of the adult mammalian
heart has been investigated in detail over the past decade.
These studies have largely overturned the dogma that this
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organ is devoid of regenerative capacity, but the extent of
endogenous cardiomyocyte turnover and regeneration
remains controversial (2,48). The controversy is directly
related to the technical challenge of measuring infrequent
cardiomyocyte proliferation in the background of non-
myocyte proliferation. By definition, cardiomyocyte pro-
liferation increases cardiomyocyte number. However,
because of measuring absolute cardiomyocyte number is
technically difficult, it is rarely done. Rather, scientists
typically measure the fraction of cardiomyocytes expres-
sing markers of cell proliferation. Non-myocytes consti-
tute at least 80% of the cells of the adult heart (10), and
these cells may proliferate to a greater extent than cardio-
myocytes. Thus measurement of the fraction of proliferat-
ing cardiomyocytes is susceptible to many artifacts
(Figure 39.2). There must be robust and objective means
to distinguish between myocyte and non-myocyte prolifer-
ation (49). Some investigators have used transgenic cardi-
omyocyte markers to conveniently and objectively
identify cardiomyocytes (2), while others have suggested

(a)

(d) Troponin T DAPI WGA MHCo-nLacZ
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that this is not necessary (48). To add to the difficulty,
myocytes undergo endoreduplication, yielding multiple
nuclei per cell and also greater than two genomic copies
per nucleus. Thus, increased DNA synthesis, cell cycle
activity, and even nuclear division does not necessarily
indicate birth of a new myocyte. Additional important arti-
facts to address are overlapping signals in tissue sections
that may lead to the mistaken impression of co-expression
unless three-dimensional analysis is performed (50); auto-
fluorescence leading to inaccurate signal identification
(2,50); fusion of progenitor cells to cardiomyocytes to
give the inaccurate appearance of transdifferentiation (51);
and the effect of inflammatory cells, which may localize
within cardiomyocyte cytoplasm (2).

The research group of Richard Lee performed an
important study that addressed the extent to which cardiac
progenitors contribute to the normal and injured myocar-
dium. This study was based on a genetic “pulse-chase”
approach, using mice engineered to contain both MHCa-
MerCreMer and Z/EG transgenes (52). MHCa-MerCreMer

FIGURE 39.2 Examples of pitfalls in measuring adult cardiomyocyte proliferation. (a,b) Inflammatory cells, particularly prevalent after MI, can
be found within cardiomyocytes. Arrow in (a) seems to show a cardiomyocyte nucleus. On staining with leukocyte markers, the nucleus belongs to a
leukocyte within a cardiomyocyte. (b) is a transmission electron micrograph of post-MI myocardium showing a necrotic carmacrophage containing
myofibrils (mf) adjacent to a macrophage (mp). Higher magnification of the boxed area shows that the macrophage has engulfed some myofibrils and
its nucleus (nu) could inadvertently be inferred to belong to a cardiomyocyte. (c) Autofluorescence in normal mouse myocardium. One cell with
strong green fluorescent signal is present within a field of non-fluorescent cells. This could be inferred to be a cell specifically expressing GFP.
However, emission spectroscopy shows that the fluorophore spectrum is consistent with autofluorescence (Autofl) and not GFP. (D) Improved identi-
fication of cardiomyocyte nuclei by staining for the basal lamina (using WGA) and a transgenic marker of cardiomyocyte nuclei (MHCa-nLacZ),
The yellow arrowhead indicates a non-myocyte nucleus surrounded by myocyte cytoplasm. WGA-staining suggests that it may be a non-myocyte
nucleus (image 3), and this is clear using the transgenic marker (images 2,4). The pale blue arrowhead indicates a cardiomyocyte nucleus at the edge
of a cardiomyocyte. WGA enhances its identification as a cardiomyocyte nucleus (image 3), and this is confirmed using the transgenic marker
(images 2, 4). (Panels a and b adapted from Laflamme and Murry, 2005 (2); panel ¢ from Zhou et al., 2011 (74); panel d from Ang et al. (2010)
(49); with permission.)
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expresses a tamoxifen-inducible Cre fusion protein
(MerCreMer) only in differentiated cardiomyocytes. The
Z/EG transgene expresses GFP only after recombination by
Cre. Thus, administration of a tamoxifen “pulse” tran-
siently activated Cre and irreversibly and heritably labeled
a high fraction of differentiated cardiomyocytes with GFP.
During the “chase” period, no tamoxifen was given. If car-
diomyocytes were generated by differentiation of progeni-
tor cells, then the fraction of GFP-labeled cardiomyocytes
would decline during the chase. On the other hand, if no
new cardiomyocytes were generated, or if new cardiomyo-
cytes were generated by proliferation of existing cardio-
myocytes, the fraction of labeled cardiomyocytes would
not change. During the 1-year chase period, no dilution of
the genetic label was observed, indicating that cardiac pro-
genitors do not substantially contribute to normal homeo-
stasis of the murine heart. This conclusion is based upon
the critical assumption that cardiac progenitors are not
labeled by MHCa-MerCreMer. Reasonable evidence sup-
porting this assumption was provided, although the
possibility cannot be completely excluded because of the
lack of consensus on the proper progenitor population to
study.

The same genetic pulse-chase approach was used to
investigate endogenous myocardial regeneration after
myocardial injury. In the face of myocardial injury from
myocardial infarction, the fraction of GFP™ cardiomyo-
cytes decreased from 82.8 +1.5% to 67.5 =2.0% in the
MI borderzone over three months (52). These results sug-
gest that about 18% ((82.8—67.5)/82.8) of cardiomyo-
cytes in the MI borderzone are newly born from
unlabeled cardiomyocyte precursors. In regions of myo-
cardium remote from the infarct, label dilution was less
substantial but still significant, and consistent with about
7% of cardiomyocytes arising from unlabeled cardiomyo-
cyte precursors. Control experiments suggested that pref-
erential cell death of GFP" cells or decline in GFP™"
cardiomyocyte proliferation were unlikely causes of dilu-
tion. However, this approach could not completely
exclude label dilution arising by other means, such as dif-
ferential responses of GFP* and GFP~ cardiomyocyte
populations to myocardial injury. Another limitation of
the experimental strategy is that it did not consider myo-
cardial regeneration from proliferation of MHCa-expres-
sing cardiomyocytes, and therefore may underestimate
the extent of new myocyte birth during myocardial injury.
Collectively, the study provided evidence for birth of new
myocytes from progenitors in the setting of myocardial
injury, but did not inform us of the identity of these pro-
genitors. This result also suggests that the mechanisms
underlying adult and neonatal heart regeneration are dis-
tinct, with the former resulting from progenitor cell
expansion and the later arising from cardiomyocyte pro-
liferation (47,52).
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Myocardial Regeneration in Humans

In humans, isotopic cardiomyocyte birth dating provides
evidence supporting ongoing cardiomyocyte turnover
(53). As a result of above-ground nuclear testing, bioavail-
able carbon-14 (**C) globally increased sharply from 1955
to 1963. Cessation of above-ground nuclear testing after
1963 permitted exponential clearance of bioavailable "*C.
The '*C content of a cell’s DNA correlates with bioavail-
able '“C at the time of the cell’s birth. Thus, measurement
of human cardiomyocyte DNA '*C concentration allows
retrospective birth dating. In subjects born before 1955,
cardiomyocyte '*C concentrations were higher than envi-
ronmental levels at the time of their birth, consistent with
significant birth of cardiomyocytes post-natally (53). In
the five oldest individuals studied, cardiomyocyte DNA
“C concentration remained below present-day levels,
indicating that a substantial fraction of cardiomyocytes
persist from early life even in the elderly (53).
Quantitative modeling suggested annual cardiomyocyte
turnover rates of 0.2—2%, with a negative correlation to
age. According to this modeling, at age 50 about half of
cardiomyocytes remain from the time of the individual’s
birth, while the rest were generated later (53).

While this elegant study represents perhaps the best
assessment of cardiomyocyte turnover in the human heart,
it has limitations that perpetuate uncertainty about the
extent of human cardiomyocyte turnover. An important
technical hurdle in this experiment was isolating purified
cardiomyocyte DNA. This was achieved by fluorescence-
activated cell sorting (FACS) of cardiomyocyte nuclei,
which were identified by the presence of the sarcomere
proteins TNNT2 or TNNI3. Although predominantly cyto-
plasmic, sufficient TNNT2 or TNNI3 was present in
nuclei for FACS. The sorted nuclei were highly enriched
for cardiomyocyte markers and depleted for non-myocyte
markers, and cardiomyocyte nuclei were judged to be 96%
pure (53). However, Anversa and colleagues have argued
that the TNNI3 ™ nuclear fraction was biased toward senes-
cent cardiomyocytes due to increased nuclear permeability
and therefore underestimated the turnover of younger car-
diomyocytes that may be more proliferative (54). Another
limitation is that the study measured the timing of DNA
synthesis, which may be dissociated from cardiomyocyte
birth by DNA repair, multinucleation, and polyploidy. The
authors accounted for these factors and argued that they
are unlikely to significantly impact their findings (53).
The study also did not investigate the effect of myocardial
injury, which substantially stimulated myocardial regener-
ation in mouse (52), and the study did not provide insights
into the source of the new cardiomyocytes. In summary,
this important study showed that there is a low but signifi-
cant contribution of cardiomyocyte turnover to homeosta-
sis of the normal human heart.
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Other groups, most notably the one led by Pierro
Anversa, have argued that cardiomyocyte turnover is far
more extensive (48,55). These investigators stained human
heart sections for cardiomyocyte markers (sarcomeric
actin) and markers of proliferating cells. Their quantitative
analysis identified 14 myocytes with mitotic figures per
million myocytes in normal hearts, and this increased to
152 mitotic myocytes per million myocytes in ischemic
cardiomyopathy (56) (Figure 39.3a—e). Similarly, staining
for Ki-67, a marker of actively cycling cells, identified
500 cycling myocytes per million myocytes in normal
hearts, and 42,000 cycling myocytes per million myocytes
in myocardium bordering a myocardial infarct (57). Based
on these data and assumptions about the duration of mito-
sis, the Anversa group calculated that in a normal adult
heart containing ~5 X 10° myocytes, 3 X 10° new myo-
cytes are born daily. At this rate, the entire myocyte popu-
lation would be exchanged every 4.5 years, and the
myocytes lost in a myocardial infarction could be replaced
in 18 days (48,55). By this estimate, the heart has copious
regenerative capacity, and the limitation to myocardial
recovery after injury is not regeneration per se but barriers
to regeneration imposed by the competing processes of
inflammation, ischemia, and scarring (48,55).

While highly provocative, these results have been dif-
ficult to reproduce. Field et al. used transgenic mice
expressing nuclear localized lacZ to permit unambiguous

o-sarc actin
laminin
DAPI

tubulin
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identification of cardiomyocyte nuclei (15). In uninjured
heart, after 60 hours of exposure to “H-thymidine, only
one in 180,000 myocyte nuclei was identified as having
undergone DNA synthesis and taken up the label. By this
measure, at most 5 myocytes per million actively synthe-
size DNA in a 60-hour period (15). A recent study using
immunostaining and DNA content analysis of FACS-
sorted troponin T" cardiomyocyte nuclei independently
confirmed cell cycle exit by post-natal day 21 (13).
Estimated cell cycle activity from *H-thymidine uptake
was at least 350-fold lower than the 14 mitotic myocytes
per million (56), because of the relative difference in the
labeling periods (60 hours versus an estimated 30 minute
duration for mitosis). After injury, the *H thymidine
uptake assay also confirmed increased cardiomyocyte cell
cycle activity, although the level of activity remained
low: 14 myocytes per million actively synthesized DNA
in a 60-hour period (15), a level that is 1,300-fold lower
than the mitotic activity estimated by Anversa and collea-
gues (56). The difference in results may stem from tech-
nical difficulties in measuring myocyte proliferative
activity, such as establishing thresholds to classify signals
as positive or negative, distinguishing cardiomyocyte
from non-myocyte nuclei in sections (49), and resolving
forms of endoreduplication from cardiomyocyte prolifera-
tion (20) (Figure 39.2). It is possible that human myocar-
dium, where the highest values of cardiomyocyte cell

FIGURE 39.3 Proliferation of human
adult cardiomyocytes. (a,b) Meta-phase
chromosome in acromegaly (a) and diabetes
(b). (c) Mitotic spindle within a dividing car-
diomyocyte. (d) Actin condensation at the
contractile ring. (e) Cardiomyocyte undergo-
ing cytokineses. (f,g) Cardiomyocyte chime-
rism in sex-mismatched transplantation. Host
(male) nuclei within the female donor heart
can be identified by staining for X and Y
chromosomes. The large arrow points to a
cardiomyocyte, identified by staining for
a-sarcomeric actin. (Adapted from Anversa
et al., 2007 (48), with permission.)
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cycle reentry have been reported, has intrinsically greater
regenerative capacity than rodents, perhaps reflecting the
greater fraction of mononuclear cardiomyocytes and the
far greater lifespan of humans. However, "*C birth dating
of human cardiomyocytes suggests this possibility is
unlikely (53).

In summary, multiple approaches concur that there is
detectable post-natal birth of new cardiomyocytes, and
myocardial injury strongly stimulates cardiomyocyte cell
cycle activity. However, there is no agreement on the
extent of new cardiomyocyte production, with estimates
ranging from a trivial level inadequate to support myocar-
dial regeneration to a robust level competent for regener-
ating injured myocardium. The preponderance of
evidence supports the former, but each approach has lim-
itations that could lead to errors in absolute quantitation
of cardiomyocyte turnover.

CARDIAC PROGENITOR CELLS

There are two fundamental mechanisms that might regen-
erate myocardium. First, the adult animal may contain car-
diac progenitor cells (CPCs) capable of self-renewal and
cardiomyocyte differentiation. These progenitors may be
located within the heart itself (resident CPCs) or located at
distant sites (e.g. the bone marrow) and disseminated to
the heart via the blood stream. Second, a subset of differ-
entiated cardiomyocytes may not be terminally differenti-
ated, and may be able to reenter the cell cycle to generate
new cardiomyocytes. These two mechanisms are not
mutually exclusive, and both could potentially contribute
to myocardial regeneration, even within the same process.
For instance, cardiac progenitors have been proposed to be
slowly cycling, multipotent stem cells that generate tran-
siently amplifying immature cardiomyocytes (55). These
immature myocytes are proposed to be small, proliferat-
ing, mononuclear cells that express some cardiomyocyte
markers. In this section we review reported cardiac pro-
genitor cell populations, which can be subgrouped as resi-
dent and non-resident progenitors.

Resident Cardiac Progenitor Cells
(see Table 39.2)

Several resident CPCs have been reported in the adult
heart (reviewed in (58)). In general, these stem cell popu-
lations have been discovered by expression of key regula-
tors of cardiogenesis in the developing heart, or by
markers used to identify stem cell populations in other tis-
sues. The use of developmental markers allows lessons of
heart development to be applied to the biology of adult
CPCs, while this can be more challenging for markers not
grounded in normal heart development. Moreover, genetic
fate mapping has become the best available method to
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confirm in vivo cardiogenic activity of a putative progeni-
tor population. This approach is problematic for progeni-
tors defined by markers expressed by a heterogeneous
population of cells within and outside of the heart.

Perhaps the most thoroughly characterized CPC is
defined by expression of the transcription factor Isl/. In
the developing mouse embryo, at embryonic day 7.5
(E7.5) a crescent of cells express differentiated cardiac
markers such as troponin T (see Chapters 3 and 4 for a
review of cardiogenesis in normal heart development). By
EB.0, these cells fuse in the ventral midline to form a tube
of differentiated cardiomyocytes encompassing a second
endothelial tube, the endocardium. The cells of this initial
heart tube and their precursors have been described as the
“first heart field” (59). Work over the last decade has
shown that this initial heart tube elongates primarily by
continued addition of cardiomyocytes that differentiate
from progenitors located at either pole of the heart tube
(59—63). These “second heart field” progenitors, marked
by expression Is//, contribute to the outflow tract, right
ventricle, part of atrium and a subset of left ventricle (62).
As these progenitor cells differentiate, Isll is downregu-
lated, and it is no longer expressed in differentiated cardio-
myocytes. Clonal analysis showed that these Is// ™ cells
are multipotent, i.e. an Is//" progenitor can differentiate
into cardiomyocyte, smooth muscle, and endothelial
lineages (64). Isl1™ cells remain in the post-natal heart,
where they retain self-renewal ability and adopt cardio-
myocyte fates (65). However, the role of IslI™ cells in
post-natal heart growth and injury response remains
unclear, particularly since these progenitors appear to be
more relevant to the biology of the atria, right ventricle,
and outflow tract rather than the left ventricle, the princi-
ple pumping chamber.

Another important progenitor population is marked by
expression of the cardiac transcription factor Nkx2-5. Nkx2-
5" progenitors contribute to both first and second heart
fields (66,67). Although Nkx2-5 is expressed in both cardiac
progenitors and differentiated cardiomyocytes, an enhancer
of Nkx2-5 is preferentially active in progenitors. Wu et al.
isolated progenitors in transgenic mice and ES cells in
which the enhancer drives expression of GFP, and clonal
analysis showed that these cells differentiate into cardio-
myocyte and smooth muscle lineages (68). In addition to
cardiomyocyte and smooth muscle lineages, Cre-loxP fate
mapping approaches in developing embryos showed Nkx2-
5-lineage cell contribution to endocardium (67,69).
Intriguingly, infrequent cells in the neonatal and adult heart
continue to exhibit activity of the Nkx2-5 progenitor
enhancer, and their role in the normal and injured post-natal
heart is under active investigation (S.M. Wu, unpublished).

Epicardial progenitors are vital to the developing heart
and can be found on the adult heart. Epicardial progenitors
originate from the proepicardium, an outpouching from the
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TABLE 39.2 Resident Cardiac Progenitor Cells

Cell Type Multipotency Differentiated Resident in
in vitro Lineages Adult Heart
in vivo
Isl1™* CM, SM, EC CM, SM, EC Not reported in
adult. In atria and
OFT of neonatal
heart
Nkx2-5 CM, SM CM, SM, EC Yes
progenitor
enhancer
WT1" or CM, SM CM, SM, EC, Adult epicardium
TBX18™ fibro
epicardial
progenitor
c-Kit" Lin~ CM, SM, EC CM, SM, EC. Myocardial
Not clusters
reproducible in
all labs.
Scal® Unknown CM Yes
Cardiac SP Unknown CM Yes
Cardiospheres CM, SM, EC CM, SM, EC Yes
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Role in Therapeutic Regeneration References
Not determined 64,65
Not determined 68

Normal expansion after MI. EPDC injection 71,72,74,77,106
and EPDC conditioned media reduced infarct

size and improved function after MI. TB4

priming may permit EPDC differentiation to

cardiomyocytes

After MI, myocardial injection gave bands of ~ 78—80
regenerating myocardium and functional

improvement

Scal™ cells engrafted and differentiated 51
to CM after MI. Functional improvement
not demonstrated

After cryoinjury, SP cells home to injury site 81-84
and differentiate into cardiomyocytes.

Functional improvement not demonstrated

After myocardial infarction, cardiosphere
derived cell infusion into the coronary arteries
decreased infarct size and improved
ventricular function

86,107

Abbreviations: CM, cardiomyocyte; SM, smooth muscle cell; EC, endothelial cell; EPDC, epicardium-derived cell; MI, myocardial infarction.

septum transversum located below the atrioventricular
groove (70). Proepicardial cells migrate onto the surface of
the heart to form the epicardium, a mesothelial sheet overly-
ing the myocardium. Progenitor cells in the epicardium
undergo epithelial to mesenchymal transition (EMT) to
form mesenchymal cells that migrate into the myocardium
and differentiate into smooth muscle, endothelial, intersti-
tial, and cardiomyocyte cells (71,72). Consistent with their
cardiomyogenic potential, epicardial progenitors are des-
cended from precursors that express Nkx2-5 and Isl (71).
In addition, epicardial cells engage in extensive bi-direc-
tional signaling with the underlying myocardium, promot-
ing myocardial growth and coronary vessel development
(reviewed in (73)). Thus, epicardium may participate in
regenerative responses both by generating key differentiated
cardiac lineages and by conditioning a microenvironment
favorable for myocardial repair.

Epicardial progenitors are marked by expression of the
transcription factors WT1 and TBX18 (71,72). In the adult
heart, the epicardium is quiescent and downregulates WT1,

TBX18, and other genes actively expressed in fetal epicar-
dium. However, myocardial infarction stimulates reactiva-
tion of fetal epicardial genes including WTI, and
proliferation and expansion of the epicardial layer through
an EMT-like process (74). Unlike fetal heart, adult epicar-
dium-derived cells remained on the surface of the heart
and were not observed to differentiate into cardiomyocytes.
The cells largely differentiated into fibroblasts, myofibro-
blasts, and smooth muscle cells. These cells actively pro-
duce secreted factors that promote angiogenesis and that
have protective effects in myocardial infarction (74).
Similar to epicardial activation by MI in mice, apex ampu-
tation in zebrafish stimulated reactivation of a fetal gene
expression program (39). Remarkably, apex amputation
activated a gata4 transcriptional enhancer in a subpopula-
tion of cardiomyocytes located just below the epicardium,
and cardiomyocytes that repopulated the amputated apex
originated from this select subepicardial cardiomyocyte
subpopulation. These data suggest a key role of epicardial
signaling in the regenerative process (40).
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The nature of the epicardial signals and the function of
the mammalian epicardium in conditioning a subepicar-
dial microenvironment conducive to regeneration is an
area of intense interest. One leading candidate signal is
thymosin beta4 (TB4), a small G-actin monomer binding
protein that promotes cardiomyocyte survival and myo-
cardial repair after experimental infarction (75). Although
the mechanisms of TB4 action remain unclear, at least in
part TB4 stimulates expansion, mobilization, and differen-
tiation of adult epicardial progenitors (76). Remarkably,
Riley and colleagues found that administration of TB4
prior to MI allowed a small fraction of epicardial cells of
the adult heart to differentiate into cardiomyocytes (77),
suggesting that TB4 may also influence the plasticity of
cardiac progenitors.

CPCs have also been identified using markers of stem
cells identified in other systems. The most prominent such
progenitor population are the c-Kit*, hematological line-
age negative (Lin") cardiac progenitors, which are found in
the adult mouse heart in clusters suggestive of stem cell
niches. These c-Kit™ cells were reported to possess the
stem cell properties of self-renewal, clonogenicity, and
multipotency, and differentiated into cardiomyocyte,
smooth muscle, and endothelial cell lineages in vitro
(78,79). Moreover, when injected into an injured heart,
these cells formed functional blood vessels and cardiomyo-
cytes in regenerated myocardium (78,79). An independent
group, using mouse lines with transgenic cardiomyocyte
markers, confirmed that a subset of neonatal c-kit" cells
had cardiomyogenic potential (80). However, their data
indicated that adult cardiac c-Kit™ cells possessed little to
no cardiomyogenic potential (1 event in 56,000 cells
tested) (80). The factors underlying the discrepant results
are uncertain, but may relate to changes in cell properties
with prolonged expansion of c-Kit™ cells in culture.
Further studies are required to understand the cardiogenic
activity of adult c-Kit™ cells, and the signals that regulate
their expansion and lineage commitment.

The stem cell antigen Scal has also been used to iden-
tify a population of adult heart-derived cardiac progenitor
cells. Scal™ CPCs express cardiac transcription factors
GATA4, MEF2c, and SRF, but not markers of differenti-
ated cardiomyocytes. Under differentiation conditions in
cell culture, cardiac Scal™ cells upregulated markers of
differentiated cardiomyocytes, and when injected intrave-
nously after heart injury, they were recruited to the injury
site and differentiated into cardiomyocytes (51). The car-
diac Scal™ population is related to cardiac “side popula-
tion” (SP) cells (81,82), defined by their enhanced efflux
of the fluorescent DNA-binding dye Hoechst 33342
through an ATP-binding cassette transporter, because
93% of cardiac SP cells expressed Scal (51). Cardiac SP
cells also underwent cardiac differentiation on methylcel-
lulose or by co-culture with cardiomyocytes, and
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cardiomyogenic potential was limited to the SP subpopu-
lation that expressed Scal but not CD31 (83). When co-
cultured with adult rat ventricular cardiomyocytes, these
SP cells adopted a mature cardiac phenotype and exhib-
ited contractions and calcium transients in response to
stimulation (83). In the uninjured heart, systemically
injected cardiac SP cells were not efficiently recruited to
the myocardium, and they did not differentiate into the
cardiac lineage. However, recruitment was substantially
enhanced by cardiac cryoinjury, and 4% of the recruited
cells in the injury borderzone expressed the cardiomyo-
cyte marker TNNT2, while the remainder expressed endo-
thelial and smooth muscle markers (84). Another related
CPC population characterized by expression of c-Kit and
Scal has been isolated from primary cultures of human
cardiac biopsies as spontaneous cell aggregates known as
cardiospheres. Cardiosphere cells are self-renewing, and
differentiate into cardiomyocytes when co-cultured with
neonatal rat cardiomyocytes (85,86). Human cardiosphere
cells injected into the borderzone of murine myocardial
infarcts engrafted, reduced infarct size, and improved left
ventricular function (86).

In summary, a number of cardiac progenitor popula-
tions have been defined that differentiate and express car-
diomyocyte markers in vitro and in vivo. The ability of
these progenitor populations to differentiate into func-
tional, mechanically, and electrically integrated myocar-
dium needs to be verified in independent laboratories
using definitive in vivo fate mapping techniques. The
extent to which these populations represent different sub-
sets of a common progenitor remains to be determined.

Non-resident Cardiac Progenitor Cells

Cells with cardiogenic potential do not necessarily need
to originate from the heart, and in fact extra-cardiac pro-
genitors may have greater translational value due to
improved accessibility. Perhaps the strongest evidence
supporting noncardiac progenitors arises from studies of
human heart chimerism. In male recipients of female
heart transplants, substantial numbers of cardiomyocytes
bearing the Y chromosome were reported in the female
donor heart, strongly suggesting migration of primitive
cells from the recipient to the grafted heart (87)
(Figure 39.3f—g). Consistent with this work, studies of
sex-mismatched bone marrow transplant recipients estab-
lished the human bone marrow as a source of extra-
cardiac progenitor cells capable of de novo cardiomyocyte
formation (88). While work from several labs supports
cardiomyocyte chimerism in sex-mismatched transplanta-
tion, the frequency of this finding has been controversial,
with some investigators rarely identifying them after con-
trolling for fusion, autofluorescence, and intracytoplasmic
circulating cells (2,50,88—90).
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The potential use of bone marrow as a source of car-
diac progenitor cells was established in a landmark study
by Anversa and colleagues (91). They reported that
injected bone marrow cells were recruited to infarcted
myocardium and robustly transdifferentiated into cardio-
myocytes. Consistent with this result, in mice transplanted
with GFP-marked bone marrow, bone marrow-derived
cells were recruited to infarcted myocardium, where they
differentiated to cardiomyocytes and endothelial cells
(92). However, the ability of bone marrow cells to differ-
entiate into cardiomyocytes could not be reproduced by
two other groups, who used genetic markers to lineage
trace the injected cells and to identify cardiomyocytes
(93,94). Fusion of transplanted cells with host cardiomyo-
cytes and microscopy artifacts might potentially explain
the transdifferentiation observed in the Anversa study
(2,95,96). However, follow-up studies from the Anversa
group continued to indicate the ability of transplanted
bone marrow cells to differentiate into cardiomyocytes
within infarct region, independent of cell fusion (97).

Spurred on by reports of beneficial effects of bone mar-
row injection in mouse myocardial infarction models and
by reports of striking cardiomyocyte chimerism in sex-
mismatched transplant patients, a number of human clinical
trials were executed to test the hypothesis that bone marrow
stem cells would improve outcome after myocardial infarc-
tion (6). Detailed review of the results of these studies is
outside of the scope of this chapter, but in short the results
were mixed and when benefits were seen they were not sus-
tained. The injected cells did not efficiently engraft, leading
to the conclusion that what benefits were seen were likely
due to undefined paracrine mechanisms (98,99).

In summary, it remains contentious whether or not
bone marrow progenitor cells are recruited to the heart
and transdifferentiate into cardiomyocytes. While evi-
dence of chimerism in the human heart is certainly sug-
gestive, difficulty in reproducibly demonstrating homing,
engraftment, and differentiation of bone marrow cells into
cardiomyocytes in mouse models has led to doubts about
the conceptual underpinnings of bone marrow progenitor
therapy for myocardial injury. This has been reinforced
by disappointing engraftment and minimal sustained
impact on clinical endpoints in initial therapeutic trials.
Clearly additional basic understanding of the underlying
biology is required.

PROLIFERATION OF DIFFERENTIATED
CARDIOMYOCYTES

In addition to amplification and differentiation of cardiac
progenitors, endogenous and therapeutic myocardial
regeneration can occur by proliferation of differentiated
cardiomyocytes. This model has been pushed to the fore
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by the recent demonstration that regenerating myocar-
dium in zebrafish originates from differentiated cardio-
myocytes (40,41). In mammals, it appears that adult
cardiomyocytes can also be induced to reenter the cell
cycle by manipulation of appropriate signaling pathways
(Figure 39.1). Insulin-like growth factor 1 (Igfl) is a
major driver of physiological heart growth, and Igfl stim-
ulation was reported to increase cardiomyocyte number
and cell cycle reentry (100). p38 mitogen-activated pro-
tein (MAP) kinase promoted cell cycle exit and cardio-
myocyte differentiation and hypertrophy. Conversely
disruption of p38 MAPK activity permitted fibroblast
growth factor 1 (Fgfl) stimulated adult cardiomyocyte
cell cycle reentry both in vitro and in vivo, in part by
upregulating Cyclins A2 and D2 (12,101). Periostin, a
ligand for aV33 and «V@35 integrins, is among the most
highly upregulated genes following myocardial injury.
Periostin-induced adult cardiomyocyte cell cycle reentry
through integrin signaling pathways, and recombinant
periostin treatment improved cardiac function after myo-
cardial infarction (102). However, this result has been dis-
puted because it has not been supported by experiments
in mice with genetic gain or loss of periostin function
(103). Neuregulin 1 (Nrgl) was also reported to stimulate
cardiomyocyte cell cycle reentry by signaling through the
ErbB4 receptor tyrosine kinase (104). Interestingly, it
appeared that Nrgl preferentially stimulated cell cycle
activity in mononuclear cardiomyocytes, some of which
appeared to pass through the cell cycle at least twice. The
greater proliferative capacity of smaller mononuclear car-
diomyocytes has been noted by other groups (105), lead-
ing to the idea of a transiently amplifying population
derived from cardiac progenitors that expresses cardio-
myocyte markers (55). The phosphoinositide 3-kinase
(PI3K) pathway is downstream of all four of the extracel-
lular signals (Igfl, Fgfl, periostin, and Nrgl) known to
stimulate cardiomyocyte cell cycle reentry, and thus the
PI3K pathway may be central for this process.
Collectively, these data indicate that adult cardiomyocytes
can be stimulated to reenter the cell cycle through
manipulation of intracellular signaling pathways, suggest-
ing a promising avenue for therapeutic myocardial
regeneration.

CONCLUSIONS

While considerable evidence has overturned the decades-
old dogma that the heart is devoid of regenerative capac-
ity, the extent of endogenous cardiomyocyte turnover
remains uncertain. Tantalizing studies suggest that the
limited regenerative capacity of the mammalian myocar-
dium can be therapeutically augmented to achieve clini-
cally significant cardiac repair, a Holy Grail of
cardiovascular medicine. However, attainment of this
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goal will require surmounting considerable obstacles.
Future work will need to achieve reproducibility between
laboratories and to develop consistent definitions of car-
diac progenitor populations. We need to understand line-
age choices of cardiac progenitors and the signals that
regulate them. We must have greater insight into the
myocardial niches that foster myocardial regeneration.
We need learn how new myocardium generated from pro-
genitors is mechanically and electrically integrated with
existing myocardium. With this knowledge in hand, we
will be positioned to translate our expanding knowledge
of myocardial regenerative mechanisms to clinical
application.
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