Music Generation from MIDI datasets

Moritz Hilscher!, Novin Shahroudi?

Institute of Computer Science, University of Tartu
Lmoritz. hilscher@student. hpi.de, *novin@ut.ee

Abstract. Many approaches are being used for music generation to this date. Many
fields are revolutionized by the recent deep learning breakthroughs. Music generation
is no exception. In this work we employ a character-based Recurrent Neural Network
(RNN) for music generation. RNNs has renowned for modeling sequential data and has
become popular in the deep learning community for many applications.

1 Introduction

Similar to many other fields such as speech recognition, text generation, image
captioning, etc. music generation is hugely influenced by neural networks re-
cently. Our aim in this project is to replicate one of the successful approaches
and demonstrate our findings throughout this process.

Our approach is inspired by similar attempts by [2/1] which shows that Re-
current Neural Networks (RNN) with relatively straight forward architecture
have the capacity to generate pieces of music. Musics are temporal data con-
taining dynamics that makes them complicated for computer models to gen-
erate one. RNN has shown to be a promising method to predict sequential
data especially text sequences. To this end, many attempts are made to date
for generation of music using this method, or other methods such as CBOW,
sequence-to-sequence, or GAN [I]. Among music representations such as Mu-
sicXML or the ABC notation, we use MIDI files which are widely available
and convert them into a simple textual representation (which is also a benefit
while working with RNNs). The textual representation of a MIDI music track
is generated by quantizing played notes to time steps of a specific length and
then specifying with a different character for each note which note is played at
which time step.

In section , we give an overview on the music generation/composition field,
and more specifically deep learning approaches that is being used to date for
this task. Section [2] explains data preparation and character-RNN. Results in
section [3.4] show that with fair amount of implementation efforts and dark arts
our approach is good for music generation. Moreoever, further discussions, pos-
sible extensions of the work with conclusion are covered respectively in sections

[and [6]

2 Background

Music composition using computer aided systems has a long history since ap-
pearance of computers and digital systems. There are wide range of technologies
utilized in different levels such music synthesizers, and improvisers. Alan Tur-
ing was the first to generate notes using computers in late 40s. Later in 1950s
attempts resulted to musics that being played through computers but limited
to a exact repertoire of the pieces of music using algorithmic composition which
derived from mathematical descriptions. As music synthesizers became more
prevalent, more standards emerged. In 1980s Japanese personal computers em-
ployed audio programming languages such as Music Macro Language (MML)
and MIDI interfaces. At this stage musics could be generated in real-time.

In general computerized music composition can be categorized into computer-
generated musics, and machine improvisation. There are different ap-
proaches and applications for computer-generated musics. Figure |1| shows
relation between each of these approaches.

Software Systems

Eynthesis
Eystoms

Interactive Music
Eystoms

CAMAC Systems

Gencrative Husic
Systems

Fig. 1: Diagram of methods for computer-generated musics

Machine improvisation which is relatively a newer concept employs artifi-
cial intelligence and machine learning to capture characteristics of the music
(so-called musical styles). Compared to algorithmic composition these methods
rely on available examples to analyze and capture these styles. Furthermore
machines are able to compose a music or make their own imitations based on
previously seen samples.

Markov Chain and stochastic processes were the first approaches being used
as a statistical modeling which enables capturing patterns. Modern methods
are loss-less data compression, prefix suffix tree, and string searching.

Neural models also known as ”deep learning” use music data to analyze
and model content of the music to generate a new music. They are also called
as data-driven approach. These models are essentially layered computational
graphs that each deeper level contain more sophisticated yet higher level features
derived from the input. Graph nodes (so-called neurons) receive input from other
nodes and propagate output based on a weight and activation policy. Recurrent
Neural Networks with LSTM cells are of more attention for music generation
because of their appropriate structure which makes them suitable for sequential
and recurring patterns that also exist in every piece of music.

In recent project report of N. Agarwala, et.al [I] they are able to generate
monophonic and polyphonic music in different genres without any predefined
music composition rules using character RNN[], and Seq-to-seq] with GRUF|and
LSTME| including bi-directionality and attention. Their character based RNN
learns music patterns with accuracy of 60% being able to fool 37% of the human
listeners, yet the generated music is not structurally correct. Their sequence-
to-sequence models reach accuracy of 65% with 75% success rate in fooling
the listeners with corrected music structure. They also implemented GAN but
according to their claim it does not produce meaningful results due to the
instable training. To have a sensible measure of their character RNN they ran
the network with the same dataset that character RNN presented by Kaparthy
et.al [].

Their results show that increasing hidden layer size and shorter embedding
size increases accuracy of the character RNN. They also showed that increasing
both hidden layer and embedding size gives better accuracy for the seq-to-seq
model. In addition, they employed ABC notation and claimed that notations
such as MIDI are sound-based and may not be transcribed properly compared
to ABC. In contrast, they try to come up with models that are able to learn
the grammar of the music.

Similar attempt by Bob L. Sturm, et.al [2] uses character based and token
based approach to train LSTM network. Albeit, their focus is on developing
models that facilitate music composition. They have made statistical analysis
of the generated musics that can help relating the synthesis to the original exam-
ples. They were able to use aforementioned approaches to generate structurally
valid musics. Their approach can be a inspirational recipe for regularizing the
RNN models to generate grammatically valid musics. One of their achievements
was to employ RNN models with thousands of hidden nodes trained on thou-
sands of training samples.

! Recurrent Neural Network

2 Using Encoder decoder paradigm
3 Gated Recurrent Unit

4 Long-short term Memory

3 Methods

Here, we explain MIDI file format, how to generate text sequences from, and
the normalization in the data preparation. Further, we explain our model and
approaches to learn the patterns in the text sequence, and how to generate with
in the network architecture.

3.1 Data Preparation

We use textual representation of a piece of music extracted from MIDI files
to feed it to the network. Each MIDI file is a collection of tracks containing
events. Tracks can be different instruments but also left and right hand for a
piano music piece. Events represent note on/off, tempo, instrument-type, meta
information about the music, and etc. Also each event contains a tick number
and a payload. Tick number is the lowest level time resolution. The tick number
of each event describes how many ticks passed from the previous event to the
current one. Notion of time in the music is defined using the tick, tempo and
resolution. Tempo is number of beats per minute (BPM) also referred to as
Quarter note per minute (QPM). The resolution is the pulses per quarter-note
(PPQ), thus describing how many ticks per quarter note being played pass.
The higher the resolution the shorter in time is one tick. Fig. [2| depicts this
explanation.

Minutes

4 beats per minute (BPM)
Beats

«_
«_
«_
«_
«_
«_
«_

3 ticks per beat

Ticks

Fig. 2: Diagram of methods for computer-generated musics

Although a MIDI file can be comprised of different instruments/tracks, we
treat events from different tracks as events from one track. Further, we quantize
MIDI events by a specific divider of MIDI resolution. For example all events are
quantized to 1/4 or 1/8 of MIDI resolution. We started with 8 as a quantization
divider, but ended up using 4 instead (4 still yields reasonable musical quality
compared to original pieces, 8 already yields quite long text with many repeated
chords). Each of these 1/4 parts of a quarter note, hereafter, a time step is
then used to extract notes of all events within that time step to construct
the textual representation of the MIDI. Each note pitch is represented with
an ASCII character. ASCII characters concatenated together represent notes
being played at the same time step (also known as chord). Next and previous
chords/time steps are separated using a space.

After some experiments, we noticed that MIDI tracks have quite differ-
ent tempos. The length of generated MIDI music depends on the quantization
(quantization divider) and on the note types (quarter, eight, etc. notes). Al-
though these would make much of different in the way that the music is being

heard by us but because of the way we represent the music in text it looks like
the same but actually it is not. That brings the necessity to normalize the data
so that every piece has at least almost the same tempo. To normalize, MIDI
events are morphed with their tick timings to the same tempo. That arises the
problem that the notes do not line up with quantization dividers (as notes are
not like quarter, eigth notes anymore but other fractions). To minimize this
misalignment, the tempo is doubled/halved, etc. until we are nearest to desired
tempo (average tempo of dataset) and yet keep the misalignment low.

To overcome small size of the training set we also augmented the dataset by
transposing all the tracks by one or more semitones (one pitch level) up/down.
This might enable the network to learn harmonies as well as having more variety
of notes in just more than one key available.

3.2 Network Architecture

We use supervised learning in order to train our model using a character-based
RNN with LSTM cells with a many-to-one architecture. In order to formulate
our problem into supervised learning, we use sentences from the dataset as input
() and the character following this sentence in the dataset as label (y). Input
sentences are substrings from the dataset (sentence length equal to the number
of RNN time steps) generated by sliding a window of sentence size and specific
step size over all the dataset texts. Moreover, our network inputs and outputs
are hot-one-vectors since we have a fixed vocabulary of note characters (and the
space to separate music time steps).

W - L :
7 7 7 7

1 4 1 1

7 7 7 7

DEN DEN DEN DEN

SE SE SE SE

7 6 4 4 R e
A3 a4 50 |4 71
.3 4 25 5 23 27
1 1 0 1 0 1
0 0 1 1 0 0
0 1 0 1 0 1

z “F” “I” “Y” T .

ZFIYT F‘ BF Ry JF F2 F yWP T 11 K3 T3 84 Nl 6‘ L];I

Fig. 3: character-based RNN architecture

As depicted in Fig. [3| we use a dense layer with softmax activation which
in the end gives us a probability of a one-hot-vector. It essentially contains
probability of each possible music text character. We also split the dataset into
training and validation sets by randomly taking tracks until desired percentage
(measured with length of tracks textual representations) of each is covered.

3.3 Sampling

After the network is trained with the textual representation of MIDI music, new
music can be generated by generating text using the trained model which is then
converted back to MIDI to playback. To generate new text we feed the network
with a warm up sequence. This can either be a random character sequence
(with dataset vocabulary), a sentence from the dataset, or even a sentence from
a track not included in the dataset (but with same vocabulary). When the warm
up sequence is fed into the network, the next character following the warm up
sequence can be predicted. Newly predicted character(s) are appended to the
end of the previous input as the input slides and maintain its fixed length for
the input. As explained in the architecture part, the prediction is a vector of
probabilities for each text character. Before we nominate a character as the
network’s prediction we divide it by a parameter named temperature. More
temperatures lead to more uniform probability and temperatures closer to zero
lead to probability distribution of the vector. The concept is very close to the
simulated annealing algorithm.

U IQU JNS JNS JNZ JNZ zIX zIX zIQ zIQ zGV zGV zGP zGP EQ EQ IQ IQ LQ
QLOOQLLUL7 L7 441109 Q9 90 90 90 70 90 6Q 7 2 96 7 J% J% N% N%
30 Q UXL L QU LX LX UQ UX LX SV 70 90 7L 7L V6 7V 4P V4 U6 V4 2N
2N 1V V4 2N L2 20 20 S1 S1 ZQ ZQ Q Q P Q 2N 2N 2Q 2Q 2N 2N 2Q Q 7N 7N
70 70 L6 Le 90 90 7L 7L U6 U6 N4 N4 2U 2U K1 K1 2N 2N 20UQ 2UQ 2UQ 2UQ
S2 S2 L4X LX K5 K5 Lv4 Lv4 sS4 S4 S2 S2 L4P L4p SL4 SL4 L2Q L2Q SL1
SL1 SKZ SKZ SL1 SL1 EN EN ZEN ZEN XLP XLP XLP XLP XLP XLP XLP XLP ENW
ENW ENW ENW UNG UGQ SNG SNG QXI LXI ZLI LXI SL1 SL1 JS2 JS2 L4 L2 L1
ZL 0S S2 0P 1P S4 S6 8P 8P L9 L9 PP 'S 'S 'P 'P S" S" L9 L9 PP L" L9
6I 6I N4 N4 9I 9I F6 F6 "I "I N" N" 9G 9G 8N 8N D6 D4 K4 N4 Z Z 4 4
DL1G DL1G ZDLG D1LG ZDLG DLGX DLWG DLGX Z 1 2 1 Z 1 6 4 2EI ZEI ZEI
2EI X Z X WX XXWUI STIQ SUSQPQQQUXT14wo 9y " 87417
XWUSX XQZ212121ZNXPWQUSUWZX ZE 2N 2 S1 2N 40 50 8W S9
9X S9 9X 8N 8Q 8X 8W 8P 8S 9X S9 "Q 90 8 9Q 'P S

Fig.4: A sample output of the sampling stage

3.4 Determine over-fitting

We used wave signals of the music to compare the generated music and training
dataset to find correlation between them. First all musics turned into frequency
domain using Fast Fourier Transform. Then, by performing autocorrelation and

Sample Music Signal Sample Music Signal

0.0000025 0.000001
0.0000000 0.000000
—0.0000025 —0.000001

Generated Music Signal Generated Music Signal

Correlation Correlation

19 0.01 4
0.00 1

0
1 ~0.01 4

] 500000 1000000 1500000 2000000 2500000 3000000 0 1000000 2000000 3000000 4000000 5000000 6000000

Fig. 5: Left figure shows two similar input signals with the expected correlation
that reached to 1 on the 3" row. Right figure is a sample performed on a
generated music and the training data.

measuring the maximum correlation points between two piece, we can have
a rough measure of how much our generated music may be overfitted to the
original pieces.

As the correlation is performed in frequency domain it makes it a versatile
method for our purpose and does not depend on sequences. This saves us from
hassle of textual pattern analysis which could be the approach for this purpose.
Although the correlation process could be very time consuming on a regular
processor it takes less than a minute to perform on our dataset size for one
generated piece of music of about 30 seconds.

4 Experiments & Results

We implementation our model using Keras library and mainly trained on Google
Cloud. We employed following data sets (scraped from different websites):

— Pieces by Bach (194 tracks, 1.4M characters text)

— Pieces by Mozart (39, 0.4M characters text)

— Pieces by different composers, pianomidide (335 tracks, 2.3M characters text
/ filtered: 132 tracks, 0.8M characters)

Different configurations of the discussed network tested and evaluated as
you can find the details in table [I} Important practices that lead to the best
results are accuracy evaluation using training/validation set, tempo normaliza-
tion, data augmentation, batch data shuffling at each epoch. Other parameters
of the network that were the same through out all the reported results are as
following:

— Loss: categorical cross entropy
— Optimizer: Adam

— Learning rate: 0.001

— Validation split: 0.2

We found that we achieved the best musical result with a many-to-one RNN
with one LSTM layer (512 units), sentence length 100, trained for the Mozart

Table 1: Results of some recently trained configurations

’Model‘ Layers ‘LSTM Units‘in,outjtep? Dataset ‘Data*‘Epoch‘ Acc ‘Epochs‘ Acc‘
1 1 LSTM 100 100.1_1 | bachsmallst [N, T,S| 15 [|53%| 30+ [99%
2 1 LSTM 512 100-1_1 mozart N, T,S| 3 [69%| 13+ |86%
3 1 LSTM 512 100_1_1 | bachsubset | N,S 5 |68%| 23+ |79%
4 2 LSTM 256 100_1_1 mozart N, T,S| 5 |69%| 36+ |96%
5 2 LSTM 256 100.1_1 | pianomidide | N,T 12 (62%]| 17+ [85%
6 1 LSTM 256 100_1_1 | pianomidide | N,T 6 |64%| 39+ |85%
7 2 LSTM 256 100-1_1 mozart N, T 5 [85%| 24+ |92%
8 2 LSTM 420 100_1.1 |bach+mozart| N, T 3 |72%| 14+ |85%
9 1 LSTM 256 100.1.3 mediumg4 |None| 10 |60%| 10+ |58%
10 |2 LSTM + 2 FC 256 100-1_3 mediumg4 |None| 10 |60%| 10+ |58%
11 1 LSTM 256 100.5.10 | mediumg4 |None| 18 |45%| n/a |n/a
12 1 LSTM 512 100-5.10 | mediumqg4 |None| 18 |46%| n/a |n/a
13 2 LSTM 256 100-5.10 | mediumg4 |None| 30 [43%| n/a |n/a

*N: Normalization, T: Transpose, S: Shuffling
#input length, output length, step length

dataset (normalized tempos, augmented data with all pitches transposed by
six tone differences [0, 5]). Results sound quite harmonic compared to other
trained networks, which we think is mainly due to the data augmentation.
Unfortunately we were not able to train the bigger Bach dataset with this data
augmentation as we ran into memory issues and had some time problems. In
general, we discovered the following properties about the different parameters
of our networks architecture:

— Sentence length = RNN time steps: With the used quantization divider of
4, 100 as sentence length seems like a good fit providing the network enough
context about previously played chords.

— Many-to-many architecture (outputting n next sentence characters instead
of just one), convolution layer: Didn’t change the achieved accuracies a lot,
and also didn’t much improve the musical quality.

— Number of LSTM layers/units: We discovered from our training experiments
and other text generation approaches that the number of network parameters
(mainly achieved by changing number of LSTM layers/units) should about
match the size of the dataset (number of characters) in magnitude. We
figured out, though, that in this case we might want the network to overfit
a bit to reproduce some of the harmonic sounding note combinations/chord
progressions from the training tracks.

— Tempo normalization: In the beginning of the training experiments, we had
some issues with the network producing tracks that had some chords repeat-
ing for a long times. Tempo normalization seemed to fix that issue.

— Data augmentation: Transposing notes to different keys in the training data
has showed to be very good to improve the harmonies of generated tracks
as shown with the best network trained on the Mozart dataset.

Based on our experiments the generated pieces by the network are not per-
forming a fool immitation of the training data as one sample is being shown in

Fig. [6] there is a very small proportion of correlation between the training set
pieces and the generated piece which is acceptable as long as the model is train-
ing patterns from each piece because there are always a chance for producing
similar patterns as those the model trained on.

0020

o015

0010

0005

00004

0023419253528116134
0021118024364113808
0018499240279197693

§ 0.015735290944576263

0.014504404738545418 |

Max Correlatio

0014146260917186737
0,013775834813714027
0013598115183413029

0.01344318501651287

0012335068546235561

o o o o el o
o i o o e o
o o o o o o o

Reference Wave

@ = o =
o o s o

Fig. 6: Top plot shows correlation with the whole dataset, the bottom is the
top-10 highly correlated ones

5 Discussion

Although the implemented approach given descent results it is bound to the
limited knowledge of the music that we provide as the input. Many other char-
acteristics of the music cannot be captured through the current textual repre-
sentation. The pitch level which corresponds to the intensity or volume of echo
note is one of those. From experiments with the temperature parameter for the
sampling stage it is evident that network has not seen enough training data as
for the lower temperatures it produces repeated notes/chords.

In the worst case scenario overfitting may occur and get repeated if the
input sequences be as same as those the network being trained on. However,
because of randomness nature of the sampling incorporated using temperature
parameter the chances that the generated music would be a total imitation of
the trained data is very low. Further analysis of the temperature effects on the
generated music can be done for future.

6 Future works

Here we list possible future works of this work:

— Other RNN architectures and combination of layers

— Encoder-decoder architecture with sequence to sequence approach

— Experiment with different augmentation of different keys in order to improve

musical harmonies of results

Fully training of all current datasets combined with large data augmentation

(was not possible yet to memory and computational power issues)

— Training using different datasets (additionally to mainly Bach and Mozart
dataset currently in use)

— Training using different genres at the same time

— Other music notations

— Incorporating the velocity (not to be confused with tempo; MIDI velocity
describes how loud a note is played)

— Multiple tracks/instruments

— Textual pattern matching algorithms to determine overfitting of the model
and getting better insights at the generated texts

7 Conclusion

We implemented a character-based RNN using LSTM cells on classic piano
pieces using MIDI files. The best model reached training accuracy above 90%
on some of the datasets and about 70% validation accuracy. Although the model
would generate repeating notes/chords for some reasons, our findings show that
repetitions can be eliminated to some level that produces relatively satisfactory
results by tempo normalization and data augmentation (transposing notes).
Also the accuracy is highly depended on the aforementioned. Beside available
samples for listening we used autocorrelation to have a measure of overfitting
of the model. Some of the selected pieces of this work are available at https:
//yvellow-ray.de/~moritz/midi_rnn/examples.html

https://yellow-ray.de/~moritz/midi_rnn/examples.html
https://yellow-ray.de/~moritz/midi_rnn/examples.html

8 Contributions

Both authors contributed to the brainstorming, network training, documen-
tation, presentation and reports of the project. Moritz Hilscher contributed to
the finding of datasets, data preparation, network model implementation. Novin
Shahroudi contributed to the Jazz dataset (not reported here), network model,
and autocorrelation implementation.

References

1. Yuki Inoue Nipun Agarwala and Alex Sly. Music composition using recurrent neural networks.
Technical report, 2017.

2. Bob L. Sturm, Joao Felipe Santos, Oded Ben-Tal, and Iryna Korshunova. Music transcription
modelling and composition using deep learning. CoRR, abs/1604.08723, 2016.

	Music Generation from MIDI datasets

