Music Recommendation in Spotify

Boxun Zhang

About me

- Data scientist at Spotify
 - Big hype nowadays
 - Build models of user behavior
 - Develop algorithms
 - Design A/B tests
- Ph.D. in CS from TU Delft (NL)
 - Studied user behavior in P2P systems
 - Interned at Spotify

Outline

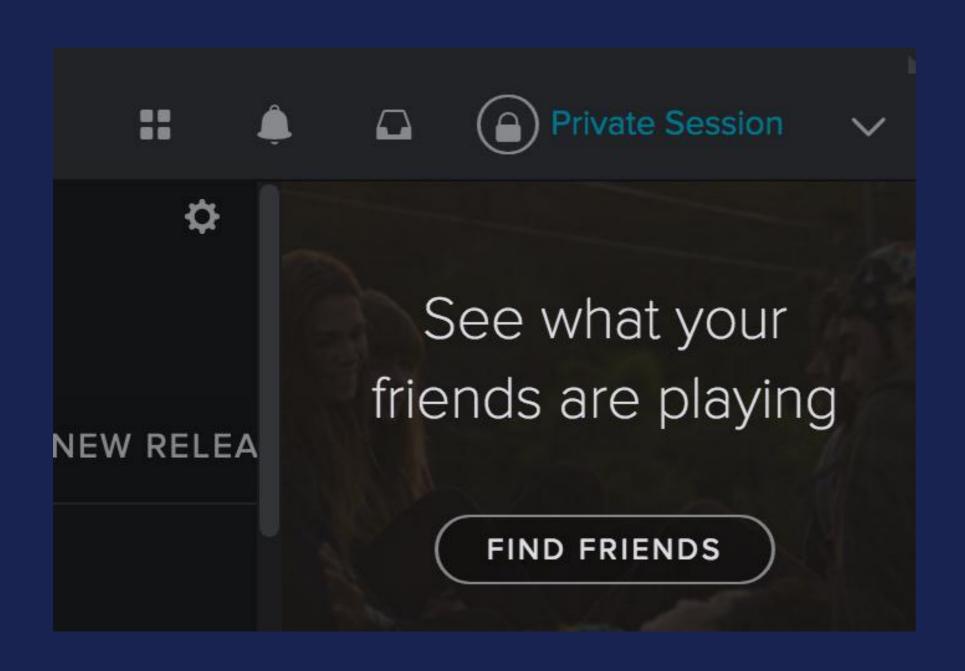
- Spotify basics
- Machine learning at Spotify
- Music recommendation
- Collaborative filtering
 - Latent factor model
 - Approximate nearest neighbor search
- Future work

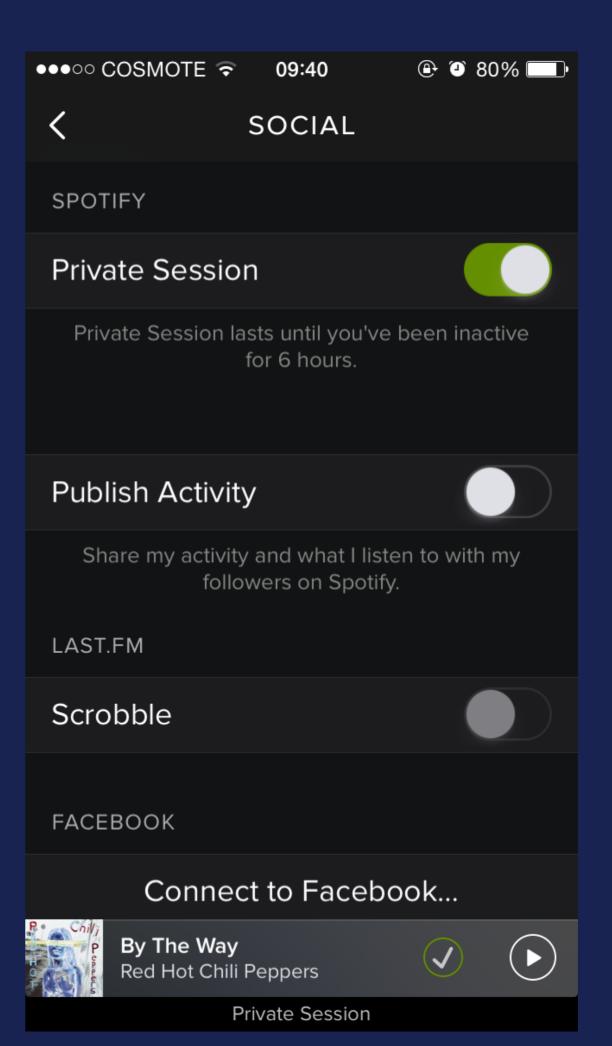
Spotify basics

- A popular music streaming service
 - 60M+ active users
 - 30M+ songs
 - 1.5B+ user-generated playlists
 - Multi-platform, now also on PlayStation
 - Available in 58 countries

Privacy

• Private session ©





Machine learning at Spotify

- User segmentation
- Churn/conversion prediction
- Ads clicking
- Automatic playlist generation
- Related artists
- Music recommendation

Music recommendation

- Help users to discover good music
 - Search: requires lots of efforts
 - Browse: good curated playlists, but not personalized
 - Discover: personalized recommendations

Not that trivial for our large catalog and user base

Collaborative filtering

- Predict user rating on items
 - Popular strategy for recommender systems
 - Exploits user interactions with items, songs or videos
 - Domain-free
 - Suffers from the cold start problem
- Memory-based approach
- Model-based approach

Latent factor model

Proved to be more effective in the Netflix prize

- How it works
 - Build user-item interaction matrix [users, items]
 - Map user/item vectors to a latent factor space
 - The latent factor space should have much lower dimensions
 - Approximate users' ratings using latent vectors

From video to music

- Implicit user feedback in Spotify
 - Binary rating of songs: 1 if streamed, otherwise 0

- Repetitive consumption
 - An ad-hoc weight on user rating

Compute latent vectors

- Minimize the loss function below
 - r_{II}: 1 if a track if streamed, otherwise 0
 - p_u: user vector
 - q_i: item vector
 - c_{ui} : ad-hoc weight to consider repetitive consumption $1 + a \times plays_{ui}$
 - λ: regularization penalty

$$\mathring{\mathbf{a}} \mathbf{c}_{ui} (\mathbf{r}_{ui} - \mathbf{q}_i^T \mathbf{p}_u)^2 + / \mathring{\mathbf{c}} \mathring{\mathbf{a}} \|\mathbf{p}_u\|^2 + \mathring{\mathbf{a}} \|\mathbf{q}_i\|^2 \div \\ \mathring{\mathbf{e}}_u$$

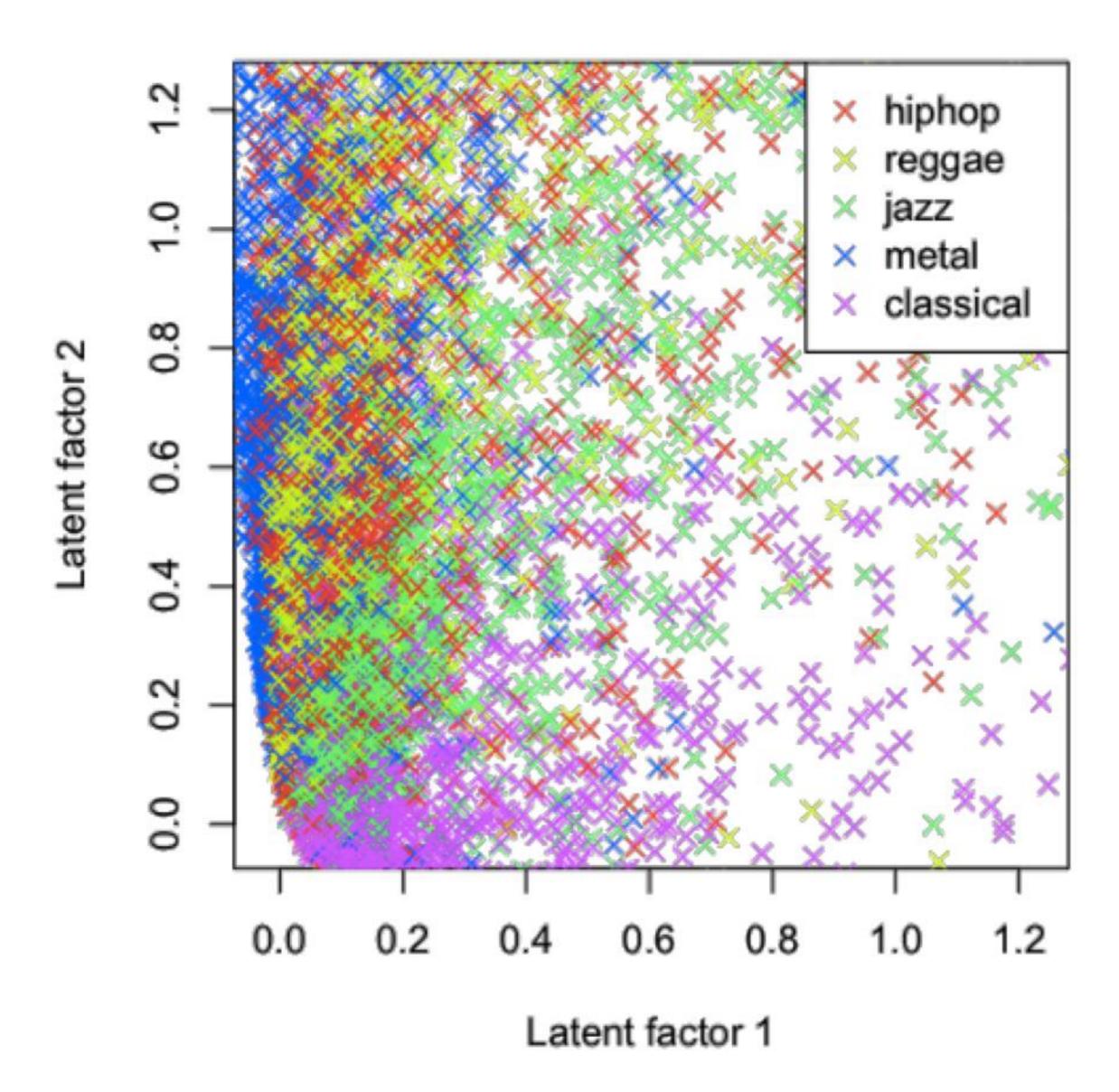
Compute latent vectors, cont.

Alternating least squares

- Cost function becomes quadratic when fixing either user factors or item factors
- Minimize the cost function iteratively until convergent
- Linear run-time complexity in each iteration
- Support parallelization in e.g., Hadoop

Spotify matrix

- 40 latent factors
- Computation converges within ~20 iterations (a few hours)
- On our Hadoop cluster of ~1,300 nodes



The real reality

- It's not only the latent factor model
- We use an ensemble model to approximate user ratings
 - include some other information

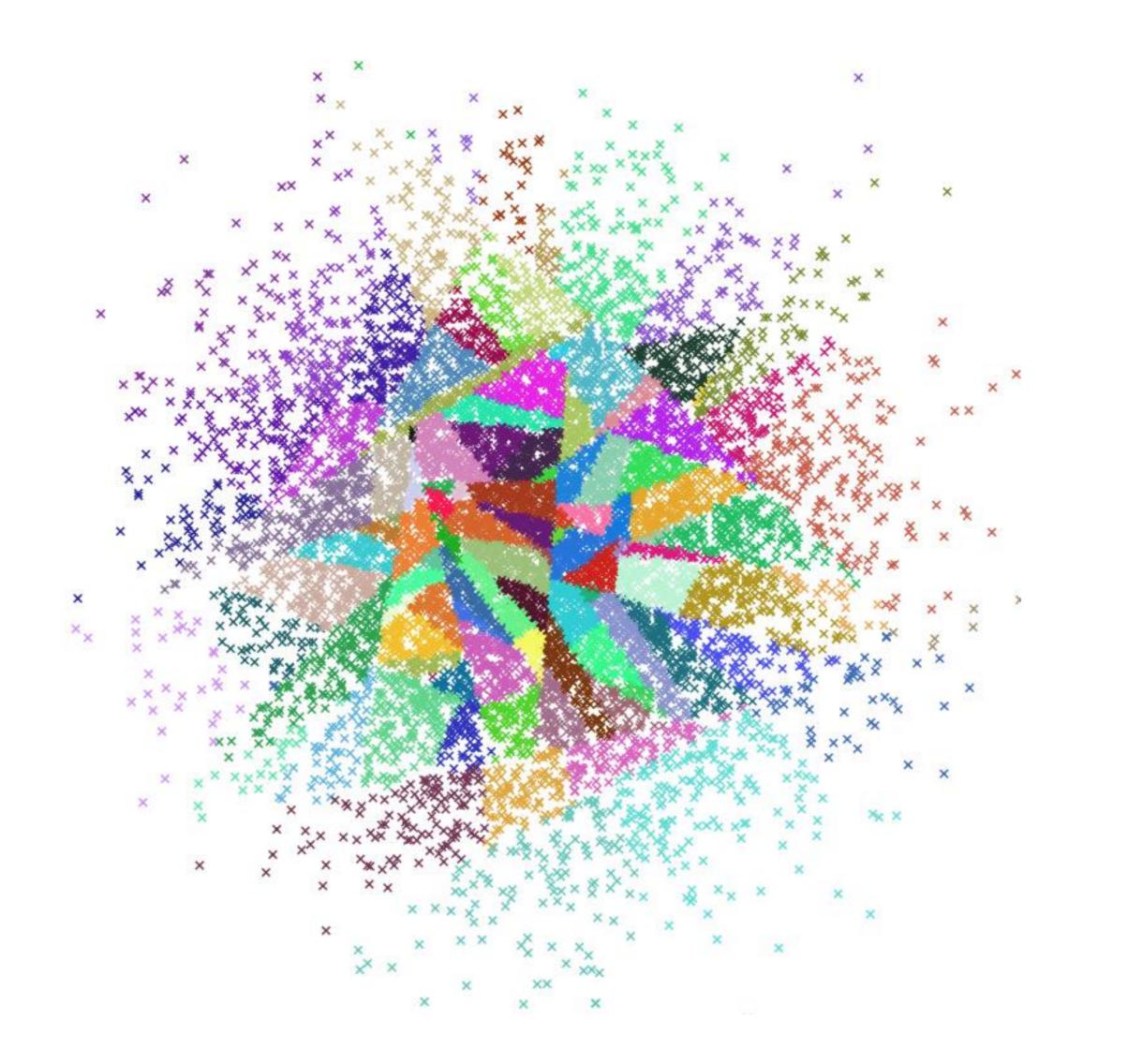
Find recommendations

- There are 30M+ songs out there
 - 20K+ songs added every day
 - Brute-force? Too slow, and NOT cool!
 - Use (Approximate) Nearest Neighbor (ANN) search

Annoy

- Locality-sensitive hashing
 - Vectors close to each other are still close nearby after been projected to a space with lower dimensionality or a hyperplane

- Build a tree with intermediate nodes being random hyperplanes
 - Nearby vectors likely to be on the same side
 - Better approximation with several trees
 - Very fast query



Future work

Include bias and temporal patterns into latent factor model

Improve evaluation of recommender system

Echo Nest: Signal processing

Deep learning, maybe

Since two days ago

- Not only music any more
 - Video
 - Podcast
 - News

Context-based recommendations

Running

