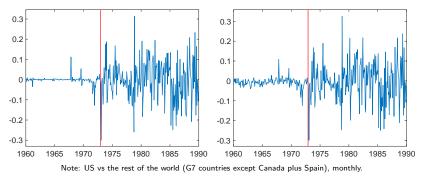
OLEG ITSKHOKI itskhoki@Princeton.edu DMITRY MUKHIN dmitry.mukhin@Yale.edu

Princeton University March, 2019

Mussa Puzzle

• *Real* exchange rate (RER):

$$\mathcal{Q}_t = rac{\mathcal{E}_t P_t^*}{P_t}$$
 or in log changes $\Delta q_t = \Delta e_t + \pi_t^* - \pi_t$

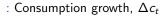


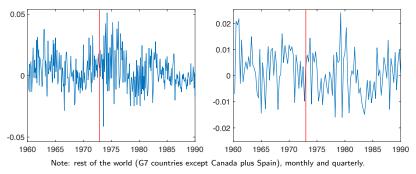
Mussa Puzzle

• *Real* exchange rate (RER):

$$\mathcal{Q}_t = rac{\mathcal{E}_t P_t^*}{P_t}$$
 or in log changes $\Delta q_t = \Delta e_t + \pi_t^* - \pi_t$

: Inflation rate, π_t





- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, *real* exchanger rate should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, *real* exchanger rate should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs
- Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, *real* exchanger rate should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs
- Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)
- We argue this latter conclusion is not supported by the data: no contemporaneous change in properties of macro variables

1 neither nominal, like inflation

2 nor real, like consumption, output or net exports

Is it an extreme form of *neutrality*? or disconnect?

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, *real* exchanger rate should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs
- Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)
- We argue this latter conclusion is not supported by the data: no contemporaneous change in properties of macro variables

1 neither nominal, like inflation

2 nor real, like consumption, output or net exports

Is it an extreme form of *neutrality*? or disconnect?

• The combined evidence does not favor sticky prices over flexible prices, but rather rejects both types of models

Intuition

• Real exchange rate:

$$q_t = e_t + p_t^* - p_t \tag{1}$$

X IRBC (flex prices): no change in Δq_t , change in $\pi_t - \pi_t^* \propto \Delta e_t$

✓ NKOE (sticky prices): change in $\Delta q_t \propto \Delta e_t$

Intuition

• Real exchange rate:

$$q_t = e_t + p_t^* - p_t \tag{1}$$

★ IRBC (flex prices): no change in Δq_t , change in $\pi_t - \pi_t^* \propto \Delta e_t$ ↓ NKOE (sticky prices): change in $\Delta q_t \propto \Delta e_t$

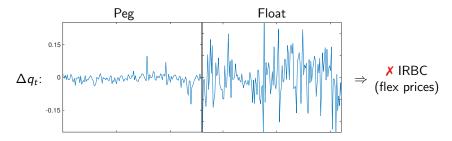
• 'Cointegration' relationship between consumption and RER:

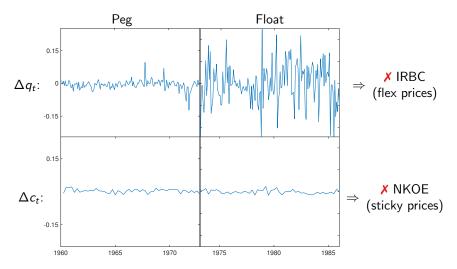
$$\varsigma(c_t - c_t^*) = q_t - \zeta_t \tag{2}$$

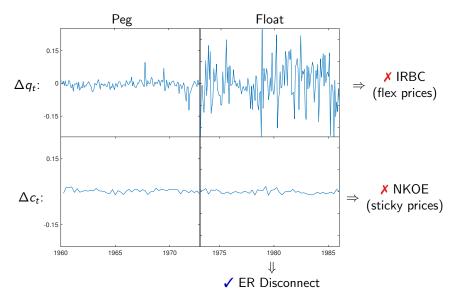
- generally derives from international risk sharing condition, but does not rely on (perfect) risk sharing
- under a variety of circumstances ζ_t does not depend on exchange rate regime
- **3** falsifies both sticky-price and flexible-price models

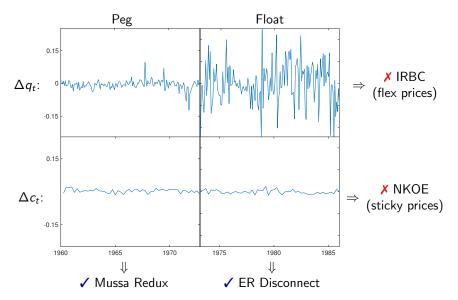
- Define exchange rate disconnect as combination of:
 - 1 Meese-Rogoff (1983) puzzle
 - 2 PPP puzzle (Rogoff 1996)
 - **3** Terms-of-Trade puzzle (Engel 1999, Atkeson-Burstein 2008)
 - 4 Backus-Smith (1993) puzzle
 - 5 Forward-premium puzzle (Fama 1984)
- Itskhoki and Mukhin (2017) propose a solution with emphasis:
 - 1 Home bias in consumption
 - 2 'Financial' shocks as the main driver of exchange rates
 - **3** Taylor rule inflation targeting

- Define exchange rate disconnect as combination of:
 - 1 Meese-Rogoff (1983) puzzle
 - 2 PPP puzzle (Rogoff 1996)
 - **3** Terms-of-Trade puzzle (Engel 1999, Atkeson-Burstein 2008)
 - 4 Backus-Smith (1993) puzzle
 - 5 Forward-premium puzzle (Fama 1984)
- Itskhoki and Mukhin (2017) propose a solution with emphasis:
 - **1** Home bias in consumption
 - 2 'Financial' shocks as the main driver of exchange rates
 - **3** Taylor rule inflation targeting
- This is insufficient to explain Mussa puzzle, which involves a sharper experiment a change in the monetary regime
 - even under the "disconnect conditions," a switch in the monetary regime would result in a change in macro volatility









• Segmented financial markets

- a particular type of financial friction
- ER risk is held in a concentrated way by specialized financiers, and is not smoothly distributed across agents in the economy
- Modified UIP conditions:

$$\frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2} = \psi_t - \chi b_{t+1}$$

where $\sigma_e^2 \equiv \operatorname{var}_t(\Delta e_{t+1})$ and $\omega \sigma_e^2$ is the price of ER risk

• Segmented financial markets

- a particular type of financial friction
- ER risk is held in a concentrated way by specialized financiers, and is not smoothly distributed across agents in the economy
- Modified UIP conditions:

$$\frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2} = \psi_t - \chi b_{t+1}$$

where $\sigma_e^2 \equiv \operatorname{var}_t(\Delta e_{t+1})$ and $\omega \sigma_e^2$ is the price of ER risk

- Nominal ER volatility is consequential for real allocations
 - an alternative source of monetary non-neutrality
 - this mechanism is sufficient to explain the Mussa puzzle
 - sticky prices are neither necessary, nor sufficient

Related literature

- Empirics:
 - Mussa (1986), Baxter and Stockman (1989), Flood and Rose (1995)
- Theory:
 - Jeanne and Rose (2002), Monacelli (2004), Kollmann (2005), Alvarez, Atkeson and Kehoe (2007)
- Additional empirical moments:
 - Colacito and Croce (2013), Devereux and Hnatkovska (2014), Berka, Devereux and Engel (2018)

EMPIRICAL PATTERNS

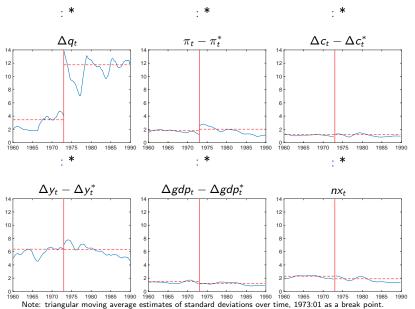
Data

- Two datasets:
 - IFM's International Financial Statistics: monthly data on exchange rates, inflation and production index
 - **2** OECD: quarterly data on consumption, GDP and trade
 - real variables, seasonally-adjusted

— net exports: $nx \equiv (X - M)/(X + M)$

- Log changes are annualized to make measures of volatility comparable across variables
- Dating the end of Bretton Woods:
 - "Nixon shock" in 1971:08 and the end of BW in 1973:02
 - 1967–1971: a number of devaluations (UK, Spain, France) and a revaluation (Germany)
- Countries: France, Germany, Italy, Japan, Spain and the UK. Also Canada.

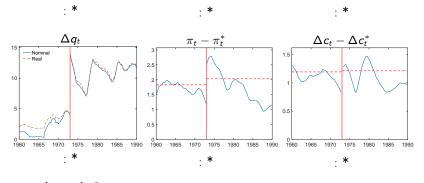
Macroeconomic volatility

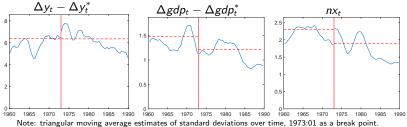


9/30

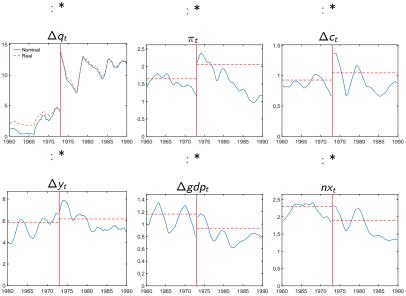
Macroeconomic volatility

9/30





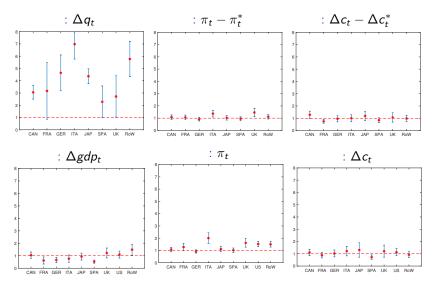
Macroeconomic volatility



Note: triangular moving average estimates of standard deviations over time, 1973:01 as a break point.

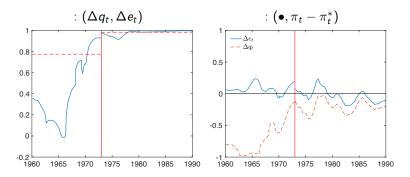
9 / 30

Change in Macro Volatility



*Ratios of standard deviations under floating (\geq 73:02) and peg (\leq 71:08) regimes with 90% HAC conf. intervals

Correlations



Note: Triangular moving average correlations, treating 1973:01 as the end point for the two regimest

CONVETIONAL MODELS: FALSIFICATION

'Conventional' Models

- **Definition**: *if prices were flexible, a switch in the monetary regime would not affect real variables*
 - hence, only sticky-price version can be considered
- Log-linear approximate solution
 - 'conventional'
 - second-order (risk premia) terms are small
 - we allow for risk-sharing wedges instead

'Conventional' Models

- **Definition**: *if prices were flexible, a switch in the monetary regime would not affect real variables*
 - hence, only sticky-price version can be considered
- Log-linear approximate solution
 - 'conventional'
 - second-order (risk premia) terms are small
 - we allow for risk-sharing wedges instead
- Two-country New Keynesian Open Economy model
 - with producer-currency (PCP) Calvo price stickiness
 - with productivity and 'financial' shocks
 - o flexible wages, no capital, no intermediates
- Monetary policy ('primal approach'):
 - Foreign: inflation targeting $\pi_t^* \equiv 0$
 - Home: 'float' is $\pi_t \equiv 0$ and 'peg' is $\Delta e_t \equiv 0$

Model setup I

Households:

$$\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{1}{1-\sigma} C_{t}^{1-\sigma} - \frac{1}{1+\varphi} L_{t}^{1+\varphi} \right)$$

s.t. $P_{t} C_{t} + \sum_{j \in J_{t}} \Theta_{t}^{j} B_{t+1}^{j} \leq W_{t} L_{t} + \sum_{j \in J_{t-1}} e^{-\zeta_{t}^{j}} D_{t}^{j} B_{t}^{j} + \Pi_{t} + T_{t}$

- $\circ~$ CES aggregator across products with elasticity $\theta>1$
- home bias with expenditure share on foreign varieties $\gamma \in (0, \frac{1}{2})$
- Optimality conditions:

$$C_t^{\sigma} L_t^{\varphi} = W_t / P_t,$$

$$C_{Ft}(i) = \gamma e^{\tilde{\xi}_t} \left(\frac{P_{Ft}(it)}{P_t}\right)^{-\theta} C_t,$$

$$\Theta_t^j = \beta \mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} e^{-\zeta_{t+1}^j} D_{t+1}^j \right\}$$

and $P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$

Model setup II

• Production:

$$Y_t(i) = e^{a_t} L_t(i) \quad \Rightarrow \quad MC_t = e^{-a_t} W_t$$

• Profits:

$$\Pi_t(i) = \left(P_{Ht}(i) - MC_t\right)\left(\overbrace{C_{Ht}(i) + C_{Ht}^*(i)}^{=Y_t(i)}\right)$$

$$\bar{P}_{Ht}(i) = \arg \max \mathbb{E}_t \sum_{k=0}^{\infty} (\beta \lambda)^k \left(\frac{C_{t+k}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+k}} \prod_{t+k} (i)$$

• Domestic and export prices:

$$\mathcal{P}_{Ht}(i) = \left\{ egin{array}{cc} \mathcal{P}_{H,t-1}(i), & {
m w/prob} \ \lambda & \ ar{\mathcal{P}}_{Ht}, & {
m o/w} & \ \end{array}
ight.$$
 and $\mathcal{P}_{Ht}(i)^* = \mathcal{P}_{Ht}(i)/\mathcal{E}_t$

1 International risk sharing

2 Country budget constraint

1 International risk sharing — for $j \in J_t \cap J_t^*$

$$\mathbb{E}_t \left\{ \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} - \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{\mathcal{Q}_t}{\mathcal{Q}_{t+1}} e^{\tilde{c}_{t+1}^j} \right] \frac{D_{t+1}^j}{P_{t+1}/P_t} \right\} = 0$$

2 Country budget constraint

1 International risk sharing — for $j \in J_t \cap J_t^*$

$$\mathbb{E}_t \left\{ \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} - \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{\mathcal{Q}_t}{\mathcal{Q}_{t+1}} e^{\tilde{\varsigma}_{t+1}^j} \right] \frac{D_{t+1}^j}{P_{t+1}/P_t} \right\} = 0$$

2 Country budget constraint

$$\begin{array}{l} \overset{=NX_t}{\mathcal{B}_{t+1} - \mathcal{R}_t \mathcal{B}_t} = \overbrace{P_{Ht} C_{Ht}^* - \mathcal{E}_t P_{Ft}^* C_{Ft}}^{=NX_t} = \frac{\gamma P_t^{\theta} C_t}{(\mathcal{E}_t P_{Ft}^*)^{\theta - 1}} \left[e^{\tilde{\xi}_t} \mathcal{S}_t^{\theta - 1} \mathcal{Q}_t^{\theta} \frac{C_t^*}{C_t} - 1 \right] \\ - \text{ where } \mathcal{B}_{t+1} \equiv \sum_{j \in J_t} \Theta_t^j \mathcal{B}_{t+1}^j \text{ is NFA position} \\ - \text{ terms of trade } \mathcal{S}_t \equiv \frac{\mathcal{E}_t P_{Ft}^*}{P_{Ht}} \approx \mathcal{Q}_t^{\frac{1}{1 - 2\gamma}} \end{array}$$

1 International risk sharing — for $j \in J_t \cap J_t^*$

$$\mathbb{E}_t \left\{ \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} - \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{\mathcal{Q}_t}{\mathcal{Q}_{t+1}} e^{\tilde{\zeta}_{t+1}^j} \right] \frac{D_{t+1}^j}{P_{t+1}/P_t} \right\} = 0$$

2 Country budget constraint

$$\mathcal{B}_{t+1} - \mathcal{R}_t \mathcal{B}_t = \overbrace{\mathcal{P}_{Ht} C_{Ht}^* - \mathcal{E}_t P_{Ft}^* C_{Ft}}^{=NX_t} = \frac{\gamma P_t^{\theta} C_t}{(\mathcal{E}_t P_{Ft}^*)^{\theta - 1}} \left[e^{\tilde{\xi}_t} \mathcal{S}_t^{\theta - 1} \mathcal{Q}_t^{\theta} \frac{C_t^*}{C_t} - 1 \right]$$

- where $\mathcal{B}_{t+1} \equiv \sum_{j \in J_t} \Theta_t^j \mathcal{B}_{t+1}^j$ is NFA position
- terms of trade $\mathcal{S}_t \equiv \frac{\mathcal{E}_t P_{Ft}^*}{P_{Ht}} \approx \mathcal{Q}_t^{\frac{1}{1 - 2\gamma}}$

- another relationship that links C_t/C_t^* and \mathcal{Q}_t
- $-\!\!-$ only condition that directly depends on the monetary regime

Cointegration Relationship

• Financial autarky: $NX_t \equiv 0$ results in

$$c_t-c_t^*=rac{2(1-\gamma) heta-1}{1-2\gamma}q_t+ ilde{\xi}_t$$

• **Complete markets**: $j \in J_t \cap J_t^*$ for each state of the world

$$\sigma(\Delta c_t - \Delta c_t^*) = \Delta q_t + \tilde{\zeta}_t$$

• Cole-Obstfeld:

$$\sigma = rac{1-2\gamma}{2(1-\gamma) heta-1}$$
 (in particular, $\sigma = heta = 1$)

General Case

• Log-linearized dynamic equilibrium system:

$$\mathbb{E}_t \left\{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \right\} = \psi_t,$$

$$\beta b_{t+1} - b_t = \gamma \left[\frac{2(1-\gamma)\theta - 1}{1-2\gamma} q_t - (c_t - c_t^*) + \tilde{\xi}_t \right]$$

$$\Delta q_t = \beta \mathbb{E}_t \Delta q_{t+1} - k_R \left[(c_t - c_t^*) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t \right]$$

- where $\psi_t \equiv -\mathbb{E}_t \Delta \zeta_{t+1}$ is the UIP shock
- slope of the open economy Phillips curve: show

$$k_R = \begin{cases} \kappa, & R = \text{peg} \\ \frac{1}{2\gamma}\kappa, & R = \text{float} \end{cases} \quad \text{and} \quad \kappa = \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}(\sigma + \varphi)...$$

General Case

• Log-linearized dynamic equilibrium system:

$$\sigma(c_t - c_t^*) - q_t = -\frac{\psi_t}{1 - \rho} + m_t, \quad \Delta m_t = u_t$$
$$\beta b_{t+1} - b_t = \gamma \left[\frac{2(1 - \gamma)\theta - 1}{1 - 2\gamma} q_t - (c_t - c_t^*) + \tilde{\xi}_t \right]$$
$$\Delta q_t = \beta \mathbb{E}_t \Delta q_{t+1} - k_R \left[(c_t - c_t^*) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t \right]$$

- where $\psi_t \equiv -\mathbb{E}_t \Delta \zeta_{t+1}$ is the UIP shock
- slope of the open economy Phillips curve: show

$$k_R = \begin{cases} \kappa, & R = \text{peg} \\ \frac{1}{2\gamma}\kappa, & R = \text{float} \end{cases} \text{ and } \kappa = \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}(\sigma + \varphi)...$$

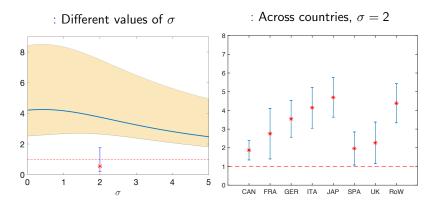
Empirical Falsification

- Proposition 1: Eqm relationship between (c_t c_t^{*}) and q_t does not depend on the exchange rate regime under any of:
 - 1 international financial autarky
 - 2 complete asset markets (with risk-sharing wedges)
 - **3** generalized Cole-Obstfeld case
 - 4 in the limit of both fully fixed and fully flexible prices
 - **5** in the limit of perfect patience, $\beta \rightarrow 1$
 - 6 in the limit of persistent shocks, ho
 ightarrow 1

- The process for $\sigma(c_t c_t^*) q_t$ is independent of the ER regime
- In particular, $\operatorname{var}(\sigma(\Delta c_t \Delta c_t^*) \Delta q_t)$ should not change

Empirical Falsification

Figure: Change in $\operatorname{std}(\sigma(\Delta c_t - \Delta c_t^*) - \Delta q_t)$ from peg to float

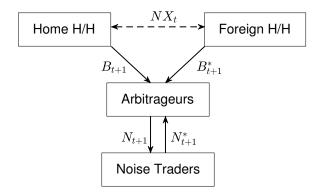


Note: Ratio of $\operatorname{std}(\sigma(\Delta c_t - \Delta c_t^*) - \Delta q_t)$ under float vs under peg with HAC 90% confidence intervals

ALTERNATIVE MODEL OF NON-NEUTRALITY

Alternative Model

- Emphasize financial frictions instead of nominal rigidities
 - switch off nominal rigidities altogether
- A particular model of UIP deviations:
 - segmented asset markets
 - limits to arbitrage and risk premium



Three types of agents

• Households in each country hold local-currency bonds only, B_{t+1} and B_{t+1}^* respectively, and $J_t \cap J_t^* = \emptyset$

$$\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B_{t+1}^*}{R_t^*} - B_t^* = -NX_t/\mathcal{E}_t$$

Three types of agents

• Households in each country hold local-currency bonds only, B_{t+1} and B_{t+1}^* respectively, and $J_t \cap J_t^* = \emptyset$

$$\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B_{t+1}^*}{R_t^*} - B_t^* = -NX_t/\mathcal{E}_t$$

• Noise (liquidity) traders with an exogenous demand:

$$\frac{\textit{N}_{t+1}^*}{\textit{R}_t^*} = \textit{n}\left(e^{\psi_t} - 1\right) \quad \text{and} \quad \frac{\textit{N}_{t+1}}{\textit{R}_t} = -\mathcal{E}_t \frac{\textit{N}_{t+1}^*}{\textit{R}_t^*}$$

Three types of agents

• Households in each country hold local-currency bonds only, B_{t+1} and B_{t+1}^* respectively, and $J_t \cap J_t^* = \emptyset$

$$\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B_{t+1}^*}{R_t^*} - B_t^* = -NX_t/\mathcal{E}_t$$

• Noise (liquidity) traders with an exogenous demand:

$$\frac{\textit{N}_{t+1}^*}{\textit{R}_t^*} = \textit{n}\left(e^{\psi_t} - 1\right) \quad \text{and} \quad \frac{\textit{N}_{t+1}}{\textit{R}_t} = -\mathcal{E}_t \frac{\textit{N}_{t+1}^*}{\textit{R}_t^*}$$

• Financial intermediaries invest in a carry trade strategy:

$$\max_{d_{t+1}^*} \mathbb{E}_t \left\{ -\frac{1}{\omega} \exp\left(-\omega \frac{\tilde{R}_{t+1}^*}{P_{t+1}^*} \frac{d_{t+1}^*}{R_t^*} \right) \right\} \text{ where } \tilde{R}_{t+1}^* = R_t^* - R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}$$

— *m* symmetric intermediaries

- $D_{t+1}^* = md_{t+1}^*$ foreign bond and $\frac{D_{t+1}}{R_t} = -\mathcal{E}_t \frac{D_{t+1}^*}{R_t^*}$ home bond

Three types of agents

• Households in each country hold local-currency bonds only, B_{t+1} and B_{t+1}^* respectively, and $J_t \cap J_t^* = \emptyset$

$$\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B_{t+1}^*}{R_t^*} - B_t^* = -NX_t/\mathcal{E}_t$$

• Noise (liquidity) traders with an exogenous demand:

$$\frac{\textit{N}_{t+1}^*}{\textit{R}_t^*} = \textit{n}\left(e^{\psi_t} - 1\right) \quad \text{and} \quad \frac{\textit{N}_{t+1}}{\textit{R}_t} = -\mathcal{E}_t \frac{\textit{N}_{t+1}^*}{\textit{R}_t^*}$$

• Financial intermediaries invest in a carry trade strategy:

$$\max_{d_{t+1}^*} \mathbb{E}_t \left\{ -\frac{1}{\omega} \exp\left(-\omega \frac{\tilde{R}_{t+1}^*}{P_{t+1}^*} \frac{d_{t+1}^*}{R_t^*} \right) \right\} \text{ where } \tilde{R}_{t+1}^* = R_t^* - R_t \frac{\mathcal{E}_t}{\mathcal{E}_{t+1}}$$

— *m* symmetric intermediaries

- $D_{t+1}^* = md_{t+1}^*$ foreign bond and $\frac{D_{t+1}}{R_t} = -\mathcal{E}_t \frac{D_{t+1}^*}{R_t^*}$ home bond
- Market clearing: $B_{t+1}^* + D_{t+1}^* + N_{t+1}^* = 0$

• Lemma 2: (i) Optimal portfolio choice of intermediaries:

$$d_{t+1}^* = -\frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2}$$

where $i_t - i_t^* \equiv \log \frac{R_t}{R_t^*}$ and $\sigma_e^2 \equiv \operatorname{var}_t(\Delta e_{t+1})$.

Segmented Financial Market Equilibrium

• Lemma 2: (i) Optimal portfolio choice of intermediaries:

$$d_{t+1}^* = -\frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2}$$

where
$$i_t - i_t^* \equiv \log \frac{R_t}{R_t^*}$$
 and $\sigma_e^2 \equiv \operatorname{var}_t(\Delta e_{t+1})$.

(ii) Equilibrium in the financial market:

$$i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1} = \chi_1 \psi_t - \chi_2 b_{t+1}$$

where $\chi_1 = \frac{n}{m}\omega\sigma_e^2$ and $\chi_2 = \frac{\bar{Y}}{m}\omega\sigma_e^2$.

Exchange rate regime changes σ_e² ≡ var_t(Δe_{t+1}), and hence affects equilibrium in the financial market

 a source of non-neutrality, even without nominal rigidities

Exchange Rate Process

• Lemma 3: RER follows an ARMA(2,1) process

$$\begin{aligned} (1 - \delta L)q_t &= \frac{1}{1 + \gamma \sigma \kappa_q} \frac{\beta \delta}{1 - \beta \rho \delta} \left[(1 - \beta^{-1} L) \chi_1 \psi_t \right. \\ &+ \left(\frac{(\beta \delta)^{-1} - 1}{1 + \frac{\varsigma}{1 + \gamma \sigma \kappa_q}} (1 - \rho \delta L) + (1 - \rho) (1 - \beta^{-1} L) \right) \sigma \kappa_s \tilde{\boldsymbol{a}}_t \end{aligned}$$

where $\delta \in (0, 1]$ and $\delta \rightarrow 1$ as $\chi_2 \rightarrow 0$.

Exchange Rate Process

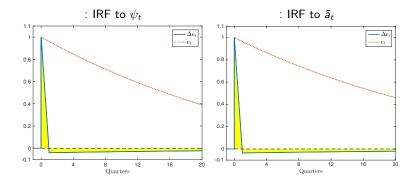
• Lemma 3: RER follows an ARMA(2,1) process

$$\begin{aligned} (1 - \delta L)q_t &= \frac{1}{1 + \gamma \sigma \kappa_q} \frac{\beta \delta}{1 - \beta \rho \delta} \left[(1 - \beta^{-1} L) \chi_1 \psi_t \right. \\ &+ \left(\frac{(\beta \delta)^{-1} - 1}{1 + \frac{\varsigma}{1 + \gamma \sigma \kappa_q}} (1 - \rho \delta L) + (1 - \rho) (1 - \beta^{-1} L) \right) \sigma \kappa_a \tilde{a}_t \end{aligned}$$

where
$$\delta \in (0, 1]$$
 and $\delta \rightarrow 1$ as $\chi_2 \rightarrow 0$.

- Proposition 2: A change in the ER regime results in:
 - **1** an increase in volatility of both nominal and real exchange rates, arbitrary large when $\beta \rho \approx 1$
 - 2 a change in the behavior of the other macro variables, which is vanishingly small when $\gamma \approx 0$.

Exchange Rate Process



- persistent ψ_t and \tilde{a}_t shocks both lead to a near-random-walk exchange rate response \checkmark show
- when $\chi_1 > 0$: ψ_t dominates the variance of Δq_t as eta
 ho
 ightarrow 1
- when $\chi_1 = 0$: Δq_t only responds to \tilde{a}_{t+1} shocks

Macro Volatility

1 Consumption

Macro Volatility

1 Consumption — goods market clearing:

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \gamma \kappa_q q_t$$

- when γ is small, $(a_t a_t^*)$ is the main driver of $(c_t c_t^*)$ independently of the volatility of Δq_t
- $\operatorname{corr}(\Delta c_t \Delta c_t^*, \Delta q_t) > 0$ under the peg and < 0 under the float, provided ρ sufficiently large and γ sufficiently small
- o similar results apply to other macro variables

2 Inflation

Macro Volatility

1 Consumption — goods market clearing:

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \gamma \kappa_q q_t$$

- when γ is small, $(a_t a_t^*)$ is the main driver of $(c_t c_t^*)$ independently of the volatility of Δq_t
- $\operatorname{corr}(\Delta c_t \Delta c_t^*, \Delta q_t) > 0$ under the peg and < 0 under the float, provided ρ sufficiently large and γ sufficiently small
- similar results apply to other macro variables
- **2** Inflation under float $std(\pi_t) = 0$ and under peg:

$$\operatorname{std}(\pi_t) = \operatorname{std}(\Delta q_t) = \frac{\sigma \kappa_a}{1 + \gamma \sigma \kappa_q + \varsigma} \operatorname{std}(\tilde{a}_t)$$

Additional Evidence

'Overidentification'

1 Forward premium puzzle

- UIP and CIP both hold under peg (Frankel and Levich 1975)
- Forward Premium puzzle under float (Colacito and Croce 2013)
- 2 Backus-Smith puzzle

- corr(Δq, Δc-Δc*) switches sign: + under peg, under float (Colacito and Croce 2013, Devereux and Hnatkovska 2014)
- 3 Balassa-Samuelson effect
 - holds no explanatory power under float (Engel 1999)
 - works well under peg (Berka, Devereux and Engel 2018)

QUANTITATIVE EVALUATION

Quantitative Framework

- Sticky wages and LCP sticky prices (on/off)
- Taylor rule with a weight on nominal exchange rate
 ER regime calibrated to change std(Δe_t) eightfold
- Pricing-to-market and intermediate inputs
- Capital with adjustment costs
- Shocks:
 - 1 Productivity or monetary shocks
 - **2** Taste shock ξ_t
 - 3 Financial shock ψ_t
- Standard calibration show

	Δq_t				π_t			Δc_t			$\Delta g dp_t$			
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio		
Models witho	out UIF	o shock	ψ_t :											
IRBC	15.4	15.4	1.0	12.7	3.2	0.2	9.1	9.1	1.0	15.0	15.0	1.0		
NKOE-1	4.2	12.8	3.0	3.1	1.8	0.6	7.1	6.8	1.0	17.7	11.7	0.7		
NKOE-2	1.5	11.5	7.4	1.3	1.3	1.0	5.0	5.2	1.0	8.1	8.4	1.0		

Table: Macroeconomic volatility

		Δq_t			π_t			Δc_t			Δgdp_t		
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio	
Models witho	ut UIF	shock	ψ_t :										
IRBC	15.4	15.4	1.0	12.7	3.2	0.2	9.1	9.1	1.0	15.0	15.0	1.0	
NKOE-1	4.2	12.8	3.0	3.1	1.8	0.6	7.1	6.8	1.0	17.7	11.7	0.7	
NKOE-2	1.5	11.5	7.4	1.3	1.3	1.0	5.0	5.2	1.0	8.1	8.4	1.0	
Models with exogenous UIP shock:													
IRBC	11.0	11.0	1.0	10.2	0.9	0.1	1.8	1.8	1.0	2.5	2.5	1.0	
NKOE-1	2.2	11.9	5.3	1.4	0.4	0.3	5.8	1.3	0.2	14.5	2.1	0.1	
NKOE-2	2.1	11.8	5.7	1.3	0.3	0.2	5.8	1.1	0.2	8.6	1.8	0.2	

Table: Macroeconomic volatility

		Δq_t			π_t			Δc_t			Δgdp_t	
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio
Models witho	ut UIF	shock	ψ_t :									
IRBC	15.4	15.4	1.0	12.7	3.2	0.2	9.1	9.1	1.0	15.0	15.0	1.0
NKOE-1	4.2	12.8	3.0	3.1	1.8	0.6	7.1	6.8	1.0	17.7	11.7	0.7
NKOE-2	1.5	11.5	7.4	1.3	1.3	1.0	5.0	5.2	1.0	8.1	8.4	1.0
Models with	exoger	i <mark>ous</mark> UI	P shoc	k:								
IRBC	11.0	11.0	1.0	10.2	0.9	0.1	1.8	1.8	1.0	2.5	2.5	1.0
NKOE-1	2.2	11.9	5.3	1.4	0.4	0.3	5.8	1.3	0.2	14.5	2.1	0.1
NKOE-2	2.1	11.8	5.7	1.3	0.3	0.2	5.8	1.1	0.2	8.6	1.8	0.2
Models with	endoge	enous l	JIP sho	ock:								
IRBC	3.0	11.0	3.6	1.4	0.9	0.7	1.6	1.8	1.1	2.5	2.5	1.0
NKOE-1	1.7	11.9	6.9	0.4	0.4	1.0	1.1	1.3	1.1	1.9	2.1	1.1
NKOE-2	1.4	11.8	8.2	0.2	0.3	1.5	0.9	1.1	1.2	1.5	1.8	1.2

Table: Macroeconomic volatility

Table: Variance decomposition

		pe	eg		flo	at						
	ψ	ξ	a or m	ψ	ξ	a or m						
Real exchange rate:												
IRBC	1	23	76	92	3	5						
NKOE-1	1	22	77	97	1	2						
NKOE-2	1	4	95	97	1	2						
Consumption:	0	1	00	15	1	04						
IRBC	0	1	99	15	1	84						
NKOE-1	0	1	99	10	0	90						
NKOE-2	0	1	99	13	0	87						

Conclusion

- Mussa facts are some of the most prominent pieces of evidence of monetary non-neutrality
- We argue, however, that it is not directly suggestive of nominal rigidities
 - a weak test of nominal rigidities (and monetary vs productivity shocks), as it rejects both types of 'conventional' models
- Yet, it is highly suggestive of an alternative source of non-neutrality arising via the financial market
 - a particular type of financial friction
 - namely, segmented financial market, whereby *nominal* exchange rate risk is held in a concentrated way
- Important for reassessing the argument in favor of peg/float

APPENDIX

		Δe_t			Δq_t			$\pi_t - \pi$	* t	4	$\Delta c_t - \Delta$	c_t^*	
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio	
Canada	0.8	4.4	5.7*	1.5	4.7	3.0*	1.3	1.4	1.1	0.8	1.1	0.9	
France	3.4	11.8	3.5*	3.7	11.8	3.2*	1.3	1.3	1.0	1.2	0.9	0.7*	
Germany	2.4	12.3	5.0*	2.7	12.5	4.7*	1.4	1.3	0.9	1.3	1.2	0.9	
Italy	0.5	10.4	18.8*	1.5	10.4	6.9*	1.4	1.9	1.3*	1.0	1.1	1.0	
Japan	0.8	11.7	13.8*	2.7	11.9	4.4*	2.7	2.8	1.0	1.1	1.3	1.2	
Spain	4.4	10.8	2.5*	4.7	10.8	2.3*	2.7	2.6	0.9	1.2	1.0	0.8	
U.K.	4.1	11.5	2.8*	4.4	12.0	2.7*	1.7	2.5	1.5*	1.4	1.5	1.1	
RoW	1.2	9.8	8.0*	1.8	9.9	5.6*	1.3	1.4	1.1	0.9	0.9	1.0	
	Δε	$dp_t - dt$	Δgdp_t^*	Ĺ	$\Delta y_t - \Delta y_t^*$			$\Delta n x_t$		$\sigma(\Delta c_t - \Delta c_t^*) - \Delta q_t$			
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio	
Canada	1.0	1.0	1.0	3.8	4.9	1.3	1.7	1.6	0.9	2.4	4.5	1.9*	
France	1.2	1.0	0.8	5.3	5.6	1.1	1.5	1.4	0.9	4.4	12.2	2.7*	
Germany	1.8	1.2	0.7*	6.7	6.0	0.9	1.8	1.7	0.9	3.9	13.7	3.5*	
Italy	1.5	1.3	0.8	8.1	9.7	1.2	2.5	2.2	0.9	2.8	11.4	4.1*	
Japan	1.5	1.3	0.8	5.5	5.0	0.9	2.4	2.2	0.9	2.8	13.1	4.7*	
Spain	1.6	1.2	0.7*	10.1	10.4	1.0	5.4	2.1	0.4*	5.8	11.4	2.0*	
U.K.	1.4	1.4	0.9	3.9	6.0	1.5*	2.2	1.9	0.9	5.2	11.8	2.2*	
RoW	1.1	1.0	0.8	3.9	3.5	0.9	1.1	1.0	0.9	2.5	10.7	4.3*	
		π_t			Δc_t			$\Delta g d p$	t		Δy_t		
	peg	float	ratio	peg	float	ratio	peg	float	ratio	peg	float	ratio	
Canada	1.3	1.4	1.1	0.8	0.9	1.1	0.9	0.9	1.0	4.1	5.1	1.2	
France	1.1	1.3	1.2*	0.9	0.8	0.9	0.9	0.6	0.6*	4.2	5.4	1.3	
Germany	1.2	1.1	0.9	1.0	1.0	1.0	1.5	1.0	0.7	6.2	5.7	0.9	
Italy	1.0	2.1	2.0*	0.7	0.8	1.2	1.3	1.0	0.8	7.5	9.5	1.3	
Japan	2.6	2.9	1.1	1.0	1.3	1.3	1.1	1.1	0.9	4.6	4.9	1.1	
Spain	2.5	2.5	1.0	1.0	0.7	0.7	1.4	0.7	0.5*	10.1	10.1	1.0	
	1.6	2.6	1.6*	1.2	1.4	1.2	1.0	1.3	1.2	3.5	5.9	1.7	
U.K.													

Correlations

	Δq_t	$, \Delta e_t$	$\Delta q_t, Z$	$\Delta q_t, \Delta c_t - \Delta c_t^*$		$\Delta q_t, \Delta n x_t$		$\Delta gdp_t, \Delta gdp_t^*$		Δc_t^*	$\Delta c_t, \Delta c_t$	Δgdp_t
	peg	float	peg	float	peg	float	peg	float	peg	float	peg	float
Canada	0.77	0.92	0.03	-0.07	0.01	0.05	0.31	0.47	0.40	0.25	0.28	0.57
France	0.96	0.99	0.05	-0.08	0.23	0.12	0.09	0.30	-0.24	0.29	0.51	0.48
Germany	0.87	0.99	0.04	-0.19	-0.06	0.00	-0.01	0.28	-0.11	0.11	0.57	0.58
Italy	0.54	0.97	0.07	-0.13	0.02	-0.01	0.04	0.17	-0.18	0.13	0.64	0.45
Japan	0.76	0.98	0.21	-0.00	0.03	0.21	-0.08	0.24	0.11	0.23	0.70	0.71
Spain	0.83	0.96	-0.09	-0.18	-0.06	0.16	0.05	0.09	-0.06	0.05	0.56	0.63
U.K.	0.94	0.96	0.09	-0.10	-0.39	-0.16	-0.11	0.30	-0.02	0.22	0.59	0.71
RoW	0.80	0.98	0.05	-0.19	-0.20	0.21	-0.03	0.39	-0.11	0.31	0.68	0.72

Price dynamics

• Open economy Phillips curve:

$$(1 - \beta L^{-1}) \Big[\underbrace{\pi_t - \pi_t^* - 2\gamma \Delta e_t}_{=\pi_{Ht} - \pi_{Ft}^*} \Big] = \kappa \Big[(c_t - c_t^*) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t \Big]$$

▲ back to slides

Price dynamics

• Open economy Phillips curve:

$$(1-\beta L^{-1})\Big[\underbrace{\pi_t - \pi_t^* - 2\gamma \Delta e_t}_{=\pi_{Ht} - \pi_{Ft}^*}\Big] = \kappa\Big[(c_t - c_t^*) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t\Big]$$

• Lemma 1: The equilibrium dynamics of the RER:

$$\Delta q_t = \beta \mathbb{E}_t \Delta q_{t+1} - \sigma k_R \big[(c_t - c_t^*) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t \big],$$

under both monetary regimes, $R \in \{ float, peg \}$, where

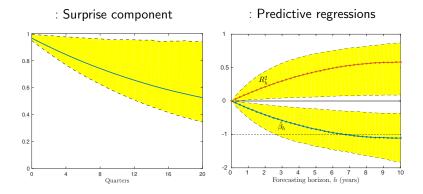
$$k_R = \begin{cases} rac{\kappa}{\sigma}, & R = peg, \\ rac{1}{2\gamma}rac{\kappa}{\sigma}, & R = float. \end{cases}$$

- Recall that under peg $\Delta e_t = \pi_t^* \equiv 0$ and $\Delta q_t = -\pi_t$, and under float $\pi_t = \pi_t^* \equiv 0$ and $\Delta q_t = \Delta e_t$

back to slides

Exchange Rate Properties

Near-random-walkness



back to slides

Calibration

β	discount factor	0.99
σ	inverse of the IES	2
γ	openness of economy	0.035
φ	inverse of Frisch elasticity	1
ϕ	intermediate share in production	0.5
ϑ	capital share	0.3
δ	capital depreciation rate	0.02
θ	elasticity of substitution between H and F goods	1.5
ϵ	elasticity of substitution between different types of labor	4
λ_w	Calvo parameter for wages	0.85
λ_p	Calvo parameter for prices	0.75
ρ	autocorrelation of shocks	0.97
ρ_r	Taylor rule: persistence of interest rates	0.95
ϕ_{π}	Taylor rule: reaction to inflation	2.15

Simulations

	σ_n	σ_{ξ}	σ_{a}	σ_m	ρ_{a,a^*}	к	ϕ_{e}
Models w/o fi	nancial	shock	:				
IRBC	0.00	13.8	8.1	-	0.28	11	13.0
NKOE-1	0.00	5.71	10.6	-	0.30	7	1.8
NKOE-2	0.00	4.38	-	0.77	0.30	22	5.3
Models w/ exe	ogenou	s finan	cial sho	ock:			
IRBC	0.61	3.37	1.41	-	0.30	15	14.5
NKOE-1	0.59	2.80	1.01	-	0.35	7.5	3.7
NKOE-2	0.59	1.23	-	0.15	0.42	20	3.6
Models w/ en	dogeno	us fina	ncial sł	nock:			
IRBC	0.61	3.37	1.41	-	0.30	15	0.25
NKOE-1	0.59	2.80	1.01	-	0.35	7.5	0.03
NKOE-2	0.59	1.23	-	0.15	0.42	20	0.08

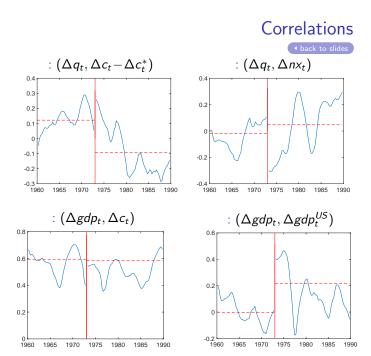
Note: in all calibrations, shocks are normalized to obtain $std(\Delta e_t) = 12\%$. Parameter ϕ_e in the Taylor rule is calibrated to generate 8 times fall in $std(\Delta e_t)$ between monetary regimes. When possible, relative volatilities of shocks are calibrated to match $cor(\Delta q_t, \Delta \tilde{c}_t) = -0.4$ under the float and $cor(\Delta q_t, \Delta nx_t) = -0.1$ under the peg. The cross-country correlation of productivity/monetary shocks matches $cor(\Delta gdp_t, \Delta gdp_t^*) = 0.3$ under the float. Capital adjustment parameter ensures that $\frac{std(\Delta gdp_t)}{std(\Delta gdp_t)} = 2.5$ under the float. The moments are calculated by simulating the model for T = 100,000 quarters.

Simulated Correlations

	Δq_t	Δe_t	$\Delta q_t, \Delta$	$c_t - \Delta c_t^*$	Δq_t ,	$\Delta n x_t$	Δgdp_t	$, \Delta gdp_t^*$	Δc_t ,	Δc_t^*	$\Delta c_t, Z$	Δgdp_t	β ^ι	IIP
	peg	float	peg	float	peg	float	peg	float	peg	float	peg	float	peg	float
Models w/o fi	nancial	shock:												
IRBC	0.86	0.99	0.91	0.91	-0.10	-0.10	0.30	0.30	0.34	0.34	0.99	0.99	0.8	0.9
NKOE-1	0.67	0.99	0.28	0.70	-0.10	-0.49	0.38	0.31	0.65	0.41	0.91	0.97	0.3	1.0
NKOE-2	0.96	0.99	0.49	0.99	-0.10	0.05	0.95	0.30	0.97	0.33	1.00	1.00	1.0	1.0
Models w/ exe	ogenou	s financia	I shock:											
IRBC	0.86	0.99	-0.40	-0.40	0.93	0.93	0.30	0.30	0.15	0.15	0.88	0.88	0.0	-1.3
NKOE-1	0.81	1.00	-0.88	-0.40	0.89	0.93	0.60	0.30	-0.06	0.32	0.99	0.84	-0.1	-1.6
NKOE-2	0.82	1.00	-0.89	-0.40	0.92	0.97	0.51	0.30	-0.10	0.26	1.00	0.79	-0.1	-2.2
Models w/ en	dogeno	us financ	ial shock	-										
IRBC	0.98	1.00	0.92	-0.40	-0.10	0.93	0.30	0.30	0.39	0.16	0.99	0.88	1.0	-1.4
NKOE-1	0.98	1.00	0.84	-0.40	-0.10	0.93	0.44	0.30	0.54	0.32	0.96	0.84	1.0	-1.6
NKOE-2	1.00	1.00	0.94	-0.40	-0.10	0.97	0.66	0.30	0.70	0.26	0.99	0.79	1.0	-2.3

Panel B: correlations

▲ back to slides



Model Setup III

• Fiscal authority:

$$T_t = \sum_{j \in J_{t-1}} \left(1 - e^{-\zeta_t^j} \right) D_t^j B_t^j$$

• Monetary authority:

$$i_t = \rho_m i_{t-1} + (1 - \rho_m) \big[\phi_\pi \pi_t + \phi_e(e_t - \bar{e}) \big] + \sigma_m \varepsilon_t^m$$

— limiting case: (i)
$$\phi_{\pi} \rightarrow \infty \Rightarrow \pi_t \equiv 0$$
 or (ii) $\phi_e \rightarrow \infty \Rightarrow \Delta e_t \equiv 0$

Model Setup III

• Fiscal authority:

$$T_t = \sum_{j \in J_{t-1}} \left(1 - e^{-\zeta_t^j} \right) D_t^j B_t^j$$

• Monetary authority:

$$i_t = \rho_m i_{t-1} + (1 - \rho_m) \big[\phi_\pi \pi_t + \phi_e(e_t - \bar{e}) \big] + \sigma_m \varepsilon_t^m$$

— limiting case: (i) $\phi_{\pi} \rightarrow \infty \Rightarrow \pi_t \equiv 0$ or (ii) $\phi_e \rightarrow \infty \Rightarrow \Delta e_t \equiv 0$

Market clearing in labor and product market:

 $L_t = e^{-a_t} \int_0^1 Y_t(i) di \text{ and } C_{Ht}(i) + C^*_{Ht}(i) = Y_t(i)$ and financial market:

$$B_{t+1}^j + B_{t+1}^{j*} = 0 \quad orall j \in J_t \cap J_t^* \quad ext{given price } \Theta_t^j$$