Musselshell River at Roundup: Detailed Floodplain Study

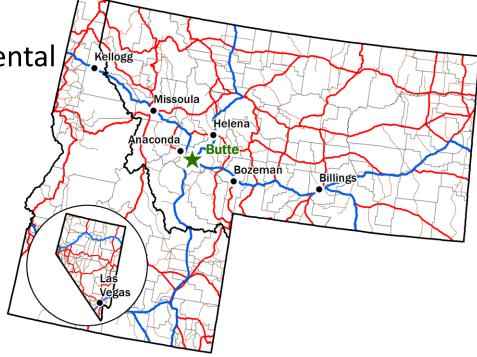
Presented to:

17th Annual AMFM Conference – Fairmont, Montana

Presented by:

Chad Bailey, PE CFM Senior Water Resources Engineer - Bozeman

March 16, 2016


Presentation Outline

- Pioneer Overview Who We Are, Who am I
- Project Overview Musselshell River at Roundup
- GeoHECRAS Overview
- A Few Modeling Methods
- Preliminary Results/Lessons Learned

Overview of Pioneer Technical

- Engineering & Environmental Services Firm
- Offices (8) in:
 - Bozeman
 - Anaconda
 - Billings
 - Butte (Headquarters)
 - Helena
 - Missoula
 - Kellogg, ID
 - Las Vegas, NV
- Founded in 1991 in Butte, Montana
- Employee-Owned
- ~120 Employees

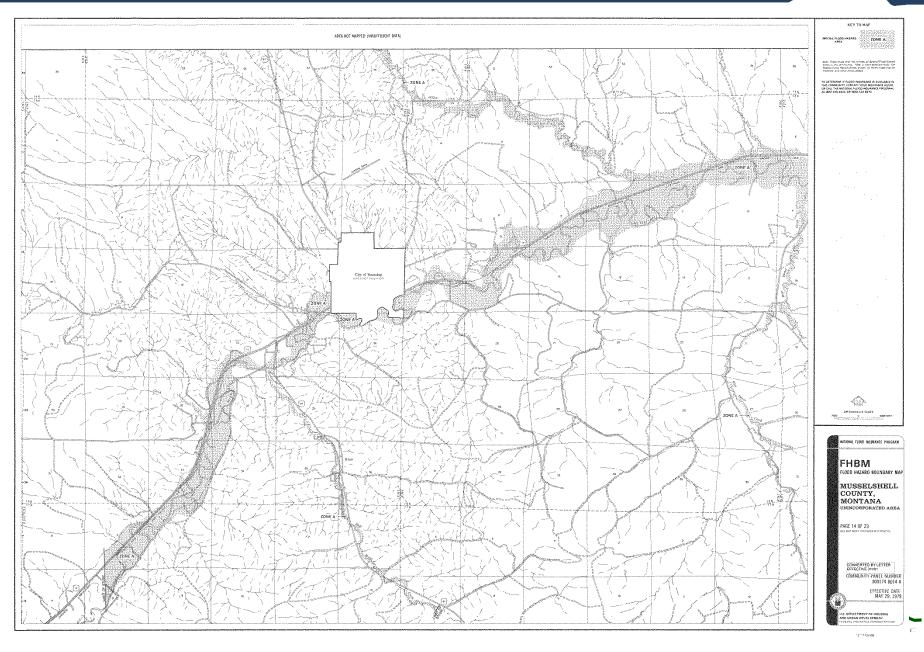
Brief Bio – Chad Bailey

- B.S. Civil Engineering Bio-resource, MSU 2001
- M.S. Engineering, Univ. British Columbia 2003
- Research Fellow, Melbourne University 2004
- Professional Engineer MT, OR, WA
- CFM, 2014

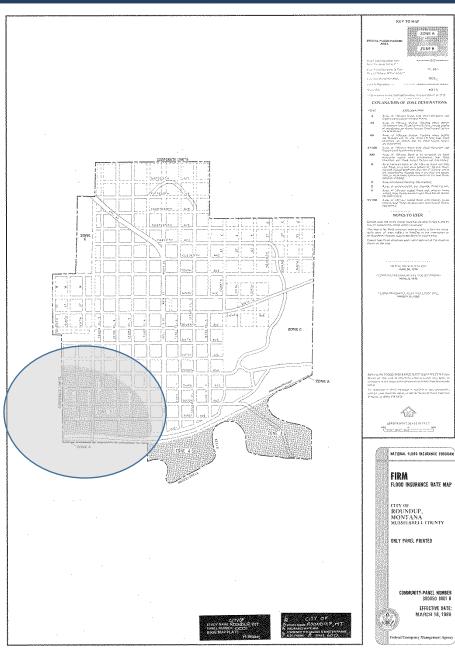
Musselshell River at Roundup

- May, 2011 Flood of Record ~15,000 cfs
 - Musselshell River over 4' above flood stage 14.78' (USGS)
 - Closed Highway 87, 8' flood water at Busy Bee Café, 30 homes evacuated (Billings Gazette)
- March, 2014 Flood ~11,000 cfs
 - Musselshell River over 3' above flood stage 13.24' (USGS)
 - Equivalent of 1" of rain in Roundup area (Weather Underground)
 - More than three dozen homes, businesses and ranches damaged
 - More than 400 people cut off from town (Weather Underground)

Kestrel Aerial Services, 2011 Flood Roundup

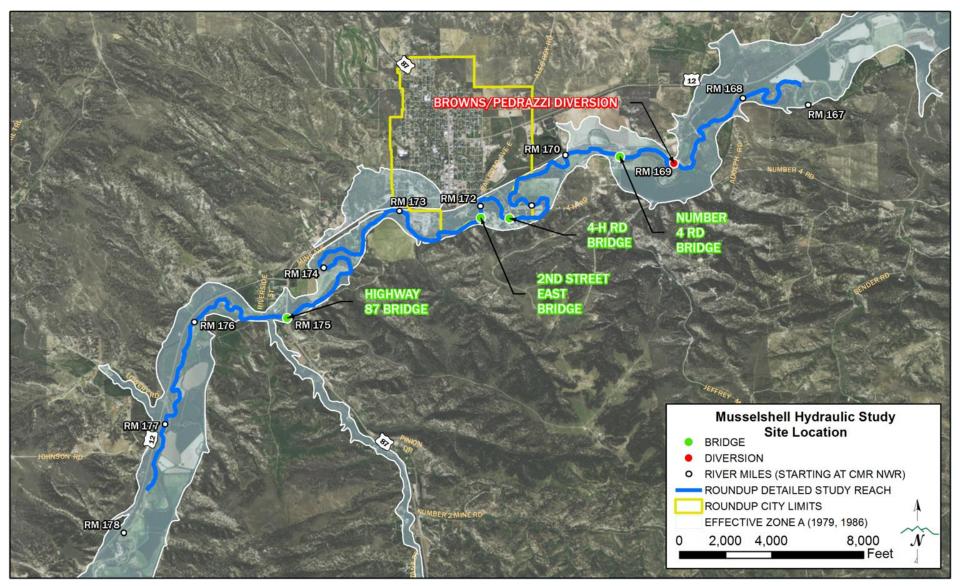

Musselshell River at Roundup

- 2011 Flood of Record ~15,000 cfs
- 2012 Lidar
- 2013 Roundup and Musselshell County request mapping
- 2014 Flood ~11,000 cfs (High Water Mark Survey)
- Old Existing Effective FIRMS


Community:	Community No:	Panels:	Effective Date:
Musselshell County, MT	300174	14A	5/29/1979 (Zone A)
Roundup, MT	300050	1B	3/18/1986 (Zone A)

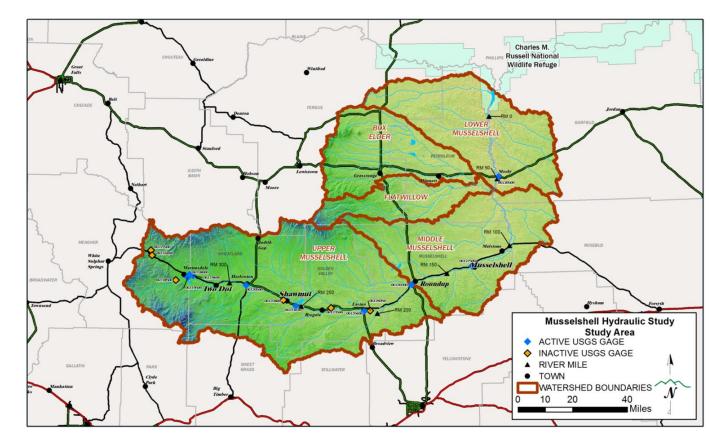
1979 Flood Hazard Boundary Map

1986 City of Roundup FIRM



Musselshell River at Roundup

- Old Existing Effective FHBM & FIRM (Zone A)
- 2011 Flood of Record ~15,000 cfs
- 2012 Lidar (NRCS)
- 2013 Roundup and Musselshell County request mapping
- 2014 Flood ~11,000 cfs (High Water Mark Survey)
- 2014 Effective Zone A Digitization
- 2014 Hydrologic Analysis, Structure Inventory & Roundup Reach Bathymetric Survey (Pioneer)
- Detailed Floodplain Study for approximately 10 miles around Roundup
 - 2 miles downstream of Newton/Pedrazzi diversion dam to 2 miles upstream of Highway 87 Bridge
 - RM 167.5 to 177.5 (Musselshell County Alignment)
 - 4 bridges and 1 diversion dam
- Detailed and Approximate studies for significant length of the Musselshell (Morrison-Maierle)


Site Location – Roundup Reach

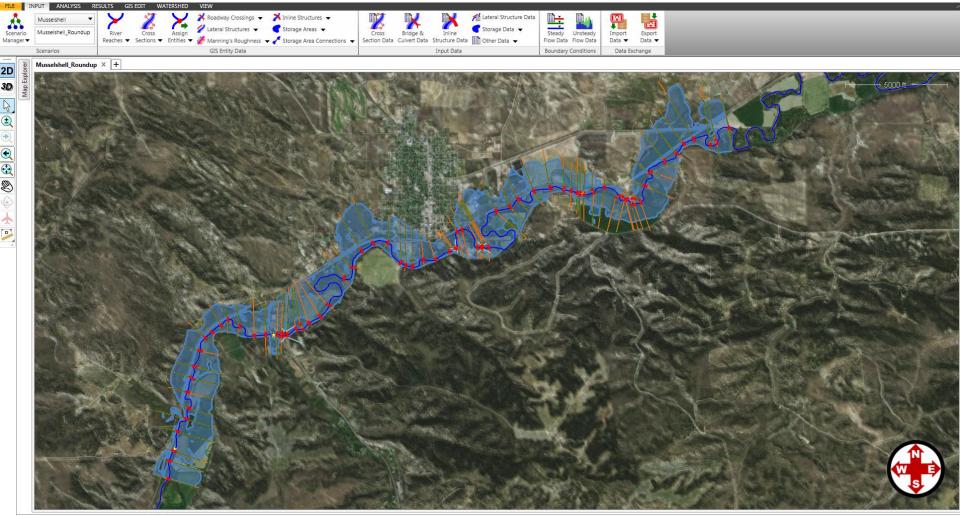
Site Location – Musselshell River

- East of Continental Divide in Central Montana
- Castle, Little Belt and Crazy Mountains
- 325 miles & 8,650 square miles
 - Upper Musselshell Roundup gage = 3,998 sq mi
- Elevation: 9,000 feet in Crazy Mountains to 3,980 feet at Roundup

Hydrology

- Developed by Pioneer under Phase I of Musselshell Project: Bathymetric Survey, Hydrology and Structure Inventory
- Data through Water Year 2014 includes 2014 flood
- Log Interpolation between Lavina, Roundup & Musselshell gages

		Peak Discharge					
		(cfs)					
		50% Annual	10% Annual	4% Annual	2% Annual	1% Annual	0.2% Annual
Node/USGS		Chance	Chance	Chance	Chance	Chance	Chance
Station ID	Location Description	2-year	10-year	25-year	50-year	100-year	500-year
2100	Currant Creek	1,360	4,640	7,459	10,210	13,605	24,700
2200	Horsethief Creek	1,353	4,688	7,591	10,448	13,991	25,685
06126500	Musselshell River near Roundup	1,340	4,773	7,831	10,880	14,700	27,520
2400	N-F Ditch	1,338	4,776	7,839	10,893	14,720	27,558


Hydraulic Modeling - GeoHECRAS

- GeoHECRAS (CivilGeo)
 - AutoCAD & ArcGIS integration with HEC-RAS model engine
 - HEC-RAS 5.0 official release February/March 2016
 - HEC-RAS 5.0 support in development with release expected mid 2016 (per conversation on 3/10/16)
 - Import integrated DEM for floodplain and channel surface (integrated Lidar & bathymetric survey – Phase 1)
 - Automated cross-section development & resampling
 - 600-700 feet spacing on average
 - Assign manning's n, bank stations, flow lengths, ineffective areas & levees using CAD or GIS data
 - Access existing FEMA & FIRM data
 - Cloud based DEM data
 - Cloud based orthoimagery

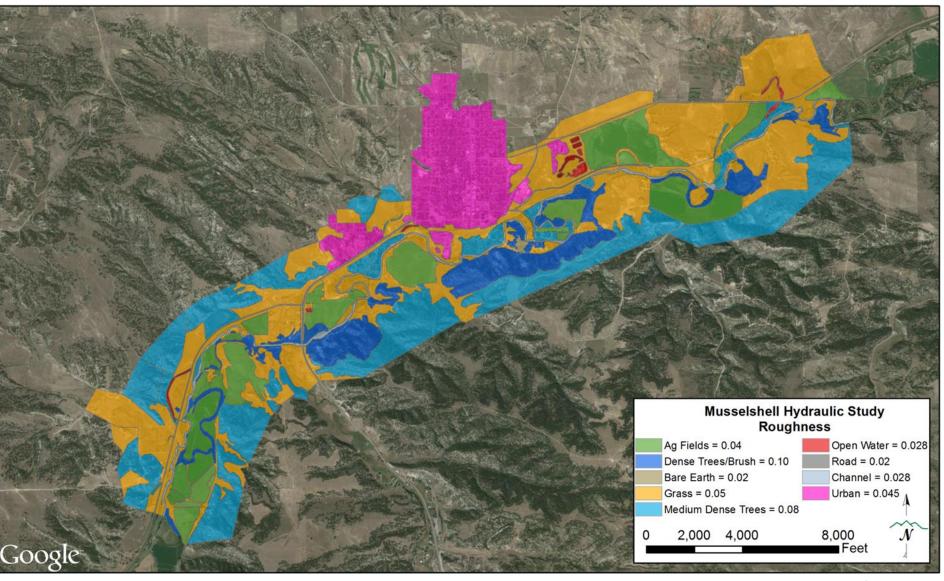
Hydraulic Modeling - GeoHECRAS

• GeoHECRAS (CivilGeo) – Example Screenshot

2211491.56 ft E 793611.18 ft N

4 3

NAD 1983 StatePlane Montana FIPS 2500 Feet Intl (ftUS)


GIS Roughness Delineation

- ArcMap
 - Aerial imagery (2013 NAIP)
 - Visual polygon delineation consistent land use
 - Assigned Manning's n attribute
 - Aerial imagery, field recon & photos, professional judgement
 - Chow (1959) & USGS (2006) methods to estimate initial roughness values
 - Adjusted during calibration procedure

Roughness Area/Land Use Type	Manning's n Value	Description
Main Channel	0.028	Coarse gravel ¹
Open Water	0.028	Same as main channel
Agricultural Field	0.04	Mature field crops, normal ²
Dense Tree/Brush	0.1	Heavy stand of timber, few down trees ²
Medium Dense Trees	0.08	Heavy stand of timber, few down trees (minimum) ²
Grass/Shrubs	0.05	Scattered shrubs, heavy weed ²
Urban	0.045	Finished concrete $(0.015) + 15$ to 50% obstructions $(0.02) +$ small amount vegetation $(0.01) = 0.045^2$
Compacted Dirt/Paved Road	0.02	Firm earth ¹
Bare Earth	0.02	Firm earth ¹

GIS Roughness Delineation

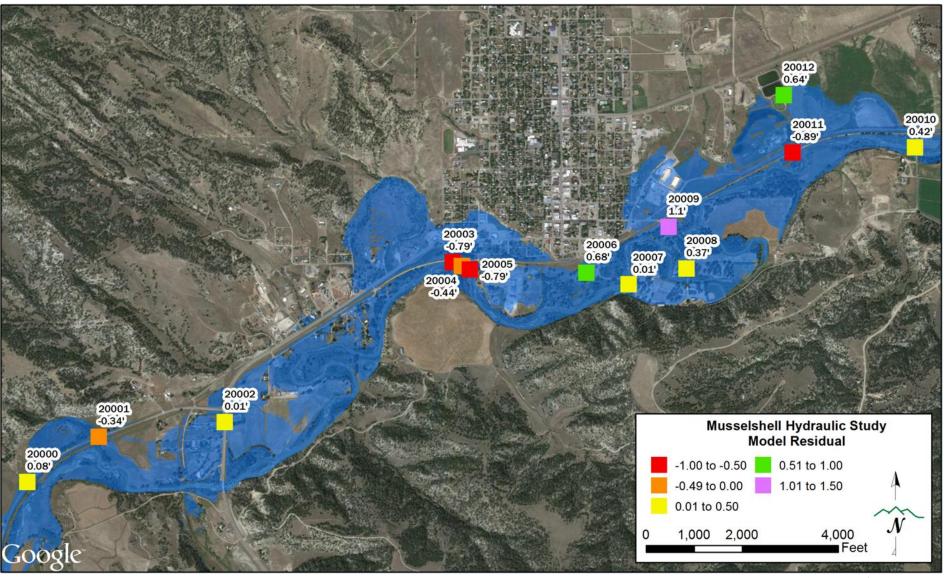
GIS Roughness Delineation

- Import shapefile into Geohecras
 - Assign Manning's n data

Assign Manning's Data				
Cross Section Selection				
All cross sections				
Selected cross sections:	0 Selected Pick			
Polygon Coverage Data (optional)				
Manning's area layer:	Mannings_n 🔻			
Attribute field:	Mannings 🔻			
Minimum value:	0.02			
Maximum value:	0.1			
Apply Manning's coverage data	to overbank areas only			
Insert ground stationing where polygon coverage intersects				
Default Values				
Left overbank Manning's:	0.045			
Channel Manning's:	0.032			
Right overbank Manning's:	0.045			
L	OK Cancel			

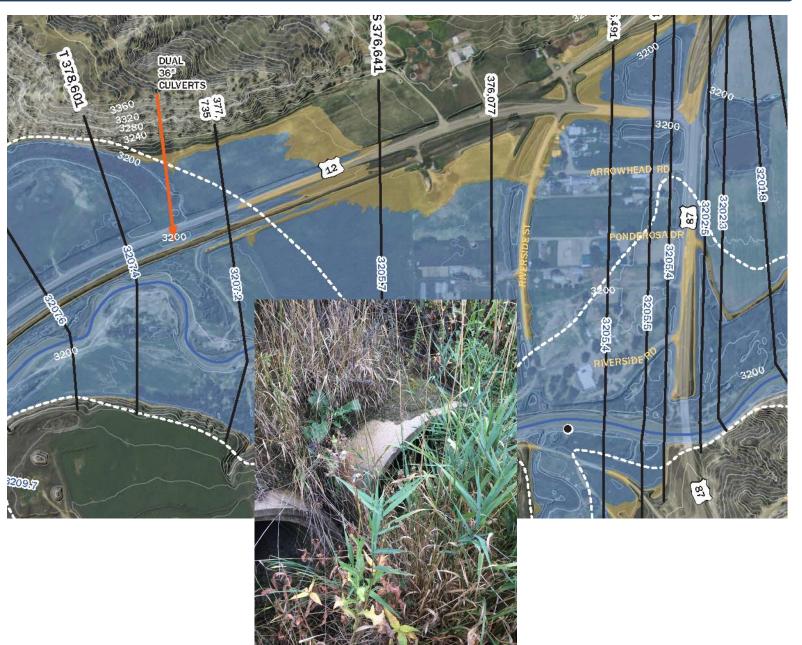
High Water Mark Calibration

- High flow event on 3-10-2014 ~ 11,000 cfs
- High water marks and personal observations surveyed by Great West Engineering on 3-14 and 3-19 of 2014
 - 13 measured points with varying accuracy


High Water Mark Calibration

- High flow event on 3-10-2014 ~ 11,000 cfs
- High water marks and personal observations surveyed by Great West Engineering on 3-14 and 3-19 of 2014
 - 13 measured points with varying accuracy

						Log Interpolation of Gaged Analysis
				Incremental	Cumulative	Estimated Discharge (cfs)
Node/ USGS			River Station	Basin Area	Basin Area	Calibration
Station ID	Location Description	County	(miles)	(mi²)	(mi²)	3/10/2014
06126050	Musselshell River near Lavina	Golden Valley	205.7	19	2948	4890
1700	Painted Robe Creek	Golden Valley	199.5	25	2973	5001
1800	-	Musselshell	195	165	3138	5774
1900	Dean Creek	Musselshell	190.7	28	3167	5914
2000	Goulding Creek	Musselshell	185.7	67	3233	6250
2100	Currant Creek	Musselshell	182.8	75	3308	6643
2200	Horsethief Creek	Musselshell	177.2	235	3543	7972
06126500	Musselshell River near Roundup	Musselshell	175.1	455	3998	11000
2400	N-F Ditch	Musselshell	169.5	10	4008	10973
2500	Willow Creek	Musselshell	162.4	21	4028	10917
2600	Parrot Creek	Musselshell	158.7	276	4304	10221
2700	Krueger Spendiff Ditch	Musselshell	151.3	79	4384	10036
2800	Fattig Creek	Musselshell	146.3	31	4415	9966
06127500	Musselshell River at Musselshell	Musselshell	133.8	136	4550	9670



High Water Mark Calibration Results

High Water Mark Calibration Results

Highway 87 Comparison - Baseflood

Hydraulic Model Result Approx. 14,700 cfs

Kestrel Aerial Services, 2011 Approx. 15,000 cfs

Mapping – DEM Changes

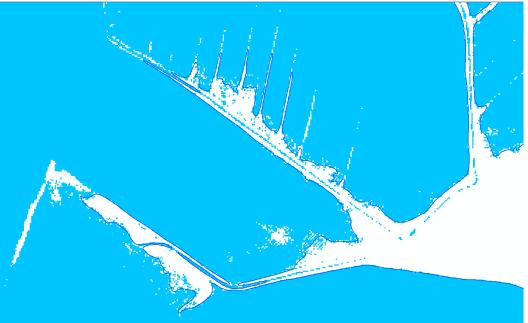
- Number 4 Road Repairs
 - 2012 Lidar shows the spur road as damaged from 2011 flood
 - Lidar collected in 2012
 - Road repaired after 2013
 - DEM modified to approximate the current road condition and resultant inundation (not part of preliminary results)

Mapping – DEM Changes

2013 Condition

2015 Condition (Looking East)

Lessons Learned - GeoHECRAS


Iterations

- Significant time saver
 - Cross-section layout
 - Roughness calibration
 - Bridge modeling (multiple openings?)
 - Check rough inundation without exporting
- Flood Extents
 - DEM was too big to process the flood extents in GeoHECRAS (8-2015 version)
 - Flood extents based on simplified digital terrain surface
 - First check on results
 - Flood delineation performed in Arc
 - HEC-GeoRAS depth grid and extents for Q100 & Q500
 - ArcMap subtracted flood depth grid from DEM

Lessons Learned - Mapping

- Preliminary Inundation Simplification
 - Inundation boundaries required simplification when compared to detailed Lidar based DEM (1-foot/pixel resolution, 0.7m Lidar)
 - Simplify and smooth polygon tools removed pixilation and jagged boundary – did not fix all the anomalies of high resolution Lidar

Next Steps

- Final Baseflood Boundary
- Floodway Analysis
- LOMR Submittal

Mapping – Preliminary Results

Public Presentations: Web Scene – ArcGIS online ArcGIS topography (not modeling DEM)

Musselshell Web Scene on ArcGIS.com

Animation video – ArcGIS Pro

YouTube Link

Questions?

- Acknowledgements
 - Steve Story, MT DNRC
 - Pete McCarthy, USGS
 - Chris Boyer, Kestrel Aerial Services

Contact Info:

Chad Bailey, PE CFM

Senior Engineer

Pioneer Technical Services

cbailey@pioneer-technical.com

406-388-8578

