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CHAPTER

1

Econ and math

Every academic discipline has its own standards by which it judges the merits
of what researchers claim to be true. In the physical sciences this typically
requires experimental veri�cation. In history it requires links to the original
sources. In sociology one can often get by with anecdotal evidence, that
is, with giving examples. In economics there are two primary ways one
can justify an assertion, either using empirical evidence (econometrics or
experimental work) or mathematical arguments.
Both of these techniques require some math, and one purpose of this

course is to provide you with the mathematical tools needed to make and
understand economic arguments. A second goal, though, is to teach you to
speak mathematics as a second language, that is, to make you comfortable
talking about economics using the shorthand of mathematics. In undergrad-
uate courses economic arguments are often made using graphs. In graduate
courses we tend to use equations. But equations often have graphical coun-
terparts and vice versa. Part of getting comfortable about using math to
do economics is knowing how to go from graphs to the underlying equations,
and part is going from equations to the appropriate graphs.

1



CHAPTER 1. ECON AND MATH 2

Figure 1.1: A constrained choice problem

1.1 Some important graphs

One of the fundamental graphs is shown in Figure 1.1. The axes and curves
are not labeled, but that just ampli�es its importance. If the axes are
commodities, the line is a budget line, and the curve is an indi¤erence curve,
the graph depicts the fundamental consumer choice problem. If the axes are
inputs, the curve is an isoquant, and the line is an iso-cost line, the graph
illustrates the �rm�s cost-minimization problem.
Figure 1.1 raises several issues. How do we write the equations for the

line and the curve? The line and curve seem to be tangent. How do we
characterize tangency? At an even more basic level, how do we �nd slopes
of curves? How do we write conditions for the curve to be curved the way
it is? And how do we do all of this with equations instead of a picture?
Figure 1.2 depicts a di¤erent situation. If the upward-sloping line is a

supply curve and the downward-sloping one is a demand curve, the graph
shows how the market price is determined. If the upward-sloping line is
marginal cost and the downward-sloping line is marginal bene�t, the �gure
shows how an individual or �rm chooses an amount of some activity. The
questions for Figure 1.2 are: How do we �nd the point where the two lines
intersect? How do we �nd the change from one intersection point to another?
And how do we know that two curves will intersect in the �rst place?
Figure 1.3 is completely di¤erent. It shows a collection of points with a
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Figure 1.2: Solving simultaneous equations

line �tting through them. How do we �t the best line through these points?
This is the key to doing empirical work. For example, if the horizontal axis
measures the quantity of a good and the vertical axis measures its price, the
points could be observations of a demand curve. How do we �nd the demand
curve that best �ts the data?
These three graphs are fundamental to economics. There are more as

well. All of them, though, require that we restrict attention to two di-
mensions. For the �rst graph that means consumer choice with only two
commodities, but we might want to talk about more. For the second graph it
means supply and demand for one commodity, but we might want to consider
several markets simultaneously. The third graph allows quantity demanded
to depend on price, but not on income, prices of other goods, or any other
factors. So, an important question, and a primary reason for using equations
instead of graphs, is how do we handle more than two dimensions?
Math does more for us than just allow us to expand the number of di-

mensions. It provides rigor; that is, it allows us to make sure that our
statements are true. All of our assertions will be logical conclusions from
our initial assumptions, and so we know that our arguments are correct and
we can then devote attention to the quality of the assumptions underlying
them.
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Figure 1.3: Fitting a line to data points

1.2 Math, micro, and metrics

The theory of microeconomics is based on two primary concepts: optimiza-
tion and equilibrium. Finding how much a �rm produces to maximize pro�t
is an example of an optimization problem, as is �nding what a consumer
purchases to maximize utility. Optimization problems usually require �nd-
ing maxima or minima, and calculus is the mathematical tool used to do
this. The �rst section of the book is devoted to the theory of optimization,
and it begins with basic calculus. It moves beyond basic calculus in two
ways, though. First, economic problems often have agents simultaneously
choosing the values of more than one variable. For example, consumers
choose commodity bundles, not the amount of a single commodity. To an-
alyze problems with several choice variables, we need multivariate calculus.
Second, as illustrated in Figure 1.1, the problem is not just a simple maxi-
mization problem. Instead, consumers maximize utility subject to a budget
constraint. We must �gure out how to perform constrained optimization.
Finding the market-clearing price is an equilibrium problem. An equilib-

rium is simply a state in which there is no pressure for anything to change,
and the market-clearing price is the one at which suppliers have no incentive
to raise or lower their prices and consumers have no incentive to raise or
lower their o¤ers. Solutions to games are also based on the concept of equi-
librium. Graphically, equilibrium analysis requires �nding the intersection
of two curves, as in Figure 1.2. Mathematically, it involves the solution of
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several equations in several unknowns. The branch of mathematics used
for this is linear (or matrix) algebra, and so we must learn to manipulate
matrices and use them to solve systems of equations.
Economic exercises often involve comparative statics analysis, which in-

volves �nding how the optimum or equilibrium changes when one of the un-
derlying parameters changes. For example, how does a consumer�s optimal
bundle change when the underlying commodity prices change? How does
a �rm�s optimal output change when an input or an output price changes?
How does the market-clearing price change when an input price changes? All
of these questions are answered using comparative statics analysis. Mathe-
matically, comparative statics analysis involves multivariable calculus, often
in combination with matrix algebra. This makes it sound hard. It isn�t
really. But getting you to the point where you can perform comparative
statics analysis means going through these two parts of mathematics.
Comparative statics analysis is also at the heart of empirical work, that

is, econometrics. A typical empirical project involves estimating an equa-
tion that relates a dependent variable to a set of independent variables. The
estimated equation then tells how the dependent variable changes, on av-
erage, when one of the independent variables changes. So, for example,
if one estimates a demand equation in which quantity demanded is the de-
pendent variable and the good�s price, some substitute good prices, some
complement good prices, and income are independent variables, the result-
ing equation tells how much quantity demanded changes when income rises,
for example. But this is a comparative statics question. A good empirical
project uses some math to derive the comparative statics results �rst, and
then uses data to estimate the comparative statics results second. Conse-
quently, econometrics and comparative statics analysis go hand-in-hand.
Econometrics itself is the task of �tting the best line to a set of data

points, as in Figure 1.3. There is some math behind that task. Much of it
is linear algebra, because matrices turn out to provide an easy way to present
the relevant equations. A little bit of the math is calculus, because "best"
implies "optimal," and we use calculus to �nd optima. Econometrics also
requires a knowledge of probability and statistics, which is the third branch
of mathematics we will study.
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CHAPTER

2

Single variable optimization

One feature that separates economics from the other social sciences is the
premise that individual actors, whether they are consumers, �rms, workers,
or government agencies, act rationally to make themselves as well o¤ as
possible. In other words, in economics everybody maximizes something.
So, doing mathematical economics requires an ability to �nd maxima and
minima of functions. This chapter takes a �rst step using the simplest
possible case, the one in which the agent must choose the value of only a
single variable. In later chapters we explore optimization problems in which
the agent chooses the values of several variables simultaneously.
Remember that one purpose of this course is to introduce you to the

mathematical tools and techniques needed to do economics at the graduate
level, and that the other is to teach you to frame economic questions, and
their answers, mathematically. In light of the second goal, we will begin with
a graphical analysis of optimization and then �nd the math that underlies
the graph.
Many of you have already taken calculus, and this chapter concerns single-

variable, di¤erential calculus. One di¤erence between teaching calculus in

7
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π*

q*

$

q

π(q)

Figure 2.1: A pro�t function with a maximum

an economics course and teaching it in a math course is that economists
almost never use trigonometric functions. The economy has cycles, but
none regular enough to model using sines and cosines. So, we will skip
trigonometric functions. We will, however, need logarithms and exponential
functions, and they are introduced in this chapter.

2.1 A graphical approach

Consider the case of a competitive �rm choosing how much output to pro-
duce. When the �rm produces and sells q units it earns revenue R(q) and
incurs costs of C(q). The pro�t function is

�(q) = R(q)� C(q):

The �rst term on the right-hand side is the �rm�s revenue, and the second
term is its cost. Pro�t, as always, is revenue minus cost.
More importantly for this chapter, Figure 2.1 shows the �rm�s pro�t func-

tion. The maximum level of pro�t is ��, which is achieved when output is
q�. Graphically this is very easy. The question is, how do we do it with
equations instead?
Two features of Figure 2.1 stand out. First, at the maximum the slope

of the pro�t function is zero. Increasing q beyond q� reduces pro�t, and
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π(q)

$

q

Figure 2.2: A pro�t function with a minimum

decreasing q below q� also reduces pro�t. Second, the pro�t function rises
up to q� and then falls. To see why this is important, compare it to Figure
2.2, where the pro�t function has a minimum. In Figure 2.2 the pro�t
function falls to the minimum then rises, while in Figure 2.1 it rises to the
maximum then falls. To make sure we have a maximum, we have to make
sure that the pro�t function is rising then falling.
This leaves us with several tasks. (1) We must �nd the slope of the pro�t

function. (2) We must �nd q� by �nding where the slope is zero. (3) We
must make sure that pro�t really is maximized at q�, and not minimized.
(4) We must relate our �ndings back to economics.

2.2 Derivatives

The derivative of a function provides its slope at a point. It can be denoted
in two ways: f 0(x) or df(x)=dx. The derivative of the function f at x is
de�ned as

df(x)

dx
= lim

h!0

f(x+ h)� f(x)
h

: (2.1)

The idea is as follows, with the help of Figure 2.3. Suppose we start at x
and consider a change to x + h. Then f changes from f(x) to f(x + h).
The ratio of the change in f to the change in x is a measure of the slope:
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x

f(x)

f(x+h)

x+h

f(x)

x

f(x)

Figure 2.3: Approximating the slope of a function

[f(x+h)� f(x)]=[(x+h)�x]. Make the change in x smaller and smaller to
get a more precise measure of the slope, and, in the limit, you end up with
the derivative.
Finding the derivative comes from applying the formula in equation (2.1).

And it helps to have a few simple rules in hand. We present these rules as
a series of theorems.

Theorem 1 Suppose f(x) = a. Then f 0(x) = 0.

Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

a� a
h

= 0:

Graphically, a constant function, that is, one that yields the same value for
every possible x, is just a horizontal line, and horizontal lines have slopes of
zero. The theorem says that the derivative of a constant function is zero.

Theorem 2 Suppose f(x) = x. Then f 0(x) = 1.
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Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

(x+ h)� x
h

= lim
h!0

h

h
= 1:

Graphically, the function f(x) = x is just a 45-degree line, and the slope of
the 45-degree line is one. The theorem con�rms that the derivative of this
function is one.

Theorem 3 Suppose f(x) = au(x). Then f 0(x) = au0(x).

Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

au(x+ h)� au(x)
h

= a lim
h!0

u(x+ h)� u(x)
h

= au0(x):

This theorem provides a useful rule. When you multiply a function by a
scalar (or constant), you also multiply the derivative by the same scalar.
Graphically, multiplying by a scalar rotates the curve.

Theorem 4 Suppose f(x) = u(x) + v(x). Then f 0(x) = u0(x) + v0(x).

Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

[u(x+ h) + v(x+ h)]� [u(x) + v(x)]
h

= lim
h!0

�
u(x+ h)� u(x)

h
+
v(x+ h)� u(x)

h

�
= u0(x) + v0(x):
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This rule says that the derivative of a sum is the sum of the derivatives.
The next theorem is the product rule, which tells how to take the

derivative of the product of two functions.

Theorem 5 Suppose f(x) = u(x)�v(x). Then f 0(x) = u0(x)v(x)+u(x)v0(x).
Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

[u(x+ h)v(x+ h)]� [u(x)v(x)]
h

= lim
h!0

�
[u(x+ h)� u(x)]v(x)

h
+
u(x+ h)[v(x+ h)� v(x)]

h

�
where the move from line 2 to line 3 entails adding then subtracting limh!0 u(x+
h)v(x)=h. Remembering that the limit of a product is the product of the
limits, the above expression reduces to

f 0(x) = lim
h!0

[u(x+ h)� u(x)]
h

v(x) + lim
h!0

u(x+ h)
[v(x+ h)� v(x)]

h
= u0(x)v(x) + u(x)v0(x):

We need a rule for functions of the form f(x) = 1=u(x), and it is provided
in the next theorem.

Theorem 6 Suppose f(x) = 1=u(x). Then f 0(x) = �u0(x)=[u(x)]2.
Proof.

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

1
u(x+h)

� 1
u(x)

h

= lim
h!0

u(x)� u(x+ h)
h[u(x+ h)u(x)]

= lim
h!0

�[u(x+ h)� u(x)]
h

� lim
h!0

1

u(x+ h)u(x)

= �u0(x) � 1

[u(x)]2
:



CHAPTER 2. SINGLE VARIABLE OPTIMIZATION 13

Our �nal rule concerns composite functions, that is, functions of functions.
This rule is called the chain rule.

Theorem 7 Suppose f(x) = u(v(x)). Then f 0(x) = u0(v(x)) � v0(x).

Proof. First suppose that there is some sequence h1; h2; ::: with limi!1 hi =
0 and v(x+ hi)� v(x) 6= 0 for all i. Then

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

u(v(x+ h))� u(v(x))
h

= lim
h!0

�
u(v(x+ h))� u(v(x))
v(x+ h)� v(x) � v(x+ h)� v(x)

h

�
= lim

k!0

u(v(x) + k))� u(v(x))
k

� lim
h!0

v(x+ h)� v(x)
h

= u0(v(x)) � v0(x):

Now suppose that there is no sequence as de�ned above. Then there exists
a sequence h1; h2; ::: with limi!1 hi = 0 and v(x + hi) � v(x) = 0 for all i.
Let b = v(x) for all x,and

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

u(v(x+ h))� u(v(x))
h

= lim
h!0

u(b)� u(b)
h

= 0:

But u0(v(x)) � v0(x) = 0 since v0(x) = 0, and we are done.

Combining these rules leads to the following really helpful rule:

d

dx
a[f(x)]n = an[f(x)]n�1f 0(x): (2.2)
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This holds even if n is negative, and even if n is not an integer. So, for
example, the derivative of xn is nxn�1, and the derivative of (2x + 1)5 is
10(2x+ 1)4. The derivative of (4x2 � 1)�:4 is �:4(4x2 � 1)�1:4(8x).
Combining the rules also gives us the familiar division rule:

d

dx

�
u(x)

v(x)

�
=
u0(x)v(x)� v0(x)u(x)

[v(x)]2
: (2.3)

To get it, rewrite u(x)=v(x) as u(x) � [v(x)]�1. We can then use the product
rule and expression (2.2) to get

d

dx

�
u(x)v�1(x)

�
= u0(x)v�1(x) + (�1)u(x)v�2(x)v0(x)

=
u0(x)

v(x)
� v

0(x)u(x)

v2(x)
:

Multiplying both the numerator and denominator of the �rst term by v(x)
yields (2.3).
Getting more ridiculously complicated, consider

f(x) =
(x3 + 2x)(4x� 1)

x3
:

To di¤erentiate this thing, split f into three component functions, f1(x) =
x3 + 2x, f2(x) = 4x � 1, and f3(x) = x3. Then f(x) = f1(x) � f2(x)=f3(x),
and

f 0(x) =
f 01(x)f2(x)

f3(x)
+
f1(x)f

0
2(x)

f3(x)
� f1(x)f2(x)f

0
3(x)

[f3(x)]2
:

We can di¤erentiate the component functions to get f1(x) = 3x2+2, f 02(x) =
4, and f 03(x) = 3x

2. Plugging this all into the formula above gives us

f 0(x) =
(3x2 + 2)(4x� 1)

x3
+
4(x3 + 2x)

x3
� 3(x

3 + 2x)(4x� 1)x2
x6

:

2.3 Uses of derivatives

In economics there are three major uses of derivatives.
The �rst use comes from the economics idea of "marginal this" and "mar-

ginal that." In principles of economics courses, for example, marginal cost is
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de�ned as the additional cost a �rm incurs when it produces one more unit
of output. If the cost function is C(q), where q is quantity, marginal cost is
C(q + 1)� C(q). We could divide output up into smaller units, though, by
measuring in grams instead of kilograms, for example. Continually divid-
ing output into smaller and smaller units of size h leads to the de�nition of
marginal cost as

MC(q) = lim
h!0

c(q + h)� c(q)
h

:

Marginal cost is simply the derivative of the cost function. Similarly, mar-
ginal revenue is the derivative of the revenue function, and so on.
The second use of derivatives comes from looking at their signs (the as-

trology of derivatives). Consider the function y = f(x). We might ask
whether an increase in x leads to an increase in y or a decrease in y. The
derivative f 0(x) measures the change in y when x changes, and so if f 0(x) � 0
we know that y increases when x increases, and if f 0(x) � 0 we know that y
decreases when x increases. So, for example, if the marginal cost function
MC(q) or, equivalently, C 0(q) is positive we know that an increase in output
leads to an increase in cost.
The third use of derivatives is for �nding maxima and minima of functions.

This is where we started the chapter, with a competitive �rm choosing output
to maximize pro�t. The pro�t function is �(q) = R(q)�C(q). As we saw in
Figure 2.1, pro�t is maximized when the slope of the pro�t function is zero,
or

d�

dq
= 0:

This condition is called a �rst-order condition, often abbreviated as FOC.
Using our rules for di¤erentiation, we can rewrite the FOC as

d�

dq
= R0(q�)� C 0(q�) = 0; (2.4)

which reduces to the familiar rule that a �rm maximizes pro�t by producing
where marginal revenue equals marginal cost.
Notice what we have done here. We have not used numbers or speci�c

functions and, aside from homework exercises, we rarely will. Using general
functions leads to expressions involving general functions, and we want to
interpret these. We know that R0(q) is marginal revenue and C 0(q) is mar-
ginal cost. We end up in the same place we do using graphs, which is a good
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thing. The power of the mathematical approach is that it allows us to apply
the same techniques in situations where graphs will not work.

2.4 Maximum or minimum?

Figure 2.1 shows a pro�t function with a maximum, but Figure 2.2 shows
one with a minimum. Both of them generate the same �rst-order condition:
d�=dq = 0. So what property of the function tells us that we are getting a
maximum and not a minimum?
In Figure 2.1 the slope of the curve decreases as q increases, while in

Figure 2.2 the slope of the curve increases as q increases. Since slopes are
just derivatives of the function, we can express these conditions mathemati-
cally by taking derivatives of derivatives, or second derivatives. The second
derivative of the function f(x) is denoted f 00(x) or d2f=dx2. For the function
to have a maximum, like in Figure 2.1, the derivative should be decreasing,
which means that the second derivative should be negative. For the function
to have a minimum, like in Figure 2.2, the derivative should be increasing,
which means that the second derivative should be positive. Each of these is
called a second-order condition or SOC. The second-order condition for
a maximum is f 00(x) � 0, and the second-order condition for a minimum is
f 00(x) � 0.
We can guarantee that pro�t is maximized, at least locally, if �00(q�) � 0.

We can guarantee that pro�t is maximized globally if �00(q) � 0 for all possible
values of q. Let�s look at the condition a little more closely. The �rst
derivative of the pro�t function is �0(q) = R0(q) � C 0(q) and the second
derivative is �00(q) = R00(q) � C 00(q). The second-order condition for a
maximum is �00(q) � 0, which holds if R00(q) � 0 and C 00(q) � 0. So,
we can guarantee that pro�t is maximized if the second derivative of the
revenue function is nonpositive and the second derivative of the cost function
is nonnegative. Remembering that C 0(q) is marginal cost, the condition
C 00(q) � 0 means that marginal cost is increasing, and this has an economic
interpretation: each additional unit of output adds more to total cost than
any unit preceding it. The condition R00(q) � 0means that marginal revenue
is decreasing, which means that the �rm earns less from each additional unit
it sells.
One special case that receives considerable attention in economics is the

one in which R(q) = pq, where p is the price of the good. This is the
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revenue function for a price-taking �rm in a perfectly competitive industry.
Then R0(q) = p and R00(q) = 0, and the �rst-order condition for pro�t
maximization is p � C 0(q) = 0, which is the familiar condition that price
equals marginal cost. The second-order condition reduces to �C 00(q) � 0,
which says that marginal cost must be nondecreasing.

2.5 Logarithms and the exponential function

The functions lnx and ex turn out to play an important role in economics.
The �rst is the natural logarithm, and the second is the exponential function.
They are related:

ln ex = elnx = x.

The number e � 2:718. Without going into why these functions are special
for economics, let me show you why they are special for math.
We know that

d

dx

�
xn

n

�
= xn�1.

We can get the function x2 by di¤erentiating x3=3, the function x by di¤er-
entiating x2=2, the function x�2 by di¤erentiating �x�1, the function x�3 by
di¤erentiating �x�2=2, and so on. But how can we get the function x�1?
We cannot get it by di¤erentiating x0=0, because that expression does not
exist. We cannot get it by di¤erentiating x0, because dx0=dx = 0. So how
do we get x�1 as a derivative? The answer is the natural logarithm:

d

dx
lnx =

1

x
.

Logarithms have two additional useful properties:

lnxy = ln x+ ln y:

and
ln(xa) = a lnx:

Combining these yields

ln(xayb) = a lnx+ b ln y: (2.5)
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The left-hand side of this expression is non-linear, but the right-hand side is
linear in the logarithms, which makes it easier to work with. Economists
often use the form in (??) for utility functions and production functions.
The exponential function ex also has an important di¤erentiation prop-

erty: it is its own derivative, that is,

d

dx
ex = ex:

This implies that the derivative of eu(x) = u0(x)eu(x).

2.6 Problems

1. Compute the derivatives of the following functions:

(a) f(x) = 12(x3 + 1)2 + 3 ln x
2
� 5x�4

(b) f(x) = 1=(4x� 2)5

(c) f(x) = e�14x3+2x

(d) f(x) = (9 lnx)=x0:3

(e) f(x) = ax2�b
cx�d

2. Compute the derivative of the following functions:

(a) f(x) = 12(x� 1)2

(b) g(x) = (ln 3x)=(4x2)

(c) h(x) = 1=(3x2 � 2x+ 1)4

(d) f(x) = xe�x

(e)

g(x) =
(2x2 � 3)

p
5x3 + 6

8� 9x

3. Use the de�nition of the derivative (expression 2.1) to show that the
derivative of x2 is 2x.

4. Use the de�nition of a derivative to prove that the derivative of 1=x is
�1=x2.
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5. Answer the following:

(a) Is f(x) = 2x3 � 12x2 increasing or decreasing at x = 3?
(b) Is f(x) = lnx increasing or decreasing at x = 13?

(c) Is f(x) = e�xx1:5 increasing or decreasing at x = 4?

(d) Is f(x) = 4x�1
x+2

increasing or decreasing at x = 2?

6. Answer the following:

(a) Is f(x) = (3x� 2)=(4x+ x2) increasing or decreasing at x = �1?
(b) Is f(x) = 1= lnx increasing or decreasing at x = e?

(c) Is f(x) = 5x2 + 16x� 12 increasing or decreasing at x = �6?

7. Optimize the following functions, and tell whether the optimum is a
local maximum or a local minimum:

(a) f(x) = �4x2 + 10x
(b) f(x) = 120x0:7 � 6x
(c) f(x) = 4x� 3 ln x

8. Optimize the following functions, and tell whether the optimum is a
local maximum or a local minimum:

(a) f(x) = 4x2 � 24x+ 132
(b) f(x) = 20 lnx� 4x
(c) f(x) = 36x� (x+ 1)=(x+ 2)

9. Consider the function f(x) = ax2 + bx+ c.

(a) Find conditions on a, b, and c that guarantee that f(x) has a
unique global maximum.

(b) Find conditions on a, b, and c that guarantee that f(x) has a
unique global minimum.



CHAPTER 2. SINGLE VARIABLE OPTIMIZATION 20

10. Beth has a minion (named Henry) and bene�ts when the minion exerts
e¤ort, with minion e¤ort denoted by m. Her bene�t from m units of
minion e¤ort is given by the function b(m). The minion does not like
exerting e¤ort, and his cost of e¤ort is given by the function c(m).

(a) Suppose that Beth is her own minion and that her e¤ort cost func-
tion is also c(m). Find the equation determining how much e¤ort
she would exert, and interpret it.

(b) What are the second-order condtions for the answer in (a) to be a
maximum?

(c) Suppose that Beth pays the minion w per unit of e¤ort. Find the
equation determining how much e¤ort the minion will exert, and
interpret it.

(d) What are the second-order conditions for the answer in (c) to be
a maximum?

11. A �rm (Bilco) can use its manufacturing facility to make either widgets
or gookeys. Both require labor only. The production function for
widgets is

W = 20L1=2

and the production function for gookeys is

G = 30L.

The wage rate is $11 per unit of time, and the prices of widgets and
gokeys are $9 and $3 per unit, repsectively. The manufacturing facility
can accomodate 60 workers and no more. How much of each product
should Bilco produce per unit of time? (Hint: If Bilco devotes L units
of labor to widget production it has 60 � L units of labor to devote
to gookey production, and its pro�t function is �(L) = 9 � 20L1=2 + 3 �
30(60� L)� 11 � 60.)



CHAPTER

3

Optimization with several variables

Almost all of the intuition behind optimization comes from looking at prob-
lems with a single choice variable. In economics, though, problems often in-
volve more than one choice variable. For example, consumers choose bundles
of commodities, so must choose amounts of several di¤erent goods simultane-
ously. Firms use many inputs and must choose their amounts simultaneously.
This chapter addresses issues that arise when there are several variables.
The previous chapter used graphs to generate intuition. We cannot do

that here because I am bad at drawing graphs with more than two dimen-
sions. Instead, our intuition will come from what we learned in the last
chapter.

3.1 A more complicated pro�t function

In the preceding chapter we looked at a pro�t function in which the �rm chose
how much output to produce. This time, instead of focusing on outputs,
let�s focus on inputs. Suppose that the �rm can use n di¤erent inputs, and

21
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denote the amounts by x1; :::; xn. When the �rm uses x1 units of input 1,
x2 units of input 2, and so on, its output is given by the production function

Q = F (x1; :::; xn):

Inputs are costly, and we will assume that the �rm can purchase as much of
input i as it wants for price ri, and it can sell as much of its output as it
wants at the competitive price p. How much of each input should the �rm
use to maximize pro�t?
We know what to do when there is only one input (n = 1). Call the

input labor (L) and its price the wage (w). The production function is then
Q = F (L). When the �rm employs L units of labor it produces F (L) units
of output and sells them for p units each, for revenue of pF (L). Its only
cost is a labor cost equal to wL because it pays each unit of labor the wage
w. Pro�t, then, is �(L) = pF (L)� wL. The �rst-order condition is

�0(L) = pF 0(L)� w = 0;

which can be interpreted as the �rm�s pro�t maximizing labor demand equat-
ing the value marginal product of labor pF 0(L) to the wage rate. Using one
additional unit of labor costs an additional w but increases output by F 0(L),
which increases revenue by pF 0(L). The �rm employs labor as long as each
additional unit generates more revenue than it costs, and stops when the
added revenue and the added cost exactly o¤set each other.
What happens if there are two inputs (n = 2), call them capital (K)

and labor (L)? The production function is then Q = F (K;L), and the
corresponding pro�t function is

�(K;L) = pF (K;L)� rK � wL: (3.1)

How do we �nd the �rst-order condition? That is the task for this chapter.

3.2 Vectors and Euclidean space

Before we can �nd a �rst-order condition for (3.1), we �rst need some ter-
minology. A vector is an array of n numbers, written (x1; :::; xn). In our
example of the input-choosing pro�t-maximizing �rm, the vector (x1; :::; xn)
is an input vector. For each i between 1 and n, the quantity xi is the
amount of the i-th input. More generally, we call xi the i-th component of
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the vector (x1; :::; xn). The number of components in a vector is called the
dimension of the vector; the vector (x1; :::; xn) is n-dimensional.
Vectors are collections of numbers. They are also numbers themselves,

and it will help you if you begin to think of them this way. The set of real
numbers is commonly denoted by R, and we depict R using a number line.
We can depict a 2-dimensional vector using a coordinate plane anchored by
two real lines. So, the vector (x1; x2) is in R2, which can be thought of as
R � R. We call R2 the 2-dimensional Euclidean space. When you took
plane geometry in high school, this was Euclidean geometry. When a vector
has n components, it is in Rn, or n-dimensional Euclidean space.
In this text vectors are sometimes written out as (x1; :::; xn), but some-

times that is cumbersome. We use the symbol �x to denote the vector whose
components are x1; :::; xn. That way we can talk about operations involving
two vectors, like �x and �y.
Three common operations are used with vectors. We begin with addition:

�x+ �y = (x1 + y1; x2 + y2; :::; xn + yn):

Adding vectors is done component-by-component.
Multiplication is more complicated, and there are two notions. One is

scalar multiplication. If �x is a vector and a is a scalar (a real number),
then

a�x = (ax1; ax2; :::; axn).

Scalar multiplication is achieved by multiplying each component of the vec-
tor by the same number, thereby either "scaling up" or "scaling down" the
vector. Vector subtraction can be achieved through addition and using �1
as the scalar: �x � �y = �x + (�1)�y. The other form of multiplication is the
inner product, sometimes called the dot product. It is done using the
formula

�x � �y = x1y1 + x2y2 + :::+ xnyn.
Vector addition takes two vectors and yields another vector, and scalar mul-
tiplication takes a vector and a scalar and yields another vector. But the
inner product takes two vectors and yields a scalar, or real number. You
might wonder why we would ever want such a thing.
Here is an example. Suppose that a �rm uses n inputs in amounts

x1; :::; xn. It pays ri per unit of input i. What is its total production
cost? Obviously, it is r1x1 + :::+ rnxn, which can be easily written as �r � �x.
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Similarly, if a consumer purchases a commodity bundle given by the vector
�x = (x1; :::; xn) and pays prices given by the vector �p = (p1; :::; pn), her total
expenditure is �p � �x. Often it is more convenient to leave the "dot" out of
the inner product, and just write �p�x. A second use comes from looking at
�x � �x = x21+ :::+x2n. Then

p
�x � �x is the distance from the point �x (remember,

it�s a number) to the origin. This is also called the norm of the vector �x,
and it is written k�xk = (�x � �x) 12 .
Both vector addition and the inner product are commutative, that is, they

do not depend on the order in which the two vectors occur. This will contrast
with matrices in a later chapter, where matrix multiplication is dependent
on the order in which the matrices are written.
Vector analysis also requires some de�nitions for ordering vectors. For

real numbers we have the familiar relations >, �, =, �, and <. For vectors,
�x = �y if xi = yi for all i = 1; ::; n;

�x � �y if xi � yi for all i = 1; :::; n;
�x > �y if �x � �y but �x 6= �y;

and
�x� �y if xi > yi for all i = 1; :::; n.

From the third one it follows that �x > �y if xi � yi for all i = 1; :::; n and
xi > yi for some i between 1 and n. The fourth condition can be read �x is
strictly greater than �y component-wise.

3.3 Partial derivatives

The trick to maximizing a function of several variables, like (3.1), is to max-
imize it according to each variable separately, that is, by �nding a �rst-order
condition for the choice of K and another one for the choice of L. In general
both of these conditions will depend on the values of both K and L, so we
will have to solve some simultaneous equations. We will get to that later.
The point is that we want to di¤erentiate (3.1) once with respect to K and
once with respect to L.
Di¤erentiating a function of two or more variables with respect to only

one of them is called partial di¤erentiation. Let f(x1; :::; xn) be a general
function of n variables. The i-th partial derivative of f is

@f

@xi
(�x) = lim

h!0

f(x1; x2; :::; xi�1; xi + h; xi+1; :::; xn)� f(x1; :::; xn)
h

: (3.2)
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This de�nition might be a little easier to see with one more piece of notation.
The coordinate vector �ei is the vector with components given by eii = 1
and eij = 0 when j 6= i. The �rst coordinate vector is �e1 = (1; 0; :::; 0), the
second coordinate vector is �e2 = (0; 1; 0; :::; 0), and so on through the n-th
coordinate vector �en = (0; :::; 0; 1). So, coordinate vector �ei has a one in the
i-th place and zeros everywhere else. Using coordinate vectors, the de�nition
of the i-th partial derivative in (3.2) can be rewritten

@f

@xi
(�x) = lim

h!0

f(�x+ h�ei)� f(�x)
h

:

The i-th partial derivative of the function f is simply the derivative one gets
by holding all of the components �xed except for the i-th component. One
takes the partial by pretending that all of the other variables are really just
constants and di¤erentiating as if it were a single-variable function. For
example, consider the function f(x1; x2) = (5x1 � 2)(7x2 � 3)2. The partial
derivatives are f1(x1; x2) = 5(7x2�3)2 and f2(x1; x2) = 14(5x1�2)(7x2�3).
We sometimes use the notation fi(�x) to denote @f(�x)=@xi. When a

function is de�ned over n-dimensional vectors it has n di¤erent partial deriv-
atives.
It is also possible to take partial derivatives of partial derivatives, much

like second derivatives in single-variable calculus. We use the notation

fij(�x) =
@2f

@xi@xj
(�x):

We call fii(�x) the second partial of f with respect to xi, and we call fij(�x)
the cross partial of f(�x) with respect to xi and xj. It is important to note
that, in most cases,

fij(�x) = fji(�x);

that is, the order of di¤erentiation does not matter. In fact, this result is
important enough to have a name: Young�s Theorem.
Partial di¤erentiation requires a restatement of the chain rule:

Theorem 8 Consider the function f : Rn ! R given by

f(u1(x); u2(x); :::; un(x));

where u1; :::; un are functions of the one-dimensional variable x. Then

df

dx
= f1 � u01(x) + f2 � u02(x) + :::+ fn � u0n(x)
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This rule is best explained using an example. Suppose that the function is
f(3x2 � 2; 5 ln x). It�s derivative with respect to x is

d

dx
f(3x2 � 2; 5 ln x) = f1(3x2 � 2; 5 ln x) � (6x) + f2(3x2 � 2; 5 ln x) �

�
5

x

�
:

The basic rule to remember is that when variable we are di¤erentiating with
respect to appears in several places in the function, we di¤erentiate with
respect to each argument separately and then add them together. The
following lame example shows that this works. Let f(y1; y2) = y1y2, but the
values y1 and y2 are both determined by the value of x, with y1 = 2x and
y2 = 3x

2. Substituting we have

f(x) = (2x)(3x2) = 6x3

df

dx
= 18x2:

But, if we use the chain rule, we get

df

dx
=

dy1
dx

� y2 +
dy2
dx

� y1
= (2)(3x2) + (6x)(2x) = 18x2:

It works.

3.4 Multidimensional optimization

Let�s return to our original problem, maximizing the pro�t function given in
expression (3.1). The �rm chooses both capital K and labor L to maximize

�(K;L) = pF (K;L)� rK � wL:

Think about the �rm as solving two problems simultaneously: (i) given the
optimal amount of labor, L�, the �rm wants to use the amount of capital
that maximizes �(K;L�); and (ii) given the optimal amount of capital, K�,
the �rm wants to employ the amount of labor that maximizes �(K�; L).
Problem (i) translates into

@

@K
�(K�; L�) = 0
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and problem (ii) translates into

@

@L
�(K�; L�) = 0:

Thus, optimization in several dimensions is just like optimization in each
single dimension separately, with the provision that all of the optimization
problems must be solved together. The two equations above are the �rst-
order conditions for the pro�t-maximization problem.
To see how this works, suppose that the production function is F (K;L) =

K1=2 + L1=2, that the price of the good is p = 10, the price of capital is
r = 5, and the wage rate is w = 4. Then the pro�t function is �(K;L) =
10(K1=2 + L1=2)� 5K � 4L. The �rst-order conditions are

@

@K
�(K;L) = 5K�1=2 � 5 = 0

and
@

@L
�(K;L) = 5L�1=2 � 4 = 0:

The �rst equation gives us K� = 1 and the second gives us L� = 25=16.
In this example the two �rst-order conditions were independent, that is, the
FOC for K did not depend on L and the FOC for L did not depend on K.
This is not always the case, as shown by the next example.

Example 1 The production function is F (K;L) = K1=4L1=2, the price is 12,
the price of capital is r = 6, and the wage rate is w = 6. Find the optimal
values of K and L.

Solution. The pro�t function is

�(K;L) = 12K1=4L1=2 � 6K � 6L:

The �rst-order conditions are

@

@K
�(K;L) = 3K�3=4L1=2 � 6 = 0 (3.3)

and
@

@L
�(K;L) = 6K1=4L�1=2 � 6 = 0: (3.4)



CHAPTER 3. OPTIMIZATION WITH SEVERAL VARIABLES 28

To solve these, note that (3.4) can be rearranged to get

K1=4

L1=2
= 1

K1=4 = L1=2

K = L2

where the last line comes from raising both sides to the fourth power. Plug-
ging this into (3.3) yields

L1=2

K3=4
= 2

L1=2

(L2)3=4
= 2

L1=2

L3=2
= 2

1

L
= 2

L =
1

2
:

Plugging this back into K = L2 yields K = 1=4.

This example shows the steps for solving a multi-dimensional optimization
problem.
Now let�s return to the general problem to see what the �rst-order con-

ditions tell us. The general pro�t-maximization problem is

max
x1;:::;xn

pF (x1; :::; xn)� r1x1 � :::� rnxn

or, in vector notation,
max
�x
pF (�x)� r � �x:

The �rst-order conditions are:

pF1(x1; :::; xn)� r1 = 0
...

pFn(x1; :::; xn)� rn = 0.

The i-th FOC is pFi(�x) = ri, which is the condition that the value marginal
product of input i equals its price. This is the same as the condition for a
single variable, and it holds for every input.
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3.5 Comparative statics analysis

Being able to do multivariate calculus allows us to do one of the most impor-
tant tasks in microeconomics: comparative statics analysis. The standard
comparative statics questions is, "How does the optimum change when one
of the underlying variables changes?" For example, how does the �rm�s de-
mand for labor change when the output price changes, or when the wage rate
changes?
This is an important problem, and many papers (and dissertations) have

relied on not much more than comparative statics analysis. If there is one
tool you have in your kit at the end of the course, it should be comparative
statics analysis.
To see how it works, let�s return to the pro�t maximization problem with

a single choice variable:
max
L
pF (L)� wL:

The FOC is
pF 0(L)� w = 0: (3.5)

The comparative statics question is, how does the optimal value of L change
when p changes?
To answer this, let�s �rst assume that the marginal product of labor is

strictly decreasing, so that
F 00(L) < 0:

Note that this guarantees that the second-order condition for a maximization
is satis�ed. The trick we now take is to implicitly di¤erentiate equation
(3.5) with respect to p, treating L as a function of p. In other words, rewrite
the FOC so that L is replaced by the function L�(p):

pF 0(L�(p))� w = 0

and di¤erentiate both sides of the expression with respect to p. We get

F 0(L�(p)) + pF 00(L�(p))
dL�

dp
= 0:

The comparative statics question is now simply the astrology question, "What
is the sign of dL�=dp?" Rearranging the above equation to isolate dL�=dp
on the left-hand side gives us

dL�

dp
= � F 0(L�)

pF 00(L�)
:
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We know that F 0(L) > 0 because production functions are increasing, and
we know that pF 00(L�) < 0 because we assumed strictly diminishing marginal
product of labor, i.e. F 00(L) < 0. So, dL�=dp has the form of the negative of
a ratio of a positive number to a negative number, which is positive. This
tells us that the �rm demands more labor when the output price rises, which
makes sense: when the output price rises producing output becomes more
pro�table, and so the �rm wants to expand its operation to generate more
pro�t.
We can write the comparative statics problem generally. Suppose that

the objective function, that is, the function the agent wants to optimize,
is f(x; s), where x is the choice variable and s is a shift parameter. Assume
that the second-order condition holds strictly, so that fxx(x; s) < 0 for a
maximization problem and fxx(x; s) > 0 for a minimization problem. These
conditions guarantee that there is no "�at spot" in the objective function,
so that there is a unique solution to the �rst-order condition. Let x� denote
the optimal value of x. The comparative statics question is, "What is the
sign of dx�=ds?" To get the answer, �rst derive the �rst-order condition:

fx(x; s) = 0:

Next implicitly di¤erentiate with respect to s to get

fxx(x; s)
dx�

ds
+ fxs(x; s) = 0:

Rearranging yields the comparative statics derivative

dx�

ds
= �fxs(x; s)

fxx(x; s)
: (3.6)

We want to know the sign of this derivative.
For a maximization problem we have fxx < 0 by assumption and so the

negative sign cancels out the sign of the denominator. Consequently, the
sign of the comparative statics derivative dx�=ds is the same as the sign of
the numerator, fxs(x; s). For a minimization problem we have fxx > 0, and
so the comparative statics derivative dx�=ds has the opposite sign from the
partial derivative fxs(x; s).

Example 2 A person must decide how much to work in a single 24-hour
day. She gets paid w per hour of labor, but gets utility from each hour she
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does not spend at work. This utility is given by the function u(t), where t is
the amount of time spent away from work, and u has the properties u0(t) > 0
and u00(t) < 0. Does the person work more or less when her wage increases?

Solution. Let L denote the amount she works, so that 24 � L is is the
amount of time she does not spend at work. Her utility from this leisure
time is therefore u(24� L), and her objective is

max
L
wL+ u(24� L):

The FOC is
w � u0(24� L�) = 0:

Write L� as a function of w to get L�(w) and rewrite the FOC as:

w � u0(24� L�(w)) = 0:

Di¤erentiate both sides with respect to w (this is implicit di¤erentiation) to
get

1 + u00(24� L�)dL
�

dw
= 0:

Solving for the comparative statics derivative dL�=dw yields

dL�

dw
= � 1

u00(24� L�) > 0:

She works more when the wage rate w increases.

3.5.1 An alternative approach (that I don�t like)

Many people use an alternative approach to comparative statics analysis. It
gets to the same answers, but I do not like this approach as much. We will
get to why later.
The approach begins with total di¤erential, and the total di¤erential

of the function g(x1; :::; xn) is

dg = g1dx1 + :::+ gndxn:

We want to use total di¤erentials to get comparative statics derivatives.
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Remember our comparative statics problem: we choose x to optimize
f(x; s). The FOC is

fx(x; s) = 0:

Let�s take the total di¤erential of both sides. The total di¤erential of the
right-hand side is zero, and the total di¤erential of the left-hand side is

d[fx(x; s)] = fxxdx+ fxsds:

Setting the above expression equal to zero yields

fxxdx+ fxsds = 0:

The derivative we want is the comparative statics derivative dx=ds. We can
solve for this expression in the above equation:

fxxdx+ fxsds = 0 (3.7)

fxxdx = �fxsds
dx

ds
= �fxs

fxx
:

This is exactly the comparative statics derivative we found above in equation
(3.6). So the method works, and many students �nd it straightforward and
easier to use than implicit di¤erentiation.
Let�s stretch our techniques a little and have a problem with two shift pa-

rameters, s and r, instead of just one. The problem is to optimize f(x; r; s),
and the FOC is

fx(x; r; s) = 0:

If we want to do comparative statics analysis using our (preferred) implicit
di¤erentiation approach, we would �rst write x as a function of the two shift
parameters, so that

fx(x(r; s); r; s) = 0:

To �nd the comparative statics derivative dx=dr, we implicitly di¤erentiate
with respect to r to get

fxx
dx

dr
+ fxr = 0

dx

dr
= �fxr

fxx
:
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This should not be a surprise, since it is just like expression (3.6) except it
replaces s with r. Using total di¤erentials, we would �rst take the total
di¤erential of fx(x; r; s) to get

fxxdx+ fxrdr + fxsds = 0:

We want to solve for dx=dr, and doing so yields

fxxdx+ fxrdr + fxsds = 0

fxxdx = �fxrdr � fxsds
dx

dr
= �fxr

fxx
� fxs
fxx

ds

dr
:

On the face of it, this does not look like the same answer. But, both s and r
are shift parameters, so s is not a function of r. That means that ds=dr = 0.
Substituting this in yields

dx

dr
= �fxr

fxx

as expected.
So what is the di¤erence between the two approaches? In the implicit

di¤erentiation approach we recognized that s does not depend on r at the
beginning of the process, and in the total di¤erential approach we recognized
it at the end. So both work, it�s just a matter of when you want to do your
remembering.
All of that said, I still like the implicit di¤erentiation approach better. To

see why, think about what the derivative dx=ds means. As we constructed it
back in equation (2.1), dx=ds is the limit of �x=�s as �s! 0. According
to this intuition, ds is the limit of �s as it goes to zero, so ds is zero. But
we divided by it in equation (3.7), and you were taught very young that you
cannot divide by zero. So, on a purely mathematical basis, I object to the
total di¤erential approach because it entails dividing by zero, and I prefer to
think of dx=ds as a single entity with a long name, and not a ratio of dx and
ds. On a practical level, though, the total di¤erential approach works just
�ne. It�s just not going to show up anywhere else in this book.

3.6 Problems

1. Consider the vectors �x = (4;�3; 6; 2) and �y = (6; 1; 7; 7).
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(a) Write down the vector 2�y + 3�x:

(b) Which of the following, if any, are true: �x = �y, �x � �y, �x < �y, or
�x� �y?

(c) Find the inner product �x � �y.
(d) Is

p
�x � �x+p�y � �y �

p
(�x+ �y) � (�x+ �y)?

2. Consider the vectors �x = (5; 0;�6;�2) and �y = (3; 2; 3; 2).

(a) Write down the vector 6�x� 4�y.
(b) Find the inner product �x � �y.
(c) Verify that

p
�x � �x+p�y � �y >

p
(�x+ �y) � (�x+ �y).

3. Consider the function f(x; y) = 4x2 + 3y2 � 12xy + 18x.

(a) Find the partial derivative fx(x; y).

(b) Find the partial derivative fy(x; y).

(c) Find the critical point of f .

4. Consider the function f(x; y) = 16xy � 4x+ 2=y.

(a) Find the partial derivative fx(x; y).

(b) Find the partial derivative fy(x; y).

(c) Find the critical point of f .

5. Consider the function u(x; y) = 3 lnx+ 2 ln y.

(a) Write the equation for the indi¤erence curve corresponding to the
utility level k.

(b) Find the slope of the indi¤erence curve at point (x; y).

6. A �rm faces inverse demand function p(q) = 120 � 4q, where q is the
�rm�s output. Its cost function is cq.

(a) Write down the �rm�s pro�t function.

(b) Find the pro�t-maximizing level of pro�t as a function of the unit
cost c.
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(c) Find the comparative statics derivative dq=dc. Is it positive or
negative?

(d) Write the maximized pro�t function as a function of c.

(e) Find the derivative showing how pro�t changes when c changes.

(f) Show that d�=dc = �q.

7. Find dx=da from each of the following expressions.

(a)
15x2 + 3xa� 5x

a
= 20:

(b)
6x2a = 5a� 5xa2

8. Each worker at a �rm can produce 4 units per hour, each worker must
be paid $w per hour, and the �rm�s revenue function is R(L) = 30

p
L,

where L is the number of workers employed (fractional workers are
okay). The �rm�s pro�t function is �(L) = 30

p
4L� wL.

(a) Show that L� = 900=w2:

(b) Find dL�=dw. What�s its sign?

(c) Find d��=dw. What�s its sign?

9. An isoquant is a curve showing the combinations of inputs that all lead
to the same level of output. When the production function over capital
K and labor L is F (K;L), an isoquant corresponding to 100 units of
output is given by the equation F (K;L) = 100.

(a) If capital is on the vertical axis and labor on the horizontal, �nd
the slope of the isoquant.

(b) Suppose that production is increasing in both capital and labor.
Does the isoquant slope upward or downward?
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Constrained optimization

Microeconomics courses typically begin with either consumer theory or pro-
ducer theory. If they begin with consumer theory the �rst problem they face
is the consumer�s constrained optimization problem: the consumer chooses a
commodity bundle, or vector of goods, to maximize utility without spending
more than her budget. If the course begins with producer theory, the �rst
problem it poses is the �rm�s cost minimization problem: the �rm chooses a
vector of inputs to minimize the cost of producing a predetermined level of
output. Both of these problems lead to a graph of the form in Figure 1.1.
So far we have only looked at unconstrained optimization problems. But

many problems in economics have constraints. The consumer�s budget con-
straint is a classic example. Without a budget constraint, and under the
assumption that more is better, a consumer would choose an in�nite amount
of every good. This obviously does not help us describe the real world, be-
cause consumers cannot purchase unlimited quantities of every good. The
budget constraint is an extra condition that the optimum must satisfy. How
do we make sure that we get the solution that maximizes utility while still
letting the budget constraint hold?

36
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E

x2

x1

Figure 4.1: Consumer�s problem

4.1 A graphical approach

Let�s look more carefully at the consumer�s two-dimensional maximization
problem. The problem can be written as follows:

max
x1;x2

u(x1; x2)

s.t. p1x1 + p2x2 =M

where pi is the price of good i andM is the total amount the consumer has to
spend on consumption. The second line is the budget constraint, it says that
total expenditure on the two goods is equal to M . The abbreviation "s.t."
stands for "subject to," so that the problem for the consumer is to choose a
commodity bundle to maximize utility subject to a budget constraint.
Figure 4.1 shows the problem graphically, and it should be familiar.

What we want to do in this section is �gure out what equations we need
to characterize the solution. The optimal consumption point, E, is a tan-
gency point, and it has two features: (i) it is where the indi¤erence curve is
tangent to the budget line, and (ii) it is on the budget line. Let�s translate
these into math.
To �nd the tangency condition we must �gure out how to �nd the slopes

of the two curves. We can do this easily using implicit di¤erentiation. Begin
with the budget line, because it�s easier. Since x2 is on the vertical axis, we
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want to �nd a slope of the form dx2=dx1. Treating x2 as a function of x1
and rewriting the budget constraint yields

p1x1 + p2x2(x1) =M:

Implicit di¤erentiation gives us

p1 + p2
dx2
dx1

= 0

because the derivative of M with respect to x1 is zero. Rearranging yields

dx2
dx1

= �p1
p2
: (4.1)

Of course, we could have gotten to the same place by rewriting the equation
for the budget line in slope-intercept form, x2 = M=p2 � (p1=p2)x1, but we
have to use implicit di¤erentiation anyway to �nd the slope of the indi¤erence
curve, and it is better to apply it �rst to the easier case.
Now let�s �nd the slope of the indi¤erence curve. The equation for an

indi¤erence curve is
u(x1; x2) = k

for some scalar k. Treat x2 as a function of x1 and rewrite to get

u(x1; x2(x1)) = k:

Now implicitly di¤erentiate with respect to x1 to get

@u(x1; x2)

@x1
+
@u(x1; x2)

@x2

dx2
dx1

= 0:

Rearranging yields
dx2
dx1

= �
@u(x1;x2)
@x1

@u(x1;x2)
@x2

: (4.2)

The numerator is the marginal utility of good 1, and the denominator is
the marginal utility of good 2, so the slope of the indi¤erence curve is the
negative of the ratio of marginal utilities, which is also known as the marginal
rate of substitution.
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Condition (i), that the indi¤erence curve and budget line are tangent,
requires that the slope of the budget line in (4.1) is the same as the slope of
the indi¤erence curve in (4.2), or

�u1(x1; x2)
u2(x1; x2)

= �p1
p2
: (4.3)

The other condition, condition (ii), says that the bundle (x1; x2) must lie on
the budget line, which is simply

p1x1 + p2x2 =M . (4.4)

Equations (4.3) and (4.4) constitute two equations in two unknowns (x1
and x2), and so they completely characterize the solution to the consumer�s
optimization problem. The task now is to characterize the solution in a
more general setting with more dimensions.

4.2 Lagrangians

The way that we solve constrained optimization problems is by using a trick
developed by the 18-th century Italian-French mathematician Joseph-Louis
Lagrange. (There is also a 1972 ZZ Top song called La Grange, so don�t
get confused.) Suppose that our objective is to solve an n-dimensional
constrained utility maximization problem:

max
x1;:::;xn

u(x1; :::; xn)

s.t. p1x1 + :::+ pnxn =M .

Our �rst step is to set up the Lagrangian

L(x1; :::; xn; �) = u(x1; :::; xn) + �(M � p1x1 � :::� pnxn):

This requires some interpretation. First of all, the variable � is called the
Lagrange multiplier (and the Greek letter is lambda). Second, let�s think
about the quantity M � p1x1� :::� pnxn. It has to be zero according to the
budget constraint, but suppose it was positive. What would it mean? M is
income, and p1x1+ :::+ pnxn is expenditure on consumption. Income minus
expenditure is simply unspent income. But unspent income is measured in
dollars, and utility is measured in utility units (or utils), so we cannot simply
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add these together. The Lagrange multiplier converts the dollars into utils,
and is therefore measured in utils/dollar. The expression �(M � p1x1� :::�
pnxn) can be interpreted as the utility of unspent income.
The Lagrangian, then, is the utility of consumption plus the utility of

unspent income. The budget constraint, though, guarantees that there is
no unspent income, and so the second term in the Lagrangian is necessarily
zero. We still want it there, though, because it is important for �nding the
right set of �rst-order conditions.
Note that the Lagrangian has not only the xi�s as arguments, but also

the Lagrange multiplier �. The �rst-order conditions arise from taking n+1
partial derivatives of L, one for each of the xi�s and one for �:

@L
@x1

=
@u

@x1
� �p1 = 0 (4.5a)

...
@L
@xn

=
@u

@xn
� �pn = 0 (4.5b)

@L
@�

= M � p1x1 � :::� pnxn = 0 (4.5c)

Notice that the last FOC is simply the budget constraint. So, optimiza-
tion using the Lagrangian guarantees that the budget constraint is satis�ed.
Also, optimization using the Lagrangian turns the n-dimensional constrained
optimization problem into an (n+1)-dimensional unconstrained optimization
problem. These two features give the Lagrangian approach its appeal.

4.3 A 2-dimensional example

The utility function is u(x1; x2) = x0:51 x
0:5
2 , the prices are p1 = 10 and p2 = 20,

and the budget is M = 120. The consumer�s problem is then

max
x1;x2

x
1=2
1 x

1=2
2

s.t. 10x1 + 20x2 = 120:

What are the utility maximizing levels of x1 and x2?
To answer this, we begin by setting up the Lagrangian

L(x1; x2; �) = x1=21 x
1=2
2 + �(120� 10x1 � 20x2):
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The �rst-order conditions are

@L
@x1

= 0:5x
�1=2
1 x

1=2
2 � 10� = 0 (4.6a)

@L
@x2

= 0:5x
1=2
1 x

�1=2
2 � 20� = 0 (4.6b)

@L
@�

= 120� 10x1 � 20x2 = 0 (4.6c)

Of course, equation (4.6c) is simply the budget constraint.
We have three equations in three unknowns (x1, x2, and �). To solve

them, �rst rearrange (4.6a) and (4.6b) to get

� =
1

20

�
x2
x1

�1=2
and

� =
1

40

�
x1
x2

�1=2
:

Set these equal to each other to get

1

20

�
x2
x1

�1=2
=

1

40

�
x1
x2

�1=2
2

�
x2
x1

�1=2
=

�
x1
x2

�1=2
2x2 = x1

where the last line comes from cross-multiplying. Substitute x1 = 2x2 into
(4.6c) to get

120� 10(2x2)� 20x2 = 0

40x2 = 120

x2 = 3:

Because x1 = 2x2, we have
x1 = 6:
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Finally, we know from the rearrangement of (4.6a) that

� =
1

20

�
x2
x1

�1=2
=

1

20

�
3

6

�1=2
=

1

20
p
2
:

4.4 Interpreting the Lagrange multiplier

Remember that we said that the second term in the Lagrangian is the utility
value of unspent income, which, of course, is zero because there is no unspent
income. This term is �(M � p1x1 � p2x2). So, the Lagrange multiplier �
should be the marginal utility of (unspent) income, because it is the slope of
the utility-of-unspent-income function. Let�s see if this is true.
To do so, let�s generalize the problem so that income is M instead of

120. All of the steps are the same as above, so we still have x1 = 2x2.
Substituting into the budget constraint gives us

M � 10(2x2)� 20x2 = 0

x2 =
M

40

x1 =
M

20

� =
1

20
p
2
:

Plugging these numbers back into the utility function gives us

u(x1; x2) =

�
M

20

�0:5�
M

40

�0:5
=

M

20
p
2
:

Di¤erentiating this expression with respect to income M yields

du

dM
=

1

20
p
2
= �;

and the Lagrange multiplier really does measure the marginal utility of in-
come.
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In general, the Lagrange multiplier measures the marginal value of relaxing
the constraint, where the units used to measure value are determined by the
objective function. In our case the objective function is a utility function, so
the marginal value is marginal utility. The constraint is relaxed by allowing
income to be higher, so the Lagrange multiplier measures the marginal utility
of income.
Now think instead about a �rm�s cost-minimization problem. Let xi be

the amount of input i employed by the �rm, let ri be its price, let F (x1; :::; xn)
be the production function, and let q be the desired level of output. The
�rm�s problem would be

min
x1;:::;xn

r1x1 + :::+ rnxn

s.t. F (x1; :::; xn) = q

The Lagrangian is then

L(x1; :::; xn; �) = r1x1 + :::+ rnxn + �(q � F (x1; :::; xn)):

Since the �rm is minimizing cost, reducing cost from the optimum would
require reducing the output requirement q. So, relaxing the constraint is
lowering q. The interpretation of � is the marginal cost of output, which
was referred to simply as marginal cost way back in Chapter 2. So, using
the Lagrangian to solve the �rm�s cost minimization problem gives you the
�rm�s marginal output cost function for free.

4.5 A useful example - Cobb-Douglas

Economists often rely on the Cobb-Douglas class of functions which take the
form

f(x1; :::; xn) = x
a1
1 x

a2
2 � � �xann

where all of the ai�s are positive. The functional form arose out of a 1928
collaboration between economist Paul Douglas and mathematician Charles
Cobb, and was designed to �t Douglas�s production data.
To see its usefulness, consider a consumer choice problem with a Cobb-

Douglas utility function u(�x) = xa11 x
a2
2 � � �xann :

max
x1;:::;xn

u(�x)
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s.t. p1x1 + :::+ pnxn =M:

Form the Lagrangian

L(x1; :::; xn; �) = xa11 � � �xann + �(M � p1x1 � :::� pnxn):

The �rst-order conditions take the form

@L
@xi

=
ai
xi
xa11 � � �xann � �pi = 0

for i = 1; :::; n and

@L
@�

=M � p1x1 � :::� pnxn = 0;

which is just the budget constraint. The expression for @L=@xi can be
rearranged to become

ai
xi
xa11 � � �xann � �pi =

ai
xi
u(�x)� �pi = 0:

This yields that

pi =
aiu(�x)

�xi
(4.7)

for i = 1; :::; n. Substitute these into the budget constraint:

M � p1x1 � :::� pnxn = 0

M � a1u(�x)
�x1

x1 � :::�
anu(�x)

�xn
xn = 0

M � u(�x)
�
(a1 + :::+ an) = 0:

Now solve this for the Lagrange multiplier �:

� = u(�x)
a1 + :::+ an

M
:

Finally, plug this back into (4.7) to get

pi =
aiu(�x)

xi
� 1
�

=
aiu(�x)

xi
� M

u(�x)(a1 + :::+ an)

=
ai

a1 + :::+ an
� M
xi
:
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Finally, solve this for xi to get the demand function for good i:

xi =
ai

a1 + :::+ an
� M
pi
: (4.8)

That was a lot of steps, but rearranging (4.8) yields an intuitive and easily
memorizable expression. In fact, most graduate students in economics have
memorized it by the end of their �rst semester because it turns out to be so
handy. Rearrange (4.8) to

pixi
M

=
ai

a1 + :::+ an
:

The numerator of the left-hand side is the amount spent on good i. The
denominator of the left-hand side is the total amount spent. The left-hand
side, then, is the share of income spent on good i. The equation says that
the share of spending is determined entirely by the exponents of the Cobb-
Douglas utility function. In especially convenient cases the exponents sum to
one, in which case the spending share for good i is just equal to the exponent
on good i.
The demand function in (4.8) lends itself to some particularly easy com-

parative statics analysis. The obvious comparative statics derivative for a
demand function is with respect to its own price:

dxi
dpi

= � ai
a1 + :::+ an

� M
p2i
� 0

and so demand is downward-sloping, as it should be. Another comparative
statics derivative is with respect to income:

dxi
dM

=
ai

a1 + :::+ an
� 1
pi
� 0:

All goods are normal goods when the utility function takes the Cobb-Douglas
form. Finally, one often looks for the e¤ects of changes in the prices of other
goods. We can do this by taking the comparative statics derivative of xi
with respect to price pj, where j 6= i.

dxi
dpj

= 0:

This result holds because the other prices appear nowhere in the demand
function (4.8), which is another feature that makes Cobb-Douglas special.
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We can also use Cobb-Douglas functions in a production setting. Con-
sider the �rm�s cost-minimization problem when the production function is
Cobb-Douglas, so that F (�x) = xa11 � � �xann . This time, though, we are going
to assume that a1 + :::+ an = 1. The problem is

min
x1;:::;xn

p1x1 + :::+ pnxn

s.t. xa11 � � �xann = q.

Set up the Lagrangian

L(x1; :::; xn; �) = p1x1 + :::+ pnxn + �(q � xa11 � � �xann ):

The �rst-order conditions take the form

@L
@xi

= pi � ai�
F (�x)

xi
= 0

for i = 1; :::; n and
@L
@�

= q � xa11 � � �xann = 0;

which is just the production constraint. Rearranging the expression for
@L=@xi yields

xi = ai�
q

pi
; (4.9)

because the production constraint tells us that F (�x) = q. Plugging this into
the production constraint give us�

a1�
q

p1

�a1
� � �
�
an�

q

pn

�an
= q�

a1
p1

�a1
� � �
�
an
pn

�an
�a1+:::+anqa1+:::+an = q:

But a1 + :::+ an = 1, so the above expression reduces further to�
a1
p1

�a1
� � �
�
an
pn

�an
�q = q�

a1
p1

�a1
� � �
�
an
pn

�an
� = 1
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� =

�
p1
a1

�a1
� � �
�
pn
an

�an
: (4.10)

We can substitute this back into (4.9) to get

xi = ai�
q

pi

=
ai
pi

�
p1
a1

�a1
� � �
�
pn
an

�an
q:

This is the input demand function, and it depends on the amount of output
being produced (q), the input prices (p1; :::; pn), and the exponents of the
Cobb-Douglas production function.
This doesn�t look particularly useful or intuitive. It can be, though.

Plug it back into the original objective function p1x1 + ::: + pnxn to get the
cost function

C(q) = p1x1 + :::+ pnxn

= p1
a1
p1

�
p1
a1

�a1
� � �
�
pn
an

�an
q + :::+ pn

an
pn

�
p1
a1

�a1
� � �
�
pn
an

�an
q

= a1

�
p1
a1

�a1
� � �
�
pn
an

�an
q + :::+ an

�
p1
a1

�a1
� � �
�
pn
an

�an
q

= (a1 + :::+ an)

�
p1
a1

�a1
� � �
�
pn
an

�an
q

=

�
p1
a1

�a1
� � �
�
pn
an

�an
q;

where the last equality holds because a1 + :::+ an = 1.
This one is pretty easy to remember. And it has a cool comparative

statics result:
dC(q)

dq
=

�
p1
a1

�a1
� � �
�
pn
an

�an
: (4.11)

Why is this cool? There are three reasons. First, dC(q)=dq is marginal
cost, and q appears nowhere on the right-hand side. This means that the
Cobb-Douglas production function gives us constant marginal cost. Second,
compare the marginal cost function to the original production function:

F (�x) = xa11 � � �xann

MC(q) =

�
p1
a1

�a1
� � �
�
pn
an

�an
:
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You can get the marginal cost function by replacing the xi�s in the production
function with the corresponding pi=ai. And third, remember how, at the
end of the the last section on interpreting the Lagrange multiplier, we said
that in a cost-minimization problem the Lagrange multiplier is just marginal
cost? Compare equations (4.10) and (4.11). They are the same. I told you
so.

4.6 Problems

1. Use the Lagrange multiplier method to solve the following problem:

max
x;y

12x2y4

s.t. 2x+ 4y = 120

[Hint: You should be able to check your answer against the general
version of the problem in Section 4.5.]

2. Solve the following problem:

maxa;b 3 ln a+ 2 ln b
s.t. 12a+ 14b = 400

3. Solve the following problem:

minx;y 16x+ y
x1=4y3=4 = 1

4. Solve the following problem:

max
x;y

3xy + 4x

s.t. 4x+ 12y = 80

5. Solve the following problem:

min
x;y
5x+ 2y

s.t. 3x+ 2xy = 80
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6. This is a lame but instructive problem. A farmer has 10 acres of land
and uses it to grow corn. Pro�t from growing an acre of corn is given
by �(x) = 400x+ 2x2, where x is the number of acres of corn planted.
So, the farmer�s problem is

maxx 400x+ 2x
2

s.t. x = 10

(a) Find the �rst derivative of the pro�t function. Does its sign make
sense?

(b) Find the second derivative of the pro�t function. Does its sign
make sense?

(c) Set up the Lagrangian and use it to �nd the optimal value of x.
(Hint: It had better be 10.)

(d) Interpret the Lagrange multiplier.

(e) Find the marginal value of an acre of land without using the La-
grange multiplier.

(f) The second derivative of the pro�t function is positive. Does that
mean that pro�t is minimized when x = 10?

7. Another lame but instructive problem: A �rm has the capacity to use
4 workers at a time. Each worker can produce 4 units per hour, each
worker must be paid $10 per hour, and the �rm�s revenue function is
R(L) = 30

p
L, where L is the number of workers employed (fractional

workers are okay). The �rm�s pro�t function is �(L) = 30
p
4L� 10L.

It must solve the problem

max
L
30
p
4L� 10L

s.t. L = 4

(a) Find the �rst derivative of the pro�t function. Does its sign make
sense?

(b) Find the second derivative of the pro�t function. Does its sign
make sense?

(c) Set up the Lagrangian and use it to �nd the optimal value of L.
[Hint: It had better be 4.]
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(d) Interpret the Lagrange multiplier.

(e) Find the marginal pro�t from a worker without using the Lagrange
multiplier.

(f) The second derivative of the pro�t function is negative. Does that
mean pro�t is maximized when L = 4?

8. Here is the obligatory comparative statics problem. A consumer
chooses x and y to

maxx;y x
�y1��

s.t. pxx+ pyy =M

where px > 0 is the price of good x, py > 0 is the price of good y,
M > 0 is income, and 0 < � < 1.

(a) Show that x� = �M=px and y� = (1� �)M=py.
(b) Find @x�=@M and @y�=@M . Can you sign them?

(c) Find @x�=@px and @y�=@px. Can you sign them?

9. This is the same as problem 2.11 but done using Lagrange multipliers.
A �rm (Bilco) can use its manufacturing facility to make either widgets
or gookeys. Both require labor only. The production function for
widgets is

W = 20w1=2;

where w denotes labor devoted to widget production, and the produc-
tion function for gookeys is

G = 30g,

where g denotes labor devoted to gookey production. The wage rate
is $11 per unit of time, and the prices of widgets and gokeys are $9 and
$3 per unit, repsectively. The manufacturing facility can accomodate
60 workers and no more.

(a) Use a Lagrangian to determine how much of each product Bilco
should produce per unit of time.

(b) Interpret the Lagrange multiplier.
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10. A farmer has a �xed amount F of fencing material that she can use to
enclose a property. She does not yet have the property, but it will be a
rectangle with length L and widthW . Furthermore, state law dictates
that every property must have a side smaller than S in length, and in
this case S < F=4. [This last condition makes the constraint binding,
and other than that you need not worry about it.] By convention, W
is always the short side, so the state law dictates that W � S. The
farmer wants to use the fencing to enclose the largest possible area, and
she also wants to obey the law.

(a) Write down the farmer�s constrained maximization problem. [Hint:
There should be two constraints.]

(b) Write down the Lagrangian with two mulitpliers, one for each con-
straint, and solve the farmer�s problem. [Hint: The solution will
be a function of F and S.] Please use � as the second multiplier.

(c) Which has a greater impact on the area the farmer can enclose, a
marginal increase in S or a marginal increase in F? Justify your
answer.



CHAPTER

5

Inequality constraints

The previous chapter treated all constraints as equality constraints. Some-
times this is the right thing to do. For example, the �rm�s cost-minimization
problem is to �nd the least-cost combination of inputs to produce a �xed
amount of output, q. The constraint, then, is that output must be q, or,
letting F (x1; :::; xn) be the production function when the inputs are x1; :::; xn,
the constraint is

F (x1; :::; xn) = q:

Other times equality constraints are not the right thing to do. The con-
sumer choice problem, for example, has the consumer choosing a commodity
bundle to maximize utility, subject to the constraint that she does not spend
more than her income. If the prices are p1; :::; pn, the goods are x1; :::; xn,
and income is M , then the budget constraint is

p1x1 + :::+ pnxn �M .

It may be the case that the consumer spends her entire income, in which
case the constraint would hold with equality. If she gets utility from saving,

52
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though, she may not want to spend her entire income, in which case the
budget constraint would not hold with equality.
Firms have capacity constraints. When they build manufacturing fa-

cilities, the size of the facility places a constraint on the maximum output
the �rm can produce. A capacity-constrained �rm�s problem, then, is to
maximize pro�t subject to the constraint that output not exceed capacity,
or q � �q. In the real world �rms often have excess capacity, which means
that the capacity constraint does not hold with equality.
Finally, economics often has implicit nonnegativity constraints. Firms

cannot produce negative amounts by transforming outputs back into inputs.
After all, it is di¢ cult to turn a cake back into �our, baking powder, butter,
salt, sugar, and unbroken eggs. Often we want to assume that we can-
not consume negative amounts. As economists we must deal with these
nonnegativity constraints.
The goal for this chapter is to �gure out how to deal with inequality

constraints. The best way to do this is through a series of exceptionally
lame examples. What makes the examples lame is that the solutions are so
transparent that it is hardly worth going through the math. The beauty of
lame examples, though, is that this transparency allows you to see exactly
what is going on.

5.1 Lame example - capacity constraints

Let�s begin with a simple unconstrained pro�t maximization problem. The
�rm chooses an amount to produce x, the market price is �xed at 80, and
the cost function is 4x2. The problem is

max
x
80x� 4x2.

The �rst-order condition is
80� 8x = 0,

so the optimum is
x = 10.

The second-order condition is
�8 < 0

which obviously holds, so the optimum is actually a maximum. The problem
is illustrated in Figure 5.1.
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128 10

$

x

π(x)

Figure 5.1: A lame example using capacity constraints

5.1.1 A binding constraint

Now let�s put in a capacity constraint: x � 8. This will obviously restrict
the �rm�s output because it would like to produce 10 units but can only
produce 8. (See why it�s a lame example?) The constraint will hold with
equality, in which case we say that the constraint is binding. Let�s look at
the math.

max
x
80x� 4x2

s.t. x � 8
Form the Lagrangian

L(x; �) = 80x� 4x2 + �(8� x):

The �rst-order conditions are

@L
@x

= 80� 8x� � = 0
@L
@�

= 8� x = 0:

The second equation tells us that x = 8, and the �rst equation tells us that
� = 80� 64 = 16:
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So far we�ve done nothing new. The important step here is to think
about �. Remember that the interpretation of the Lagrange multiplier is
that it is the marginal value of relaxing the constraint. In this case value
is pro�t, so it is the marginal pro�t from relaxing the constraint. We can
compute this directly:

�(x) = 80x� 4x2

�0(x) = 80� 8x
�0(8) = 80� 64 = 16

Plugging the constrained value (x = 8) into the marginal pro�t function �0(x)
tells us that when output is 8, an increase in output leads to an increase in
pro�t by 16. And this is exactly the Lagrange multiplier.

5.1.2 A nonbinding constraint

Now let�s change the capacity constraint to x � 12 and solve the problem
intuitively. First, we know that pro�t reaches its unconstrained maximum
when x = 10. The constraint does not rule this level of production out,
so the constrained optimum is also x = 10. Because of this the capacity
constraint is nonbinding, that is, it does not hold with equality. Nonbinding
constraints are sometimes called slack.
Let�s think about the Lagrange multiplier. We know that it is the mar-

ginal value of relaxing the constraint. How would pro�t change if we relaxed
the constraint from x � 12 to, say, x � 13? The unconstrained maximum
is still feasible, so the �rm would still produce 10 units and still generate
exactly the same amount of pro�t. So, the marginal value of relaxing the
constraint must be zero, and we have � = 0.
Now that we know the answers, let�s go back and look at the problem.

max
x
80x� 4x2

s.t. x � 12
This problem generates the Lagrangian

L(x; �) = 80x� 4x2 + �(12� x):

Since we already know the answers, let�s plug them in. In particular, we
know that � = 0, so the Lagrangian becomes

L(x; �) = 80x� 4x2
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which is just the original unconstrained pro�t function.
We arrived at our answers (x = 10, � = 0) intuitively. How can we get

them mechanically? After all, the purpose of the math is to make sure we
get the answers right without relying solely on our intuition.
One thing for sure is that we will need a new approach. To see why,

suppose we analyze our 12-unit constraint problem in the usual way. Di¤er-
entiating the Lagrangian yields

@L
@x

= 80� 8x� � = 0
@L
@�

= 12� x = 0

The second equation obviously implies that x = 12, in which case the �rst
equation tells us that � = 80 � 8x = 80 � 96 = �16. If we solve the
problem using our old approach we �nd that (1) the constraint is binding,
which is wrong, and (2) the Lagrange multiplier is negative, which means
that relaxing the constraint makes pro�t even lower. You can see this in
Figure 5.1. When output is 12 the pro�t function is downward-sloping.
Since the Lagrange multiplier is marginal pro�t, we get a negative Lagrange
multiplier when we are past the pro�t-maximizing level of output.

5.2 A new approach

The key to the new approach is thinking about how the Lagrangian works.
Suppose that the problem is

max
x1;:::;xn

f(x1; :::; xn)

s.t. g(x1; :::; xn) �M
The Lagrangian is

L(x1; :::; xn; �) = f(x1; :::; xn) + �[M � g(x1; :::; xn)]: (5.1)

When the constraint is binding, the term M � g(x1; :::; xn) is zero, in which
case L(x1; :::; xn; �) = f(x1; :::; xn). When the constraint is nonbinding the
Lagrange multiplier is zero, in which case L(x1; :::; xn; �) = f(x1; :::; xn) once
again. So we need a condition that says

�[M � g(x1; :::; xn)] = 0:
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Note that
@[�[M � g(x1; :::; xn)]]

@�
=M � g(x1; :::; xn)

and in the old approach we set this equal to zero. We can no longer do this
when the constraint is nonbinding, but notice that

�
@[�[M � g(x1; :::; xn)]]

@�
= �(M � g(x1; :::; xn)):

This is exactly what we need to be equal to zero.
We also need to restrict the Lagrange multiplier to be nonnegative. Re-

member from the lame example when the capacity constraint was binding at
x = 12 we got a negative Lagrange multiplier, and that was the wrong answer.
In fact, looking at expression (5.1) we can make L really large by making both
� and (M � g(x1; :::; xn)) really negative. But when (M � g(x1; :::; xn)) < 0
we have violated the constraint, so that is not allowed.
The condition that

�
@L
@�

= �[(M � g(x1; :::; xn)] = 0

is known as a complementary slackness condition. It says that one
of two constraints must bind. One constraint is � � 0, and it binds if
� = 0, in which case the complementary slackness condition holds. The
other constraint is g(x1; :::; xn) � M , and it binds if g(x1; :::; xn) = M ,
in which case the complementary slackness condition also holds. If one
of the constraints is slack, the other one has to bind. The beauty of the
complementary slackness condition is that it forces one of two constraints to
bind using a single equation.
The �rst-order conditions for the inequality-constrained problem are

@L
@x1

= 0

...
@L
@xn

= 0

�
@L
@�

= 0

� � 0
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The �rst set of conditions (@L=@xi = 0) are the same as in the standard
case. The last two conditions are the ones that are di¤erent. The second-
last condition (�@L=@� = 0) guarantees that either the constraint binds,
in which case @L=@� = 0, or the constraint does not bind, in which case
� = 0. The last condition says that the Lagrange multiplier cannot be
negative, which means that relaxing the constraint cannot reduce the value
of the objective function.
We have a set of �rst-order conditions, but this does not tell us how to

solve them. To do this, let�s go back to our lamest example:

max
x
80x� 4x2

s.t. x � 12
which generates the Lagrangian

L(x; �) = 80x� 4x2 + �(12� x):

The �rst-order conditions are

@L
@x

= 80� 8x� � = 0

�
@L
@�

= �(12� x) = 0
� � 0

Now what?
The methodology for solving this system is tedious, but it works. The

second equation (�(12�x) = 0) is true if either (1) � = 0, (2) 12�x = 0, or
(3) both. So what we have to do is �nd the solution when � = 0 and �nd
the solution when 12� x = 0. Let�s see what happens.
Case 1: � = 0. If � = 0 then the second and third conditions obviously

hold. Plugging � = 0 into the �rst equation yields 80 � 8x � 0 = 0, or
x = 10.
Case 2: 12 � x = 0. Then x = 12, and plugging this into the �rst

equation yields � = 80 � 96 = �16, which violates the last condition. So
case 2 cannot be the answer.
We are left with only one solution, and it is the correct one: x = 10,

� = 0.
The general methodology for multiple constraints is as follows: Construct

a Lagrange multiplier for each constraint. Each Lagrange multiplier can be
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either zero, in which case that constraint is nonbinding, or it can be positive,
in which case its constraint is binding. Then try all possible combinations of
zero/positive multipliers. Most of them will lead to violations. If only one
does not lead to a violation, that is the answer. If several combinations do
not lead to violations, then you must choose which one is the best. You can
do this by plugging the values you �nd into the objective function. If you
want to maximize the objective function, you choose the case that generates
the highest value of the objective function.

5.3 Multiple inequality constraints

Let�s look at another lame example:

max
x;y

x
1
3y

2
3

s.t. x+ y � 60

x+ y � 120

Why is this a lame example? Because we know that the second constraint
must be nonbinding. After all if a number is smaller than 60, it must also
be strictly smaller than 120. The solution to this problem will be the same
as the solution to the problem

max
x;y

x
1
3y

2
3

s.t. x+ y � 60
This looks like a utility maximization problem, as can be seen in Figure 5.2.
The consumer�s utility function is u(x; y) = x1=3y2=3, the prices of the two
goods are px = py = 1, and the consumer has 60 to spend. The utility
function is Cobb-Douglas, and from what we learned in Section 4.5 we know
that x = 20 and y = 40.
We want to solve it mechanically, though, to learn the steps. Assign a

separate Lagrange multiplier to each constraint to get the Lagrangian

L(x; y; �1; �2) = x
1
3y

2
3 + �1(60� x� y) + �2(120� x� y):
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Figure 5.2: A lame example with two budget constraints

The �rst-order conditions are

@L
@x

=
1

3

y2=3

x2=3
� �1 � �2 = 0

@L
@y

=
2

3

x1=3

y1=3
� �1 � �2 = 0

�1
@L
@�1

= �1(60� x� y) = 0

�2
@L
@�2

= �2(120� x� y) = 0

�1 � 0

�2 � 0

This time we have four possible cases: (1) �1 = �2 = 0, so that neither
constraint binds. (2) �1 > 0, �2 = 0, so that only the �rst constraint binds.
(3) �1 = 0, �2 > 0, so that only the second constraint binds. (4) �1 > 0,
�2 > 0, so that both constraints bind. As before, we need to look at all four
cases.
Case 1: �1 = �2 = 0. In this case the �rst equation in the �rst-order

conditions reduces to 1
3
(y=x)2=3 = 0, which implies that y = 0. The second

equation reduces to 2
3
(x=y)1=3 = 0, but this cannot be true if y = 0 because

we are not allowed to divide by zero. So Case 1 cannot be the answer. There



CHAPTER 5. INEQUALITY CONSTRAINTS 61

is an easier way to see this, though. If neither constraint binds, the problem
becomes

max
x;y

x
1
3y

2
3

The objective function is increasing in both arguments, and since there are
no constraints we want both x and y to be as large as possible. So x!1
and y !1. But this obviously violates the constraints.
Case 2: �1 > 0, �2 = 0. The �rst-order conditions reduce to

1

3

y2=3

x2=3
� �1 = 0

2

3

x1=3

y1=3
� �1 = 0

60� x� y = 0

and the solution to this system is x = 20, y = 40, and �1 = 1
3
22=3 > 0. The

remaining constraint, x + y � 120, is satis�ed because x + y = 60 < 120.
Case 2 works, and it corresponds to the case shown in Figure 5.2.
Case 3: �1 = 0, �2 > 0. Now the �rst-order conditions reduce to

1

3

y2=3

x2=3
� �2 = 0

2

3

x1=3

y1=3
� �2 = 0

120� x� y = 0

The solution to this system is x = 40, y = 80, and �2 = 1
3
22=3 > 0. The

remaining constraint, x+ y � 60, is violated because x+ y = 120, so Case 3
does not work. There is an easier way to see this, though, just by looking
at the constraints and exploiting the lameness of the example. If the second
constraint binds, x + y = 120. But then the �rst constraint, x + y � 60
cannot possibly hold.
Case 4: �1 > 0, �2 > 0. The �rst of these conditions implies that the

�rst constraint binds, so that x+ y = 60. The second condition implies that
x + y = 120, so that we are on the outer budget constraint in Figure 5.2.
But then the inner budget constraint is violated, so Case 4 does not work.
Only Case 2 works, so we know the solution: x� = 20, y� = 40, ��1 =

1
3
22=3, and ��2 = 0.
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5.4 A linear programming example

A linear programming problem is one in which the objective function and all
of the constraints are linear, such as in the following example:

max
x;y

2x+ y

s.t. 3x+ 4y � 60

x � 0

y � 0

This problem has three constraints, so we must use the multiple constraint
methodology from the preceding section. It is useful in what follows to refer
to the �rst constraint, 3x+ 4y � 60, as a budget constraint. The other two
constraints are nonnegativity constraints.
The Lagrangian is

L(x; y; �1; �2; �3) = 2x+ y + �1(60� 3x� 4y) + �2(x� 0) + �3(y � 0):

Notice that we wrote all of the constraint terms, that is (60� 3x� 4y) and
(x� 0) and (y � 0) so that they are nonnegative. We have been doing this
throughout this book.
The �rst-order conditions are

@L
@x

= 2� 3�1 + �2 = 0
@L
@y

= 1� 4�1 + �3 = 0

�1
@L
@�1

= �1(60� 3x� 4y) = 0

�2
@L
@�2

= �2x = 0

�3
@L
@�3

= �3y = 0

�1 � 0, �2 � 0, �3 � 0

Since there are three constraints, there are 23 = 8 possible cases. We are
going to narrow some of them down intuitively before going on. The �rst
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constraint is like a budget constraint, and the objective function is increas-
ing in both of its arguments. The other two constraints are nonnegativity
constraints, saying that the consumer cannot consume negative amounts of
the goods. Since there is only one budget-type constraint, it has to bind,
which means that �1 > 0. The only question is whether one of the other
two constraints binds.
A binding budget constraint means that we cannot have both x = 0 and

y = 0, because if we did then we would have 3x + 4y = 0 < 60, and the
budget constraint would not bind. We are now left with three possibilities:
(1) �1 > 0 so the budget constraint binds, �2 > 0, and �3 = 0, so that x = 0
but y > 0. (2) �1 > 0, �2 = 0, and �3 > 0, so that x > 0 and y = 0. (3)
�1 > 0, �2 = 0, and �3 = 0, so that both x and y are positive. We will
consider these one at a time.
Case 1: �1 > 0, �2 > 0, �3 = 0. Since �2 > 0 the constraint x � 0 must

bind, so x = 0. For the budget constraint to hold we must have y = 15.
This yields a value for the objective function of

2x+ y = 2 � 0 + 15 = 15:

Case 2: �1 > 0, �2 = 0, �3 > 0. This time we have y = 0, and the
budget constraint implies that x = 20. The objective function then takes
the value

2x+ y = 2 � 20 + 0 = 40:
Case 3: �1 > 0, �2 = 0, �3 = 0. In this case both x and y are positive.

The �rst two equations in the �rst-order conditions become

2� 3�1 = 0

1� 4�1 = 0

The �rst of these reduces to �1 = 2=3, and the second reduces to �1 = 1=4.
These cannot both hold, so Case 3 does not work.
We got solutions in Case 1 and Case 2, but not in Case 3. So which is

the answer? The one that generates a larger value for the objective function.
In Case 1 the maximized objective function took a value of 15 and in Case 2
it took a value of 40, which is obviously higher. So Case 2 is the solution.
To see what we just did, look at Figure 5.3. The three constraints identify

a triangular feasible set. Case 1 is the corner solution where the budget line
meets the y-axis, and Case 2 is the corner solution where the budget line



CHAPTER 5. INEQUALITY CONSTRAINTS 64

20

15

y

x

indifference
curve

Figure 5.3: Linear programming problem

meets the x-axis. Case 3 is an "interior" solution that is on the budget line
but not on either axis. The objective was to �nd the point in the feasible set
that maximized the function f(x; y) = 2x+y. We did this by comparing the
values we got at the two corner solutions, and we chose the corner solution
that gave us the larger value.
The methodology for solving linear programming problems involves �nd-

ing all of the corners and choosing the corner that yields the largest value of
the objective function. A typical problem has more than two dimensions,
so it involves �nding x1; :::; xn, and it has more than one budget constraint.
This generates lots and lots of corners, and the real issue in the study of linear
programming is �nding an algorithm that e¢ ciently checks the corners.

5.5 Kuhn-Tucker conditions

Economists sometimes structure the �rst-order conditions for inequality-
constrained optimization problems di¤erently than the way we have done
it so far. The alternative formulation was developed by Harold Kuhn and
A.W. Tucker, and it is known as the Kuhn-Tucker formulation. The �rst-
order conditions we will derive are known as the Kuhn-Tucker conditions.
Begin with the very general maximization problem, letting x be the vector
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x = (x1; :::; xn):
max
x
f(x)

s.t. g1(x) � b1; :::; g
k(x) � bk

x1 � 0; :::; xn � 0:

There are k "budget-type" constraints and n non-negativity constraints.
To solve this, form the Lagrangian

L(x; �1; :::; �k; v1; :::; vk) = f(x) +
kX
i=1

�i[bi � gi(x)] +
nX
j=1

vjxj:

We get the following �rst-order conditions:

@L
@x1

=
@f

@x1
� �1

@g1

@x1
� :::� �k

@gk

@x1
+ v1 = 0

...
@L
@xn

=
@f

@xn
� �1

@g1

@xn
� :::� �k

@gk

@xn
+ vn = 0

�1
@L
@�1

= �1[b1 � g1(x)] = 0

...

�k
@L
@�k

= �k[bk � gk(x)] = 0

v1
@L
@v1

= v1x1 = 0

...

vn
@L
@vn

= vnxn = 0

�1; :::; �k; v1; :::; vn � 0
There are 2n+ k conditions plus the n+ k nonnegativity constraints for the
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multipliers. It is useful to have some shorthand to shrink this system down:

@L
@xi

= 0 for i = 1; :::; n (5.2)

�j
@L
@�j

= 0 for j = 1; :::; k

vixi = 0 for i = 1; :::; n

�j � 0 for j = 1; :::; k

vi � 0 for i = 1; :::; n

Suppose instead we had constructed a di¤erent Lagrangian:

K(x; �1; :::; �k) = f(x) +
kX
i=1

�i[bi � gi(x)]:

This Lagrangian, known as the Kuhn-Tucker Lagrangian, only has k multipli-
ers for the k budget-type constraints, and no multipliers for the nonnegativity
constraints. The two Lagrangians are related, with

L(x; �1; :::; �k; v1; :::; vk) = K(x; �1; :::; �k) +
nX
j=1

vjxj:

We can rewrite the system of �rst-order conditions (5.2) as

@L
@xi

=
@K

@xi
+ vi = 0 for i = 1; :::; n

�j
@L
@�j

= �j
@K

@�j
= 0 for j = 1; :::; k

vixi = 0 for i = 1; :::; n

�j � 0 for j = 1; :::; k

vi � 0 for i = 1; :::; n

Pay close attention to the �rst and third equations. If vi = 0 then the �rst
equation yields

vi = 0 =)
@K

@xi
= 0 =) xi

@K

@xi
= 0:

On the other hand, if vi > 0 then the i-th inequality constraint, xi � 0, is
binding which means that

vi > 0 =) xi = 0 =) xi
@K

@xi
= 0:
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Either way we have

xi
@K

@xi
= 0 for i = 1; :::; n.

The Kuhn-Tucker conditions use this information. The new set of
�rst-order conditions is

xi
@K

@xi
= 0 for i = 1; :::; n (5.3)

�j
@K

@�j
= 0 for j = 1; :::; k

�j � 0 for j = 1; :::; k

xi � 0 for i = 1; :::; n

This is a system of n + k equations in n + k unknowns plus n + k non-
negativity constraints. Thus, it simpli�es the original set of conditions
by removing n equations and n unknowns. It is also a very symmetric-
looking set of conditions. Remember that the Kuhn-Tucker Lagrangian is
K(x1; :::; xn; �1; :::; �k). Instead of distinguishing between x�s and ��s, let
them all be z�s, in which case the Kuhn-Tucker Lagrangian is K(z1; :::; zn+k).
Then the Kuhn-Tucker conditions reduce to zj@K=@zj = 0 and zj � 0 for
j = 1; :::; n+k. This is fairly easy to remember, which is an advantage. The
key to Kuhn-Tucker conditions, though, is remembering that they are just a
particular reformulation of the standard inequality-constrained optimization
problem with multiple constraints.

5.6 Problems

1. Consider the following problem:

maxx;y x
2y

s.t. 2x+ 3y � 24
4x+ y � 20

The Lagrangian can be written

L(x; y; �1; �2) = x2y + �1(24� 2x� 3y) + �2(20� 4x� y)
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(a) Solve the alternative problem

maxx;y x
2y

s.t. 2x+ 3y = 24

Do the resulting values of x and y satisfy 4x+ y � 20?
(b) Solve the alternative problem

maxx;y x
2y

s.t. 4x+ y = 20

Do the resulting values of x and y satisfy 2x+ 3y � 24?
(c) Based on your answers to (a) and (b), which of the two constraints

bind? What do these imply about the values of �1 and �2?

(d) Solve the original problem.

(e) Draw a graph showing what is going on in this problem.

2. Consider the following problem:

maxx;y x
2y

s.t. 2x+ 3y � 24
4x+ y � 36

The Lagrangian can be written

L(x; y; �1; �2) = x2y + �1(24� 2x� 3y) + �2(36� 4x� y)

(a) Solve the alternative problem

maxx;y x
2y

s.t. 2x+ 3y = 24

Do the resulting values of x and y satisfy 4x+ y � 36?
(b) Solve the alternative problem

maxx;y x
2y

s.t. 4x+ y = 36

Do the resulting values of x and y satisfy 2x+ 3y � 24?
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(c) Based on your answers to (a) and (b), which of the two constraints
bind? What do these imply about the values of �1 and �2?

(d) Solve the original problem.
(e) Draw a graph showing what is going on in this problem.

3. Consider the following problem:

max
x;y

4xy � 3x2

s.t. x+ 4y � 36

5x+ 2y � 45

The Lagrangian can be written

L(x; y; �1; �2) = 4xy � 3x2 + �1(36� x� 4y) + �2(45� 5x� 2y)

(a) Solve the alternative problem

max
x;y

4xy � 3x2

s.t. x+ 4y = 36

Do the resulting values of x and y satisfy 5x+ 2y � 45?
(b) Solve the alternative problem

max
x;y

4xy � 3x2

s.t. 5x+ 2y = 45

Do the resulting values of x and y satisfy x+ 4y � 36?
(c) Find the solution to the original problem, including the values of

�1 and �2.

4. Consider the following problem:

max
x;y

3xy � 8x

s.t. x+ 4y � 24

5x+ 2y � 30

The Lagrangian can be written

L(x; y; �1; �2) = 3xy � 8x+ �1(24� x� 4y) + �2(30� 5x� 2y)
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(a) Solve the alternative problem

max
x;y

3xy � 8x

s.t. x+ 4y = 24

Do the resulting values of x and y satisfy 5x+ 2y � 30?
(b) Solve the alternative problem

max
x;y

3xy � 8x

s.t. 5x+ 2y = 30

Do the resulting values of x and y satisfy x+ 4y � 24?
(c) Find the solution to the original problem, including the values of

�1 and �2.

5. Consider the following problem:

maxx;y x
2y

s.t. 4x+ 2y � 42
x � 0
y � 0

(a) Write down the Kuhn-Tucker Lagrangian for this problem.

(b) Write down the Kuhn-Tucker conditions.

(c) Solve the problem.

6. Consider the following problem:

max
x;y

xy + 40x+ 60y

s.t. x+ y � 12

x; y � 0

(a) Write down the Kuhn-Tucker Lagrangian for this problem.

(b) Write down the Kuhn-Tucker conditions.

(c) Solve the problem.
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CHAPTER

6

Matrices

Matrices are 2-dimensional arrays of numbers, and they are useful for many
things. They also behave di¤erently that ordinary real numbers. This
chapter tells how to work with matrices and what they are for.

6.1 Matrix algebra

A matrix is a rectangular array of numbers, such as the one below:

A =

0@ 6 �5
2 3
�1 4

1A :
Matrices are typically denoted by capital letters. They have dimensions
corresponding to the number of rows and number of columns. The matrix A
above has 3 rows and 2 columns, so it is a 3� 2 matrix. Matrix dimensions
are always written as (# rows) � (# columns).
An element of a matrix is one of the entries. The element in row i and

72
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column j is denoted aij, and so in general a matrix looks like

A =

0BBB@
a11 a12 � � � a1k
a21 a22 � � � a2k
...

...
. . .

...
an1 an2 � � � ank

1CCCA :
The matrix A above is an n � k matrix. A matrix in which the number
of rows equals the number of columns is called a square matrix. In such a
matrix, elements of the form aii are called diagonal elements because they
land on the diagonal of the square matrix.
An n-dimensional vector can be thought of as an n�1matrix. Therefore,

in matrix notation vectors are written vertically:

�x =

0B@ x1
...
xn

1CA :
When we write a vector as a column matrix we typically leave o¤ the accent
and write it simply as x.
Matrix addition is done element by element:0B@ a11 � � � a1k
...

. . .
...

an1 � � � ank

1CA+
0B@ b11 � � � b1k

...
. . .

...
bn1 � � � bnk

1CA =

0B@ a11 + b11 � � � a1k + b1k
...

. . .
...

an1 + bn1 � � � ank + bnk

1CA :
Before one can add matrices, though, it is important to make sure that the
dimensions of the two matrices are identical. In the above example, both
matrices are n� k.
Just like with vectors, it is possible to multiply a matrix by a scalar. This

is done element by element:

tA = t

0B@ a11 � � � a1k
...

. . .
...

an1 � � � ank

1CA =

0B@ ta11 � � � ta1k
...

. . .
...

tan1 � � � tank

1CA :
The big deal in matrix algebra is matrix multiplication. To multiply

matrices A and B, several things are important. First, the order matters, as
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you will see. Second, the number of columns in the �rst matrix must equal
the number of rows in the second. So, one must multiply an n � k matrix
on the left by a k � m matrix on the right. The result will be an n � m
matrix, with the k�s canceling out. The formula for multiplying matrices is
as follows. Let C = AB, with A an n � k matrix and B a k �m matrix.
Then

cij =

kX
s=1

aisbsj:

This is easier to see when we write the matrices A and B side-by-side:

C = AB =

0BBB@
a11 a12 � � � a1k
a21 a22 � � � a2k
...

...
. . .

...
an1 an2 � � � ank

1CCCA
0BBB@
b11 b12 � � � b1m
b21 b22 � � � b2m
...

...
. . .

...
bk1 bk2 � � � bkm

1CCCA :
Element c11 is

c11 = a11b11 + a12b21 + :::+ a1sbs1 + :::+ a1kbk1:

So, element c11 is found by multiplying each member of row 1 in matrix A
by the corresponding member of column 1 in matrix B and then summing.
Element cij is found by multiplying each member of row i in matrix A by
the corresponding member of column j in matrix B and then summing. For
there to be the right number of elements for this to work, the number of
columns in A must equal the number of rows in B.
As an example, multiply the two matrices below:

A =

�
6 �1
4 3

�
, B =

�
3 4
�2 4

�
:

Then

AB =

�
6 � 3 + (�1)(�2) 6 � 4 + (�1)4
4 � 3 + 3(�2) 4 � 4 + 3 � 4

�
=

�
20 20
6 28

�
:

However,

BA =

�
3 � 6 + 4 � 4 3(�1) + 4 � 3
(�2)6 + 4 � 4 (�2)(�1) + 4 � 3

�
=

�
34 9
4 14

�
:
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Obviously, AB 6= BA, and matrix multiplication is not commutative. Be-
cause of this, we use the terminology that we left-multiply by B when we
want BA and right-multiply by B when we want AB.
The square matrix

I =

0BBB@
1 0 � � � 0
0 1 � � � 0
...
...
. . .

...
0 0 � � � 1

1CCCA
is special, and is called the identity matrix. To see why it is special,
consider any n�k matrix A, and let I be the n-dimensional identity matrix.
Letting B = IA, we get bij = 0 � a1j + 0 � a2j + :::+ 1 � aij + :::+ 0 � anj = aij.
So, IA = A. The same thing happens when we right-multiply A by a k-
dimensional identity matrix. Then AI = A. So, multiplying a matrix by
the identity matrix is the same as multiplying an ordinary number by 1.
The transpose of the matrix

A =

0BBB@
a11 a12 � � � a1k
a21 a22 � � � a2k
...

...
. . .

...
an1 an2 � � � ank

1CCCA :
is the matrix AT given by

AT =

0BBB@
a11 a21 � � � an1
a12 a22 � � � an2
...

...
. . .

...
a1k a2k � � � ank

1CCCA :
The transpose is generated by switching the rows and columns of the original
matrix. Because of this, the transpose of an n� k matrix is a k� n matrix.
Note that

(AB)T = BTAT

so that the transpose of the product of two matrices is the product of the
transposes of the two matrices, but you have to switch the order of the ma-
trices. To check this, consider the following example employing the same
two matrices we used above.

A =

�
6 �1
4 3

�
, B =

�
3 4
�2 4

�
:
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AB =

�
20 20
6 28

�
, (AB)T =

�
20 6
20 28

�
:

AT =

�
6 4
�1 3

�
, BT =

�
3 �2
4 4

�
:

BTAT =

�
3 �2
4 4

��
6 4
�1 3

�
=

�
20 6
20 28

�
= (AB)T ;

as desired, but

ATBT =

�
6 4
�1 3

��
3 �2
4 4

�
=

�
34 4
9 14

�
= (BA)T :

6.2 Uses of matrices

Suppose that you have a system of n equations in n unknowns, such as this
one:

a11x1 + :::+ a1nxn = b1
a21x1 + :::+ a2nxn = b2

...
an1x1 + :::+ annxn = bn

(6.1)

We can write this system easily using matrix notation. Letting

A =

0B@ a11 � � � a1n
...

. . .
...

an1 � � � ann

1CA , x =
0B@ x1

...
xn

1CA , and b =
0B@ b1

...
bn

1CA ,
we can rewrite the system of equations (6.1) as

Ax = b: (6.2)

The primary use of matrices is to solve systems of equations. As you have
seen in the optimization examples, systems of equations regularly arise in
economics.
Equation (6.2) raises two questions. First, when does a solution exist,

that is, when can we �nd a vector x such that Ax = b? Second, how do we
�nd the solution when it exists? The answers to both questions depend on
the inverse matrix A�1, which is a matrix having the property that

A�1A = AA�1 = I,
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that is, the matrix that you multiply A by to get the identity matrix. Re-
membering that the identity matrix plays the role of the number 1 in matrix
multiplication, and that for ordinary numbers the inverse of y is the num-
ber y�1 such that y�1 � y = 1, this formula is exactly what we are looking
for. If A has an inverse (and that is a big if), then (6.2) can be solved by
left-multiplying both sides of the equation by the inverse matrix A�1:

A�1Ax = A�1b

x = A�1b

For ordinary real numbers, every number except 0 has a multiplicative
inverse. Many more matrices than just one fail to have an inverse, though,
so we must devote considerable attention to whether or not a matrix has an
inverse.
A second use of matrices is for deriving second-order conditions for multi-

variable optimization problems. Recall that in a single-variable optimization
problem with objective function f , the second-order condition is determined
by the sign of the second derivative f 00. When f is a function of several
variables, however, we can write the vector of �rst partial derivatives0B@

@f
@x1
...
@f
@xn

1CA
and the matrix of second partials0BBBB@

@2f
@x21

@2f
@x1@x2

� � � @2f
@x1@xn

@2f
@x2@x1

@2f
@x22

� � � @2f
@x2@xn

...
...

. . .
...

@2f
@xn@x1

@2f
@xn@x2

� � � @2f
@x2n

1CCCCA :
The relevant second-order conditions will come from conditions on the matrix
of second partials, and we will do this in Chapter 9.

6.3 Determinants

Determinants of matrices are useful for determining (hence the name) whether
a matrix has an inverse and also for solving equations such as (6.2). The de-
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terminant of a square matrix A (and the matrix must be square) is denoted
jAj. De�ning it depends on the size of the matrix.
Start with a 1� 1 matrix A = (a11). The determinant jAj is simply a11.

It can be either positive or negative, so don�t confuse the determinant with
the absolute value, even though they both use the same symbol.
Now look at a 2� 2 matrix

A =

�
a11 a12
a21 a22

�
:

Here the determinant is de�ned as

jAj =
���� a11 a12
a21 a22

���� = a11a22 � a21a12:
For a 3 � 3 matrix we go through some more steps. Begin with the 3 � 3
matrix

A =

0@ a11 a12 a13
a21 a22 a23
a31 a32 a33

1A :
We can get a submatrix of A by deleting a row and column. For example, if
we delete the second row and the �rst column we are left with the submatrix

A21 =

�
a12 a13
a32 a33

�
:

In general, submatrix Aij is obtained from A by deleting row i and column
j. Note that there is one submatrix for each element, and you can get that
submatrix by eliminating the element�s row and column from the original
matrix. Every element also has something called a cofactor which is based
on the element�s submatrix. Speci�cally, the cofactor of aij is the number
cij given by

cij = (�1)i+jjAijj,
that is, it is the determinant of the submatrix Aij multiplied by �1 if i + j
is odd and multiplied by 1 if i+ j is even.
Using these de�nitions we can �nally get the determinant of a 3�3matrix,

or any other square matrix for that matter. There are two ways to do it.
The most common is to choose a column j. Then

jAj = a1jc1j + a2jc2j + :::+ anjcnj.
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Before we see what this means for a 3 � 3 matrix let�s check that it works
for a 2� 2 matrix. Choosing column j = 1 gives us���� a11 a12

a21 a22

���� = a11c11 + a12c12 = a11a22 + a12(�a21);
where c11 = a22 because 1 + 1 is even and c21 = �a12 because 1 + 2 is odd.
We get exactly the same thing if we choose the second column, j = 2:���� a11 a12

a21 a22

���� = a12c12 + a22c22 = a12(�a21) + a22a11:
Finally, let�s look at a 3� 3 matrix, choosing j = 1.������

a11 a12 a13
a21 a22 a23
a31 a32 a33

������ = a11c11 + a21c21 + a31c31

= a11(a22a33 � a32a23)
�a21(a12a33 � a32a13)
+a31(a12a23 � a22a13):

We can also �nd determinants by choosing a row. If we choose row i,
then the determinant is given by

jAj = ai1ci1 + ai2ci2 + :::+ aincin.
The freedom to choose any row or column allows one to use zeros strategically.
For example, when evaluating the determinant������

6 8 �1
2 0 0
�9 4 7

������
it would be best to choose the second row because it has two zeros, and the
determinant is simply a21c21 = 2(�60) = �120:

6.4 Cramer�s rule

The process of using determinants to solve the system of equations given by
Ax = b is known as Cramer�s rule. Begin with the matrix

A =

0B@ a11 � � � a1n
...

. . .
...

an1 � � � ann

1CA :
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Construct the matrix Bi from A by replacing the i-th column of A with the
column vector b, so that

B1 =

0BBB@
b1 a12 � � � a1n
b2 a22 � � � a2n
...

...
. . .

...
bn an2 � � � ann

1CCCA
and

Bi =

0BBB@
a11 � � � a1(i�1) b1 a1(i+1) � � � a1n
a21 � � � a2(i�1) b2 a2(i+1) � � � a2n
...

. . .
...

...
...

. . .
...

an1 � � � an(i�1) bn an(i+1) � � � ann

1CCCA :
According to Cramer�s rule, the solution to Ax = b is the column vector x
where

xi =
jBij
jAj :

Let�s make sure this works using a simple example. The system of
equations is

4x1 + 3x2 = 18

5x1 � 3x2 = 9

Adding the two equations together yields

9x1 = 27

x1 = 3

x2 = 2

Now let�s do it using Cramer�s rule. We have

A =

�
4 3
5 �3

�
and b =

�
18
9

�
:

Generate the matrices

B1 =

�
18 3
9 �3

�
and B2 =

�
4 18
5 9

�
:
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Now compute determinants to get

jAj = �27, jB1j = �81, and jB2j = �54:

Applying Cramer�s rule we get

x =

 
jB1j
jAj
jB2j
jAj

!
=

� �81
�27
�54
�27

�
=

�
3
2

�
:

6.5 Inverses of matrices

One important implication of Cramer�s rule links the determinant of A to
the existence of an inverse. To see why, recall that the solution, if it exists,
to the system Ax = b is x = A�1b. Also, we know from Cramer�s rule that
xi = jBij = jAj. For this number to exist, it must be the case that jAj 6= 0.
This is su¢ ciently important that it has a name: the matrix A is singular
if jAj = 0 and it is nonsingular if jAj 6= 0. Singular matrices do not have
inverses, but nonsingular matrices do.
With some clever manipulation we can use Cramer�s rule to invert the

matrix A. To see how, recall that the inverse is de�ned so that

AA�1 = I.

We want to �nd A�1, and it helps to de�ne

A�1 =

0B@ x11 � � � x1n
...

. . .
...

xn1 � � � xnn

1CA
and

xi =

0B@ x1i
...
xni

1CA :
Remember that the coordinate vector �ei has zeros everywhere except for the
i-th element, which is 1, and so

e1 =

0BBB@
1
0
...
0

1CCCA
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and ei is the column vector with eii = 1 and e
i
j = 0 when j 6= i. Note that ei

is the i-th column of the identity matrix. Then i-th column of the inverse
matrix A�1 can be found by applying Cramer�s rule to the system

Axi = ei. (6.3)

Construct the matrix Bij from A by replacing the j-th column of A with the
column vector ei. Then

Bij =

0BBBBBBBBB@

a11 � � � a1(j�1) 0 a1(j+1) � � � a1n
...

. . .
...

...
...

. . .
...

a(i�1)1 � � � a(i�1)(j�1) 0 a(i�1)(j+1) � � � a(i�1)n
ai1 � � � ai(j�1) 1 ai(j+1) � � � ain
a(i+1)1 � � � a(i+1)(j�1) 0 a(i+1)(j+1) � � � a(i+1)n
...

. . .
...

...
...

. . .
...

an1 � � � an(j�1) 0 an(j+1) � � � ann

1CCCCCCCCCA
The solution to (6.3) is

xji =

��Bij��
jAj :

Once again we can only get an inverse if jAj 6= 0.
We can simplify this further. Note that only one element of the j-th

column of Bij is non-zero. So, we can take the determinant of Bij by using
the j-th column and getting��Bij�� = (�1)i+j jAijj = cij,
which is a cofactor of the matrix A. So, we get the formula for the inverse:

xji =
(�1)i+j jAijj

jAj :

Note that the subscript on x is ji but the subscript on A is ij.
Let�s check to see if this works for a 2� 2 matrix. Use the matrix

A =

�
a b
c d

�
:

We get

B11 =

�
1 b
0 d

�
, B21 =

�
0 b
1 d

�
, B12 =

�
a 1
c 0

�
, and B22 =

�
a 0
c 1

�
:
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The determinants are��B11�� = d, ��B21�� = �b, ��B12�� = �c, and ��B22�� = a.
We also know that jAj = ad� bc. Thus,

A�1 =
1

ad� bc

�
d �b
�c a

�
:

We can check this easily:

A�1A =
1

ad� bc

�
d �b
�c a

��
a b
c d

�
=

1

ad� bc

�
ad� bc �ba+ ba
�ca+ ac �cb+ ad

�
=

�
1 0
0 1

�
:

6.6 Problems

1. Perform the following computations:

(a) 4
�
6 �4 2
3 3 9

�
� 5

�
1 0 6
2 3 �5

�
(b)

�
2 1
�1 4

��
3 �2 �1
4 4 1

�

(c)

0@ 2 1 0 0
3 2 1 0
1 1 0 7

1A
0BB@

2 2 1
3 �3 0
7 2 �1
�4 �5 0

1CCA
(d)

�
2 1 1

�0@ 3 1 �1
2 1 1
1 2 2

1A0@ 5
�1
�1

1A
2. Perform the following computations:

(a) 6

0@ 3 �3
�4 5
1 2

1A� 1
2

0@ 8 10
�6 �4
�6 2

1A
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(b)

0@ 5 1 3
4 0 6
�1 2 �1

1A0@ 0 �4
1 5
2 5

1A

(c)
�
6 �1 3 0
1 5 2 1

�0BB@
5 �1 4
0 �2 4
1 �3 4
0 6 4

1CCA
(d)

�
10 5 1

�0@ 2 0 1
1 3 1
5 0 2

1A0@ 5
�1
�3

1A
3. Find the determinants of the following matrices:

(a)
�

2 1
�4 5

�

(b)

0@ 3 1 0
�2 7 �2
2 0 6

1A
4. Find the determinants of the following matrices:

(a)
�

3 6
�4 �1

�

(b)

0@ 2 0 �1
1 3 0
0 6 �1

1A
5. Use Cramer�s rule to solve the following system of equations:

6x� 2y � 3z = 1

2x+ 4y + z = �2
3x� z = 8

6. Use Cramer�s rule to solve the following system of equations:

5x� 2y + z = 9

3x� y = 9

3y + 2z = 15
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7. Invert the following matrices:

(a)
�

2 3
�2 1

�

(b)

0@ 1 1 2
0 1 1
1 1 0

1A
8. Invert the following matrices:

(a)
�
�4 1
2 �4

�

(b)

0@ 5 1 �1
0 2 1
0 1 3

1A



CHAPTER

7

Systems of equations

Think about the general system of equations

Ax = b (7.1)

where A is an n� n matrix and x and b are n� 1 vectors. This expands to
the system of equations

a11x1 + a12x2 + :::+ a1nxn = b1

a21x1 + a22x2 + :::+ a2nxn = b2
...

an1x1 + an2x2 + :::+ annxn = bn

The task for this chapter is to determine (1) whether the system has a solution
(x1; :::; xn), and (2) whether that solution is unique.
We will use three examples to motivate our results. They use n = 2 to

allow graphical analysis.

86
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Example 3

2x+ y = 6

x� y = �3

The solution to this one is (x; y) = (1; 4).

Example 4

x� 2y = 1

4y � 2x = �2

This one has an in�nite number of solutions de�ned by (x; y) = (x; x�1
2
).

Example 5

x� y = 4

2y � 2x = 5

This one has no solution.

7.1 Identifying the number of solutions

7.1.1 The inverse approach

If A has an inverse A�1, then left-multiplying both sides of (7.1) by A�1

yields x = A�1b. So, what we really want to know is, when does an inverse
exist? We already know that an inverse exists if the determinant is nonzero,
that is, if jAj 6= 0.

7.1.2 Row-echelon decomposition

Write the augmented matrix

B = (Ajb) =

0B@ a11 � � � a1n
...

. . .
...

an1 � � � ann

�������
b1
...
bn

1CA
which is n�(n+1). The goal is to transform the matrixB through operations
that consist of multiplying one row by a scalar and adding it to another row,
and ending up with a matrix in which all the elements below the diagonal
are 0. This is the row-echelon form of the matrix.
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Example 6 (3 continued) Form the augmented matrix

B =

�
2 1
1 �1

���� 6
�3

�
Multiply the �rst row by �1

2
and add it to the second row to get

R =

�
2 1

1� 1 �1� 1
2

���� 6
�3� 3

�
=

�
2 1
0 �3

2

���� 6
�6

�
Example 7 (4 continued) Form the augmented matrix

B =

�
1 �2
�2 4

���� 1
�2

�
Multiply the �rst row by 2 and add it to the second row to get

R =

�
1 �2

�2 + 2 4� 4

���� 1
�2 + 2

�
=

�
1 �2
0 0

���� 10
�

Example 8 (5 continued) Form the augmented matrix

B =

�
1 �1
�2 2

���� 45
�

Multiply the �rst row by 2 and add it to the second row to get

R =

�
1 �1

�2 + 2 2� 2

���� 4
5 + 8

�
=

�
1 �1
0 0

���� 413
�

Example 3 has a unique solution, Example 4 has an in�nite number of
them, and Example 5 has no solution. These results correspond to properties
of the row-echelon matrix R. If the row-echelon form of the augmented
matrix has only nonzero diagonal elements, there is a unique solution. If it
has some rows that are zero, there are in�nitely many solutions. If there are
rows with zeros everywhere except in the last column, there is no solution.

De�nition 1 The rank of a matrix is the number of nonzero rows in its
row-echelon form:

Proposition 9 The n� n square matrix A has an inverse if and only if its
rank is n.
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x –y = 4

2y –2x = 5

x – 2y = 1
4y – 2x = –22x + y = 6

x –y = –3
y

x

y

x

y

x

Figure 7.1: Graphing in (x; y) space: One solution when the lines inter-
sect (left graph), in�nite number of solutions when the lines coincide (center
graph), and no solutions when the lines are parallel (right graph)

7.1.3 Graphing in (x,y) space

This is pretty simple and is shown in Figure 7.1. The equations are lines. In
example 3 the equations constitute two di¤erent lines that cross at a single
point. In example 4 the lines coincide. In example 5 the lines are parallel.
We get a unique solution in example 3, an in�nite number of them in example
4, and no solution in example 5.
What happens if we move to three dimensions? An equation reduces the

dimension by one, so each equation identi�es a plane. Two planes intersect
in a line. The intersection of a line and a plane is a point. So, we get a
unique solution if the planes intersect in a single point, an in�nite number of
solutions if the three planes intersect in a line or in a plane, and no solution
if two or more of the planes are parallel.

7.1.4 Graphing in column space

This approach is completely di¤erent but really useful. Each column of A is
an n� 1 vector. So is b. The question becomes, is b in the column space,
that is, the space spanned by the columns of A?
A linear combination of vectors �a and �b is given by x�a + y�b, where x

and y are scalars.
The span of the vectors �x and �y is the set of linear combinations of the
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b = (4,5)

(–1,2)

(1,–2)

(–2,4)

b = (1,–2)
b = (6,–3)

(1,­1)

(2,1)

y

x

y

x

y

x

Figure 7.2: Graphing in the column space: When the vector b is in the
column space (left graph and center graph) a solution exists, but when the
vector b is not in the column space there is no solution (right graph)

two vectors.

Example 9 (3 continued) The column vectors are (2; 1) and (1;�1). These
span the entire plane. For any vector (z1; z2), it is possible to �nd numbers
x and y that solve x(2; 1) + y(1;�1) = (z1; z2). Written in matrix notation
this is �

2 1
1 �1

��
x
y

�
=

�
z1
z2

�
:

We already know that the matrix has an inverse, so we can solve this.
Look at left graph in Figure 7.2. The column space is spanned by the

two vectors (2; 1) and (1;�1). The vector b = (6;�3) lies in the span of the
column vectors. This leads to our rule for a solution: If b is in the span
of the columns of A, there is a solution.

Example 10 (4 continued) In the center graph in Figure 7.2, the column
vectors are (1;�2) and (�2; 4). They are on the same line, so they only
span that line. In this case the vector b = (1;�2) is also on that line, so
there is a solution.

Example 11 (5 continued) In the right panel of Figure 7.2, the column
vectors are (1;�2) and (�1; 2), which span a single line. This time, though,
the vector b = (4; 5) is not on that line, and there is no solution.
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Two vectors �a and �b are linearly dependent if there exists a scalar r 6= 0
such that �a = r�b.
Two vectors �a and �b are linearly independent if there is no scalar r 6= 0

such that �a = r�b. Equivalently, �a and �b are linearly independent if there do
not exist scalars r1 and r2, not both equal to zero, such that

r1�a+ r2�b = �0: (7.2)

One more way of writing this is that �a and �b are linearly independent if the
only solution to the above equation has r1 = r2 = 0.
This last one has some impact when we write it in matrix form. Suppose

that the two vectors are 2-dimensional, and construct the matrix A by using
the vectors �a and �b as its columns:

A =

�
a1 b1
a2 b2

�
:

Now we can write (7.2) as

A

�
r1
r2

�
=

�
0
0

�
:

If A has an inverse, there is a unique solution to this equation, given by�
r1
r2

�
= A�1

�
0
0

�
=

�
0
0

�
:

So, invertibility of A and the linear independence of its columns are inextri-
cably linked.

Proposition 10 The square matrix A has an inverse if its columns are mu-
tually linearly independent.

7.2 Summary of results

The system of n linear equations in n unknowns given by

Ax = b

has a unique solution if:
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1. A�1 exists.

2. jAj 6= 0.

3. The row-echelon form of A has no rows with all zeros.

4. A has rank n.

5. The columns of A span n-dimensional space.

6. The columns of A are mutually linearly independent.

The system of n linear equations in n unknowns given by Ax = b has an
in�nite number of solutions if:

1. The row-echelon form of the augmented matrix (Ajb) has rows with all
zeros.

2. The vector b is contained in the span of a subset of the columns of A.

The system of n linear equations in n unknowns given by Ax = b has no
solution if:

1. The row-echelon form of the augmented matrix (Ajb) has at least one
row with all zeros except in the last column.

2. The vector b is not contained in the span of the columns of A.

7.3 Problems

1. Determine whether or not the following systems of equations have a
unique solution, an in�nite number of solutions, or no solution.

(a)

3x+ 6y = 4

2x� 5z = 8

x� y � z = �10
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(b)

4x� y + 8z = 160

17x� 8y + 10z = 200

�3x+ 2y + 2z = 40

(c)

2x� 3y = 6

3x+ 5z = 15

2x+ 6y + 10z = 18

(d)

4x� y + 8z = 30

3x+ 2z = 20

5x+ y � 2z = 40

(e)

6x� y � z = 3

5x+ 2y � 2z = 10

y � 2z = 4

2. Find the values of a for which the following matrices do not have an
inverse.

(a) �
6 �1
2 a

�
(b) 0@ 5 a 0

4 2 1
�1 3 1

1A
(c) �

5 3
�3 a

�
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(d) 0@ �1 3 1
0 5 a
6 2 1

1A



CHAPTER

8

Using linear algebra in economics

8.1 IS-LM analysis

Consider the following model of a closed macroeconomy:

Y = C + I +G

C = c((1� t)Y )
I = i(R)

M = P �m(Y;R)

with

0 < c0 <
1

1� t
i0 < 0

mY > 0;mR < 0

Here Y is GDP, which you can think of as production, income, or spending.
The variables C, I, and G are the spending components of GDP, with C

95
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standing for consumption, I for investment (which is spending by businesses
on new capital and by consumers on new housing, not what you do in the
stock market), and G for government spending. The �rst equation says
that total spending Y is equal to the sum of the components of spending,
C + I + G. There are no imports or exports, so this is a closed-economy
model.
The amount of consumption depends on consumers�after-tax income, and

when Y is income and t is the tax rate, after-tax (or disposable) income is
(1 � t)Y . So the second equation says that consumption is a function c(�)
of disposable income, and c0 > 0 means that it is an increasing function.
Investment is typically spending on large items, and it is often �nanced

through borrowing. Because of this, investment depends on the interest rate
R, and when the interest rate increases borrowing becomes more expensive
and the amount of investment falls. Consequently the investment function
i(R) is decreasing.
M is money supply, and the right-hand side of the fourth equation is

money demand. P is the price level, and when things become more expensive
it takes more money to purchase the same amount of stu¤. When income Y
increases people want to buy more stu¤, and they need more money to do it
with, so money demand increases when income increases. Also, since money
is cash and checking account balances, which tend not to earn interest, and so
when interest rates rise people tend to move some of their assets into interest-
bearing accounts. This means that money demand falls when interest rates
rise.
The four equations provide a model of the economy, known as the IS-LM

model. The �rst three equations describe the IS curve from macro courses
and the fourth equation describes the LM curve. The model is useful for
describing a closed economy in the short run, that is, before the price level
has time to adjust.
At this point you should be wondering why we care. The answer is that

we want to do some comparative statics analysis. The variables G, t, andM
are exogenous policy variables. P is predetermined and assumed constant for
the problem. Everything else is endogenous, so everything else is a function
of G, t, and M . We are primarily interested in the variables Y and R, and
we want to see how they change when the policy variables change.
Let�s look for the comparative statics derivatives dY=dG and dR=dG.

To �nd them, �rst simplify the system of four equations to a system of two
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equations:

Y = c((1� t)Y ) + i(R) +G
M = P �m(Y;R)

Implicitly di¤erentiate with respect to G to get

dY

dG
= (1� t)c0dY

dG
+ i0

dR

dG
+ 1

0 = P �mY
dY

dG
+ P �mR

dR

dG

Rearrange as

dY

dG
� (1� t)c0dY

dG
� i0dR

dG
= 1

mY
dY

dG
+mR

dR

dG
= 0

We can write this in matrix form�
1� (1� t)c0 �i0

mY mR

��
dY
dG
dR
dG

�
=

�
1
0

�
Now use Cramer�s rule to solve for dY=dG and dR=dG:

dY

dG
=

���� 1 �i0
0 mR

�������� 1� (1� t)c0 �i0
mY mR

���� =
mR

[1� (1� t)c0]mR +mY i0
:

Both the numerator and denominator are negative, so dY=dG > 0. GDP
rises when government spending increases. Now for interest rates:

dR

dG
=

���� 1� (1� t)c0 1
mY 0

�������� 1� (1� t)c0 �i0
mY mR

���� =
�mY

[1� (1� t)c0]mR +mY i0
:

The numerator is negative and so is the denominator. Thus, dR=dG > 0.
An increase in government spending increases both GDP and interest rates
in the short run.
It is also possible to �nd the comparative statics derivatives dY=dt, dR=dt,

dY=dM , and dR=dM . You should �gure them out yourselves.
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8.2 Econometrics

We want to look at the estimation equation

y
(n�1)

= X
(n�k)

�
(k�1)

+ e:
(n�1)

(8.1)

The matrix y contains the data on our dependent variable, and the matrix X
contains the data on the independent, or explanatory, variables. Each row
is an observation, and each column is an explanatory variable. From the
equation we see that there are n observations and k explanatory variables.
The matrix � is a vector of k coe¢ cients, one for each of the k explanatory
variables. The estimates will not be perfect, and so the matrix e contains
error terms, one for each of the n observations. The fundamental problem in
econometrics is to use data to estimate the coe¢ cients in � in order to make
the errors e small. The notion of "small," and the one that is consistent
with the standard practice in econometrics, is to make the sum of the squared
errors as small as possible.

8.2.1 Least squares analysis

We want to minimize the sum of the squared errors. Rewrite (8.1) as

e = y �X�

and note that

eT e =
nX
i=1

e2i :

Then

eT e = (y �X�)T (y �X�)
= yTy � �TXTy � yTX� + �TXTX�

We want to minimize this expression with respect to the parameter vector �.
But notice that there is a � and a �T in the expression. Let�s treat these as
two separate variables to get two FOCs:

�XTy +XTX� = 0

�yTX + �TXTX = 0
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These are two copies of the same equation, because the �rst is the transpose
of the second. So let�s use the �rst one because it has � instead of �T .
Solving for � yields

XTX� = XTy

�̂ = (XTX)�1XTy

We call �̂ the OLS estimator. Note that it is determined entirely by the data,
that is, by the independent variable matrix X and the dependent variable
vector y.

8.2.2 A lame example

Consider a regression with two observations and one independent variable,
with the data given in the table below.

Observation Dependent Independent
number variable y variable X
1 4 3
2 8 4

There is no constant. Our two observations lead to the two equations

4 = 3� + e1

8 = 4� + e2

We want to �nd the value of � that minimizes e21 + e
2
2.

Since e1 = 4� 3� and e2 = 8� 4�, we get

e21 + e
2
2 = (4� 3�)2 + (8� 4�)2

= 16� 24� + 9�2 + 64� 64� + 16�2

= 80� 88� + 25�2:

Minimize this with respect to �. The FOC is

�88 + 50� = 0

� =
88

50
=
44

25
:
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e Xβ
y = (4,8)

X =(3,4)

x2

x1

Figure 8.1: Graphing the lame example in column space

Now let�s do it with matrices. The two equations can be written�
4
8

�
=

�
3
4

�
(�) +

�
e1
e2

�
:

The OLS estimator is

�̂ = (XTX)�1XTy

=

��
3 4

�� 3
4

���1 �
3 4

�� 4
8

�
= (25)�1(44) =

44

25
:

We get the same answer.

8.2.3 Graphing in column space

We want to graph the previous example in column space. The example is
lame for precisely this reason �so I can graph it in two dimensions.
The key here is to think about what we are doing when we �nd the value

of � to minimize e21 + e
2
2. X is a point, shown by the vector X = (3; 4)

in Figure 8.1, and X� is the equation of the line through that point. y is
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another point, shown by the vector y = (4; 8) in the �gure. e is the vector
connecting some point X�̂ on the line X� to the point y. e21 + e

2
2 is the

square of the length of e, so we want to minimize the length of e, and we
do that by �nding the point on the line X� that is closest to the point y.
Graphically, the closest point is the one that causes the vector e to be at a
right angle to the vector X.
Two vectors �a and �b are orthogonal if �a � �b = 0. This means we can

�nd our coe¢ cients by having the vector e be orthogonal to the vector X.
Remembering that e = y �X�, we get

X � (y �X�̂) = 0:

Now notice that if we write the two vectors �a and �b as column matrices A
and B, we have

�a � �b = ATB:
Thus we can rewrite the above expression as

XT (y �X�̂) = 0

XTy �XTX�̂ = 0

XTX�̂ = XTy

�̂ = (XTX)�1XTy;

which is exactly the answer we got before.

8.2.4 Interpreting some matrices

We have the estimated parameters given by

�̂ = (XTX)�1XTy:

This tells us that the predicted values of y are

ŷ = X�̂ = X(XTX)�1XTy:

The matrix
X(XTX)�1XT

is a projection matrix, and it projects the vector y onto the column space
of X.
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The residuals vector can be written

e = y �X�̂
= (I �X(XTX)�1XT )y:

The two matrices X(XTX)�1XT and (I �X(XTX)�1XT ) have the spe-
cial property that they are idempotent, that is, they satisfy the property
that

AA = A.

Geometrically it is clear why this happens. Suppose we apply the projection
matrix X(XTX)�1XT to the vector y. That projects y onto the column
space of X, so that X(XTX)�1XTy lies in the column space of X. If
we apply the same projection matrix a second time, it doesn�t do anything
because y is already in the column space of X. Similarly, the matrix (I �
X(XTX)�1XT ) projects y onto the space that is orthogonal to the column
space of X. Doing it a second time does nothing, because it is projecting
into the same space a second time.

8.3 Stability of dynamic systems

In macroeconomics and time series econometrics a common theme is the
stability of the economy. In this section I show how stability works and
relate stability to matrices.

8.3.1 Stability with a single variable

A dynamic system takes the form of

yt+1 = ayt:

The variable t denotes the period number, so period t+ 1 is the period that
immediately follows period t. The variable we are interested in is y, and, in
particular, we would like to know how y varies over time. The initial period
is period 0, and the initial value of yt is y0, which for the sake of argument
we will assume is positive. The process is not very interesting if a = 0,
because then y1 = y2 = y3 = ::: = 0, and it�s also not very interesting if
a = 1, because then y1 = y2 = ::: = y0. We want some movement in yt, so
let�s assume that a 6= 0 and a 6= 1.
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The single-variable system is pretty straightforward (some might even say
lame), and it follows the following process:

y1 = ay0

y2 = ay1 = a
2y0

...

yt = aty0
...

The process y0; y1; ::: is if it eventually converges to a �nite value, or, in
mathematical terms, if there exists a value y such that

lim
t!1

yt = y:

If the process is not stable then it explodes, diverging to either +1 or �1.
Whether or not the process is stable is determined by the magnitude of

the parameter a. To see how, look at

lim
t!1

yt = lim
t!1

aty0 = y0 lim
t!1

at:

If a > 1 then at ! 1, and the process cannot be stationary unless y0 just
happens to be zero, which is unlikely. Similarly, if a < �1 the process also
diverges, this time cycling between positive and negative values depending
on whether t is positive or negative, respectively (because y0 is positive).
On the other hand, if 0 < a < 1, the value at < 1 and thus yt = aty0 < y0.
What�s more, as t!1, the quantity at ! 0, and therefore yt ! 0. Thus,
the process is stable when a 2 [0; 1). It also turns out to be stable when
�1 < a < 0. The reasoning is the same. When a 2 (�1; 0) we have
at 2 (�1; 1) and limt!1 a

t = 0.
This reasoning gives us two stability conditions:

jaj < 1

lim
t!1

yt = 0:
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8.3.2 Stability with two variables

All of that was pretty simple. Let�s look at a dynamic system with two
variables:

yt+1 = ayt + bzt

zt+1 = cyt + dzt

Now both variables depend on the past values of both variables. When is
this system stable?
We can write the system in matrix form:�

yt+1
zt+1

�
=

�
a b
c d

��
yt
zt

�
; (8.2)

or, in shorthand notation,
�yt+1 = A�yt.

But this gives us a really complicated system. Sure, we know that�
yt
zt

�
=

�
a b
c d

�t�
y0
z0

�
;

but the matrix �
a b
c d

�t
is really complicated. For example,�

a b
c d

�3
=

�
a3 + 2bca+ bcd b (a2 + ad+ d2 + bc)

c (a2 + ad+ d2 + bc) d3 + 2bcd+ abc

�
and �

a b
c d

�10
is too big to �t on the page.
Things would be easy if the matrix was diagonal, that is, if b = c = 0.

Then we would have two separate single-variable dynamic processes

yt+1 = ayt

zt+1 = dzt
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and we already know the stability conditions for these. But the matrix is
not diagonal. So let�s mess with things to get a system with a diagonal
matrix. It will take a while, so just remember the goal when we get there:
we want to generate a system that looks like

�xt+1 =

�
�1 0
0 �2

�
�xt (8.3)

because then we can treat the stability of the elements of the vector �x sepa-
rately.

8.3.3 Eigenvalues and eigenvectors

Begin by remembering that I is the identity matrix. An eigenvalue of the
square matrix A is a value � such that

det(A� �I) =
���� a� � b

c d� �

���� = 0.
Taking the determinant yields���� a� � b

c d� �

���� = ad� a�� d�+ �2 � bc:
So, the eigenvalues are the solutions to the quadratic equation

�2 � (a+ d)�+ (ad� bc) = 0.

In general quadratic equations have two solutions, call them �1 and �2.
For example, suppose that the matrix A is

A =

�
3 2
6 �1

�
:

The eigenvalues satisfy the equation

�2 � (3� 1)�+ (�3� 12) = 0

�2 � 2�� 15 = 0

� = 5;�3:
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These are the eigenvalues of A. Look at the two matrices we get from the
formula A� �I: �

3� 5 2
6 �1� 5

�
=

�
�2 2
6 �6

�
�
3� (�3) 2

6 �1� (�3)

�
=

�
6 2
6 2

�
and both of these matrices are singular, which is what you get when you
make the determinant equal to zero.
An eigenvector of A is a vector v such that

(A� �I)v = 0

where � is an eigenvalue of A. For our example, the two eigenvectors are
the solutions to �

�2 2
6 �6

��
v11
v21

�
=

�
0
0

�
and �

6 2
6 2

��
v12
v22

�
=

�
0
0

�
;

where I made the second subscript denote the number of the eigenvector
and the �rst subscript denote the element of that eigenvector. These two
equations have simple solutions. The �rst equation holds when�

v11
v21

�
=

�
1
1

�
because �

�2 2
6 �6

��
1
1

�
=

�
0
0

�
;

and the second equation holds when�
v12
v22

�
=

�
1
�3

�
because �

6 2
6 2

��
1
�3

�
=

�
0
0

�
:
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The relationship between eigenvalues and eigenvectors is useful for our
task. Recall that if � is an eigenvalue and v is an eigenvector then

(A� �I)v = 0

Av � �Iv = 0

Av = �v:

In particular, we have

A

�
v11
v21

�
= �1

�
v11
v21

�
and

A

�
v12
v22

�
= �2

�
v12
v22

�
:

Construct the matrix V so that the two eigenvectors are columns:

V =

�
v11 v12
v21 v22

�
:

Then we have

AV =

�
A

�
v11
v21

�
A

�
v12
v22

� �
=

�
�1

�
v11
v21

�
�2

�
v12
v22

� �
=

�
v11 v12
v21 v22

��
�1 0
0 �2

�
= V

�
�1 0
0 �2

�
:

We are almost there. If V has an inverse, V �1, we can left-multiply both
sides by V �1 to get

V �1AV =

�
�1 0
0 �2

�
: (8.4)

This is the diagonal matrix we were looking for to make our dynamic system
easy.
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8.3.4 Back to the dynamic system

Go back to the dynamic system

�yt+1 = A�yt:

Create a di¤erent vector �x according to

�x = V �1�y,

where V is the matrix of eigenvectors we constructed above. This implies
that

�y = V �x: (8.5)

Then
�xt+1 = V

�1�yt+1:

Since �yt+1 = A�yt, we get

�xt+1 = V �1 (A�yt)

=
�
V �1A

�
�yt

= (V �1A) (V �xt)

=
�
V �1AV

�
�xt:

We �gured out the formula for V �1AV in equation (8.4), which gives us

�xt+1 =

�
�1 0
0 �2

�
�xt:

But this is exactly the diagonal system we wanted in equation (8.3). So we
are there. It�s about time.
Let�s look back at what we have. We began with a matrix A. We

found its two eigenvalues �1 and �2, and we found the two corresponding
eigenvectors and combined them to form the matrix V . All of this comes
from the matrix A, so we haven�t added anything that wasn�t in the problem.
But our original problem was about the vector �yt, and our new problem is
about the vector �xt.
Using the intuition we gained from the section with a single-variable dy-

namic system, we say that the process �y0; �y1; ::: is stable if

lim
t!1

�yt = 0:
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The dynamic process �yt+1 = A�yt was hard to work with, and so it was di¢ cult
to determine whether or not it was stable. But the dynamic process�

wt+1
xt+1

�
=

�
�1 0
0 �2

��
wt
xt

�
is easy to work with, because multiplying it out yields the two simple, single-
variable equations

wt+1 = �1wt

xt+1 = �2xt:

And we know the stability conditions for single-variable equations. The �rst
one is stable if j�1j < 1, and the second one is stable if j�2j < 1. So, if these
two equations hold, we have

lim
t!1

�xt = lim
t!1

�
wt
xt

�
=

�
0
0

�
:

Finally, remember that we constructed �xt according to (see equation (8.5))

�yt = V �xt;

and so
lim
t!1

�yt = lim
t!1

V �xt = V lim
t!1

�xt = 0

and the original system is also stable.
That was a lot of steps, but it all boils down to something simple, and it

works for more than two dimensions. The dynamic system

�yt+1 = A�yt

is stable if all of the eigenvalues of A have magnitude smaller than one.

8.4 Problems

1. Consider the following IS-LM model:

Y = C + I +G

C = c((1� t)Y )
I = i(R)

M = P �m(Y;R)
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with

c0 > 0

i0 < 0

mY > 0;mR < 0

The variables G, t, and M are exogenous policy variables. P is prede-
termined and assumed constant for the problem.

(a) Assume that (1 � t)c0 < 1, so that a $1 increase in GDP leads to
less than a dollar increase in spending. Compute and interpret
dY=dt and dR=dt.

(b) Compute and interpret dY=dM and dR=dM .

(c) Compute and interpret dY=dP and dR=dP .

2. Consider a di¤erent IS-LMmodel, this time for an open economy, where
X is net exports and T is total tax revenue (as opposed to t which was
the marginal tax rate).

Y = C + I +G+X

C = c(Y � T )
I = i(R)

X = x(Y;R)

M = P �m(Y;R)

with

c0 > 0

i0 < 0

xY < 0; xR < 0

mY > 0;mR < 0

The variables G, T , and M are exogenous policy variables. P is
predetermined and assumed constant for the problem.

(a) For this problem assume that c0 + xY < 1, so that a $1 increase in
GDP leads to less than a dollar increase in spending. Compute
and interpret dY=dG and dR=dG.
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(b) Compute and interpret dY=dT and dR=dT .

(c) Compute and interpret dY=dM and dR=dM .

3. The following is a model of the long-run economy:

Y = C + I +G+X

C = c((1� t)Y )
I = i(R)

X = x(Y;R)

M = P �m(Y;R)
Y = �Y

with

c0 > 0

i0 < 0

xY < 0; xR < 0

mY > 0;mR < 0

The variables G, t, and M are exogenous policy variables, and �Y is
also exogenous but not a policy variable. It is interpreted as poten-
tial GDP, or full-employment GDP. The variables Y;C; I;X; P are all
endogenous.

(a) Compute and �nd the signs of dY=dG, dR=dG, and dP=dG.

(b) Compute and �nd the signs of dY=dM , dR=dM , and dP=dM .

4. Consider the following system of equations:

qD = D(p; I)

qS = S(p; w)

qD = qS

The �rst equation says that the quantity demanded in the market de-
pends on the price of the good p and household income I. Consistent
with this being a normal good, we have Dp < 0 and DI > 0. The sec-
ond equation says that the quantity supplied in the market depends on
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the price of the good and the wage rate of the work force, w. We have
Sp > 0 and Sw < 0. The third equation says that markets must clear,
so that quantity demanded equals quantity supplied. Three variables
are endogenous: qD, qS, and p. Two variables are exogenous: I and
w.

(a) Show that the market price increases when income increases.

(b) Show that the market price increases when the wage rate increases.

5. Find the coe¢ cients for a regression based on the following data table:

Observation number x1 x2 y
1 1 9 6
2 1 4 2
3 1 3 5

6. Consider a regression based on the following data table:

Observation number x1 x2 y
1 2 8 1
2 6 24 0
3 -4 -16 -1

(a) Show that the matrix XTX is not invertible.

(b) Explain intuitively, using the idea of a column space, why there is
no unique coe¢ cient vector for this regression.

7. Find the coe¢ cients for a regression based on the following data table:

Observation number x1 x2 y
1 5 4 10
2 2 1 2
3 3 6 7

8. Suppose that you are faced with the following data table:

Observation number x1 x2 y
1 1 2 10
2 1 3 0
3 1 5 25
4 1 4 15
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You are thinking about adding one more explanatory variable, x3, to
the regression. x3 is given by

x3 =

0BB@
24
36
60
48

1CCA
Explain why this would be a bad idea.

9. Find the eigenvalues and eigenvectors of the following matrices:

(a)
�
5 1
4 2

�
(b)

�
10 �1
12 3

�
(c) C =

�
3 �6
�2 4

�
(d) D =

�
3 4
0 2

�
(e) E =

�
10 4
�3 �6

�
10. Consider the dynamic system

�yt+1 = A�yt:

(a) If A =
�
1=3 0
0 �1=5

�
, is the dynamic system stable?

(b) If A =
�
4=3 �1=4
1=3 1=4

�
, is the dynamic system stable?

(c) If A =
�
1=4 1
0 �2=3

�
, is the dynamic system stable?

(d) If A =
�
1=5 1
2 8=9

�
, is the dynamic system stable?
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Second-order conditions

9.1 Taylor approximations for R! R
Consider a di¤erentiable function f : R ! R. Since f is di¤erentiable at
point x0 it has a linear approximation at that point. Note that this is a
linear approximation to the function, as opposed to a linear approximation
at the point. The linear approximation can be written

L(x) = f(x0) + f
0(x0)(x� x0).

When x = x0 we get the original point, so L(x0) = f(x0). When x is not
equal to x0 we multiply the di¤erence (x�x0) by the slope at point x0, then
add that amount to f(x0).
All of this is shown in Figure 9.1. The linear approximation L(x) is

a straight line that is tangent to the function f(x) at f(x0). To get the
approximation at point x, take the horizontal distance (x�x0) and multiply
it by the slope of the tangent line, which is just f 0(x0). This gives us the
quantity f 0(x0)(x�x0), which must be added to f(x0) to get the right linear
approximation.

114
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f’(x0)(x –x0)

x –x0

L(x)

x0

f(x0)

L(x)

x

f(x)

x

f(x)

Figure 9.1: A �rst-order Taylor approximation

The Taylor approximation builds on this intuition. Suppose that f is
n times di¤erentiable. Then an n-th order approximation is

f(x) � f(x0) +
f 0(x0)

1!
(x� x0) +

f 00(x0)

2!
(x� x0)2 + :::+

f (n)(x0)

n!
(x� x0)n.

We care mostly about second-degree approximations, or

f(x) � f(x0) + f 0(x0)(x� x0) +
f 00(x0)

2
(x� x0)2:

The key to understanding the numbers in the denominators of the dif-
ferent terms is noticing that the �rst derivative of the linear approxima-
tion matches the �rst derivative of the function, the second derivative of
the second-order approximation equals the second derivative of the original
function, and so on. So, for example, we can write the third-degree approx-
imation of f(x) at x = x0 as

g(x) = f(x0) + f
0(x0)(x� x0) +

f 00(x0)

2
(x� x0)2 +

f 000(x0)

6
(x� x0)3:
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Di¤erentiate with respect to x to get

g0(x) = f 0(x0) + f
00(x0)(x� x0) +

f 000(x0)

2
(x� x0)2

g00(x) = f 00(x0) + f
000(x0)(x� x0)

g000(x) = f 000(x0)

9.2 Second order conditions for R! R
Suppose that f(x) is maximized when x = x0. Take a second-order Taylor
approximation:

f(x) � f(x0) + f 0(x0)(x� x0) +
f 00(x0)

2
(x� x0)2:

Since f is maximized when x = x0, the �rst-order condition has f 0(x0) = 0.
Thus the second term in the Taylor approximation disappears. We are left
with

f(x) � f(x0) +
f 00(x0)

2
(x� x0)2:

If f is maximized, it must mean that any departure from x0 leads to a
decrease in f . In other words,

f(x0) +
f 00(x0)

2
(x� x0)2 � f(x0)

for all x. Simplifying gives us

f 00(x0)

2
(x� x0)2 � 0

and, since (x � x0)2 � 0, it must be the case that f 00(x0) � 0. This is how
we can get the second order condition from the Taylor approximation.

9.3 Taylor approximations for Rm ! R
This time we are only going to look for a second-degree approximation. We
need some notation:

rf(�x) =

0B@ f1(�x)
...

fm(�x)

1CA
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and is called the gradient of f at x. Also

H(�x) =

0B@ f11(�x) � � � f1m(�x)
...

. . .
...

fm1(�x) � � � fmm(�x)

1CA
is called the Hessian. It is the matrix of second derivatives.
A second-order Taylor approximation for a function of m variables can

be written

f(�x) � f(�x0) +
mX
i=1

fi(�x
0)(xi � x0i ) +

1

2

mX
i=1

mX
j=1

fij(�x
0)(xi � x0i )(xj � x0j)

Let�s write this in matrix notation. The �rst term is simply f(�x0). The
second term is

(�x� �x0) � rf(�x0) = (�x� �x0)Trf(�x0):
The third term is

1

2
(�x� �x0)TH(�x0)(�x� �x0):

Let�s check to make sure this last one works. First check the dimensions,
which are (1�m)(m�m)(m� 1) = (1� 1), which is what we want. Then
break the problem down. (�x� �x0)TH(�x0) is a (1�m) matrix with element
j given by

mX
i=1

fij(�x
0)(xi � x0i ):

To get (�x� �x0)TH(�x0)(�x� �x0) we multiply each element of (�x� �x0)TH(�x0)
by the corresponding element of (�x� �x0) and sum, to get

mX
i=1

mX
j=1

fij(�x
0)(xi � x0i )(xj � x0j):

So, the second degree Taylor approximation of the function f : Rm ! R
is given by

f(�x) � f(�x0) + (�x� �x0)Trf(�x0) + 1
2
(�x� �x0)TH(�x0)(�x� �x0)
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9.4 Second order conditions for Rm ! R
Suppose that f : Rm ! R is maximized when �x = �x0. Then the �rst-order
condition is

rf(�x0) = �0
and the second term in the Taylor approximation drops out. For f to be
maximized when �x = �x0 it must be the case that

f(�x0) +
1

2
(�x� �x0)TH(�x0)(�x� �x0) � f(�x0)

or
(�x� �x0)TH(�x0)(�x� �x0) � 0.

9.5 Negative semide�nite matrices

The matrix A is negative semide�nite if, for every column matrix x, we
have

xTAx � 0.
Obviously, the second order condition for a maximum is that H(�x0) is

negative semide�nite. In the form it is written in, though, it is a di¢ cult
thing to check.
Form a submatrix Ai from the square matrix A by keeping the square

matrix formed by the �rst i rows and �rst i columns. (Note that this is
di¤erent from the submatrix we used to �nd determinants in Section 6.3.)
The determinant of Ai is called the i-th leading principal minor of A.

Theorem 11 Let A be a symmetric m � m matrix. Then A is negative
semide�nite if and only if its m leading principle minors alternate in sign so
that

(�1)i jAij � 0
for i = 1; :::;m.

There are other corresponding notions:

� A is negative de�nite if xTAx < 0 for all nonzero vectors x, and this
occurs if and only if its m leading principle minors alternate in sign so
that

(�1)i jAij > 0
for i = 1; :::;m.
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� A is positive de�nite if xTAx > 0 for all nonzero vectors x, and this
occurs if and only if its m leading principle minors are positive, so that

jAij > 0

for i = 1; :::;m.

� A is positive semide�nite if xTAx � 0 for all vectors x, and this
occurs if and only if its m leading principle minors are nonnegative, so
that

jAij � 0
for i = 1; :::;m.

� A is inde�nite if none of the other conditions holds.

9.5.1 Application to second-order conditions

Suppose that the problem is to choose x1 and x2 to maximize f(x1; x2). The
FOCs are

f1 = 0

f2 = 0

and the SOC is

H =

�
f11 f21
f21 f22

�
is negative semide�nite. Note that f21 appears in both o¤-diagonal elements,
which is okay because f12 = f21. That is, it doesn�t matter if you di¤erentiate
f �rst with respect to x1 and then with respect to x2 or the other way around.
The requirements for H to be negative semide�nite are

f11 � 0���� f11 f12
f21 f22

���� = f11f22 � f 212 � 0

Note that the two conditions together imply that f22 � 0.
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9.5.2 Examples

A =

�
�3 3
3 �4

�
is negative de�nite because a11 < 0 and a11a22 �

a12a21 = 3 > 0.

A =

�
6 1
1 3

�
is positive de�nite because a11 > 0 and a11a22 � a12a21 =

17 > 0.

A =

�
�5 �3
�3 4

�
is inde�nite because a11 < 0 and a11a22 � a12a21 =

�29 < 0.

9.6 Concave and convex functions

All of the second-order conditions considered so far rely on the objective
function being twice di¤erentiable. In the single-variable case we require
that the second derivative is nonpositive for a maximum and nonnegative for
a minimum. In the many-variable case we require that the matrix of second
and cross partials (the Hessian) is negative semide�nite for a maximum and
positive semide�nite for a minimum. But objective functions are not always
di¤erentiable, and we would like to have some second order conditions that
work for these cases, too.
Figure 9.2 shows a function with a maximum. It also has the following

property. If you choose any two points on the curve, such as points a and
b, and draw the line segment connecting them, that line segment always lies
below the curve. When this property holds for every pair of points on the
curve, we say that the function is concave.
It is also possible to characterize a concave function mathematically.

Point a in the �gure has coordinates (xa; f(xa)), and point b has coordinates
(xb; f(xb)). Any value x between xa and xb can be written as

x = txa + (1� t)xb

for some value t 2 [0; 1]. Such a point is called convex combination of xa
and xb. When t = 1 we get x = 1 � xa + 0 � xb = xa, and when t = 0 we get
x = 0 � xa + 1 � xb = xb . When t = 1

2
we get x = 1

2
xa +

1
2
xb which is the

midpoint between xa and xb, as shown in Figure 9.2.
The points on the line segment connecting a and b in the �gure have
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xbxa ½xa + ½xb

f(½xa + ½xb)

½f(xa) + ½f(xb)

a

b

f(x)

x

f(x)

Figure 9.2: A concave function

coordinates
(txa + (1� t)xb; tf(xa) + (1� t)f(xb))

for t 2 [0; 1]. Let�s choose one value of t, say t = 1
2
. The point on the line

segment is �
1

2
xa +

1

2
xb;
1

2
f(xa) +

1

2
f(xb)

�
and it is the midpoint between points a and b. But 1

2
xa+

1
2
xb is just a value

of x, and we can evaluate f(x) at x = 1
2
xa +

1
2
xb. According to the �gure,

f(
1

2
xa +

1

2
xb) �

1

2
f(xa) +

1

2
f(xb)

where the left-hand side is the height of the curve and the right-hand side is
the height of the line segment connecting a to b.
Concavity says that this is true for all possible values of t, not just t = 1

2
.

De�nition 2 A function f(x) is concave if, for all xa and xb,

f(txa + (1� t)xb) � tf(xa) + (1� t)f(xb)

for all t 2 [0; 1].
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a

b

f(x)

x

f(x)

Figure 9.3: A convex function

Concave functions tend to be upward sloping, downward sloping, or have
a maximum (that is, upward sloping and then downward sloping). Thus,
instead of assuming that a function has the right properties of its second
derivative, we can instead assume that it is concave. And notice that noth-
ing in the de�nition says anything about whether x is single-dimensional or
multidimensional. The same de�nition of concave works for both single-
variable and multi-variable optimization problems.
If a concave function is twice di¤erentiable, it has a nonpositive second

derivative.
A convex function has the opposite property: the line segment connect-

ing any two points on the curve lies above the curve, as in Figure 9.3. We
get a corresponding de�nition.

De�nition 3 A function f(x) is convex if, for all xa and xb,

f(txa + (1� t)xb) � tf(xa) + (1� t)f(xb)
for all t 2 [0; 1].

Convexity is the appropriate assumption for minimization, and if a convex
function is twice di¤erentiable its second derivative is nonnegative.
As an example, consider the standard pro�t-maximization problem, where

output is q and pro�t is given by

�(q) = r(q)� c(q);
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c(q)
$

q

r(q)

Figure 9.4: Pro�t maximization with a concave revenue function and a convex
cost function

where r(q) is the revenue function and c(q) is the cost function. The standard
assumptions are that the revenue function is concave and the cost function
is convex. If both functions are twice di¤erentiable, the �rst-order condition
is the familiar

r0(q)� c0(q) = 0
and the second-order condition is

r00(q)� c00(q) � 0:

This last expression holds if r00(q) � 0 which occurs when r(q) is concave,
and if c00(q) � 0 which occurs when c(q) is convex. Figure 9.4 shows the
standard revenue and cost functions in a pro�t maximization problem, and
in the graph the revenue function is concave and the cost function is convex.
Some functions are neither convex nor concave. More precisely, they

have some convex portions and some concave portions. Figure 9.5 provides
an example. The function is convex to the left of x0 and concave to the right
of x0.
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x0

f(x)

x

f(x)

Figure 9.5: A function that is neither concave nor convex

9.7 Quasiconcave and quasiconvex functions

The important property for a function with a maximum, such as the one
shown in Figure 9.2, is that it rise and then fall. But the function depicted
in Figure 9.6 also rises then falls, and clearly has a maximum. But it is
not concave. Instead it is quasiconcave, which is the weakest second-order
condition we can use. The purpose of this section is to de�ne the terms
"quasiconcave" and "quasiconvex," which will take some work.
Before we can de�ne them, we need to de�ne a di¤erent term. A set S

is convex if, for any two points x; y 2 S , the point �x + (1 � �)y 2 S for
all � 2 [0; 1]. Let�s break this into pieces using Figure 9.7. In the left-hand
graph, the set S is the interior of the oval, and choose two points x and y
in S. These can be either in the interior of S or on its boundary, but the
ones depicted are in the interior. The set fzjz = �x + (1 � �)y for some
� 2 [0; 1]g is just the line segment connecting x to y, as shown in the �gure.
The set S is convex if the line segment is inside of S, no matter which x
and y we choose. Or, using di¤erent terminology, the set S is convex if any
convex combination of two points in S is also in S.
In contrast, the set S in the right-hand graph in Figure 9.7 is not convex.

Even though points x and y are inside of S, the line segment connecting
them passes outside of S. In this case the set is nonconvex (there is no
such thing as a concave set).
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f(x)

x

f(x)

Figure 9.6: A quasiconcave function

f(x)

x

S

x
y

f(x)

x

S

x

y

Figure 9.7: Convex sets: The set in the left-hand graph is convex because all
line segments connecting two points in the set also lie completely within the
set. The set in the right-hand graph is not convex because the line segment
drawn does not lie completely within the set.
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x1 x2

y

f(x)

x

f(x)

B(y)

Figure 9.8: De�ning quasiconcavity: For any value y, the set B(y) is convex

The graphs in Figure 9.7 are for 2-dimensional sets. The de�nition of
convex, though, works in any number of dimensions. In particular, it works
for 1-dimensional sets. A 1-dimensional set is a subset of the real line, and
it is convex if it is an interval, either open, closed, or half-open/half-closed.
Now look at Figure 9.8, which has the same function as in Figure 9.6.

Choose any value y, and look for the set

B(y) = fxjf(x) � yg:

This is a better-than set, and it contains the values of x that generate a value
of f(x) that is at least as high as y. In Figure 9.8 the set B(y) is the closed
interval [x1; x2], which is a convex set. This gives us our de�nition of a
quasiconcave function.

De�nition 4 The function f(x) is quasiconcave if for any value y, the set
B(y) = fxjf(x) � yg is convex.

To see why quasiconcavity is both important and useful, �ip way back
to the beginning of the book to look at Figure 1.1 on page 2. That graph
depicted either a consumer choice problem, in which case the line is a bud-
get line and the curve is an indi¤erence curve, or it depicted a �rm�s cost-
minimization problem, in which case the line is an isocost line and the curve
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x1 x2

y

f(x)

x

f(x)

W(y)

Figure 9.9: A quasiconvex function

is an isoquant. Think about it as a consumer choice problem. The area
above the indi¤erence curve is the set of points the consumer prefers to those
on the indi¤erence curve. So the set of points above the indi¤erence curve
is the better-than set. And it�s convex. So the appropriate second-order
condition for utility maximization problems is that the utility function is
quasiconcave. Similarly, an appropriate second-order condition for cost-
minimization is that the production function (the function that gives you
the isoquant) is quasiconcave. When you take microeconomics, see where
quasiconcavity shows up as an assumption.
Functions can also be quasiconvex.

De�nition 5 The function f(x) is quasiconvex if for any value y, the set
W (y) = fxjf(x) � yg is convex.

Quasiconvex functions are based on worse-than sets W (y). This time the
set of points generating values lower than y must be convex. To see why,
look at Figure 9.9. This time the points that generate values of f(x) lower
than y form an interval, but the better-than set is not an interval.
Concave functions are also quasiconcave, which you can see by looking at

Figure 9.2, and convex functions are also quasiconvex, which you can see by
looking at Figure 9.3. But a quasiconcave function may not be concave, as
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in Figure 9.8, and a quasiconvex function may not be convex, as in Figure
9.9.
The easiest way to remember the de�nition for quasiconcave is to draw a

concave function with a maximum. We know that it is also quasiconcave.
Choose a value of y and draw the horizontal line, like we did in Figure 9.8.
Which set is convex, the better-than set or the worse-than set? As shown
in the �gure, it�s the better-than set that is convex, so we get the right
de�nition. If you draw a convex function with a minimum and follow the
same steps you can �gure out the right de�nition for a quasiconvex function.

9.8 Problems

1. Find the gradient of

f(x1; x2; x3) = 2x1x
2
3 + 3x1x

2
2 � 4x21

and then evaluate it at the point (5; 2; 0).

2. Find the second-degree Taylor approximations of the following func-
tions at x0 = 1:

(a) f(x) = �2x3 � 5x+ 9
(b) f(x) = 10x� 40

p
x+ lnx

(c) f(x) = ex

3. Find the second-degree Taylor approximation of the function f(x) =
3x3 � 4x2 � 2x+ 12 at x0 = 0.

4. Find the second-degree Taylor approximation of the function f(x) =
ax2 + bx+ c at x0 = 0.

5. Tell whether the following matrices are negative de�nite, negative semi-
de�nite, positive semide�nite, positive de�nite, or inde�nite.

(a)
�
�3 2
2 1

�
(b)

�
1 2
2 4

�
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(c)
�
3 4
4 �3

�

(d)

0@ 4 0 1
0 �3 �2
1 �2 1

1A
(e)

�
6 1
1 3

�
(f)

�
�4 16
16 �4

�
(g)

�
�2 1
1 �4

�

(h)

0@ 3 2 3
2 4 0
3 0 �1

1A
6. State whether the second-order condition is satsi�ed for the following
problems.

(a) minx;y 4y2 � xy
(b) maxx;y 7 + 8x+ 6y � x2 � y2

(c) maxx;y 5xy � 2y2

(d) minx;y 6x2 + 3y2

7. Is (6; 2) a convex combination of (11; 4) and (�1; 0)? Explain.

8. Use the formula for convexity, and not the second derivative, to show
that the function f(x) = x2 is convex.
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CHAPTER

10

Probability

10.1 Some de�nitions

An experiment is an activity that involves doing something or observing
something resulting in an outcome. The performance of an experiment is
a trial. Experiments can be physical, biological, social, or anything else.
The sample space for an experiment is the set of possible outcomes of

the experiment. The sample space is denoted 
 (the Greek letter omega) and
a typical element, or outcome, is denoted ! (lower case omega). The impos-
sible event is the empty set, ?. Suppose, for example, that the experiment
consists of tossing a coin twice. The sample space is


 = f(H;H); (H;T ); (T;H); (T; T )g

and each pair is an outcome. Another experiment is an exam. Scores are
out of 100, so the sample space is


 = f0; 1; :::; 100g:

131
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We are going to work with subsets, and we are going to work with some
mathematical symbols pertaining to subsets. The notation is given in the
following table.

In math In English
! 2 A omega is an element of A
A \B A intersection B
A [B A union B
A � B A is a strict subset of B
A � B A is a weak subset of B
AC The complement of A

An event is a subset of the sample space. If the experiment consists of
tossing a coin twice, the event that there is at least one head can be written

A = f(H;H); (H;T ); (T;H)g.

Note that the entire sample space is an event, and so is the impossible event
?. Sometimes we want to talk about single-element events, and write !
instead of f!g.
It is best to think of outcomes and events as occurring. For the latter,

an event A occurs if there is some outcome ! 2 A such that ! occurs.
Our eventual goal is to assign probabilities to events. To do this we need

notation for the set of all possible events. Call it � (for sigma-algebra, which
is a concept we will not get into).
Two events A and B aremutually exclusive if there is no outcome that

is in both events, that is, A \ B = ?. If A and B are mutually exclusive
then if event A occurs event B is impossible, and vice versa.

10.2 De�ning probability abstractly

A probability measure is a mapping P : � ! [0; 1], that is, a function
mapping events into numbers between 0 and 1. The function P has three
key properties:

Axiom 1 P (A) � 0 for any event A 2 �.

Axiom 2 P (
) = 1
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Axiom 3 If A1; A2; ::: is a (possibly �nite) sequence of mutually exclusive
events, then

P (A1 [ A2 [ :::) = P (A1) + P (A2) + :::

The �rst axiom states that probabilities cannot be negative. The second
one states that the probability that something happens is one. The third
axiom states that when events are mutually exclusive, the probability of the
union is simply the sum of the probabilities.
These three axioms imply some other properties.

Theorem 12 P ( ?) = 0:

Proof. The events 
 and ? are mutually exclusive since 
\ ? = ?. Since

[ ? = 
, axiom 3 implies that

1 = P (
 [?) = P (
) + P (?) = 1 + P (?),

and it follows that P ( ?) = 0.

The next result concerns the relation �, where A � B means that either
A is contained in B or A is equal to B.

Theorem 13 If A � B then P (A) � P (B).

Proof. Suppose that A and B are events with A � B. De�ne C = f! : ! 2
B but ! =2 Ag. Then A and C are mutually exclusive with A[C = B, and
axiom 3 implies that

P (B) = P (A [ C) = P (A) + P (C) � P (A).

For the next theorems, let AC denote the complement of the event A,
that is, AC = f! 2 
 : ! =2 Ag.

Theorem 14 P (AC) = 1� P (A).
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Proof. Note that AC [ A = 
 and AC \ A = ?. Then P (AC [ A) =
P (AC) + P (A) = 1, and therefore P (AC) = 1� P (A).

Note that this theorem implies that P (A) � 1 for any event A. To see
why, �rst write P (A) = 1 � P (AC), and by axiom 1 we have P (AC) � 0.
The result follows.

Theorem 15 P (A [B) = P (A) + P (B)� P (A \B).

Proof. First note that A [ B = A [ (AC \ B). You can see this in Figure
10.1. The points in A[B are either in A or they are outside of A but in B.
The events A and AC \B are mutually exclusive. Axiom 3 says

P (A [B) = P (A) + P (AC \B):

Next note thatB = (A\B)[(AC\B). Once again this is clear in Figure 10.1,
but it says that we can separate B into two parts, the part that intersects A
and the part that does not. These two parts are mutually exclusive, so

P (B) = P (A \B) + P (AC \B). (10.1)

Rearranging yields

P (AC \B) = P (B)� P (A \B):

Substituting this into equation (10.1) yields

P (A [B) = P (A) + P (AC \B)
= P (A) + P (B)� P (A \B):

10.3 De�ning probabilities concretely

The previous section told us what the abstract concept probability measure
means. Sometimes we want to know actual probabilities. How do we get
them? The answer relies on the ability to partition the sample space into
equally likely outcomes.
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Ω

A B

A ∩ B AC ∩ BA ∩ BC

Figure 10.1: Finding the probability of the union of two sets

Theorem 16 Suppose that every outcome in the sample space 
 = f!1; :::; !ng
is equally likely. Then the probability of any event A is the number of out-
comes in A divided by n.

Proof. We know that P (
) = P (f!1g [ � � � [ f!ng) = 1. By construction
f!ig \ f!jg = ? when i 6= j, and so the events f!1g; :::; f!ng are mutually
exclusive. By Axiom 3 we have

P (
) = P (f!1g) + :::+ P (f!n)g = 1:

Since each of the outcomes is equally likely, this implies that

P (f!ig) = 1=n

for i = 1; :::; n. If event A contains k of the outcomes in the set f!1; :::; !ng,
it follows that P (A) = k=n.

This theorem allows us to compute probabilities from experiments like
�ipping coins, rolling dice, and so on. For example, if a die has six sides,
the probability of the outcome 5 is 1=6. The probability of the event f1; 2g
is 1=6 + 1=6 = 1=3, and so on.
For an exercise, �nd the probability of getting exactly one head in four

tosses of a fair coin. Answer: There are 16 possible outcomes. Four of
them have one head. So, the probability is 1=4.
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In general events are not equally likely, so we cannot determine proba-
bilities theoretically in this manner. Instead, the probabilities of the events
are given directly.

10.4 Conditional probability

Suppose that P (B) > 0, so that the event B occurs with positive probability.
Then P (AjB) is the conditional probability that event A occurs given that
event B has occurred. It is given by the formula

P (AjB) = P (A \B)
P (B)

:

Think about what this expression means. The numerator is the probability
that both A and B occur. The denominator is the probability that B oc-
curs. Clearly A \ B is a subset of B, so the numerator is smaller than the
denominator, as required. The ratio can be interpreted as the fraction of
the time when B occurs that A also occurs.
Consider the probability distribution given in the table below. Outcomes

are two dimensional, based on the values of x and y. The probabilities of
the di¤erent outcomes are given in the entries of the table. Note that all the
entries are nonnegative and that the sum of all the entries is one, as required
for a probability measure.

y = 1 y = 2 y = 3 y = 4
x = 1 0.02 0.01 0.02 0.10
x = 2 0.05 0.00 0.03 0.11
x = 3 0.04 0.15 0.02 0.09
x = 4 0.10 0.16 0.02 0.08

Find the conditional probability P (x = 2jy = 4). The formula is P (x = 2
and y = 4)=P (y = 4). The probability that x = 2 and y = 4 is just the entry
in a single cell, and is 0.11. The probability that y = 4 is the sum of the
probabilities in the last column, or 0.38. So, P (x = 2jy = 4) = 0:11=0:38 =
11=38.
Now �nd the conditional probability that y is either 1 or 2 given that

x � 3. The probability that y � 2 and x � 3 is the sum of the four cells
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in the lower left, or 0.45. The probability that x � 3 is 0.66. So, the
conditional probability is 45=66 = 15=22.
Now look at a medical example. A patient can have condition A or not.

He takes a test which turns out positive or not. The probabilities are given
in the following table:

Test positive Test negative
Condition A 0.010 0.002
Healthy 0.001 0.987

Note that condition A is quite rare, with only 12 people in 1000 having it.
Also, a positive test is ten times more likely to come from a patient with the
condition than from a patient without the condition. We get the following
conditional probabilities:

P (Ajpositive) = 10=11 = 0:909;

P (healthyjnegative) = 987=989 = 0:998;

P (positivejA) = 10=12 = 0:833;

P (negativejhealthy) = 987=988 = 0:999:

10.5 Bayes�rule

Theorem 17 (Bayes�rule) Assume that P (B) > 0. Then

P (AjB) = P (BjA)P (A)
P (B)

:

Proof. Note that
P (AjB) = P (A \B)

P (B)

and

P (BjA) = P (A \B)
P (A)

:

Rearranging the second one yields

P (A \B) = P (BjA)P (A)
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and the theorem follows from substitution.

Let�s make sure Bayes�rule works for the medical example given above.
We have P (positivejA) = 10=12, P (positive) = 11=1000, and P (A) = 12=1000.
Using Bayes�rule we get

P (Ajpositive) = P (positivejA) � P (A)
P (positive)

=
10
12
� 12
1000
11
1000

=
10

11
:

The interpretation of Bayes�rule is for responding to updated information.
We are interested in the occurrence of event A after we receive some new
information. We start with the prior P (A). Then we �nd out that B
holds. We should use this new information to update the probability of A
occurring. P (AjB) is called the posterior probability. Bayes�rule tells us
how to do this. We multiply the prior P (A) by the likelihood

P (BjA)
P (B)

:

If this ratio is greater than one, the posterior probability is higher than the
prior probability. If the ratio is smaller than one, the posterior probability
is lower. The ratio is greater than one if A occurring makes B more likely.
Bayes�rule is important in game theory, �nance, and macro.
People don�t seem to follow it. Here is a famous example (Kahneman

and Tversky, 1973 Psychological Review). Some subjects are told that a
group consists of 70 lawyers and 30 engineers. The rest of the subjects are
told that the group has 30 lawyers and 70 engineers. All subjects were then
given the following description:

Dick is a 30 year old man. He is married with no children. A
man of high ability and high motivation, he promises to be quite
successful in his �eld. He is well liked by his colleagues.

Subjects were then asked to judge the probability that Dick is an engineer.
Subjects in both groups said that it is about 0.5, ignoring the prior infor-
mation. The new information is uninformative, so P (BjA)=P (B) = 1, and
according to Bayes�rule the posterior should be the same as the prior.
This example has people overweighting the new information. Psycholo-

gists have also come up with studies in which subjects overweight the prior.
When subjects overweight the new information it is called representativeness,
and when they overweight the prior it is called conservatism.
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10.6 Monty Hall problem

At the end of the game show Let�s Make a Deal the host, Monty Hall, o¤ers
a contestant the choice among three doors, labeled A, B, and C. There is a
prize behind one of the doors, and nothing behind the other two. After the
contestant chooses a door, to build suspense Monty Hall reveals one of the
doors with no prize. He then asks the contestant if she would like to stay
with her original door or switch to the other one. What should she do?
The answer is that she should take the other door. To see why, suppose

she chooses door A, and that Monty reveals door B. What is the probability
that the prize is behind door C given that door B was revealed? Bayes�rule
says we use the formula

P (prize behind Cj reveal B) = P (reveal Bj prize C) � P (prize C)
P (reveal B)

:

Before revealing the door, the prize was equally likely to be behind each of
the three doors, so P (prize A) = P (prize B) = P (prize C) = 1=3. Next �nd
the conditional probability that Monty reveals door B given that the prize is
behind door C. Remember that Monty cannot reveal the door with the prize
behind it or the door chosen by the contestant. Therefore Montymust reveal
door B if the prize is behind door C, and the conditional probability P (reveal
Bj prize C) = 1. The remaining piece of the formula is the probability that
he reveals B. We can write this as

P (reveal B) = P (reveal Bj prize A) � P (A)
+P (reveal Bj prize B) � P (B)
+P (reveal Bj prize C) � P (C):

The middle term is zero because he cannot reveal the door with the prize
behind it. The last term is 1=3 for the reasons given above. If the prize is
behind A he can reveal either B or C and, assuming he does so randomly,
the conditional probability P (reveal Bj prize A) = 1=2. Consequently the
�rst term is 1

2
� 1
3
= 1

6
. Using all this information, the probability of revealing

door B is P (reveal B) = 1
6
+ 1

3
= 1

2
. Plugging this into Bayes�rule yields

P (prize Cj reveal B) =
1 � 1

3
1
2

=
2

3
:

The probability that the prize is behind A given that he revealed door B is
1� P (prize Cj reveal B) = 1=3. The contestant should switch.
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10.7 Statistical independence

Two events A and B are independent if and only if P (A\B) = P (A)�P (B).
Consider the following table relating accidents to drinking and driving.

Accident No accident
Drunk driver 0.03 0.10
Sober driver 0.03 0.84

Notice that from this table that half of the accidents come from sober
drivers, but there are many more sober drivers than drunk ones. The ques-
tion is whether accidents are independent of drunkenness. Compute P (drunk
\ accident) = 0:03, P (drunk) = 0:13, P (accident) = 0:06, and �nally

P (drunk) � P (accident) = 0:13 � 0:06 = 0:0078 6= 0:03:

So, accidents and drunk driving are not independent events. This is not sur-
prising, as we would expect drunkenness to be a contributing factor to acci-
dents. Note that P (accidentjdrunk) = 3=13 = 0:23 while P (accidentjsober) =
3=87 = 0:03 4.
We can prove an easy theorem about independent events.

Theorem 18 If A and B are independent then P (AjB) = P (A).

Proof. We have

P (AjB) = P (A \B)
P (B)

=
P (A)P (B)

P (B)
= P (A):

According to this theorem, if accidents and drunkenness were independent
events, then P (accidentjdrunk) = P (accident); that is, the probability of
getting in an accident when drunk is the same as the overall probability of
getting in an accident.
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10.8 Problems

1. Answer the questions using the table below.

y = 1 y = 2 y = 3 y = 4 y = 5
x = 5 0:01 0:03 0:17 0:00 0:00
x = 20 0:03 0:05 0:04 0:20 0:12
x = 30 0:11 0:04 0:02 0:07 0:11

(a) What is the most likely outcome?

(b) What outcomes are impossible?

(c) Find the probability that x = 30.

(d) Find the probability that x 2 f5; 20g and 2 � y � 4.
(e) Find the probability that y � 2 conditional on x � 20.
(f) Verify Bayes�rule for P (y = 4jx = 20).
(g) Are the events x � 20 and y 2 f1; 4g statistically independent?

2. Answer the questions from the table below:

b = 1 b = 2 b = 3 b = 4
a = 1 0:02 0:02 0:21 0:02
a = 2 0:03 0:01 0:05 0:06
a = 3 0:01 0:01 0:01 0:06
a = 4 0:00 0:05 0:00 0:12
a = 5 0:12 0:06 0:00 0:14

(a) Which event is more likely, A = f(a; b) : 3 � a � 4g or B =
f(a; b) : b � 2 and a = 5g?

(b) List the largest impossible event.

(c) Find the probability that b 6= 3.
(d) Find P (b = 2ja = 5).
(e) Find P (a � 3jb 2 f1; 4g):
(f) Are the events a 2 f1; 3g and b 2 f1; 2; 4g statistically indepen-

dent?
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3. A disease hits 1 in every 20,000 people. A diagnostic test is 95%
accurate, that is, the test is positive for 95% of people with the disease,
and negative for 95% of the people who do not have the disease. Max
just tested positive for the disease. What is the probability he has it?

4. You have data that sorts individuals into occupations and age groups.
There are three occupations: doctor, lawyer, and entrpreneur. There
are two age categories: below 40 (young) and above 40 (old). You
wanted to know the probability that an old person is an entrepreneur.
Your grad student misunderstands you, though, and presents you with
the following information:

20% of the sample are doctors and 30% are entrepreneurs

40% of the doctors are young

20% of the entrepreneurs are young

70% of the lawyers are young

Find the probability that the an old person is an entrepreneur.
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Random variables

11.1 Random variables

A random variable is a variable whose value is a real number, and that
number is determined by the outcome of an experiment. For example, the
number of heads in ten coin tosses is a random variable, and the Dow-Jones
Industrial Average is a random variable.
The standard notation for a random variable is to place a tilde over the

variable. So ~x is a random variable.
The realization of a random variable is based on the outcome of an actual

experiment. For example, if I toss a coin ten times and �nd four heads, the
realization of the random variable is 4. When the random variable is denoted
~x its realization is denoted x.
A random variable is discrete if it can take only discrete values (either

a �nite number or a countable in�nity of values). A random variable is
continuous if it can take any value in an interval.
Random variables have probability measures, and we can use random

variables to de�ne events. For example, P (~x = x) is the probability that the

143
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realization of the random variable ~x is x, and P (~x 2 [2; 3]) is the probability
that the realization of the random variable ~x falls in the interval [2; 3]. The
event in the latter example is the event that the realization of ~x falls in the
interval [2; 3].

11.2 Distribution functions

The distribution function for the random variable ~x with probability mea-
sure P is given by

F (x) = P (~x � x):
The distribution function F (x) tells the probability that the realization of
the random variable is no greater than x. Distribution functions are almost
always denoted by capital letters.

Theorem 19 Distribution functions are nondecreasing and take values in
the interval [0; 1].

Proof. The second part of the statement is obvious. For the �rst part,
suppose x < y. Then the event ~x � x is contained in the event ~x � y, and
by Theorem 13 we have

F (x) = P (~x � x) � P (~x � y) = F (y):

11.3 Density functions

If the distribution function F (x) is di¤erentiable, the density function is

f(x) = F 0(x):

If the distribution function F (x) is discrete, the density function is P (~x = x)
for each possible value of x. Sometimes distribution functions are neither
di¤erentiable nor discrete. This causes headaches that we will not deal with
here.
Note that it is possible to go from a density function to a distribution

function:

F (x) =

Z x

�1
f(t)dt:
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So, the distribution function is the accumulated value of the density func-
tion. This leads to some additional common terminology. The distribution
function is often called the cumulative density function, or c.d.f. The density
function is often called the probability density function, or p.d.f.
The support of a distribution F (x) is the smallest closed set containing

fxjf(x) 6= 0g, that is, the set of points for which the density is positive. For a
discrete distribution this is just the set of outcomes to which the distribution
assigns positive probability. For a continuous distribution the support is the
smallest closed set containing all of the points that have positive probability.
For our purposes there is no real reason for using a closed (as opposed to
open) set, but the de�nition given here is mathematically correct.

11.4 Useful distributions

11.4.1 Binomial (or Bernoulli) distribution

The binomial distribution arises when the experiment consists of repeated
trials with the same two possible outcomes in each trial. The most obvious
example is �ipping a coin n times. The outcome is a series of heads and
tails, and the probability distribution governing the number of heads in the
series of n coin tosses is the binomial distribution.
To get a general formula, label one possible outcome of the trial a success

and the other a failure. These are just labels. In coin tossing, we could
count a head as a "success" and a tail as a "failure," or we could do it the
other way around. If we are checking lightbulbs to see if they work, we could
label a working lightbulb as a "success" and a nonworking bulb as a "failure,"
or we could do it the other way around. A coauthor (Harold Winter) and
I used the binomial distribution to model juror bias, and the two possible
outcomes were a juror biased toward conviction and a juror biased toward
acquittal. We obviously cared about the total bias of the group. We had
to arbitrarily label one form of bias a "success" and the other a "failure."
Suppose that the probability of a success is p in any given trial, which

means that the probability of a failure is q = 1 � p. Also, assume that the
trials are statistically independent, so that a success in trial t has no e¤ect
on the probability of success in period t+ 1.
The question is, what is the probability of x successes in n trials?
Let�s work this out for the case of two trials. Let the vector (outcome 1,
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outcome 2) denote the event in which outcome 1 is realized in the �rst trial
and outcome 2 in the second trial. Using P as the probability measure, we
have

P (success, success) = p2

P (success, failure) = pq

P (failure, success) = pq

P (failure, failure) = q2

The probability of two successes in two trials is p2, the probability of one
success in two trials is 2pq, and the probability of two failures is q2.
With three trials, letting s denote a success and f a failure, we have

P (s; s; s) = p3

P (s; s; f) = P (s; f; s) = P (f; s; s) = p2q

P (s; f; f) = P (f; s; f) = P (f; f; s) = pq2

P (f; f; f) = q3

Thus the probability of three successes is p3, the probability of two successes
is 3p2q, the probability of one success is 3pq2, and the probability of no
successes is q3.
In general, the rule for x successes in n trials when the probability of

success in a single trial is p is

b(x; n; p) =

�
n

x

�
pxqn�x

There are two pieces of the formula. The probability of a single, particular
con�guration of x successes and n � x failures is pxqn�x. For example, the
probability that the �rst x trials are successes and the last n � x trials are
failures is pxqn�x. The number of possible con�gurations with x successes
and n� x failures is

�
n
x

�
, which is given by�

n

x

�
=

n!

x!(n� x)! =
1 � 2 � ::: � n

[1 � ::: � x][1 � ::: � (n� x)] :

Note that the function b(x; n; p) is a density function. The binomial
distribution is a discrete distribution, so b(x; n; p) = P (~x = x), where ~x is
the random variable measuring the number of successes in n trials.
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The binomial distribution function is

B(x; n; p) =

xX
i=0

b(x; n; p);

so that it is the probability of getting x or fewer successes in n trials.
Microsoft Excel, and probably similar programs, make it easy to compute

the binomial density and distribution. The formula for b(x; n; p) is

=BINOMDIST(x; n; p; 0)

and the formula for B(x; n; p) is

=BINOMDIST(x; n; p; 1)

The last argument in the function just tells the program whether to compute
the density or the distribution.
Let�s go back to my jury example. Suppose we want to draw a pool

of 12 jurors from the population, and that 20% of them are biased toward
acquittal, with the rest biased toward conviction. The probability of drawing
2 jurors biased toward acquittal and 10 biased toward conviction is

b(2; 12; 0:2) = 0:283

The probability of getting at most two jurors biased toward acquittal is

B(2; 12; 0:2) = :558

The probability of getting a jury in which every member is biased toward
conviction (and no member is biased toward acquittal) is

b(0; 12; 0:2) = 0:069

11.4.2 Uniform distribution

The great appeal of the uniform distribution is that it is easy to work with
mathematically. It�s density function is given by

f(x) =

8<:
1
b�a x 2 [a; b]

if
0 x =2 [a; b]
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The corresponding distribution function is

F (x) =

8<:
0 x < a
x�a
b�a if a � x � b
1 x > b

Okay, so these look complicated. But, if x is in the support interval [a; b],
then the density function is the constant function f(x) = 1=(b� a) and the
distribution function is the linear function F (x) = (x� a)=(b� a).
Graphically, the uniform density is a horizontal line. Intuitively, it

spreads the probability evenly (or uniformly) throughout the support [a; b],
which is why it has its name. The distribution function is just a line with
slope 1=(b� a) in the support [a; b].

11.4.3 Normal (or Gaussian) distribution

The normal distribution is the one that gives us the familiar bell-shaped
density function, as shown in Figure 11.1. It is also central to statistical
analysis, as we will see later in the course. We begin with the standard
normal distribution. For now, its density function is

f(x) =
1p
2�
e�x

2=2

and its support is the entire real line: (�1;1). The distribution function
is

F (x) =
1p
2�

Z x

�1
e�t

2=2dt

and we write it as an integral because there is no simple functional form.
Later on we will �nd the mean and standard deviation for di¤erent dis-

tributions. The standard normal has mean 0 and standard deviation 1. A
more general normal distribution with mean � and standard deviation � has
density function

f(x) =
1

�
p
2�
e�(x��)

2=2�2

and distribution function

F (x) =
1

�
p
2�

Z x

�1
e�(t��)

2=2�2dt:
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Figure 11.1: Density function for the standard normal distribution

The e¤ects of changing the mean � can be seen in Figure 11.2. The peak
of the normal distribution is at the mean, so the standard normal peaks at
x = 0, which is the thick curve in the �gure. The thin curve in the �gure
has a mean of 2.5.
Changing the standard deviation � has a di¤erent e¤ect, as shown in

Figure 11.3. The thick curve is the standard normal with � = 1, and the
thin curve has � = 2. As you can see, increasing the standard deviation
lowers the peak and spreads the density out, moving probability away from
the mean and into the tails.

11.4.4 Exponential distribution

The density function for the exponential distribution is

f(x) =
1

�
e�x=�

and the distribution function is

F (x) = 1� e�x=�:

It is de�ned for x > 0. The exponential distribution is often used for the
failure rate of equipment: the probability that a piece of equipment will fail
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Figure 11.2: Changing the mean � of the normal density
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Figure 11.3: Increasing the standard deviation � of the normal density
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Figure 11.4: Density function for the lognormal distribution

by time x is F (x). Accordingly, f(x) is the probability of a failure at time
x.

11.4.5 Lognormal distribution

The random variable ~x has the lognormal distribution if the random vari-
able ~y = ln ~x has the normal distribution. The density function is

f(x) =
1p
2�

h
e�(lnx)

2=2
i
� 1
x

and it is de�ned for x � 0. It is shown in Figure 11.4.

11.4.6 Logistic distribution

The logistic distribution function is

F (x) =
1

1 + e�x
:

Its density function is

f(x) =
e�x

(1 + e�x)2
:
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Figure 11.5: Density function for the logistic distribution

It is de�ned over the entire real line and gives the bell-shaped density function
shown in Figure 11.5.
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Integration

If you took a calculus class from a mathematician, you probably learned two
things about integration: (1) integration is the opposite of di¤erentiation,
and (2) integration �nds the area under a curve. Both of these are cor-
rect. Unfortunately, in economics we rarely talk about the area under a
curve. There are exceptions, of course. We sometimes think about pro�t as
the area between the price line and the marginal cost curve, and we some-
times compute consumer surplus as the area between the demand curve and
the price line. But this is not the primary reason for using integration in
economics.
Before we get into the interpretation, we should �rst deal with the me-

chanics. As already stated, integration is the opposite of di¤erentiation.
To make this explicit, suppose that the function F (x) has derivative f(x).
The following two statements provide the fundamental relationship between
derivatives and integrals:Z b

a

f(x)dx = F (b)� F (a); (12.1)

153
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and Z
f(x)dx = F (x) + c; (12.2)

where c is a constant. The integral in (12.1) is a de�nite integral, and
its distinguishing feature is that the integral is taken over a �nite interval.
The integral in (12.2) is an inde�nite integral, and it has no endpoints.
The reason for the names is that the solution in (12.1) is unique, or de�nite,
while the solution in (12.2) is not unique. This occurs because when we
integrate the function f(x), all we know is the slope of the function F (x),
and we do not know anything about its height. If we choose one function
that has slope f(x), call it F �(x), and we shift it upward by one unit, its
slope is still f(x). The role of the constant c in (12.2), then, is to account
for the indeterminacy of the height of the curve when we take an integral.
The two equations (12.1) and (12.2) are consistent with each other. To

see why, notice that Z
f(x)dx =

Z 1

�1
f(x)dx;

so an inde�nite integral is really just an integral over the entire real line
(�1;1). Furthermore,Z b

a

f(x)dx =

Z b

�1
f(x)dx�

Z a

�1
f(x)dx

= [F (b) + c]� [F (a) + c]
= F (b)� F (a):

Some integrals are straightforward, but others require some work. From
our point of view the most important ones follow, and they can be checked
by di¤erentiating the right-hand side.Z

xndx =
xn+1

n+ 1
+ c for n 6= �1Z

1

x
dx = lnx+ cZ

erxdx =
erx

r
+ cZ

lnxdx = x lnx� x+ c
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There are also two useful rules for more complicated integrals:Z
af(x)dx = a

Z
f(x)dxZ

[f(x) + g(x)] dx =

Z
f(x)dx+

Z
g(x)dx:

The �rst of these says that a constant inside of the integral can be moved
outside of the integral. The second one says that the integral of the sum
of two functions is the sum of the two integrals. Together they say that
integration is a linear operation.

12.1 Interpreting integrals

Repeat after me (okay, way after me, because I wrote this in April 2008):

Integrals are used for adding.

They can also be used to �nd the area under a curve, but in economics the
primary use is for addition.
To see why, suppose we wanted to do something strange like measure

the amount of water �owing in a particular river during a year. We have
not �gured out how to measure the total volume, but we can measure the
�ow at any instant in time using our Acme Hydro�owometerTM. At time
t the volume of water �owing past a particular point as measured by the
Hydro�owometerTM is h(t).
Suppose that we break the year into n intervals of length T=n each, where

T is the amount of time in a year. Wemeasure the �ow once per time interval,
and our measurement times are t1; :::; tn. We use the measured �ow at time
ti to calculate the total �ow for period i according to the formula

h(ti)
T

n

where h(ti) is our measure of the instantaneous �ow and T=n is the length
of time in the interval. The total estimated volume for the year is then

V (n) =
tnX
t=t1

h(ti)
T

n
: (12.3)
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We can make our estimate of the volume more accurate by taking more
measurements of the �ow. As we do this n becomes larger and T=n becomes
smaller.
Now suppose that we could measure the �ow at every instant of time.

Then T=n ! 0, and if we tried to do the summation in equation (12.3) we
would add up a whole bunch of numbers, each of which is multiplied by zero.
But the total volume is not zero, so this cannot be the right approach. It�s
not. The right approach uses integrals. The idea behind an integral is
adding an in�nite number of zeroes together to get something that is not
zero. Our correct formula for the volume would be

V =

Z T

0

h(t)dt:

The expression dt takes the place of the expression T=n in the sum, and it
is the length of each measurement interval, which is zero.
We can use this approach in a variety of economic applications. One

major use is for taking expectations of continuous random variables, which
is the topic of the next chapter. Before going on, though, there are two
useful tricks involving integrals that deserve further attention.

12.2 Integration by parts

Integration by parts is a very handy trick that is often used in economics.
It is also what separates us from the lower animals. The nice thing about
integration by parts is that it is simple to reconstruct. Start with the product
rule for derivatives:

d

dx
[f(x)g(x)] = f 0(x)g(x) + f(x)g0(x):

Integrate both sides of this with respect to x and over the interval [a; b]:Z b

a

d

dx
[f(x)g(x)]dx =

Z b

a

f 0(x)g(x)dx+

Z b

a

f(x)g0(x)dx: (12.4)

Note that the left-hand term is just the integral (with respect to x) of a
derivative (with respect to x), and combining those two operations leaves
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the function unchanged:Z b

a

d

dx
[f(x)g(x)]dx = f(x)g(x)jba

= f(b)g(b)� f(a)g(a):

Plugging this into (12.4) yields

f(x)g(x)jba =
Z b

a

f 0(x)g(x)dx+

Z b

a

f(x)g0(x)dx:

Now rearrange this to get the rule for integration by parts:Z b

a

f 0(x)g(x)dx = f(x)g(x)jba �
Z b

a

f(x)g0(x)dx: (12.5)

When you took calculus, integration by parts was this mysterious thing.
Now you know the secret �it�s just the product rule for derivatives.

12.2.1 Application: Choice between lotteries

Here is my favorite use of integration by parts. You may not understand the
economics yet, but you will someday. Suppose that an individual is choosing
between two lotteries. Lotteries are just probability distributions, and the
individual�s objective function isZ b

a

u(x)F 0(x)dx (12.6)

where a is the lowest possible payo¤ from the lottery, b is the highest possible
payo¤, u is a utility function de�ned over amounts of money, and F 0(x) is
the density function corresponding to the probability distribution function
F (x). (I use the derivative notation F 0(x) instead of the density notation
f(x) to make the use of integration by parts more transparent.)
The individual can choose between lottery F (x) and lottery G(x), and

we would like to �nd properties of F (x) and G(x) that guarantee that the
individual likes F (x) better. How can we do this? We must start with what
we know about the individual. The individual likes money, and u(x) is the
utility of money. If she likes money, u(x) must be nondecreasing, so

u0(x) � 0.



CHAPTER 12. INTEGRATION 158

And that�s all we know about the individual.
Now look back at expression (12.6). It is the integral of the product of

u(x) and F 0(x). But the only thing we know about the individual is that
u0(x) � 0, and expression (12.6) does not have u0(x) in it. So let�s integrate
by parts. Z b

a

u(x)F 0(x)dx = u(x)F (x)jba �
Z b

a

u0(x)F (x)dx:

To simplify this we need to know a little more about probability distribution
functions. Since a is the lowest possible payo¤ from the lottery, the distrib-
ution function must satisfy F (a) = 0 (this comes from Theorem 19). Since b
is the highest possible payo¤ from the lottery, the distribution function must
satisfy F (b) = 1. So, the above expression reduces toZ b

a

u(x)F 0(x)dx = u(b)�
Z b

a

u0(x)F (x)dx: (12.7)

We can go through the same analysis for the other lottery, G(x), and �ndZ b

a

u(x)G0(x)dx = u(b)�
Z b

a

u0(x)G(x)dx: (12.8)

The individual chooses the lottery F (x) over the lottery G(x) ifZ b

a

u(x)F 0(x)dx �
Z b

a

u(x)G0(x)dx;

that is, if the lottery F (x) generates a higher value of the objective function
than the lottery G(x) does. Or written di¤erently, she chooses F (x) over
G(x) if Z b

a

u(x)F 0(x)dx�
Z b

a

u(x)G0(x)dx � 0:
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Subtracting (12.8) from (12.7) yieldsZ b

a

u(x)F 0(x)dx�
Z b

a

u(x)G0(x)dx

=

�
u(b)�

Z b

a

u0(x)F (x)dx

�
�
�
u(b)�

Z b

a

u0(x)G(x)dx

�
=

Z b

a

u0(x)G(x)dx�
Z b

a

u0(x)F (x)dx

=

Z b

a

u0(x) [G(x)� F (x)] dx:

The di¤erence depends on something we know about: u0(x), which we know
is nonnegative. The individual chooses F (x) over G(x) if the above expres-
sion is nonnegative, that is, ifZ b

a

u0(x) [G(x)� F (x)] dx � 0:

We know that u0(x) � 0. We can guarantee that the product u0(x) [G(x)� F (x)]
is nonnegative if the other term, [G(x)� F (x)], is also nonnegative. So, we
are certain that she will choose F (x) over G(x) if

G(x)� F (x) � 0 for all x.

This turns out to be the answer to our question. Any individual who
likes money will prefer lottery F (x) to lottery G(x) if G(x)�F (x) � 0 for all
x. There is even a name for this condition ��rst-order stochastic dominance.
But the goal here was not to teach you about choice over lotteries. The goal
was to show the usefulness of integration by parts. So let�s look back and
see exactly what it did for us. The objective function was an integral of the
product of two terms, u(x) and F 0(x). We could not assume anything about
u(x), but we could assume something about u0(x). So we used integration by
parts to get an expression that involved the term we knew something about.
And that is its beauty.

12.3 Di¤erentiating integrals

As you have probably noticed, in economics we di¤erentiate a lot. Some-
times, though, the objective function has an integral, as with expression
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(12.6) above. Often we want to di¤erentiate an objective function to �nd an
optimum, and when the objective function has an integral we need to know
how to di¤erentiate it. There is a rule for doing so, called Leibniz�s rule,
named after the 17th-century German mathematician who was one of the
two independent inventors of calculus (along with Newton).
We want to �nd

d

dt

Z b(t)

a(t)

f(x; t)dx:

Note that we are di¤erentiating with respect to t, and we are integrating
with respect to x. Nevertheless, t shows up three times in the expression,
once in the upper limit of the integral, b(t), once in the lower limit of the
integral, a(t), and once in the integrand, f(x; t). We need to �gure out what
to do with these three terms.
A picture helps. Look at Figure 12.1. The integral is the area underneath

the curve f(x; t) between the endpoints a(t) and b(t). Three things happen
when t changes. First, the function f(x; t) shifts, and the graph shows
an upward shift, which makes the integral larger because the area under a
higher curve is larger. Second, the right endpoint b(t) changes, and the graph
shows it getting larger. This again increases the integral because now we
are integrating over a larger interval. Third, the left endpoint a(t) changes,
and again the graph shows it getting larger. This time, though, it makes
the integral smaller because moving the left endpoint rightward shrinks the
interval over which we are integrating.
Leibniz�s rule accounts for all three of these shifts. Leibniz�s rule says

d

dt

Z b(t)

a(t)

f(x; t)dx =

Z b(t)

a(t)

@f(x; t)

@t
dx+ b0(t)f(b(t); t)� a0(t)f(a(t); t):

Each of the three terms corresponds to one of the shifts in Figure 12.1. The
�rst term accounts for the upward shift of the curve f(x; t). The term
@f(x; t)=@t tells how far upward the curve shifts at point x, and the integralZ b(t)

a(t)

@f(x; t)

@t
dx

tells how much the area changes because of the upward shift in f(x; t).
The second term accounts for the movement in the right endpoint, b(t).

Using the graph, the amount added to the integral is the area of a rectangle
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b(t)
x1

a(t)
x1

f(x,t)

x

f(x,t)

Figure 12.1: Leibniz�s rule

that has height f(b(t); t), that is, f(x; t) evaluated at x = b(t), and width
b0(t), which accounts for how far b(t) moves when t changes. Since area is
just length times width, we get b0(t)f(b(t); t), which is exactly the second
term.
The third term accounts for the movement in the left endpoint, a(t).

Using the graph again, the change in the integral is the area of a rectangle
that has height f(a(t); t) and width a0(t). This time, though, if a(t) increases
we are reducing the size of the integral, so we must subtract the area of the
rectangle. Consequently, the third term is �a0(t)f(a(t); t).
Putting these three terms together gives us Leibniz�s rule, which looks

complicated but hopefully makes sense.

12.3.1 Application: Second-price auctions

A simple application of Leibniz�s rule comes from auction theory. A �rst-
price sealed bid auction has bidders submit bids simultaneously to an auc-
tioneer who awards the item to the highest bidder who then pays his bid.
This is a very common auction form. A second-price sealed bid auction has
bidders submit bids simultaneously to an auctioneer who awards the item to
the highest bidder, just like before, but this time the winning bidder pays
the second-highest price.
To model the second-price auction, suppose that there are n bidders and
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that bidder i values the item being auctioned at vi, which is independent
of how much everyone else values the item. Bidders do not know their
opponents�valuations, but they do know the probability distribution of the
opponents�valuations. Bidder i must choose his bid bi.
Let Fi(b) be the probability that the highest other bid faced by i, that is,

the highest bid except for bi, is no larger than b. Then Fi(b) is a probability
distribution function, and its density function is fi(b). Bidder i�s expected
payo¤ is

Vi(bi) =

Z bi

0

(vi � b)fi(b)db:

Let�s interpret this function. Bidder i wins if his is the highest bid, which
occurs if the highest other bid is between 0 (the lowest possible bid) and his
own bid bi. If the highest other bid is above bi bidder i loses and gets a
payo¤ of zero. This is why the integral is taken over the interval [0; bi]. If
bidder i wins he pays the highest other bid b, which is distributed according
to the density function fi(b). His surplus if he wins is vi� b, his value minus
how much he pays.
Bidder i chooses the bid bi to maximize his expected payo¤ Vi(bi). Since

this is a maximization problem we should �nd the �rst-order condition:

V 0i (bi) =
d

dbi

Z bi

0

(vi � b)fi(b)db = 0:

Notice that we are di¤erentiating with respect to bi, which shows up only as
the upper endpoint of the integral. Using Leibniz�s rule we can evaluate this
�rst-order condition:

0 =
d

dbi

Z bi

0

(vi � b)fi(b)db

=

Z bi

0

@

@bi
[(vi � b)fi(b)] db+

dbi
dbi

� (vi � bi)fi(bi)�
d0

dbi
� (vi � 0)fi(0):

The �rst term is zero because (vi � b)fi(b) is not a function of bi, and so
the partial derivative is zero. The second term reduces to (vi � bi)fi(bi)
because dbi=dbi is simply one. The third term is zero because the derivative
d0=dbi = 0. This leaves us with the �rst-order condition

0 = (vi � bi)fi(bi):



CHAPTER 12. INTEGRATION 163

Since density functions take on only nonnegative values, the �rst-order con-
dition holds when vi � bi = 0, or bi = vi. In a second-price auction the
bidder should bid his value.
This result makes sense intuitively. Let bi be bidder i�s bid, and let b

denote the highest other bid. Suppose �rst that bidder i bids more than his
value, so that bi > vi. If the highest other bid is in between these, so that
vi < b < bi, bidder i wins the auction but pays b�vi more than his valuation.
He could have avoided this by bidding his valuation, vi. Now suppose that
bidder i bids less than his value, so that bi < vi. If the highest other bid is
between these two, so that bi < b < vi, bidder i loses the auction and gets
nothing. But if he had bid his value he would have won the auction and
paid b < vi, and so he would have been better o¤. Thus, the best thing for
him to do is bid his value.

12.4 Problems

1. Suppose that f(x) is the density function for a random variable dis-
tributed uniformly over the interval [2; 8].

(a) Compute Z 8

2

xf(x)dx

(b) Compute Z 8

2

x2f(x)dx

2. Compute the following derivative:

d

dt

Z t2

�t2
tx2dx

3. Find the following derivative:

d

dt

Z 4t2

�3t
t2x3dx

4. Let U(a; b) denote the uniform distribution over the interval [a; b]. Find
conditions on a and b that guarantee that U(a; b) �rst-order stochasti-
cally dominates U(0; 1).
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13

Moments

13.1 Mathematical expectation

Let ~x be a random variable with density function f(x) and let u(x) be a
real-valued function. The expected value of u(~x) is denoted E[u(~x)] and
it is found by the following rules. If ~x is discrete taking on value xi with
probability f(xi) then

E[u(~x)] =
X
i

u(xi)f(xi):

If ~x is continuous the expected value of u(~x) is given by

E[u(~x)] =

Z 1

�1
u(x)f(x)dx:

Since integrals are for adding, as we learned in the last chapter, these formulas
really do make sense and go together.

164
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The expectation operator E[�] is linear, which means that

E[au(~x)] = aE[u(~x)]

E[u(~x) + v(~x)] = E[u(~x)] + E[v(~x)]

13.2 The mean

The mean of a random variable ~x is � = E[~x], that is, it is the expected
value of the function u(x) = x.
Consider the discrete distribution with outcomes (4; 10; 12; 20) and cor-

responding probabilities (0:1; 0:2; 0:3; 0:4). The mean is

E[~x] = (4)(0:1) + (10)(0:2) + (12)(0:3) + (20)(0:4) = 14

13.2.1 Uniform distribution

The mean of the uniform distribution over the interval [a; b] is (a+ b)=2. If
you don�t believe me, draw it. To �gure it out from the formula, compute

E[~x] =

Z b

a

x � 1

b� adx

=
1

b� a

Z b

a

xdx

=
1

b� a �
1

2
x2
����b
a

=
1

b� a �
b2 � a2
2

=
b+ a

2
:

13.2.2 Normal distribution

The mean of the general normal distribution is the parameter �. Recall that
the normal density function is

f(x) =
1

�
p
2�
e�(x��)

2=2�2 :
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The mean is

E[~x] =

Z
x

�
p
2�
e�(x��)

2=2�2dx:

Use the change-of-variables formula y = x��
�
so that x = �+�y, (x��)2=�2 =

y2, and dx = �dy. Then we can rewrite

E[~x] =

Z
x

�
p
2�
e�(x��)

2=2�2dx

=

Z 1

�1

�+ �y

�
p
2�
e�y

2=2�dy

= �

Z 1

�1

1p
2�
e�y

2=2dy +
�p
2�

Z 1

�1
ye�y

2=2dy:

The �rst integral is the integral of the standard normal density, and like all
densities its integral is 1. The second integral can be split into two parts:Z 1

�1
ye�y

2=2dy =

Z 0

�1
ye�y

2=2dy +

Z 1

0

ye�y
2=2dy:

Use the change of variables y = �z in the �rst integral on the right-hand
side. Then y2 = z2 and dy = �dz, soZ 0

�1
ye�y

2=2dy = �
Z 1

0

ze�z
2=2dz

Plugging this back into the expression above it yieldsZ 1

�1
ye�y

2=2dy = �
Z 1

0

ze�z
2=2dz +

Z 1

0

ye�y
2=2dy:

But both integrals on the right-hand side are the same, so the expression is
zero. Thus, we get E[~x] = �.

13.3 Variance

The variance of the random variable ~x is E[(~x��)2], where � = E[~x] is the
mean of the random variable. The variance is denoted �2. Note that

E[(~x� �)2] = E[~x2 � 2�~x+ �2]
= E[~x2]� 2�E[~x] + �2

= E[~x2]� 2�2 + �2

= E[~x2]� �2.



CHAPTER 13. MOMENTS 167

We can �nd the variance of the discrete random variable used in the
preceding section. The outcomes were (4; 10; 12; 20) and the corresponding
probabilities were (0:1; 0:2; 0:3; 0:4). The mean was 14. The variance is

E[(~x� �)2] = (0:1)(4� 14)2 + (0:2)(10� 14)2 +
(0:3)(12� 14)2 + (0:4)(20� 14)2

= (0:1)(100) + (0:2)(16) + (0:3)(4) + (0:4)(36)

= 28:8

We can also �nd it using the alternative formula:

E[~x2]� �2 = (0:1)(42) + (0:2)(102) + (0:3)(12)2 + (0:4)(202)� 142:

You should be able to show that

V ar(a~x) = a2V ar(~x):

The standard deviation of the random variable ~x is
p
E[(~x� �)2],

which means that the standard deviation is simply �. It is the square root
of the variance.

13.3.1 Uniform distribution

The variance of the uniform distribution can be found from

E[~x2] =

Z b

a

x2

b� adx

=
1

b� a �
1

3
x3
����b
a

=
1

b� a �
b3 � a3
3
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and note that b3 � a3 = (b� a)(b2 + ab+ a2). Consequently,

�2 = E[~x2]� �2

=
b2 + ab+ a2

3
� (b+ a)

2

4

=
4b2 + 4ab+ 4a2 � 3b2 � 6ab� 3a2

12

=
b2 � 2ab+ a2

12

=
(b� a)2
12

:

13.3.2 Normal distribution

The variance of the standard normal distribution is 1. Let�s take that on
faith. The variance of the general normal distribution had better be the
parameter �2. To make sure, compute

E[(~x� �)2] =
Z 1

�1

(x� �)2

�
p
2�

e�(x��)
2=2�2dx

Using the same change-of-variables trick as before, we get

E[(~x� �)2] =
Z 1

�1

(x� �)2

�
p
2�

e�(x��)
2=2�2dx

=

Z 1

�1

(�+ �y � �)2

�
p
2�

e�y
2=2�dy

=

Z 1

�1

�y2p
2�
e�y

2=2dy

= �2
Z 1

�1

y2p
2�
e�y

2=2dy:

The integral is the variance of the standard normal, which we already said
was 1.

13.4 Application: Order statistics

Suppose that you make n independent draws from the random variable ~x
with distribution function F (x) and density f(x). The value of the highest
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of them is a random variable, the value of the second highest is a random
variable, and so on, for n random variables. The n-th order statistic is
the expected value of the n-th highest draw. So, the �rst order statistic is
the expected value of the highest of the n draws, the second order statistic
is the expected value of the second highest of the n draws, and so on.
We use order statistics in a variety of settings, but the most straightfor-

ward one is auctions. Think about a �rst-price sealed bid auction in which
n bidders submit their bids simultaneously and then the highest bidder wins
and pays her bid. The seller�s expected revenue, then, is the expected value
of the highest of the n bids, which is the �rst order statistic. Now think
about the second-price sealed-bid auction. In this auction n bidders sub-
mit their bids simultaneously, the highest bid wins, and the winner pays the
second-highest bid. The seller�s expected revenue in this auction is the ex-
pected value of the second-highest of the n bids, which is the second order
statistic.
As a side note, order statistics have also played a role in cosmology,

the study of the cosmos, and in particular they were used by Edwin Hubble.
Hubble was clearly an overachiever. In set the Illinois state high school record
for high jump. He was a Rhodes scholar. He was the �rst astronomer to use
the giant 200-inch Hale telescope at Mount Palomar. He was honored with a
41 cent postage stamp. He has the Hubble Space Telescope named after him.
Importantly for this story, though, he established that the universe extends
beyond our galaxy, the Milky Way. This was a problem because we know
that stars that are farther away are dimmer, but not all stars have the same
brightness. So, we can�t tell whether a particular star is dim because it�s far
away or because it�s just not very bright (econometricians would call this an
identi�cation problem). Astronomers before Hubble made the heroic (that
is, unreasonable) assumption that all starts were the same brightness and
worked from there. Hubble used the milder assumption that the brightest
star in every nebula (or galaxy, but they didn�t know the di¤erence at the
time) is equally bright. In other words, he assumed that the �rst order
statistic is the same for every nebula.
We want to �nd the order statistics, and, in particular, the �rst and

second order statistics. To do this we have to �nd some distributions. Think
about the �rst order statistic. It is the expected value of the highest of
the n draws, and the highest of the n draws is a random variable with a
distribution. But what is the distribution? We must construct it from the
underlying distribution F .
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Let G(1)(x) denote the distribution for the highest of the n values drawn
independently from F (x). We want to derive G(1)(x). Remember that
G(1)(x) is the probability that the highest draw is less than or equal to x.
For the highest draw to be less than or equal to x, it must be the case that
every draw is less than or equal to x. When n = 1 the probability that the
one draw is less than or equal to x is F (x). When n = 2 the probability
that both draws are less than or equal to x is (F (x))2. And so on. When
there are n draws the probability that all of them are less than or equal to x
is (F (x))n, and so

G(1)(x) = F n(x):

From this we can get the density function by di¤erentiating G(1) with respect
to x:

g(1)(x) = nF n�1(x)f(x):

Note the use of the chain rule.
This makes it possible to compute the �rst order statistic, since we know

the distribution and density functions for the highest of n draws. We just
take the expected value in the usual way:

s(1) =

Z
xnF n�1(x)f(x)dx:

Example 12 Uniform distribution over (0; 1). We have F (x) = x on [0; 1],
and f(x) = 1 on [0; 1]. The �rst order statistic is

s(1) =

Z
xnF n�1(x)f(x)dx

=

Z 1

0

xnxn�1dx

= n

Z 1

0

xndx

= n
xn+1

n+ 1

����1
0

=
n

n+ 1
:

This answer makes some sense. If n = 1 the �rst order statistic is just the
mean, which is 1=2. If n = 2 and the distribution is uniform so that the
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draws are expected to be evenly spaced, then the highest draw should be about
2=3 and the lowest should be about 1=3. If n = 3 the highest draw should be
about 3=4, and so on.

We also care about the second order statistic. To �nd it we follow the
same steps, beginning with identifying the distribution of the second-highest
draw. To make this exercise precise, we are looking for the probability that
the second-highest draw is no greater than some number, call it y. There
are a total of n+1 ways that we can get the second-highest draw to be below
y, and they are listed below:

Event Probability
Draw 1 is above y and the rest are below y (1� F (y))F n�1(y)
Draw 2 is above y and the rest are below y (1� F (y))F n�1(y)
...

...
Draw n is above y and the rest are below y (1� F (y))F n�1(y)
All the draws are below y F n(y)

Let�s �gure out these probabilities one at a time. Regarding the �rst line,
the probability that draws 2 through n are below y is the probability of
getting n� 1 draws below y, which is F n�1(y). The probability that draw 1
is above y is 1� F (y). Multiplying these together yields the probability of
getting draw 1 above y and the rest below. The probability of getting draw
2 above y and the rest below is the same, and so on for the �rst n rows of
the table. In the last row all of the draws are below y, in which case both
the highest and the second highest draws are below y. The probability of
all n draws being below y is just F n(y), the same as when we looked at the
�rst order statistic. Summing the probabilities yields the distribution of the
second-highest draw:

G(2)(y) = n(1� F (y))F n�1(y) + F n(y):

Multiplying this out and simplifying yields

G(2)(y) = nF n�1(y)� (n� 1)F n(y):

The density function is found by di¤erentiating G(2) with respect to y:

g(2)(y) = n(n� 1)F n�2(y)f(y)� n(n� 1)F n�1(y)f(y):



CHAPTER 13. MOMENTS 172

It can be rearranged to get

g(2)(y) = n(n� 1)(1� F (y))F n�2(y)f(y):

The second order statistic is the expected value of the second-highest draw,
which is

s(2) =

Z
yg(2)(y)dy

=

Z
yn(n� 1)(1� F (y))F n�2(y)f(y)dy:

Example 13 Uniform distribution over [0; 1].

s(2) =

Z
yn(n� 1)(1� F (y))F n�2(y)f(y)dy

=

Z 1

0

yn(n� 1)(1� y)yn�2dy

= n(n� 1)
Z 1

0

�
yn�1 � yn

�
dy

= n(n� 1)y
n

n

����1
0

� n(n� 1) y
n+1

n+ 1

����1
0

= (n� 1)� n(n� 1)
n+ 1

=
n� 1
n+ 1

:

If there are four draws uniformly dispersed between 0 and 1, the highest draw
is expected to be at 3=4, the second highest at 2=4, and the lowest at 1=4.
If there are �ve draws, the highest is expected to be at 4=5 and the second
highest is expected to be at 3=5, and so on.
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13.5 Problems

1. Suppose that the random variable ~x takes on the following values with
the corresponding probabilities:

Value Probability
7 .10
4 .23
2 .40
-2 .15
-6 .10
-14 .02

(a) Compute the mean.

(b) Compute the variance.

2. The following table shows the probabilities for two random variable,
one with density function f(x), and one with density function g(x).

x f(x) g(x)
10 0.15 0.20
15 0.5 0.30
20 0.05 0.1
30 0.1 0.1
100 0.2 0.3

(a) Compute the means of the two variables.

(b) Compute the variances of the two variables.

(c) Compute the standard deviations of the two variables.

3. Consider the triangular density given by f(x) = 2x on the interval
[0; 1].

(a) Find its distribution function F .

(b) Verify that it is a distribution function, that is, and speci�cally for
this case, that F is increasing, F (0) = 0, and F (1) = 1.

(c) Find the mean.
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(d) Find the variance.

4. Consider the triangular density given by f(x) = 1
8
x on the interval

[0; 4].

(a) Find its distribution function F .

(b) Verify that it satis�es the properties of a distribution function,
that is, F (0) = 0, F (4) = 1, and F increasing.

(c) Find the mean.

(d) Find the variance.

5. Show that if the variance of ~x is �2 then the variance of a~x is a2�2,
where a is a scalar.

6. Show that if the variance of ~x is �2x and if ~y = 3~x�1, then the variance
of ~y is 9�2x.

7. Suppose that the random variable ~x takes the value 6 with probability
1
2
and takes the value y with probability 1

2
. Find the derivative d�2=dy,

where �2 is the variance of ~x.

8. Let G(1) and G(2) be the distribution functions for the highest and
second highest draws, respectively. Show that G(1) �rst-order stochas-
tically dominates G(2).
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Multivariate distributions

Multivariate distributions arise when there are multiple random variables.
For example, what we normally refer to as "the weather" is comprised of
several random variables: temperature, humidity, rainfall, etc. A multivari-
ate distribution function is de�ned over a vector of random variables. A
bivariate distribution function is de�ned over two random variables. In this
chapter I restrict attention to bivariate distributions. Everything can be
extended to multivariate distributions by adding more random variables.

14.1 Bivariate distributions

Let ~x and ~y be two random variables. The distribution function F (x; y) is
given by

F (x; y) = P (~x � x and ~y � y):
It is called the joint distribution function. The function F (x;1) is the
probability that ~x � x and ~y � 1. The latter is sure to hold, and so
F (x;1) is the univariate distribution function for the random variable ~x.

175
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Similarly, the function F (1; y) is the univariate distribution function for the
random variable ~y.
The density function depends on whether the random variables are con-

tinuous or discrete. If they are both discrete then the density is given by
f(x; y) = P (~x = x and ~y = y). If they are both continuous the density is
given by

f(x; y) =
@2

@x@y
F (x; y):

This means that the distribution function can be recovered from the density
using the formula

F (x; y) =

Z y

�1

Z x

�1
f(s; t)dsdt:

14.2 Marginal and conditional densities

Consider the following example with two random variables:

~y = 1 ~y = 2
~x = 1 0.1 0.3
~x = 2 0.2 0.1
~x = 3 0.1 0.2

The random variable ~x can take on three possible values, and the random
variable ~y can take on two possible values. The probabilities in the table
are the values of the joint density function f(x; y).
Now add a total row and a total column to the table:

~y = 1 ~y = 2 f~x(x)
~x = 1 0.1 0.3 0.4
~x = 2 0.2 0.1 0.3
~x = 3 0.1 0.2 0.3
f~y(y) 0.4 0.6 1
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The sum of the �rst column is the total probability that ~y = 1, and the
sum of the second column is the total probability that ~y = 2. These are
the marginal densities. For a discrete bivariate random variable (~x; ~y) we
de�ne the marginal density of ~x by

f~x(x) =

nX
i=1

f(x; yi)

where the possible values of ~y are y1; :::; yn. For the continuous bivariate
random variable we de�ne the marginal density of ~x by

f~x(x) =

Z 1

�1
f(x; y)dy:

From this we can recover the marginal distribution function of ~x by integrat-
ing with respect to x:

F~x(x) =

Z x

�1
f~x(t)dt =

Z x

�1

Z 1

�1
f(t; y)dydt:

We have already discussed conditional probabilities. We would like to
have conditional densities. From the table above, it is apparent that the
conditional density of ~x given the realization of ~y is f(xjy) = f(x; y)=f(y).
To see that this is true, look for the probability that ~x = 3 given ~y = 2.
The probability that ~y = 2 is f~y(2) = 0:6. The probability that ~x = 3 and
~y = 2 is f(3; 2) = 0:2. The conditional probability is f(~x = 3j~y = 2) =
f(3; 2)=f~y(2) = 0:2=0:6 = 1=3. So, the rule is just what we would expect in
the discrete case.
What about the continuous case? The same formula works:

f(xjy) = f(x; y)

f~y(y)
:

So, it doesn�t matter in this case whether the random variables are discrete
or continuous for us to �gure out what to do. Both of these formulas require
conditioning on a single realization of ~y. It is possible, though, to de�ne
the conditional density much more generally. Let A be an event, and let P
be the probability measure over events. Then we can write the conditional
density

f(xjA) = f(x;A)

P (A)
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where f(x;A) denotes the probability that both x and A occur, written as a
density function. For example, if A = fx : ~x � x0g, so that A is the event
that the realization of ~x is no greater than x0, we know that P (A) = F (x0).
Therefore

f(xj~x � x0) =
(

f(x)
F (x0)

if x � x0
0 if x > x0

At this point we have too many functions �oating around. Here is a
table to help with notation and terminology.

Function Notation Formula
Density f(x; y) or f~x;~y(x; y)
Distribution F (x; y) or F~x;~y(x; y) Discrete:P

~y�y
P

~x�x f(x; y)

Continuous:R y
�1
R x
�1 f(s; t)dsdt

Univariate dist. F (x) F (x;1)

Marginal density f~x(x)
Discrete:

P
y f(x; y)

Continuous:
R1
�1 f(x; y)dy

Conditional density f(xjy) or f~xjy(xjy) f(x; y)=f(y)

The random variables ~x and ~y are independent if f~x;~y(x; y) = f~x(x)f~y(y).
In other words, the random variables are independent if the bivariate density
is the product of the marginal densities. Independence implies that f(xjy) =
f~x(x) and f(yjx) = f~y(y), so that the conditional densities and the marginal
densities coincide.

14.3 Expectations

Suppose we have a bivariate random variable (~x; ~y). Let u(x; y) be a real-
valued function, in which case u(~x; ~y) is a univariate random variable. Then
the expected value of u(~x; ~y) is

E[u(~x; ~y)] =
X
y

X
x

u(x; y)f(x; y)
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in the discrete case and

E[u(~x; ~y)] =

Z 1

�1

Z 1

�1
u(x; y)f(x; y)dxdy

in the continuous case.
It is still possible to compute the means of the random variables ~x and ~y

separately. We can do this using the marginal densities. So, for example,
in the table above the mean of ~y is (0:4)(1) + (0:6)(2) = 1:6:
A particularly important case is where u(x; y) = (x� �x)(y � �y), where

�x is the mean of ~x and �y is the mean of ~y. The resulting expectation is
called the covariance of ~x and ~y, and it is denoted

�xy = Cov(~x; ~y) = E[(~x� �x)(~y � �y)]:

Note that �xx is just the variance of ~x. Also, it is easy to show that �xy =

E[~x~y]� �x�y.
The quantity

�xy =
�xy
�x�y

is called the correlation coe¢ cient between ~x and ~y. The following the-
orems apply to correlation coe¢ cients.

Theorem 20 If ~x and ~y are independent then �xy = �xy = 0.

Proof. When the random variables are independent, f(x; y) = f~x(x)f~y(y).
Consequently we can write

�xy = E[(~x� �x)(~y � �y)] = E[~x� �x] � E[~y � �y)]:

But each of the expectations on the right-hand side are zero, and the result
follows.

It is important to remember that the converse is not true: sometimes
two variables are not independent but still happen to have a zero covariance.
An example is given in the table below. One can compute that �xy = 0 but
note that f(2; 6) = 0 while f~x(2) � f~y(6) = (0:2)(0:4) 6= 0.
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~y = 6 ~y = 8 ~y = 10
~x = 1 0.2 0 0.2
~x = 2 0 0.2 0
~x = 3 0.2 0 0.2

Theorem 21
���xy�� � 1:

Proof. Consider the random variable ~x � t~y, where t is a scalar. Because
variances cannot be negative, we have

0 � �2x�ty

= E[~x2 � 2t~x~y + t2~y2]� (�2x � 2t�x�y + t2�2y)
=

�
E[~x2]� �2x

�
+ t2

�
E[~y2]� �2y

�
� 2t

�
E[~x~y]� �x�y

�
= �2x + t

2�2y � 2t�xy:

Since this is true for any scalar t, choose

t =
�xy
�2y
:

Substituting gives us

0 � �2x +

�
�xy
�2y

�2
�2y � 2

�xy
�2y
�xy

0 � �2x �
�2xy
�2y

�2xy
�2x�

2
y

� 1���� �xy�x�y

���� � 1:

The theorem says that the correlation coe¢ cient is bounded between �1
and 1. If �xy = 1 it means that the two random variables are perfectly
correlated, and once you know the value of one of them you know the value
of the other. If �xy = �1 the random variables are perfectly negatively
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correlated. This contains just as much information as perfect correlation.
If you know that ~x has attained its highest possible value and ~x and ~y are
perfectly negatively correlated, then ~y must have attained its lowest value.
Finally, if �xy = 0 the two variables are perfectly uncorrelated (and possibly
independent).

14.4 Conditional expectations

When there are two random variables, ~x and ~y, one might want to �nd the
expected value of ~x given that ~y has attained a particular value or set of
values. This would be the conditional mean. We can use the above table
for an example. What is the expected value of ~x given that ~y = 8? ~x can
only take one value when ~y = 8, and that value is 2. So, the conditional
mean of ~x given that ~y = 8 is 2. The conditional mean of ~x given that
~y = 10 is also 2, but for di¤erent reasons this time.
To make this as general as possible, let u(x) be a function of x but not of

y. I will only consider the continuous case here; the discrete case is similar.
The conditional expectation of u(~x) given that ~y = y is given by

E[u(~x)j~y = y] =
Z 1

�1
u(x)f(xjy)dx = 1

f~y(y)

Z 1

�1
u(x)f(x; y)dx:

Note that this expectation is a function of y but not a function of x. The
reason is that x is integrated out on the right-hand side, but y is still there.

14.4.1 Using conditional expectations - calculating the
bene�t of search

Consider the following search process. A consumer, Max, wants to buy a
particular digital camera. He goes to a store and looks at the price. At
that point he has three choices: (i) but the camera at that store, (ii) go to
another store to check its price, or (iii) go back to a previous store and buy the
camera there. Stores draw their prices independently from the distribution
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F (p) given by

p = 200 with probability 0:2

p = 190 with probability 0:3

p = 180 with probability 0:4

p = 170 with probability 0:1

We want to answer the following question: If the lowest price so far is q,
what is the expected bene�t from checking one more store?
Let�s begin by answering this in the most straightforward way possible.

Suppose that q = 200, so that the lowest price found so far is the worst
possible price. If Max searches one more time there is a 10% chance of
�nding a price of $170 and saving $30, a 40% chance of �nding a price of
$180 and saving $20, a 30% chance of �ncing a price of $190 and saving
only $10, and a 20% chance of �nding another store that charges the highest
possible price of $200, in which case the savings are zero. The expected
saving is (:1)(30) + (:4)(20) + (:3)(10) + (:2)(0) = 14. When q = 200, the
expected bene�t of search is $14.
Now suppose that q = 190, so that the best price found so far is $190.

Max has a 10% chance of �nding a price of $170 and saving $20, a 40%
chance of �nding a price of $180 and saving $10, a 30% chance of �nding
the same price and saving nothing, and a 20% chance of �nding a higher
price of $200, in which case he also saves nothing. The expected saving is
(:1)(20) + (:4)(10) + (:3)(0) + (:2)(0) = 6. When the best price found so far
is q = 190, the expected bene�t of search is $6.
Finally, suppose that q = 180. Now there is only one way to improve,

which comes by �nding a store that charges a price of $170, leading to a $10
saving. The probabiliyt of �nding such a store is 10%, and the expected
saving from search is $1.
So now we know the answers, and let�s use these answers to �gure out

a general formula, speci�cally one involving conditional expectations. Note
that when Max �nds a price of p and the best price so far is q, his bene�t is
q� p if the new price p is lower than the old price q. Otherwise the bene�t
is zero because he would be better o¤ buying the item at a store he�s already
found. This "if" statement lends itself to a conditional expectation. In
particular, the "if" statement pertains to the conditional expectation E[q �
~pj~p < q], where the expectation is taken over the random variable p. This
epxression tells us what the average bene�t is provided that the bene�t is
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nonnegative. The actual expected bene�t is

Prf~p < qgE[q � ~pj~p < q];

which is the probability that the bene�t is positive times the expected bene�t
conditional on the bene�t being positive.
Let�s make sure this works using the above example. In particular, let�s

look at q = 190. The conditional expectation is

E[190� ~pj~p < 190] = (:4)(190� 180) + (:1)(190� 170)
= 6;

which is exactly what we found before.
The conditional expectation lets us work with more complicated distri-

butions. Suppose that prices are drawn independently from the uniform
distribution over the interval [150; 200]. Let the corresponding distribution
function be F (p) and the density function be f(p). The expected bene�t
from searching at another store when the lowest price so far is q is

Prf~p < qgE[q � ~pj~p < q] = F (q)
Z q

150

[q � p] f(p)
F (q)

dp

=

Z q

150

[q � p]f(p)dp:

To see why this works, look at the top line. The probability that ~p < q
is simply F (q), because that is the de�nition of the distribution function.
That gives us the �rst term on the right-hand side. For the second term,
note that we are taking the expectation of q� p, so that term is in brackets.
To �nd the conditional expectation, we multiply by the conditional density
which is the density of the random variable p divided by the probability that
the conditioning event (~p < q) occurs. We take the integral over the interval
[150; q] because outside of this interval the value of the bene�t is zero. When
we multiply the two terms on the right-hand side of the top line together, we
�nd that the F (q) term cancels out, leaving us with the very simple bottom
line. Using it we can �nd the net bene�t of searching at one more store
when the best price so far is $182.99:Z q

150

[q � p]f(p)dp =
Z 182:99

150

[182:99� p] 1
50
dp = 10:883:
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14.4.2 The Law of Iterated Expectations

There is an important result concerning conditional expectations. It is called
the Law of Iterated Expectations, and it goes like this.

Ey[Ex[u(~x)j~y = y]] = Ex[u(~x)]:

It�s a complicated statement, so let�s look at what it means. The inside of
the left-hand side is the conditional expectation of u(~x) given that ~y takes
some value y. As we have already learned, this is a function of y but not a
function of x. Let�s call it v(y), and v(~y) is a random variable. So now let�s
take the expectation of v(~y). The Law of Iterated Expectations says that
E[v(~y)] = Ex[u(~x)].
Another way of looking at it is taking the expectation of a conditional

expectation. Doing that removes the conditional part.
The best thing to do here is to look at an example to see what�s going

on. Let�s use one of our previous examples:

~y = 1 ~y = 2 f~x(x)
~x = 1 0.1 0.3 0.4
~x = 2 0.2 0.1 0.3
~x = 3 0.1 0.2 0.3
f~y(y) 0.4 0.6 1

Begin by �nding the conditional expectations E[~xj~y = 1] and E[~xj~y = 2].
We get E[~xj~y = 1] = 2 and E[~xj~y = 2] = 11=6. Now take the expectation
over y to get

Ey[Ex[u(~x)j~y = y]] = f~y(1) � E[~xj~y = 1] + f~y(2) � E[~xj~y = 2]
= (0:4)(2) + (0:6)(11=6) = 1:9:

Now �nd the unconditional expectation of ~x. It is

Ex[~x] = f~x(1) � 1 + f~x(2) � 2 + f~x(3) � 3
= (0:4)(1) + (0:3)(2) + (0:3)(3)

= 1:9:

It works.
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Now let�s look at it generally using the continuous case. Begin with

Ex[u(~x)] =

Z 1

�1
u(x)f~x(x)dx

=

Z 1

�1
u(x)

�Z 1

�1
f(x; y)dy

�
dx

=

Z 1

�1

Z 1

�1
u(x)f(x; y)dydx:

Note that f(x; y) = f(xjy)f~y(y), so we can rewrite the above expression

Ex[u(~x)] =

Z 1

�1

Z 1

�1
u(x)f(xjy)f~y(y)dydx

=

Z 1

�1

�Z 1

�1
u(x)f(xjy)dx

�
f~y(y)dy

=

Z 1

�1
Ex[u(~x)j~y = y]f~y(y)dy

= Ey[Ex[u(~x)j~y = y]]:

14.5 Problems

1. There are two random variables, ~x and ~y, with joint density f(x; y)
given by the following table.

f(x; y) ~y = 10 ~y = 20 ~y = 30
~x = 1 :04 0 :20
~x = 2 :07 0 :18
~x = 3 :02 :11 :07
~x = 4 :01 :12 :18

(a) Construct a table showing the distribution function F (x; y).

(b) Find the univariate distributions F~x(x) and F~y(y).

(c) Find the marginal densities f~x(x) and f~y(y).

(d) Find the conditional density f(xj~y = 20).
(e) Find the mean of ~y.

(f) Find the mean of ~x conditional on ~y = 20.
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(g) Are ~x and ~y independent?

(h) Verify that the Law of Iterated Expectations works.

2. There are two random variables, ~x and ~y, with joint density given by
the following table:

f(x; y) ~y = 3 ~y = 8 ~y = 10
~x = 1 0.03 0.02 0.20
~x = 2 0.02 0.12 0.05
~x = 3 0.05 0.01 0.21
~x = 4 0.07 0.11 0.11

(a) Construct a table showing the distribution function F (x; y).

(b) Find the univariate distributions F~x(x) and F~y(y).

(c) Find the marginal densities f~x(x) and f~y(y).

(d) Find the conditional density f(yj~x = 3).
(e) Find the means of ~x and ~y.

(f) Find the mean of ~x conditional on ~y = 3.

(g) Are ~x and ~y independent?

(h) Find V ar(~x) and V ar(~y).

(i) Find Cov(~x; ~y).

(j) Find the correlation coe¢ cient between ~x and ~y.

(k) Verify the Law of Iterated Expectations for �ndingEx[~x] =.Ey[Ex[~xjy]]:

3. Let F (x) be the uniform distribution over the interval [a; b], and sup-
pose that c 2 (a; b). Show that F (xjx � c) is the uniform distribution
over [a; c].

4. Consider the table of probabilities below:

f(x; y) ~y = 10 ~y = 20
~x = �1 0.1 a
~x = +1 0.3 b

What values must a and b take for ~x and ~y to be independent?



CHAPTER

15

Statistics

15.1 Some de�nitions

The set of all of the elements about which some information is desired is called
the population. Examples might be the height of all people in Knoxville,
or the ACT scores of all students in the state, or the opinions about Congress
of all people in the US. Di¤erent members of the population have di¤erent
values for the variable, so we can treat the population variable as a random
variable ~x. So far everything we have done in probability theory is about the
population random variable. In particular, its mean is � and its variance is
�2.
A random sample from a population random variable ~x is a set of in-

dependent, identically distributed (IID) random variables ~x1; ~x2; :::; ~xn, each
of which has the same distribution as the parent random variable ~x.
The reason for random sampling is that sometimes it is too costly to mea-

sure all of the elements of a population. Instead, we want to infer properties
of the entire population from the random sample. This is statistics.
Let x1; :::; xn be the outcomes of the random sample. A statistic is a

187
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function of the outcomes of the random sample which does not contain any
unknown parameters. Examples include the sample mean and the sample
variance.

15.2 Sample mean

The sample mean is given by

�x =
x1 + :::+ xn

n
:

Note that we use di¤erent notation for the sample mean (�x) and the popu-
lation mean (�).
The expected value of the sample mean can be found as follows:

E[�x] =
1

n

nX
i=1

E[~xi]

=
1

n

nX
i=1

�

=
1

n
(n�) = �:

So, the expected value of the sample mean is the population mean.
The variance of the sample mean can also be found. To do this, though,

let�s �gure out the variance of the sum of two independent random variables
~x and ~y.

Theorem 22 Suppose that ~x and ~y are independent. Then V ar(~x + ~y) =
V ar(~x) + V ar(~y).

Proof. Note that

(x� �x + y � �y)2 = (x� �x)2 + (y � �y)2 + 2(x� �x)(y � �y):

Take the expectations of both sides to get

V ar(~x+ ~y) = E[(~x� �x + ~y � �y)2]
= E[(~x� �x)2] + E[(~y � �y)2] + 2E[(~x� �x)(~y � �y)]
= V ar(~x) + V ar(~y) + 2Cov(~x; ~y):
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But, as shown in Theorem 20, since ~x and ~y are independent, Cov(~x; ~y) = 0,
and the result follows.

We can use this theorem to �nd the variance of the sample mean. Since a
random sample is a set of IID random variables, the theorem applies. Also,
recall that V ar(a~xi) = a2V ar(~xi). So,

V ar(�x) = V ar

 
1

n

nX
i=1

~xi

!

=
1

n2

nX
i=1

V ar(~xi)

=
n�2

n2

=
�2

n
:

This is a really useful result. It says that the variance of the sample mean
around the population mean shrinks as the sample size becomes larger. So,
bigger samples imply better �ts, which we all knew already but we didn�t
know why.

15.3 Sample variance

We are going to use two di¤erent pieces of notation here. One is

m2 =
1

n

nX
i=1

(xi � �x)2

and the other is

s2 =
1

n� 1

nX
i=1

(xi � �x)2

Both of these can be interpreted as the estimates of variance, and many
scienti�c calculators compute both of them. What you should remember is
to use m2 as the computed variance when the random sample coincides with
the entire population, and to use s2 when the random sample is a subset of
the population. In other words, you will almost always use s2, and we refer
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to s2 as the sample variance. But, m2 is useful for what we are about to
do.
We want to �nd the expected value of the sample variance s2. It is easier

to �nd the expected value of m2 and note that

s2 =
n

n� 1m
2:

We get

E[m2] =
1

n
E

"
nX
i=1

(~xi � �x)2
#

=
1

n
E

"
nX
i=1

~xi
2

#
� E[�x2]

which follows from a previous manipulation of variance: V ar(~x) = E[(~x �
�)2] = E[~x2]� �2. Rearranging that formula and applying it to the sample
mean tells us that

E[�x2] = E[�x]2 + V ar(�x);

so

E[m2] =

 
1

n

nX
i=1

E[~x2i ]

!
� E[�x]2 � V ar(�x):

But we already know some of these values. We know that E[�x] = � and
V ar(�x) = �2=n. Finally, note that since ~xi has mean � and variance �2, we
have

E[~x2i ] = �
2 + �2:

Plugging this all in yields

E[m2] =

 
1

n

nX
i=1

(�2 + �2)

!
� �2 � �

2

n

= (�2 + �2)� �2 � �
2

n

=
n� 1
n

�2
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Now we can get the mean of the sample variance s2:

E[s2] = E

�
n

n� 1m
2

�
=

n

n� 1E[m
2]

=
n

n� 1 �
n� 1
n

�2

= �2:

The reason for using s2 as the sample variance instead of m2 is that s2 has
the right expected value, that is, the expected value of the sample variance
is equal to the population variance.
We have found that E[�x] = � and E[s2] = �2. Both �x and s2 are statis-

tics, because they depend only on the observed values of the random sample
and they have no unknown parameters. They are also unbiased because
their expected values are equal to the population parameters. Unbiasedness
is an important and valuable property. Since we use random samples to
learn about the characteristics of the entire population, we want statistics
that match, in expectation, the parameters of the population distribution.
We want the sample mean to match the population mean in expectation, and
the sample variance to match the population variance in expectation.
Is there any intuition behind dividing by n � 1 in the sample variance

instead of dividing by m? Here is how I think about it. The random
sample has n observations in it. We only need one observation to compute
a sample mean. It may not be a very good or precise estimate, but it is still
an estimate. Since we can use the �rst observation to compute a sample
mean, we can use all of the data to compute all of the data to compute
a sample mean. This may seem cryptic and obvious, but now think about
what we need in order to compute a sample variance. Before we can compute
the sample variance, we need to compute the sample mean, and we need at
least one observation to do this. That leaves us with n� 1 observations to
compute the sample variance. The terminology used in statistics is degrees
of freedom. With n observations we have n degrees of freedom when we
compute the sample mean, but we only have n� 1 degrees of freedom when
we compute the sample variance because one degree of freedom was used to
compute the sample mean. In both calculations (sample mean and sample
variance) we divide by the number of degrees of freedom, n for the sample
mean �x and n� 1 for the sample variance s2.
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15.4 Convergence of random variables

In this section we look at what happens when the sample size becomes in�-
nitely large. The results are often referred to as asymptotic properties.
We have two main results, both concerning the sample mean. One is called
the Law of Large Numbers, and it says that as the sample size grows without
bound, the sample mean converges to the population mean. The second is
the Central Limit Theorem, and it says that the distribution of the sample
mean converges to a normal distribution, regardless of whether the popula-
tion is normally distributed or not.

15.4.1 Law of Large Numbers

Let �xn be the sample mean from a sample of size n. The basic law of large
numbers is

�xn ! � when n!1:
The only remaining issue is what that convergence arrow means.
TheWeak Law of Large Numbers states that for any " > 0

lim
n!1

P (j�xn � �j < ") = 1.

To understand this, take any small positive number ". What is the proba-
bility that the sample mean �xn is within " of the population mean? As the
sample size grows, the sample mean should get closer and closer to the pop-
ulation mean. And, if the sample mean truly converges to the population
mean, the probability that the sample mean is within " of the population
mean should get closer and closer to 1. The Weak Law says that this is true
no matter how small " is.
This type of convergence is called convergence in probability, and it

is written
�xn

P! � when n!1:
The Strong Law of Large Numbers states that

P
�
lim
n!1

�xn = �
�
= 1:

This one is a bit harder to understand. It says that the sample mean is almost
sure to converge to the population mean. In fact, this type of convergence
is called almost sure convergence and it is written

�xn
a:e:! � when n!1:
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15.4.2 Central Limit Theorem

This is the most important theorem in asymptotic theory, and it is the reason
why the normal distribution is so important to statistics.
Let N(�; �2) denote a normal distribution with mean � and variance �2.

Let �(z) be the distribution function (or cdf) of the normal distribution
with mean 0 and variance 1 (or the standard normal N(0; 1)). To state it,
compute the standardized mean:

Zn =
�xn � E[�xn]p
V ar(�xn)

:

We know some of these values: E[�xn] = � and V ar(�xn) = �2=n. Thus we
get

Zn =
�xn � �
�=
p
n
:

The Central Limit Theorem states that if V ar(~xi) = �2 <1, that is,
if the population random variable has �nite variance, then

lim
n!1

P (Zn � z) = �(z):

In words, the distribution of the standardized sample mean converges to the
standard normal distribution. This kind of convergence is called conver-
gence in distribution.

15.5 Problems

1. You collect the following sample of size n = 12:

10; 4;�1; 3;�2; 8; 6; 8; 6; 1;�5; 10

Find the sample mean and sample variance.
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16

Sampling distributions

Remember that statistics, like the mean and the variance of a random vari-
able, are themselves random variables. So, they have probability distribu-
tions. We know from the Central Limit Theorem that the distribution of the
sample mean converges to the normal distribution as the sample size grows
without bound. The purpose of this chapter is to �nd the distributions for
the mean and other statistics when the sample size is �nite.

16.1 Chi-square distribution

The chi-square distribution turns out to be fundamental for doing statistics
because it is closely related to the normal distribution. Chi-square random
variables can only have nonnegative values. It turns out to be the distribu-
tion you get when you square a normally distributed random variable.
The density function for the chi-square distribution with n degrees of

freedom is

f(x) =
(x=2)

n
2
�1e�

x
2

2�(n=2)

194
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Figure 16.1: Density for the chi-square distribution. The thick line has 1
degree of freedom, the thin line has 3, and the dashed line has 5.

where �(a) is the Gamma function de�ned as �(a) =
R1
0
ya�1e�ydy for a > 0.

We use the notation ~y � �2n to denote a chi-square random variable with n
degrees of freedom. The density for the chi-square distribution with di¤erent
degrees of freedom is shown in Figure 16.1. The thick line is the density
with 1 degree of freedom, the thin line has 3 degrees of freedom, and the
dashed line has 5. Changing the degrees of freedom radically changes the
shape of the density function.
One strange thing about the chi-square distribution is its mean and vari-

ance. The mean of a �2n random variable is n, the number of degrees of
freedom, and the variance is 2n.

The relationship between the standard normal and the chi-square distri-
bution is given by the following theorem.

Theorem 23 If ~x has the standard normal distribution, then the random
variable ~x2 has the chi-square distribution with 1 degree of freedom.
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Proof. The distribution function for the variable ~y = ~x2 is

F~y(y) = P (~y � y)
= P (~x2 � y)
= P (

p
y � x � py)

= 2P (0 � x � py)

where the last equality follows from the fact that the standard normal dis-
tribution is symmetric around its mean of zero. From here we can compute

F~y(y) = 2

Z p
y

0

f~x(x)dx

where f~x(x) is the standard normal density. Using Leibniz�s�rule, di¤eren-
tiate this with respect to y to get the density of ~y:

f~y(y) = 2f~x(
p
y) � 1

2
p
y

where the last term is the derivative of
p
y with respect to y. Plug in the

formula for the normal density to get

f~y(y) =
1p
2�
e�y=2 � y�1=2 = (y=2)�1=2e�y=2

2
p
�

:

This looks exactly like the formula for the density of �21 except for the de-
nominator. But, �(1=2) =

p
�, and the formula is complete.

Both the normal distribution and the chi-square distribution have the
property that they are additive. That is, if ~x and ~y are independent normally
distributed random variables, then ~z = ~x+ ~y is also normally distributed. If
~x and ~y are independent chi-square random variables with nx and ny degrees
of freedom, respectively, then ~z = ~x+ ~y is has a chi-square distribution with
nx + ny degrees of freedom.

16.2 Sampling from the normal distribution

We use the notation ~x � N(�; �2) to denote a random variable that is distrib-
uted normally with mean � and variance �2. Similarly, we use the notation
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~x � �2n when ~x has the chi-square distribution with n degrees of freedom.
The next theorem describes the distribution of the sample statistics of the
standard normal distribution.

Theorem 24 Let x1; :::; xn be an IID random sample from the standard nor-
mal distribution N(0; 1). Then

(a) �x � N(0; 1
n
):

(b)
P
(xi � �x)2 � �2n�1:

(c) The random variables �x and
P
(xi � �x)2 are statistically independent.

The above theorem relates to random sampling from a standard normal
distribution. If x1; :::; xn are an IID random sample from the general normal
distribution N(�; �2), then

�x � N(�; �
2

n
):

Also, P
(xi � �x)2
�2

� �2n�1:

To �gure out the distribution of the sample variance, �rst note that since the
sample variance is

s2 =

P
(xi � �x)2
n� 1

and E[s2] = �2, we get that

(n� 1)s2
�2

� �2n�1:

This looks more useful than it really is. In order to get it you need to know
the population variance, �2, in which case you don�t really need the sample
variance, s2. The next section discusses the sample distribution of s2 when
�2 is unknown.
The properties to take away from this section are that the sample mean

of a normal distribution has a normal distribution, and the sample variance
of a normal distribution has a chi-square distribution (after multiplying by
(n� 1)=�2).
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16.3 t and F distributions

In econometrics the two most frequently encountered distributions are the
t distribution and the F distribution. To brie�y say where they arise, in
econometrics one often runs a linear regression of the form

yt = b0 + b1x1;t + :::+ bkxk;t + ~"t

where t is the observation number, xi;t is an observation of the i-th explana-
tory variable, and ~"t � N(0; �2). One then estimates the coe¢ cients b0; :::; bk
in ways we have described earlier in this book. One uses a t distribution to
test whether the individual coe¢ cients b0; :::; bk are equal to zero. If the test
rejects the hypothesis, that explanatory variable has a statistically signi�-
cant impact on the dependent variable. The F test is used to test if linear
combinations of the coe¢ cients are equal to zero.
Let�s start with the t distribution. Graphically, its density looks like

the normal density but with fatter tails, as in Figure 16.2. To get a t
distribution, let ~x have a standard normal distribution and let ~y have a chi-
square distribution with n degrees of freedom. Assume that ~x and ~y are
independent. Construct the random variable ~t according to the formula

t =
x

(y=n)1=2
:

Then ~t has a t distribution with n degrees of freedom. In shorthand,

~tn �
N(0; 1)p
�2n=n

:

Now look back at Theorem 24. If we sample from a standard normal,
the sample mean has an N(0; 1) distribution and the sum of the squared
deviations has a �2n distribution. So, we get a t distribution when we use
the sample mean in the numerator and something like the sample variance
in the denominator. The trick is to �gure out exactly what we need.
If ~x � N(�; �2), then we know that �x � N(�; �2=n), in which case

�x� �
�=
p
n
� N(0; 1):

We also know that (
P
(xi � �x)2) =�2 � �2n�1. Putting this all together yields

~t =

�x��
�=
p
nr�P

(xi��x)2
�2

�
=(n� 1)

=
�x� �p
s2=n

: (16.1)
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Figure 16.2: Density for the t distribution. The thick curve has 1 degree of
freedom and the thin curve has 5. The dashed curve is the standard normal
density.

The random variable ~t has a t distribution with n � 1 degrees of freedom.
Also notice that it does not depend on �2. It does depend on �, but we
will discuss the meaning of this more in the next chapter. The statistic
computed in expression (16.1) is commonly referred to as a t-statistic.
Like the t distribution, the F distribution is a ratio of two other dis-

tributions. In this case it is the ratio of two chi-square distributions. The
formula is

Fm;n �
�2m=m

�2n=n
;

and the density function is shown in Figure 16.3. Because chi-square distri-
butions assign positive probability only to non-negative outcomes, F distri-
butions also assign positive probability only to non-negative outcomes.
The F distribution and the t distribution are related. If ~tn has the t

distribution with n degrees of freedom, then

(~tn)
2 � F1;n:

Applying this to expression (16.1) tells us that the following sample statistic
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Figure 16.3: Density function for the F distribution. The thick curve is
F2;20, the dashed curve is F5;20, and the thin curve is F10;20.

has an F distribution:

~F =
(�x� �)2
s2=n

� F1;n�1:

16.4 Sampling from the binomial distribution

Recall that the binomial distribution is used for computing the probability
of getting no more than s successes from n independent trials when the
probability of success in any trial is p.
A series of random trials is going to result in a sequence of successes or

failures, and we can use the random variable ~x to capture this. Let xi = 1
if there was a success in trial i and xi = 0 if there was a failure in trial i.
Then

Pn
i=1 xi is the number of successes in n trials, and �x = (

P
xi) =n is the

average number of successes. Notice that �x is also the sample frequency,
that is, the fraction of successes in the sample. The sample frequency has
the following properties:

E[�x] = p

V ar(�x) =
p(1� p)
n

:
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Hypothesis testing

The tool of statistical analysis has two primary uses. One is to describe
data, and we do this using such things as the sample mean and the sample
variance. The other is to test hypotheses. Suppose that you have, for
example, a sample of UT graduates and a sample of Vanderbilt graduates,
both from the class of 2002. You may want to know whether or not the
average UT grad makes more than the national average income, which was
about $35,700 in 2006. You also want to know if the two classes have the
same income. You would perform hypothesis tests to either support or reject
the hypotheses that UT grads have higher average earnings than the national
average and that both UT grads and Vanderbilt grads have the same average
income.
In general, hypothesis testing involves the value of some parameter � that

is determined by the data. There are two types of tests. One is to determine
if the realized value of � is in some set 
0. The other is to compute two
di¤erent values of � from two di¤erent samples and determine if they are the
same or if one is larger than the other.

201
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17.1 Structure of hypothesis tests

The �rst part of testing a hypothesis is forming one. In general a hypothesis
takes the form of � 2 
0, where 
0 is a nonempty set of values for �. It could
be a single value, or it could be a range of values. The statement � 2 
0 is
called the null hypothesis. The alternative hypothesis is that � =2 
0.
We typically write these as

H0 (Null hypothesis): � 2 
0
vs.

H1 (Alternative hypothesis): � =2 
0.

The form of the alternative hypothesis is determined completely by the
form of the null hypothesis. So, if H0 is � = �0, H1 is � 6= �0. If H0 is
� � �0, H1 is � > �0. And so on.
Another issue in hypothesis testing is that hypotheses can be rejected

but they cannot be accepted. So, you can establish that something is false,
but not that something is true. Because of this, empirical economists often
make the null hypothesis something they would like to be false. If they can
reject the null hypothesis, that lends support to the alternative hypothesis.
For example, if one thinks that the variance of returns to the Dow-Jones
Industrial Average is smaller than the variance of returns to the S&P 500
index, one would form the null hypothesis that the variance is at least as great
for the Dow and then try to reject it. When running linear regressions, one
tests the null hypothesis that the coe¢ cients are zero.
One uses a statistical test to either reject or support the null hypothesis.

The nature of the test is as follows. First we compute a test statistic for �.
Let�s call it T . For example, if � is the mean of the population distribution,
T would be the sample mean. As we know, the value of T is governed by
a random process. The statistical test identi�es a range of values A for the
random variable T such that if T 2 A the null hypothesis is "accepted" and if
T =2 A the null hypothesis is rejected. The setA is called the critical region,
and it is important to note that A and 
0 are two completely di¤erent things.
For example, a common null hypothesis is H0: � = 0. In that case 
0 = f0g.
But, we do not reject the null hypothesis if T is anything but zero, because
then we would reject the hypothesis with probability 1. Instead, we reject
the hypothesis if T is su¢ ciently far from zero, or, in our new terminology,
if T is outside of the critical region A.
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Statistical tests can have errors because of the inherent randomness. It
might be the case that � 2 
0, so that the null hypothesis is really true,
but T =2 A so we reject the null hypothesis. Or, it might be the case that
� =2 
0 so that the null hypothesis is really false, but T 2 A and we "accept"
it anyway. The possible outcomes of the test are given in the table below.

Value of test statistic T
T 2 A T =2 A

True value � 2 
0 Correctly "accept" null Incorrectly reject null
of Type I error

parameter � � =2 
0 Incorrectly "accept" null Correctly reject null
Type II error

A type I error occurs when one rejects a true null hypothesis. A type
II error occurs when a false null hypothesis is not rejected. A problem
arises because reducing the probability of a type I error generally increases
the probability of a type II error. After all, reducing the probability of a
type I error means rejecting the hypothesis less often, whether it is true or
not.
Let F (zj�) be the distribution of the test statistic z conditional on the

value of the parameter �. The entire previous chapter was about these
distributions. If the null hypothesis is really true, the probability that the
null is "accepted" is F (Aj� 2 
0). This is called the con�dence level. This
probability of a type I error is 1 � F (Aj� 2 
0). This probability is called
the signi�cance level. The standard is to use a 5% signi�cance level, but
10% and 1% signi�cance levels are also reported. The 5% signi�cance level
corresponds to a 95% con�dence level. I usually interpret the con�dence
level as the level of certainty with which the null hypothesis is false when it
is rejected. So, if I reject the null hypothesis with a 95% con�dence level, I
am 95% sure that the null hypothesis is really false.
Here, then, is the "method of proof" entailed in statistical analysis.

Think of a statement you want to be true. Make this the alternative hy-
pothesis. The null hypothesis is therefore a statement you would like to
reject. Construct a test statistic related to the null hypothesis. Reject the
null hypothesis if you are 95% sure that it is false given the value of the test
statistic.
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For example, suppose that you want to test the null hypothesis that the
mean of a normal distribution is 0. This makes the hypothesis

H0 : � = 0

vs.

H1 : � 6= 0

You take a sample x1; :::; xn and compute the sample mean �x and sample
variance s2. Construct the test statistic

t =
�x� �p
s2=n

(17.1)

which we know from Chapter 16 has a t distribution with n � 1 degrees of
freedom. In this case � is the hypothesized mean, which is equal to zero.
Now we must construct a critical range A for the test statistic t. Our critical
range will be an interval around zero so that we reject the null hypothesis if
t is too far from zero. We call this interval the 95% con�dence interval,
and it takes the form (tL; tH). Let Tn�1(t) be the distribution function for
the t distribution with n� 1 degrees of freedom. Then the endpoints of the
con�dence interval satisfy

Tn�1(tL) = 0:025

Tn�1(tH) = 0:975

The �rst line says that the probability that t is lower than tL is 2.5%, and the
second says that the probability that t is higher than tH is 2.5%. Combining
these means that the probability that the test statistic t is outside of the
interval (tL; tH) is 5%.
All of this is shown in Figure 17.1. The probability that t � tL is 2.5%,

as shown by the shaded area. The probability that t � tH is also 2.5%. The
probability that t is between these two points is 95%, and so the interval
(tL; tH) is the 95% con�dence interval. The hypothesis is rejected if the
value of t lies outside of the con�dence interval.
Another way to perform the same test is to compute Tn�1(t), where t is

the test statistic given in (17.1) above. Reject the hypothesis if

Tn�1(t) < 0:025 or Tn�1(t) > 0:975:

If the �rst of these inequalities hold, the value of the test statistic is outside
of the con�dence interval and to the left, and if the one on the right holds
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Figure 17.1: Two-tailed hypothesis testing

the test statistic is outside of the con�dence interval and to the right. The
null hypothesis cannot be rejected if 0:025 � Tn�1(t) � 0:975.

17.2 One-tailed and two-tailed tests

The tests described above are two-tailed tests, because rejection is based
on the test statistic lying in one of the two tails of the distribution. Two-
tailed tests are used when the null hypothesis is an equality hypothesis, so
that it is violated if the test statistic is either too high or too low.
A one-tailed test is used for inequality-based hypotheses, such as the

one below:

H0 : � � 0
vs.

H1 : � < 0

In this case the null hypothesis is rejected if the test statistic is both far
from zero and negative. Large test statistics are compatible with the null
hypothesis as long as they are positive. This contrasts with the two-sided
tests where large test statistics led to rejection regardless of the sign.
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To test the null hypothesis that the mean of a normal distribution is
nonnegative, compute the test statistic given in (17.1). We know from
Chapter 16 that it has the t distribution with n � 1 degrees of freedom.
Letting Tn�1(t) be the cdf of the t distribution with n�1 degrees of freedom,
we reject the null hypothesis at the 95% con�dence level (or 5% signi�cance
level) if

Tn�1(t) < 0:05:

There are two di¤erences between the one-tailed criterion for rejection and
the two-tailed criterion in the previous section. One di¤erence is that the
one-tailed criterion can only be satis�ed one way, with Tn�1(t) small, while
the two-tailed criterion can be satis�ed two ways, with Tn�1(t) either close to
zero or close to one. The second di¤erence is that the one-tailed criterion has
a cuto¤ point of 0.05, while the two-tailed criterion has a lower cuto¤ point
half as big at 0.025. The reason for this is that the two-tailed test splits
the 5% probability mass equally between the two tails, while the one-tailed
criterion puts the whole 5% in the lower tail.
The following table gives the rules for the one-tailed and two-tailed tests

with signi�cance level � and con�dence level 1 � �. The test statistic is z
with distribution function G(z), and the hypotheses concern some parameter
�.

Type of test Hypothesis Reject H0 if p-value
H0 : � = �0 G(z) < �

2

Two-tailed vs. or 2[1�G(jzj)]
H1 : � 6= �0 G(z) > 1� �

2

H0 : � � �0
Upper one-tailed vs. G(z) > 1� � 1�G(z)

H1 : � > �0
H0 : � � �0

Lower one-tailed vs. G(z) < � G(z)
H1 : � < �0

The p-value can be thought of as the exact signi�cance level for the test.
The null hypothesis is rejected if the p-value is smaller than �, the desired
signi�cance level.
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17.3 Examples

17.3.1 Example 1

The following sequence is a random sample from the distribution N(�; �2).
The task is to test hypotheses about �. The sequence is: 56, 74, 55, 66, 51,
61, 55, 48, 48, 47, 56, 57, 54, 75, 49, 51, 79, 59, 68, 72, 64, 56, 64, 62, 42.
Test the null hypothesis that � = 65. This is a two-tailed test based

on the statistic in equation (17.1). We compute �x = 58:73, s = 9:59, and
n = 25. We get

t =
�x� �p
s2=n

=
58:73� 65
9:59=5

= �3:27:

The next task is to �nd the p-value using T24(t), the t distribution with
n � 1 = 24 degrees of freedom. Excel allows you to do this, but it only
allows positive values of t. So, use the command

= TDIST( jtj , degrees of freedom, number of tails)
= TDIST(3.27, 24, 2) = 0.00324

Thus, we can reject the null hypothesis at the 5% signi�cance level. In fact,
we are 99.7% sure that the null hypothesis is false. Maple allows for both
positive and negative values of t. Using the table above, the p-value can be
found using the formula

2 [1� TDist( jtj , degrees of freedom)]

TDist(3:27; 24) = 0:99838:

The p-value is 2(1 � 0:99838) = 0:00324, which is the same answer we got
from Excel.
Now test the null hypothesis that � = 60. This time the test statistic

is t = �0:663 which yields a p-value of 0.514. We cannot reject this null
hypothesis.
What about the hypothesis that � � 65? The sample mean is 58.73,

which is less than 65, so we should still do the test. (If the sample mean
had been above 65, there is no way we could reject the hypothesis.) This
is a one-tailed test based on the same test statistic which we have already
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computed, t = �3:27. We have to change the Excel command to reduce the
number of tails:

=TDIST(3.27, 24, 1) = 0.00162

Once again we reject the hypothesis at the 5% level. Notice, however, that
the p-value is twice what it was for the two-tailed test. This is as it should
be, as you can �gure out by looking at the above table.

17.3.2 Example 2

You draw a sample of 100 numbers drawn from a normal distribution with
mean � and variance �2. You compute the sample mean and sample variance,
and they are �x = 10 and s2 = 16. The null hypothesis is

H0 : � = 9

Do the data support or reject the hypothesis?
Compute the t-statistic

t =
�x� �
s=
p
n
=

10� 9p
16=
p
100

= 2:5

This by itself does not tell us anything. We must plug it into the appropriate
t distribution. The t-statistic has 100� 1 = 99 degrees of freedom, and we
can �nd

TDist(2:5; 99) = 0:992 97

and we reject if this number is either less than 0.025 or greater than 0.975.
It is greater than 0.975, so we can reject the hypothesis. Another way to
see it is by computing the p-value

p = 2(1� TDist(2:5; 99)) = 0:014

which is much smaller than the 0.05 required for rejection.

17.3.3 Example 3

Use the same information as example 2, but instead test the null hypothesis

H0 : � = 10:4:
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Do the data support or reject this hypothesis?
Compute the t-statistic

t =
�x� �
s=
p
n
=
10� 10:4p
16=
p
100

= �1:0

We can �nd
TDist(�1; 99) = 0:16

:and we reject if this number is either less than 0.025 or greater than 0.975.
It is not, so we cannot reject the hypothesis. Another way to see it is by
computing the p-value

p = 2(1� TDist(1; 99)) = 0:32

which is much larger than the 0.05 required for rejection.

17.4 Problems

1. Consider the following random sample from a normal distribution with
mean � and standard deviation �2:

134; 99; 21; 38; 98; 19; 53;�52; 115; 30;
65; 149; 4; 55; 43; 26; 122; 47; 54; 97;

87; 34; 114; 44; 26; 98; 38; 24; 30; 86:

(a) Test the hypothesis that � = 0. Do the data support or reject the
hypothesis?

(b) Test the hypothesis that � = 30.

(c) Test the hypothesis that � � 65.
(d) Test the hypothesis that � � 100.

2. Answer the following questions based on this random sample generated
from a normal distribution with mean � and variance �2.

89; 51; 12; 17; 71

39; 47; 37; 42; 75

78; 67; 20; 9; 9

44; 71; 32; 13; 61
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(a) What are the best estimates of � and �2?

(b) Test the hypothesis that � = 40. Do the data support or reject
the hypothesis?

(c) Test the hypothesis that � = 60. Do the data support or reject
the hypothesis?



CHAPTER

18

Solutions to end-of-chapter problems

Solutions for Chapter 2

1. (a) f 0(x) = 72x2 (x3 + 1) + 3
x
+ 20

x5

(b) f 0(x) = � 20
(4x�2)6

(c) f 0(x) = �e2x�14x3 (42x2 � 2)
(d) f 0(x) = 9

x1: 3
� 2: 7

x1: 3
lnx

(e) f 0(x) = c
(d�cx)2 (b� ax

2)� 2a x
d�cx

2. (a) f 0(x) = 24x� 24

(b) g0(x) = 1
4x3
� 1

2x3
ln 3x = (1� 2 ln 3x)=(4x3)

(c) h0(x) = �4(6x� 2)=(3x2 � 2x+ 1)5

(d) f 0(x) = (1� x)e�x

211
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(e)

g0(x) =
9

(9x� 8)2
�
2x2 � 3

�p
5x3 + 6�4 x

9x� 8
p
5x3 + 6�15

2

x2

9x� 8
2x2 � 3p
5x3 + 6

3. Let f(x) = x2. Then

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

(x+ h)2 � x2
h

= lim
h!0

x2 + 2xh+ h2 � x2
h

= lim
h!0

2xh+ h2

h
= lim

h!0
(2x+ h)

= 2x:

4. Use the formula

lim
h!0

f(x+ h)� f(x)
h

= lim
h!0

1
x+h

� 1
x

h

= lim
h!0

x
x(x+h)

� x+h
x(x+h)

h

= lim
h!0

�h
x(x+h)

h

= lim
h!0

�h
xh(x+ h)

= lim
h!0

�1
x(x+ h)

= � 1
x2

5. (a) Compute f 0(3) = �18 < 0, so it is decreasing.

(b) Compute f 0(13) = 1
13
> 0, so it is increasing.

(c) Compute f 0(4) = �5:0e�4 < 0, so it is decreasing.
(d) Compute f 0(2) = 9

16
> 0, so it is increasing.
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6. (a) f 0(x) = 3
x2+4x

� (3x� 2) 2x+4
(x2+4x)2

and f 0(�1) = 1
9
> 0. It is

increasing.

(b) f 0(x) = � 1
x ln2 x

and f 0(e) = �1
e
< 0. It is decreasing.

(c) f 0(x) = 10x+ 16 and f 0(�6) = �44 < 0. It is decreasing.

7. (a) The FOC is f 0(x) = 10�8x = 0 so x� = 5=4. Compute f 00(5=4) =
�8 < 0, so this is a maximum.

(b) The FOC is f 0(x) = 84
x0:3

� 6 = 0 so x� = 141=0:3. Compute
f 00(141=0:3) = �2: 721 7� 10�4 < 0, so this is a maximum.

(c) The FOC is f 0(x) = 4� 3
x
= 0 so x� = 3=4. Compute f 00(3=4) =

16
3
> 0, so this is a minimum.

8. (a) The foc is f 0(x) = 8x� 24 = 0, which is solved when x = 3. Also,
f 00(x) = 8 > 0, so it is a minimum.

(b) The foc is f 0(x) = 20=x � 4 = 0, which is solved when x = 5.
Also, f 00(x) = �20=x2 < 0, so it is a maximum.

(c) The foc is

f 0(x) =
x+ 1

(x+ 2)2
� 1

x+ 2
+ 6 = 0;

which has two solutions: x = �13
6
and x = �11

6
. The second

derivative is f 00(x) = 2
(x+2)2

� 2 x+1
(x+2)3

, and f 00(�13
6
) = �432 while

f 00(�11
6
) = 432. The function has a local maximum when x = �13

6

and a local minimum when x = �11
6
.

9. (a) Compute f 00(x) = 2a. Need a < 0:

(b) Need a > 0.

10. (a) The problem is
max
m
b(m)� c(m)

The FOC is
b0(m) = c0(m)

Interpretation is that marginal bene�t equals marginal cost.
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(b) We need b00(m)�c00(m) � 0. A better way is to assume b00(m) � 0
and c00(m) � 0. This is diminishing marginal bene�t and increas-
ing marginal cost.

(c) The problem is
max
m
wm� c(m)

The FOC is
w = c0(m)

Interpretation is that marginal e¤ort cost equals the wage.

(d) c00(m) � 0, or increasing marginal e¤ort cost.

11. The �rst-order condition is

�0(L) =
90p
L
� 90 = 0:

Solving for L gives us L = 1. Bilco devotes 1 unit of labor to widget
production and the other 59 to gookey production. It produces W =
20(1)1=2 = 20 widgets and G = 30(59) = 1770 gookeys.

Solutions for Chapter 3

1. (a) (26;�3; 33; 25)

(b) �x � �y and �x < �y and �x� �y

(c) 77

(d) Yes. �x � �x = 65, �y � �y = 135, and (�x+ �y) � (�x+ �y) = 354. We have
p
�x � �x+

p
�y � �y =

p
65 +

p
135 = 19:681

and p
(�x+ �y) � (�x+ �y) =

p
354 = 18: 815:

2. (a) (18;�8;�48;�20)

(b) �7
(c)

p
�x � �x =

p
65 = 8: 062 3,

p
�y � �y =

p
26 = 5: 099, and

p
(�x+ �y) � (�x+ �y) =p

77 = 8: 775 0, which is smaller than
p
65 +

p
26 = 13: 161.



CHAPTER 18. SOLUTIONS TO END-OF-CHAPTER PROBLEMS 215

3. (a) fx(x; y) = 8x� 12y + 18

(b) fy(x; y) = 6y � 12x
(c)

�
9
8
; 9
4

�
4. (a) fx(x; y) = 16y � 4:

(b) fy(x; y) = 16x� 2=y2.
(c) The two foc�s are 16y � 4 = 0 and 16x� 2=y2 = 0. The �rst one

implies that y = 1
4
. Plugging this into the second expressions

yields

16x� 2

y2
= 0

16x =
2

(1
4
)2
= 32

x = 2

The critical point is (x; y) = (2; 1
4
).

5. (a) 3 ln x+ 2 ln y = k

(b) Implicitly di¤erentiate 3 ln x + 2 ln y(x) = k with respect to x to
get

3

x
+
2

y

dy

dx
= 0

dy

dx
= �3=x

2=y
= �3y

2x

6. (a) �(q) = p(q)q � cq = 120q � 4q2 � cq

(b) The FOC is

120� 8q� � c = 0

q� = 15� c

8

(c) Using the answer to (b), we have dq�=dc = �1=8 < 0
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(d) Plug q� = 15� c
8
into �(q) to get

�(q) = 120
�
15� c

8

�
� 4

�
15� c

8

�2
� c

�
15� c

8

�
= 1800� 15c� 900 + 15c� c2

16
� 15c+ c

2

8

= 900� 15c+ c2

16

(e) Di¤erentiating yields

�0(c) = �15 + c
8

(f) Compare the answers to (b) and (e). Note that �q is also the
partial derivative of �(q) = p(q)q � cq with respect to c, which is
why this works.

7. (a) Implicitly di¤erentiate to get

30x
dx

da
+ 3a

dx

da
+ 3x� 5

a
� dx
da
+
5x

a2
= 0:

Solving for dx=da yields�
30x+ 3a� 5

a

�
dx

da
= �

�
3x+

5x

a2

�
dx

da
= �

3x+ 5x
a2

30x+ 3a� 5
a

= �x
a

3a2 + 5

3a2 + 30xa� 5

(b) Implicitly di¤erentiate to get

12xa
dx

da
+ 6x2 = 5� 5a2dx

da
� 10xa:

Solving for dx=da yields�
12xa+ 5a2

� dx
da

= 5� 10xa� 6x2

dx

da
=

5� 10xa� 6x2
12xa+ 5a2
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8. (a) The foc is
30p
L
� w = 0

and solving it for L gets

30 = w
p
L

p
L =

30

w

L� =
900

w2

(b) Since

L� =
900

w2

we have
dL�

dw
= �1800

w3
< 0

The �rm uses fewer workers when the wage rises.

(c) Plugging L� into the pro�t function yields

�� = 30

r
4 � 900
w2

� w � 900
w2

=
900

w

and from there we �nd

d��

dw
= �900

w2
< 0:

Pro�t falls when the wage rises. This happens for two reasons.
One is that the �rm must pay workers more, and the other is that
it uses fewer workers (see part b) and produces less output.

9. (a) Implicitly di¤erentiate to �nd dK=dL:

FK(K;L)
dK

dL
+ FL(K;L) = 0

dK

dL
= �FL(K;L)

FK(K;L)

(b) Both FL and FK are positive, so dK=dL = �FL=FK < 0 and the
isoquant slopes downward.
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Solutions for Chapter 4

1. Set up the Lagrangian

L(x; y; �) = 12x2y4 + �(120� 2x� 4y):

The foc�s are

@L
@x

= 24xy4 � 2� = 0
@L
@y

= 48x2y3 � 4� = 0

@L
@�

= 120� 2x� 4y = 0

This is three equations in three unknowns, so now we solve for the
values of x, y, and �. There are many ways to do this, and one of
them can be found on page 39. Here is another. Solve the third
equation for x:

120� 2x� 4y = 0

x = 60� 2y

Substitute this into the �rst two equations

24xy4 � 2� = 0

48x2y3 � 4� = 0

to get

24(60� 2y)y4 � 2� = 0

48(60� 2y)2y3 � 4� = 0

Multiply the top equation by �2 and add the result to the second
equation to get

48(60� 2y)2y3 � 4��
�
48(60� 2y)y4 � 4�

�
= 0

The terms with � in them cancel out, and we are left with

48(60� 2y)2y3 � 48(60� 2y)y4 = 0
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Divide both sides by 48(60� 2y)y3 to get
(60� 2y)� y = 0

60� 3y = 0

y = 20

Substitute this back into things we know to get

x = 60� 2y = 20
and

� = 12(60� 2y)y4 = 12(20)(204) = 38; 400; 000:

2. The Lagrangian is

L(a; b; �) = 3 ln a+ 2 ln b+ �(400� 12a� 14b)
The FOCs are

@L
@a

=
3

a
� 12� = 0

@L
@b

=
2

b
� 14� = 0

@L
@�

= 400� 12a� 14b = 0

Solving the �rst two yields a = 3=12� and b = 2=14�. Substituting
into the third equation gives us

400� 12
�
3

12�

�
� 14

�
2

14�

�
= 0

400� 3

�
� 2

�
= 0

400 =
5

�

� =
5

400
=
1

80

Plugging into the earlier expressions,

a =
3

12�
=

3

12=80
=
240

12
= 20

and
b =

2

14�
=

2

14=80
=
160

14
=
80

7
:
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3. The Lagrangian is

L(x; y; �) = 16x+ y + �(1� x1=4y3=4):

The FOCs are

@L
@x

= 16� 1
4
�
�y
x

�3=4
= 16� �

4

x1=4y3=4

x
= 0

@L
@y

= 1� 3
4
�

�
x

y

�1=4
= 1� 3�

4

x1=4y3=4

y
= 0

@L
@�

= 1� x1=4y3=4 = 0

From the third FOC we know that

x1=4y3=4 = 1;

so the other two FOCs simplify to

� = 64x

and
� =

4

3
y:

Setting these equal to each other gives us

4

3
y = 64x

y = 48x:

Plugging this into the third FOC yields

x1=4y3=4 = 1

x1=4(48x)3=4 = 1

x =
1

483=4
=
31=4

24
:

We can then solve for
y = 48x = 2 � 31=4

and

� =
4y

3
=
8 � 31=4
3

:
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4. Set up the Lagrangian

L(x; y; �) = 3xy + 4x+ �(80� 4x� 12y):

The foc�s are

@L
@x

= 3y + 4� 4� = 0
@L
@y

= 3x� 12� = 0

@L
@�

= 80� 4x� 12y = 0

The �rst equation reduces to y = 4(� � 1)=3 and the second equation
tells us that x = 4�. Substituting these into the third equation yields

80� 4x� 12y = 0

80� 4(4�)� 12(4)(�� 1)=3 = 0

96� 32� = 0

� = 3

Plugging this into the equations we already derived gives us the rest of
the solution:

x = 4� = 12

y = 4(�� 1)=3 = 8=3:

5. Set up the Lagrangian

L(x; y; �) = 5x+ 2y + �(80� 3x� 2xy)

The foc�s are

@L
@x

= 5� 3�� 2y� = 0
@L
@y

= 2� 2x� = 0

@L
@�

= 80� 3x� 2xy = 0
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5� 3�� 2y� = 0

2� 2x� = 0

80� 3x� 2xy = 0

Now we solve these equations. The third one reduces to

80� 3x� 2xy = 0

2xy = 80� 3x

y =
80� 3x
2x

and the second one reduces to

2� 2x� = 0

� =
1

x
:

Substitute these into the �rst one to get

5� 3�� 2y� = 0

5� 3
�
1

x

�
� 2

�
80� 3x
2x

��
1

x

�
= 0

Multiplying through by x2 yields

5x2 � 3x� 80 + 3x = 0

5x2 = 80

x2 = 16

x = �4

Note that we only use the positive root in economics, so x = 4. Sub-
stituting into the other two equations yields

y =
80� 3x
2x

=
17

2

and
� =

1

x
=
1

4
:
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6. (a) �0(x) = 400 + 4x > 0. It says that increasing the size of the farm
leads to increased pro�t, which seems sensible when the farm starts o¤
small.

(b) �00(x) = 4. This is questionable. But, it could arise because of
increasing returns to scale or because of �xed inputs.

(c) The Lagrangian is

L(x; �) = 400x+ 2x2 + �(10� x):

The FOCs are

@L
@x

= 400 + 4x� � = 0
@L
@�

= 10� x = 0

The second one tells us that x = 10 and the �rst one tells us that
� = 400 + 4x = 440:

(d) It is the marginal value of land.

(e) That would be �0(10) = 440. This, by the way, is why the lame
problem is useful. Note that the answers to (d) and (e) are the
same.

(f) No. remember that �0(x) > 0, so � is increasing and more land is
better. Pro�t is maximized subject to the constraint. Obviously,
constrained optimization will require a di¤erent set of second order
conditions than unconstrained optimization does.

7. (a) �0(L) = 30=
p
L � 10 which is positive when L < 9. We would

hope for an upward-sloping pro�t function, so this works, especially
since L is only equal to 4.

(b) �00(L) = �15=L3=2 which is negative. Pro�t grows at a decreasing
rate, which makes sense.

(c) The Lagrangian is

L(L; �) = 30
p
4L� 10L+ �(4� L)
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The foc�s are
@L
@L

=
30p
L
� 10� � = 0

@L
@�

= 4� L = 0

The second equation can be solved to get L = 4. Plugging L = 4
into the �rst equation yields

30p
L
� 10� � = 0

30p
L
� 10� � = 0

5 = �

(d) The Lagrange multiplier is always the marginal value of relaxing
the constraint, where the value comes from whatever the objective
function measures. In this case the objective function is the
pro�t function, and the constraint is on the number of workers
the �rm can use at one time, so the Lagrange multiplier measures
the marginal pro�t from adding workers.

(e) This is
�0(4) = 30=

p
4� 10 = 5:

Note that this matches the answer from (c).

(f) No. The �rst derivative of the pro�t function is positive (and equal
to 5) when L = 4, which means that pro�t is increasing when L
is 4. The second derivative does not tell us whether we are at a
maximum or minimum when there is a constraint.

8. (a) The Lagrangian is

L(x; y; �) = x�y1�� + �(M � pxx� pyy):

The FOCs are
@L
@x

= �x��1y1�� � �px = 0
@L
@y

= (1� �)x�y�� � �py = 0

@L
@�

= M � pxx� pyy = 0:
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Rearrange the �rst two to get

�
�
y
x

�1��
px

= �

(1� �)
�
x
y

��
py

= �:

Set them equal to each other to get

�
�
y
x

�1��
px

=
(1� �)

�
x
y

��
py�y

x

�1�� �y
x

��
=

(1� �)
�

px
py

y

x
=

(1� �)
�

px
py

y =
(1� �)
�

px
py
x:

Now substitute this into the budget constraint to get

pxx+ pyy = M

pxx+ py
(1� �)
�

px
py
x = M

pxx+
(1� �)
�

pxx = M

pxx =
M

1 + (1��)
�

= �M

x =
�M

px
:

Substituting this back into what we found for y yields

y =
(1� �)
�

px
py
x

=
(1� �)
�

px
py

�M

px

=
(1� �)M

py
:
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(b) These are easy.

@x�

@M
=

�

px
> 0

@y�

@M
=

1� �
py

> 0:

(c) Again, these are easy.

@x�

@px
= ��M

p2x
< 0

@y�

@px
= 0:

The demand curve for good x is downward-sloping, and it is in-
dependent of the price of the other good.

9. (a) Denote labor devoted to widget production by w and labor devoted
to gookey production by g. The Lagrangian is

L(w; g; �) = (9)(20w1=2) + (3)(30g)� (11)(w + g) + �(60� w � g):

The foc�s are

@L
@w

= 90w�
1
2 � 11� � = 0

@L
@g

= 90� 11� � = 0

@L
@�

= 60� w � g = 0

The second equation says that � = 79. Plugging this into the �rst
equation yields

90p
w
� 11� 79 = 0

90 = 90
p
w

w = 1

The third equation then implies that g = 60� w = 59. These are the
same as the answers to the question 4 on the �rst homework.
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(b) The Lagrange multiplier is the marginal value of adding workers.

10. (a) The farmer�s problem is

max
L;W

LW

s.t. 2L+ 2W = F

W = S

(b) The Lagrangian is

L(L;W; �; �) = LW + �(F � 2L� 2W ) + �(S �W ):

The �rst-order conditions are

@L
@L

= W � 2� = 0
@L
@W

= L� 2�� � = 0
@L
@�

= F � 2L� 2W = 0

@L
@�

= S �W = 0

We must solve this set of equations:

W = S (from fourth equation)

L = F=2� S (from third equation)

� = S=2 (from second equation)

� = F=2� 2S (from �rst equation)

(c) It depends. The marginal impact on area comes directly from the
Lagrange multipliers. � is the marginal impact of having a longer
fence while keeping the shortest side �xed, and � is the marginal
impact of lengthening the shortest side while keeping the total
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fence length constant. We want to know which is greater, S=2 or
F=2� 2S. We can �nd

� � �

S=2 � F=2� 2S
5S=2 � F=2

S � F=5:

When the shortest side is more than one-�fth of the total amount
of fencing, the farmer would rather lengthen the fence than lengthen
the shortest side. When the shortest side is smaller than a �fth
of the fence lenght, she would rather lengthen that side, keeping
the total fence length �xed.

Solutions for Chapter 5

1. (a) The solution to the alternative problem is (x; y) = (8; 8
3
). Note

that 4 � 8 + 8
3
= 342

3
> 20, so the second constraint does not hold.

(b) The solution to the alternative problem is (x; y) = (10
3
; 20
3
). Note

that 2 � 10
3
+3 � 20

3
= 80

3
> 24, so the �rst constraint does not hold.

(c) If the solution to the alternative problem in (a) had satis�ed the
second constraint, the second constraint would have been non-
binding and its Lagrange multiplier would have been zero. This
is not what happened, though, so the second constraint must bind,
in which case �2 > 0. Similarly, part (b) shows us that the �rst
constraint must also bind, and so �1 > 0.

(d) Because both constraints bind, the problem becomes

maxx;y x
2y

s.t. 2x+ 3y = 24
4x+ y = 20

This is easy to solve because there is only one point that satis-
�es both constraints: (x; y) = (18

5
; 28
5
). Now �nd the Lagrange
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multipliers. The FOCs for the equality-constrained problem are

2xy � 2�1 � 4�2 = 0

x2 � 3�1 � �2 = 0

24� 2x� 3y = 0

20� 4x� y = 0

We already used the last two to �nd x and y. Plug those values
into the �rst two to get two equations in two unknowns:

2�1 � 4�2 =
1008

25

3�1 + �2 =
324

25

The solution to this is (�1; �2) = (144125 ;
1188
125
).

2. (a) The solution to the alternative problem is (x; y) = (8; 8
3
). Note

that 4 � 8+ 8
3
= 342

3
< 36, so the second constraint does hold this time.

(b) The solution to the alternative problem is (x; y) = (6; 12). Note
that 2 � 6 + 3 � 12 = 48 > 24, so the �rst constraint does not hold.

(c) The solution to the alternative problem in (a) satis�es the second
constraint, so the second contrainst is nonbinding. Therefore
�1 > 0 and �2 = 0.

(d) Because only the �rst constraint binds, the problem becomes

maxx;y x
2y

s.t. 2x+ 3y = 24

We know from part (a) that (x; y) = (8; 8
3
). We also know that

�2 = 0. To �nd �1 use the FOCs for the equality-constrained
problem:

2xy � 2�1 = 0

x2 � 3�1 = 0

24� 2x� 3y = 0

Plug x = 8 into the second equation to get �1 = 64
3
. Or, plug

x = 8 and y = 8
3
into the �rst equation to get the same thing.
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3. (a) Setting �2 = 0 in the original Lagrangian we get the �rst-order
conditions

@L
@x

= 4y � 6x� �1 = 0
@L
@y

= 4x� 4�1 = 0

@L
@�1

= 36� x� 4y = 0

We solve these for x, y, and �1 and get

x =
9

2
, y =

63

8
, �1 =

9

2

We then have 5x+ 2y = 45
2
+ 63

4
= 153

4
< 45 and the second constraint

is satis�ed.

(b) Setting �1 = 0 in the original Lagrangian, the foc�s are

@L
@x

= 4y � 6x� 5�2 = 0
@L
@y

= 4x� 2�2 = 0

@L
@�2

= 45� 5x� 2y = 0

The solution is
x =

45

13
, y =

180

13
; �2 =

90

13

We then have x+4y = 45
13
+ 720

13
= 765

13
> 36 and the �rst constraint

is not satis�ed.

(c) Part (a) shows that we can get a solution when the �rst constraint
binds and the second doesn�t, and part (b) shows that we cannot
get a solution when the second constraint binds but the �rst does
not. So, the answer comes from part (a), with

x =
9

2
, y =

63

8
, �1 =

9

2
, �2 = 0:
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4. (a) The foc�s are

@L
@x

= 3y � 8� �1 = 0
@L
@y

= 3x� 4�1 = 0

@L
@�1

= 24� x� 4y = 0

The solution is
x =

20

3
, y =

13

3
, �1 = 5

and since 5x + 2y = 100
3
+ 26

3
= 42 > 30 the second constraint is not

satis�ed.

(b) The foc�s are

@L
@x

= 3y � 8� 5�2 = 0
@L
@y

= 3x� 2�2 = 0

@L
@�2

= 30� 5x� 2y = 0

3y � 8� 5�2 = 0

3x� 2�2 = 0

30� 5x� 2y = 0

The solution is
x =

37

15
, y =

53

6
, �2 =

37

10

and since x+ 4y = 189
5
> 24 the �rst constraint is not satis�ed.

(c) Since when one constraint binds the other fails, they must both
bind. The place where they both bind is the intersection of the
two "budget lines," or where the following system is solved:

x+ 4y = 24

5x+ 2y = 30
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The solution is x = 4, y = 5. Now we have to �nd the values of
�1 and �2. To do this, go back to the foc�s for the entire original
Lagrangian:

@L
@x

= 3y � 8� �1 � 5�2 = 0
@L
@y

= 3x� 4�1 � 2�2 = 0

@L
@�1

= 24� x� 4y = 0

@L
@�2

= 30� 5x� 2y = 0

Plug the values for x and y into the �rst two equations to get

15� 8� �1 � 5�2 = 0

12� 4�1 � 2�2 = 0

and solve for �1 and �2. The solution is �1 = 23
9
and �2 = 8

9
.

5. (a)
K(x; y; �) = x2y + �[42� 4x� 2y]:

(b)

x
@K

@x
= x(2xy � 4�) = 0

y
@K

@y
= y(x2 � 2�) = 0

�
@K

@�
= �(42� 4x� 2y) = 0

x; y; � � 0
(c) First notice that the objective function is x2y, which is zero if

either x or y is zero. Consequently, neither x � 0 nor y � 0 can
be binding. The other, budget-like constraint is binding because
x2y is increasing in both arguments, and so � > 0: The Kuhn-
Tucker conditions reduce to

2xy � 4� = 0

x2 � 2� = 0

42� 4x� 2y = 0
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Solving yields (x; y; �) = (7; 7; 49
2
).

6. (a)
K(x; y; �) = xy + 40x+ 60y + �(12� x� y)

(b)

x
@K

@x
= x(y + 40� �) = 0

y
@K

@y
= y(x+ 60� �) = 0

�
@K

@�
= �(12� x� y) = 0

x; y; � � 0

(c) This one is complicated, because we can identify three potential
solutions: (i) x is zero and y is positive, (ii) x is positive and y is
zero, and (iii) both x and y are positive. The only thing to do is
try them one at a time.

Case (i): x = 0. Then y = 12 from the third equation, and � = 60
from the second equation. The value of the objective function is
xy + 40x+ 60y = 720.

Case (ii): y = 0. Then x = 12 from the third equation, and � = 40
from the �rst equation. The value of the objective function is
480. This case is not as good as case (i), so it cannot be the
answer.

Case (iii): x; y > 0. Divide both sides of the �rst K-T condition by
x, which is legal since x > 0, divide the second by y, and divide
the third by �. We get

y + 40� � = 0

x+ 60� � = 0

12� x� y = 0

The solution to this system of equations is x = �4, y = 16, � = 56.
This is not allowed, though, because x < 0.

The �nal solution is case (i): x = 0, y = 12, � = 60.
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Solutions for Chapter 6

1. (a)
�
19 �16 �22
2 �3 61

�

(b)
�
10 0 �1
13 18 5

�

(c)

0@ 7 1 2
19 2 2
�23 �36 1

1A
(d) 39

2. (a)

0@ 14 �23
�21 32
9 11

1A

(b)

0@ 7 0
12 14
0 9

1A
(c)

�
33 �13 32
7 �11 36

�
(d) 84

3. (a) 14

(b) 134

4. (a) 21

(b) �12

5. In matrix form the system of equations is0@ 6 �2 �3
2 4 1
3 0 �1

1A0@ x
y
z

1A =

0@ 1
�2
8

1A :
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Using Cramer�s rule we get

x =

det

0@ 1 �2 �3
�2 4 1
8 0 �1

1A
det

0@ 6 �2 �3
2 4 1
3 0 �1

1A =
80

2
= 40

y =

det

0@ 6 1 �3
2 �2 1
3 8 �1

1A
det

0@ 6 �2 �3
2 4 1
3 0 �1

1A =
�97
2

z =

det

0@ 6 �2 1
2 4 �2
3 0 8

1A
det

0@ 6 �2 �3
2 4 1
3 0 �1

1A =
224

2
= 112

6. In matrix form the system of equations is0@ 5 �2 1
3 �1 0
0 3 2

1A0@ x
y
z

1A =

0@ 9
9
15

1A :
Using Cramer�s rule we get

x =

det

0@ 9 �2 1
9 �1 0
15 3 2

1A
det

0@ 5 �2 1
3 �1 0
0 3 2

1A =
60

11
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y =

det

0@ 5 9 1
3 9 0
0 15 2

1A
det

0@ 5 �2 1
3 �1 0
0 3 2

1A =
81

11

z =

det

0@ 5 �2 9
3 �1 9
0 3 15

1A
det

0@ 5 �2 1
3 �1 0
0 3 2

1A =
�39
11

7. (a) 1
8

�
1 �3
2 2

�

(b) 1
2

0@ 1 �2 1
�1 2 1
1 0 �1

1A
8. (a) 1

14

�
�4 �1
�2 �4

�

(b) 1
25

0@ 5 �4 3
0 15 �5
0 �5 10

1A
Solutions for Chapter 7

1. (a) The determinant of the matrix0@ 3 6 0
2 0 �5
1 �1 �1

1A
is �33, and so there is a unique solution.
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(b) The determinant of the matrix0@ 4 �1 8
17 �8 10
�3 2 2

1A
is 0, and so there is not a unique solution. To �nd out whether
there is no solution or an in�nite number, get the augmented
matrix in row-echelon form.0@ 4 �1 8

17 �8 10
�3 2 2

������
160
200
40

1A
0@ 4 �1 8
0 �15

4
�24

0 5
4

8

������
160
�480
160

1A
0@ 4 �1 8
0 �15

4
�24

0 0 0

������
160
�480
0

1A
Since the bottom row is zeros all the way across, there are in�nitely
many solutions.

(c) The determinant of the matrix0@ 2 �3 0
3 0 5
2 6 10

1A
is 0, and so there is not a unique solution. To �nd out whether
there is no solution or an in�nite number, get the augmented
matrix in row-echelon form.0@ 2 �3 0

3 0 5
2 6 10

������
6
15
18

1A
Multiply the �rst row by 2 and add it to the third row:0@ 2 �3 0

3 0 5
6 0 10

������
6
15
30

1A
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Multiply the second row by 2 and subtract it from the third row:0@ 2 �3 0
3 0 5
0 0 0

������
6
15
0

1A
There is a row of all zeros, so there is an in�nite number of solu-
tions.

(d) The determinant of the matrix0@ 4 �1 8
3 0 2
5 1 �2

1A
is 0, and so there is not a unique solution. To �nd out whether
there is no solution or an in�nite number, get the augmented
matrix in row-echelon form.0@ 4 �1 8

3 0 2
5 1 �2

������
30
20
40

1A
Add the top row to the bottom row:0@ 4 �1 8

3 0 2
9 0 6

������
30
20
70

1A
Multiply the middle row by 3 and subtract it from the bottom
row: 0@ 4 �1 8

3 0 2
0 0 0

������
30
20
10

1A
Since the bottom row is zeros all the way across except for the
last column, there is no solution.

(e) The determinant of the matrix0@ 6 �1 �1
5 2 �2
0 1 �2

1A
is �27, there is a unique solution.
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2. (a) There is no inverse if the determinant is zero, which leads to the
equation

6a+ 2 = 0

a = �1
3
:

(b) Setting the determinant equal to zero and solving for a yields

�5a� 5 = 0

a = �1

(c) There is no inverse if the determinant is zero, which leads to the
equation

5a+ 9 = 0

a = �9
5
:

(d) Setting the determinant equal to zero and solving for a yields

20a� 35 = 0

a =
7

4

Solutions for Chapter 8

1. (a) Rewrite the system as

Y = c((1� t)Y ) + i(R) +G
M = P �m(Y;R)

Implicitly di¤erentiate with respect to t to get

dY

dt
= �c0Y + (1� t)c0dY

dt
+ i0

dR

dt

0 = PmY
dY

dt
+ PmR

dR

dt

Write in matrix form:�
1� (1� t)c0 �i0

mY mR

��
dY
dt
dR
dt

�
=

�
�c0Y
0

�
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Use Cramer�s rule to get:

dY

dt
=

���� �c0Y �i0
0 mR

�������� (1� t)c0 �i0
mY mR

����
= �c0Y � mR

(1� (1� t)c0)mR +mY i0

which is �c0Y times the derivative from the lecture. It is negative, so
an increase in the tax rate reduces GDP.

dR

dt
=

���� 1� (1� t)c0 �c0Y
mY 0

�������� (1� t)c0 �i0
mY mR

����
= �c0Y � mY

(1� (1� t)c0)mR +mY i0

which is �c0Y times the derivative from the lecture. It is negative, so
an increase in the tax rate reduces the interest rate.

(b) Implicitly di¤erentiate the system with respect to M to get

dY

dM
= (1� t)c0 dY

dM
+ i0

dR

dM

1 = PmY
dY

dM
+ PmR

dR

dM

Write in matrix form:�
(1� t)c0 �i0
mY mR

��
dY
dM
dR
dM

�
=

�
0
1

�
Use Cramer�s rule to get:

dY

dM
=

���� 0 �i0
1 mR

�������� (1� t)c0 �i0
mY mR

����
=

i0

(1� (1� t)c0)mR +mY i0
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Both the numerator and denominator are negative, making the
derivative positive, and so an increase in money supply increases
GDP.

dR

dt
=

���� (1� t)c0 0
mY 1

�������� (1� t)c0 �i0
mY mR

����
=

(1� t)c0
(1� (1� t)c0)mR +mY i0

The numerator is positive, making the derivative negative, and so
an increase in money supply reduces the interest rate.

(c) Implicitly di¤erentiate the system with respect to P to get

dY

dP
= (1� t)c0dY

dP
+ i0

dR

dP

0 = m+ PmY
dY

dP
+ PmR

dR

dP

Write in matrix form:�
1� (1� t)c0 �i0

mY mR

��
dY
dP
dR
dP

�
=

�
0
�m

�
The derivatives are �m times the derivatives from part (b), and
so an increase in the price level reduces GDP and increases the
interest rate.

2. (a) First simplify to two equations:

Y = c(Y � T ) + i(R) +G+ x(Y;R)
M = P �m(Y;R)

Implicitly di¤erentiate with respect to G to get

dY

dG
= c0

dY

dG
+ i0

dR

dG
+ 1 + xY

dY

dG
+ xR

dR

dG

0 = P �mY
dY

dG
+ P �mR

dR

dG
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Rearrange as

dY

dG
� c0dY

dG
� i0dR

dG
� xY

dY

dG
� xR

dR

dG
= 1

mY
dY

dG
+mR

dR

dG
= 0

We can write this in matrix form�
1� c0 � xY �i0 � xR

mY mR

��
dY
dG
dR
dG

�
=

�
1
0

�
Now use Cramer�s rule to solve for dY=dG and dR=dG:

dY

dG
=

���� 1 �i0 � xR
0 mR

�������� 1� c0 � xY �i0 � xR
mY mR

����
=

mR

(1� c0 � xY )mR +mY (i0 + xR)

The numerator is negative. The denominator is negative. So, dY=dG >
0.

dR

dG
=

���� 1� c0 � xY 1
mY 0

�������� 1� c0 � xY �i0 � xR
mY mR

����
=

�mY

(1� c0 � xY )mR +mY (i0 + xR)

The numerator is negative and so is the denominator. Thus, dR=dG >
0. An increase in government spending increases both GDP and in-
terest rates in the short run.

(b) In matrix form we get�
1� c0 � xY �i0 � xR

mY mR

��
dY
dG
dR
dG

�
=

�
�c0
0

�
Thus, the derivatives are�c0 times those in part (a), so an increase
in tax revenue reduces both GDP and interest rates.
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(c)

dY

dM
=

���� 1 �i0 � xR
0 mR

�������� 1� c0 � xY �i0 � xR
mY mR

����
=

i0 + xR
(1� c0 � xY )mR +mY (i0 + xR)

Both the numerator and denominator are negative, making the
derivative positive, and so an increase in money supply increases
GDP.

dR

dM
=

���� 1� c0 � xY 0
mY 1

�������� (1� t)c0 �i0
mY mR

����
=

1� c0 � xY
(1� c0 � xY )mR +mY (i0 + xR)

The numerator is positive, making the derivative negative, and so
an increase in money supply reduces the interest rate.

3. (a) Rewrite the system as

Y = c((1� t)Y ) + i(R) + x(Y;R) +G
M = P �m(Y;R)
Y = �Y

Implicitly di¤erentiate with respect to G to get

dY

dG
= (1� t)c0dY

dG
+ i0

dR

dG
+ xY

dY

dG
+ xR

dR

dG
+ 1

0 = m(Y;R)
dP

dG
+ PmY

dY

dG
+ PmR

dR

dG
dY

dG
= 0

The last line implies, obviously, that dY=dG = 0. This makes sense
because Y is �xed at the exogenous level �Y . Even so, let�s go through
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the e¤ort of writing the equation in matrix notation:0@ 1� (1� t)c0 � xY �i0 � xR 0
PmY PmR m
1 0 0

1A0@ dY=dG
dR=dG
dP=dG

1A =

0@ 1
0
0

1A
Use Cramer�s rule to get

dY

dG
=

������
1 �i0 � xR 0
0 PmR m
0 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
= 0

where the result follows immediately from the row with all zeroes. The
increase in government spending has no long-run impact on GDP. As
for interest rates,

dR

dG
=

������
1� (1� t)c0 � xY 1 0

PmY 0 m
1 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
=

m

�mi0 �mxR
= � 1

i0 + xR
> 0:

Increased government spending leads to an increase in interest rates in
the long run. Finally,

dP

dG
=

������
1� (1� t)c0 � xY �i0 � xR 1

PmY PmR 0
1 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
=

�PmR

�mi0 �mxR
> 0:

An increase in government spending leads to an increase in the price
level.
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(b) This time implicitly di¤erentiate with respect to M to get

dY

dM
= (1� t)c0 dY

dM
+ i0

dR

dM
+ xY

dY

dM
+ xR

dR

dM

1 = m(Y;R)
dP

dM
+ PmY

dY

dM
+ PmR

dR

dM
dY

dM
= 0

Write the equation in matrix notation:0@ 1� (1� t)c0 � xY �i0 � xR 0
PmY PmR m
1 0 0

1A0@ dY=dM
dR=dM
dP=dM

1A =

0@ 0
1
0

1A
Use Cramer�s rule to get

dY

dM
=

������
0 �i0 � xR 0
1 PmR m
0 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
= 0

The increase in money supply has no long-run impact on GDP.
As for interest rates,

dR

dM
=

������
1� (1� t)c0 � xY 0 0

PmY 1 m
1 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
=

0

�mi0 �mxR
= 0:

Increasing the money supply has no long-run impact on interest
rates, either. Finally,

dP

dM
=

������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR 1
1 0 0

������������
1� (1� t)c0 � xY �i0 � xR 0

PmY PmR m
1 0 0

������
=

�i0 � xR
�mi0 �mxR

=
1

m
> 0:
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An increase the money supply leads to an increase in the price
level. That�s the only long-run impact of an increase in money
supply.

4. (a) Implicitly di¤erentiate the system with respect to I:

dqD
dI

= Dp
dp

dI
+DI

dqS
dI

= Sp
dp

dI
dqD
dI

=
dqS
dI

Write it in matrix form:0@ 1 0 �Dp

0 1 �Sp
1 �1 0

1A0@ dqD=dI
dqS=dI
dp=dI

1A =

0@ DI

0
0

1A
Solve for dp=dI using Cramer�s rule:

dp

dI
=

������
1 0 DI

0 1 0
1 �1 0

������������
1 0 �Dp

0 1 �Sp
1 �1 0

������
=

�DI

DP � SP
> 0

where the result follows because DI > 0, Dp < 0, and Sp > 0.

(b) Implicitly di¤erentiate the system with respect to w:

dqD
dw

= Dp
dp

dw
dqS
dw

= Sp
dp

dw
+ Sw

dqD
dw

=
dqS
dw

Write it in matrix form:0@ 1 0 �Dp

0 1 �Sp
1 �1 0

1A0@ dqD=dw
dqS=dw
dp=dw

1A =

0@ 0
Sw
0

1A
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Solve for dp=dw using Cramer�s rule:

dp

dw
=

������
1 0 0
0 1 Sw
1 �1 0

������������
1 0 �Dp

0 1 �Sp
1 �1 0

������
=

Sw
DP � SP

> 0;

where the result follows because Sw < 0, Dp < 0, and Sp > 0.

5. We can write the regression as y = X� + e where

y =

0@ 6
2
5

1A and X =

0@ 1 9
1 4
1 3

1A :
The estimated coe¢ cients are given by

�̂ = (XTX)�1XTy =
1

62

�
146
23

�
:

6. (a) The matrix is

XTX =

�
2 6 �4
8 24 �16

�0@ 2 8
6 24
�4 �16

1A =

�
56 224
224 896

�

and its determinant is 0.

(b) The second column of x is a scalar multiple of the �rst, and so the
two vectors span the same column space. The regression projects
the y vector onto this column space, but there are in�nitely-many
ways to write the resulting projection as a combination of the two
column vectors.

7.

�̂ = (XTX)�1XTy =
1

138

�
205
64

�
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8. x3 = 12x2, and so the new variable does not expand the space spanned
by the columns of the data matrix. All it does is make the solution
indeterminant, and the matrix XTX will not be invertible. To see
this, note that if we add the column

X =

0BB@
1 2 24
1 3 36
1 5 60
1 4 48

1CCA and XTX =

0@ 4 14 168
14 54 648
168 648 7776

1A
The determinant of XTX is 0. Also, the third column is 12 times the
second column.

9. (a) The eigenvalues are given by the solution to the problem���� 5� � 1
4 2� �

���� = 0:
Taking the determinant yields

(5� �)(2� �)� 4 = 0

6� 7�+ �2 = 0

� = 6; 1

Eigenvectors satisfy�
5� � 1
4 2� �

��
v1
v2

�
=

�
0
0

�
:

When � = 1, this is �
4 1
4 1

��
v1
v2

�
=

�
0
0

�
:

There are many solutions, but one of them is�
v1
v2

�
=

�
1
�4

�
:

When � = 6, the equation is�
�1 1
4 �4

��
v1
v2

�
=

�
0
0

�
:
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Again there are many solutions, but one of them is�
v1
v2

�
=

�
1
1

�
:

(b) Use the same steps as before. The eigenvalues are � = 7 and
� = 6: When � = 7 an eigenvector is (1; 3), and when � = 6 an
eigenvector is (1; 4).

(c) The eigenvalues are � = 7 and � = 0. When � = 7 an eigenvector
is (3;�2) and when � = 0 an eigenvector is (2; 1).

(d) The eigenvalues are � = 3 and � = 2. When � = 3 an eigenvector
is (1; 0) and when � = 2 an eigenvector is (�4; 1).

(e) The eigenvalues are � = 2 + 2
p
13 and � = 2� 2

p
13. When � =

2+2
p
13 an eigenvector is (�2

p
13�8; 3) and when � = 2�2

p
13

an eigenvector is (2
p
13� 8; 3).

10. (a) Yes. The eigenvalues are � = 1=3 and � = �1=5, both of which
are less than one.

(b) No. The eigenvalues are � = 5=4 and � = 1=3. The �rst one is
larger than 1, so the system is unstable.

(c) Yes. The eigenvalues are � = 1=4 and � = �2=3, both of which
have magnitude less than one.

(d) No. The eigenvalues are � = 2 and � = �41=45. The �rst one is
larger than 1, so the system is unstable.

Solutions for Chapter 9

1.

rf(x1; x2; x3) =

0@ 2x23 + 3x
2
2 � 8x1

6x1x2
4x1x3

1A
rf(5; 2; 0) =

0@ �28
60
0

1A
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2. (a) The second-order Taylor approximation is

f(x0) + f
0(x0)(x� x0) +

f 00(x0)

2
(x� x0)2

We have

f(1) = 2

f 0(x) = �6x2 � 5
f 0(1) = �11
f 00(x) = �12x
f 00(1) = �12

and so the Taylor approximation at 1 is

2� 11(x� 1)� 12
2
(x� 1)2 = �6x2 + x+ 7

(b) We have

f(1) = �30

f 0(x) = 10� 20p
x
+
1

x

f 0(1) = �9

f 00(x) =
10

x
3
2

� 1

x2

f 00(1) = 9

and the Taylor approximation at 1 is

�30� 9(x� 1) + 9
2
(x� 1)2 = 9

2
x2 � 18x� 33

2

(c) We have

f(x) = f 0(x) = f 00(x) = ex

f(1) = f 0(1) = f 00(1) = e

and the Taylor approximation is

e+ e(x� 1) + e
2
(x� 1)2 = 1

2
e
�
x2 + 1

�
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3.

f(x) � f(x0) + f
0(x0)(x� x0) +

1

2
f 00(x0)(x� x0)2

= 12� 2x� 4x2

4.

f(x) � f(x0) + f
0(x0)(x� x0) +

1

2
f 00(x0)(x� x0)2

= c+ bx+ ax2

The second-degree Taylor approximation gives you a second-order poly-
nomial, and if you begin with a second-order polynomial you get a
perfect approximation.

5. (a) Negative de�nite because a11 < 0 and a11a22 � a12a21 = �7.

(b) Positive semide�nite because a11 > 0 but a11a22 � a12a21 = 0.
(c) Inde�nite because a11 > 0 but a11a22 � a12a21 = �25:
(d) Inde�nite because

ja11j > 0,
���� 4 0
0 �3

���� = �12, and
������
4 0 1
0 �3 �2
1 �2 1

������� 25:
(e) Positive de�nite because jA1j = 6 > 0 and jA2j = 17 > 0:
(f) Inde�nite because jA1j = �4 < 0 but jA2j = �240 < 0:
(g) Negative de�nite because jA1j = �2 < 0 and jA2j = 7 > 0:
(h) Inde�nite because jA1j = 3 > 0, jA2j = 8 > 0, and jA3j = �44 < 0:

6. (a) Letting f(x; y) denote the objective function, the �rst partials are

fx = �y
fy = 8y � x

and the matrix of second partials is�
fxx fxy
fyx fyy

�
=

�
0 �1
�1 8

�
:

This matrix is inde�nite and so the second-order conditions for a min-
imum are not satis�ed.
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(b) Letting f(x; y) denote the objective function, the �rst partials are

fx = 8� 2x
fy = 6� 2y

and the matrix of second partials is�
fxx fxy
fyx fyy

�
=

�
�2 0
0 �2

�
which is negative de�nite. The second-order conditions are satis-
�ed.

(c) We have

rf =
�

5y
5x� 4y

�
and

H =

�
0 5
5 �4

�
This matrix is inde�nite because jH1j = 0 but jH2j = �25 < 0:
The second-order condition is not satis�ed.

(d) We have

rf =
�
12x
6y

�
and

H =

�
12 0
0 6

�
This matrix is positive de�nite because jH1j = 12 > 0 and jH2j =
72 > 0: The second-order condition is satis�ed.

7. If it is a convex combination there must be some number t 2 [0; 1] such
that �

6
2

�
= t

�
11
4

�
+ (1� t)

�
�1
0

�
:

Writing these out as two equations gives us

6 = 11t+ (�1)(1� t)
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and
2 = 4t+ 0(1� t):

Solving the �rst one yields t = 7=12 and solving the second one yields
t = 1=2. These are not the same so it is not a convex combination.

8. Let t be a scalar between 0 and 1. Given xa and xb, we want to show
that

f(txa + (1� t)xb) � tf(xa) + (1� t)f(xb)
Looking at the left-hand side,

f(txa + (1� t)xb) = (txa + (1� t)xb)2

= (xb + txa � txb)2

Looking at the right-hand side,

tf(xa) + (1� t)f(xb) = tx2a + (1� t)x2b
= x2b + tx

2
a � tx2b

Subtracting the left-hand side from the right-hand side gives us

x2b + tx
2
a � tx2b � (xb + txa � txb)

2 = t(1� t)(xa � xb)2

which has to be nonnegative because t, 1� t, and anything squared are
all nonnegative.

Solutions for Chapter 10

1. (a) x = 20 and y = 4.

(b) There are two of them: x = 15 and y = 4, and x = 15 and y = 5.

(c) Sum the probabilities along the row to get 0:35.

(d) 0:03 + 0:17 + 0:00 + 0:05 + 0:04 + 0:20 = 0:49.

(e)

P (y � 2jx � 20) = P (y � 2 and x � 20)
P (x � 20) =

0:23

0:79
=
23

79
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(f) Bayes�rule says

P (y = 4jx = 20) = P (x = 20jy = 4) � P (y = 4)
P (x = 20)

:

We have P (y = 4jx = 20) = 0:20=0:44 = 5=11. Also,

P (x = 20jy = 4) � P (y = 4)
P (x = 20)

=
(0:20=0:27) � (0:27)

0:44
=
20

44
=
5

11
:

(g) Two events are statistically independent if the probability of their
intersection equals the product of their probabilities. We have

P (x � 20) = 0:65

P (y 2 f1; 4g) = 0:42
P (x � 20) � P (y 2 f1; 4g) = (0:65)(0:42) = 0:273
P (x � 20 and y 2 f1; 4g) = 0:24

They are not statistically independent.

2. (a) P (A) = 0:26 and P (B) = :18, so A is more likely.

(b) The numbers in parentheses are (a; b) pairs: f(4; 1); (4; 3); (5; 3)g.
(c) 0:73.

(d) P (b = 2ja = 5) = P (b = 2 and a = 5)=P (a = 5) = 0:06=0:32 =
3=16 = 0:1875:

(e)
P (a � 3 and b 2 f1; 4g) = 0:45

and
P (b 2 f1; 4g) = 0:58

so
P (a � 3jb 2 f1; 4g) = 0:45

0:58
= 0:77586

(f) P (a 2 f1; 3g and b 2 f1; 2; 4g) = 0:14, but P (a 2 f1; 3g) = 0:36
and P (b 2 f1; 2; 4g) = 0:73. We have

P ((a 2 f1; 3g)P (b 2 f1; 2; 4g) = 0:36 � 0:73 = 0:2628 6= 0:14:

They are not statistically independent.
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3. We want P (disease j positive), which is

P (disease j positive) = P (disease and positive)
P (positive)

.

Note that

P (disease and positive) = P (positive j disease) � P (disease)

= 0:95 � 1

20; 000
= 0:0000475

and

P (positive) = P (positive j disease) � P (disease) + P (positive j healthy) � P (healthy)

= 0:95 � 1

20; 000
+ 0:05 � 19; 999

20; 000
= 0:0000475 + 0:0499975

= 0:050045

Now we get

P (disease j positive) =
P (disease and positive)

P (positive)

=
0:0000475

0:050045
= 0:000949

In spite of the positive test, it is still very unlikely that Max has the
disease.

4. Use Bayes�rule:

P (entrepreneur j old) = P (old j entrpreneur)P (entrepreneur)
P (old)

Your grad assistant told you that P (old j entrepreneur) = 0:8 and that
P (entrepreneur) = 0:3. But she didn�t tell you P (old), so you must
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calculate it:

P (old) = P (old j doctor)P (doctor)
+P (old j lawyer)P (lawyer)
+P (old j entrpreneur)P (entrpreneur)

= (0:6)(0:2) + (0:3)(0:5) + (0:8)(0:3)

= 0:51

Plugging this into Bayes�rule yields

P (entrepreneur j old) = (0:8)(0:3)

0:51
= 0:47

47% of old people are entrepreneurs.

Solutions for Chapter 12

1. (a) Plugging in f(x) = 1=6 gives usZ 8

2

xf(x)dx =
1

6

Z 8

2

xdx

=
1

12
x2
����8
2

=
64

12
� 4

12
= 5

(b) Following the same strategy,Z 8

2

x2f(x)dx =
1

6

Z 8

2

x2dx

=
1

18
x3
����8
2

=
512

18
� 8

18
= 28

2. Leibniz�rule says

d

dt

Z b(t)

a(t)

f(x; t)dx =

Z b(t)

a(t)

@f(x; t)

@t
dx+ b0(t)f(b(t); t)� a0(t)f(a(t); t):
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Here
f(x; t) = tx2, b(t) = t2, and a(t) = �t2

so

@f(x; t)

@t
= x2, f(b(t); t) = t � (t2)2 = t5, and f(a(t); t) = t � (�t2)2 = t5.

Leibniz�rule then becomes

d

dt

Z t2

�t2
tx2dx =

Z t2

�t2
x2dx+ (2t)(t5)� (�2t)(t5)

=
x3

3

����t2
�t2
+ 2t6 + 2t6

=
t6

3
� �t

6

3
+ 4t6

=
14

3
t6:

3. Use Leibniz�rule:

d

dt

Z b(t)

a(t)

f(x; t)dx =

Z b(t)

a(t)

@f(x; t)

@t
dx+ b0(t)f(b(t); t)� a0(t)f(a(t); t)

d

dt

Z 4t2

�3t
t2x3dx = 2

Z 4t2

�3t
tx3dx+ (8t) � t2 � (4t2)3 � (�3) � t2 � (�3t)3

=
2

4
tx4
����4t2
�3t
+ 512t9 � 81t5

= 128t9 � 81
2
t5 + 512t9 � 81t5

= 640t9 � 243
2
t5

4. Let F (x) denote the distribution function for U(a; b), and let G(x)
denote the distribution function for U(0; 1). Then

F (x) =

8<:
0 x < a
x�a
b�a for a � x < b
1 x � b



CHAPTER 18. SOLUTIONS TO END-OF-CHAPTER PROBLEMS 258

and

G(x) =

8<:
0 x < 0
x for 0 � x < 1
1 x � 1

First-order stochastic dominance requires F (x) � G(x). The require-
ments on a and b are

a � 0

b � 1

The easiest way to see this is by graphing it. But, from looking at the
equations, if 0 � a � 1 � b we can write

G(x)� F (x) =

8>>>><>>>>:
0 x < 0
x 0 � x < a

x� x�a
b�a for a � x < 1

1� x�a
b�a 1 � x < b
0 x � b

Note that

x� x� a
b� a =

bx� ax� x+ a
b� a =

a(1� x)
b� a +

(b� 1)x
b� a

which is positive when b � 1 � x � a � 0, and

1� x� a
b� a =

b� a� x+ a
b� a =

b� x
b� a

which is positive when b � x: So G(x) � F (x) as desired.

Solutions for Chapter 13

1. (a) � = (:10)(7)+(:23)(4)+(:40)(2)+(:15)(�2)+(:10)(�6)+(:02)(�14) =
1: 24

(b) �2 = (:10)(7 � 1: 24)2 + (:23)(4 � 1: 24)2 + (:40)(2 � 1: 24)2 +
(:15)(�2 � 1: 24)2 + (:10)(�6 � 1: 24)2 + (:02)(�14 � 1: 24)2 =
16: 762:
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2. (a) The means are

�f = (10)(:15) + (15)(:5) + (20)(:05) + (30)(:1) + (100)(:2) = 33

and

�g = (10)(:2) + (15)(:3) + (20)(:1) + (30)(:1) + (100)(:3) = 41: 5:

(b) The variances are

�2f = (10� 33)2(:15) + (15� 33)2(:5) + (20� 33)2(:05)
+(30� 33)2(:1) + (100� 33)2(:2)

= 1148:5

and

�2g = (10� 41:5)2(:2) + (15� 41:5)2(:3) + (20� 41:5)2(:1)
+(30� 41:5)2(:1) + (100� 41:5)2(:3)

= 1495:3

(c) The standard deviations are

�f =
p
1148:5 = 33: 890

and
�g =

p
1495:3 = 38: 669

3. (a)

F (x) =

Z x

0

f(t)dt

=

Z x

0

2tdt

= t2
��x
0

= x2:

(b) All those things hold.
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(c)

� =

Z 1

0

x � 2xdx

= 2

Z 1

0

x2dx

=
2

3
x3
����1
0

=
2

3
:

(d) First �nd

E[~x2] =

Z 1

0

x2 � 2xdx

= 2

Z 1

0

x3dx

=
2

4
x4
����1
0

=
1

2
.

Then note that

�2 = E[~x2]� �2 = 1

2
� 4
9
=
1

18
:

4. (a) For x 2 [0; 4] we have

F (x) =

Z x

0

1

8
tdt

=
1

16
t2
����x
0

=
1

16
x2

Outside of this interval we have F (x) = 0 when x < 0 and F (x) = 1
when x > 1.
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(b) Using F (x) = x2=16, we get F (0) = 0, F (4) = 1, and F 0(x) =
x=8 � 0.

(c)

� =

Z 4

0

x

�
1

8
x

�
dx =

8

3

(d)

�2 =

Z 4

0

�
x� 8

3

�2�
1

8
x

�
dx =

8

9

5. The mean of the random variable �~x is a�, where � is the mean of ~x.
The variance is

V ar(a~x) = E[(a~x� a�)2]
= E[a2(~x� �)2]

a2E[~x� �]2

= a2�2:

The �rst line is the de�nition of variance, the second factors out the a,
the third works because the expectations operator is a linear operator,
and the third is the de�nition of �2.

6. We know that
E[(x� �x)2] = �2x

We want to �nd
�2y = E[(y � �y)2]

Note that �y = 3�x � 1, and that y = 3x � 1. Substituting these in
yields

�2y = E[(y � �y)2]
= E[(3x� 1� (3�x � 1))2]
= E[(3x� 3�x)2]
= E[9(x� �x)2]
= 9E[(x� �x)2]
= 9�2x:
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7. The mean is � = 3 + 1
2
y. The variance is therefore

�2 =
1

2
[6� (3 + 1

2
y)]2 +

1

2
[y � (3 + 1

2
y)]2

=
1

4
y2 � 3y + 9:

The derivative with respect to y is

d�2

dy
=
1

2
y � 3:

8. All we have to do is show that G(2)(x) � G(1)(x) for all x. We have

G(2)(x)�G(1)(x) =
�
nF n�1(x)(1� F (x)) + F n(x)

�
� [F n(x)]

= nF n�1(x)(1� F (x)) � 0:

Solutions for Chapter 14

1. (a)
F (x; y) ~y = 10 ~y = 20 ~y = 30
~x = 1 :04 :04 :24
~x = 2 :11 :11 :49
~x = 3 :13 :24 :69
~x = 4 :14 :37 1:00

(b) F~x is given by the last column of part (a), and F~y is given by the
bottom row of part (a).

(c) f~x(1) = :24, f~x(2) = :25, f~x(3) = :20, f~x(4) = :31. Similarly,
f~y(10) = :14, f~y(20) = :23, f~y(30) = :63:

(d) The formula for conditional density is f(xj~y = 20) = f(x; 20)=f~y(20),
which gives us f(1j~y = 20) = 0=:23 = 0, f(2j~y = 20) = 0,
f(3j~y = 20) = 11=23, and f(4j~y = 20) = 12=23.

(e) Using the marginal density from part (c), the mean is

�y = (:14)(10) + (:23)(20) + (:63)(30) = 24:9
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(f) Using part (d),

�xjy=20 = (0)(1) + (0)(2) + (11=23)(3) + (12=23)(4) = 81=23

(g) No. For the two to be independent we need f(x; y) = f~x(x)fy(y).
This does not hold. For example, we have f(3; 20) = :11, f~x(3) =
:20, and f~y(20) = :23, which makes f~x(3)f~y(20) = :046 6= :11.

(h) We have

Ex[~xj~y = 10] =
:04(1) + :07(2) + :02(3) + :01(4)

:14
= 2:0

Ex[~xj~y = 20] =
0(1) + 0(2) + :11(3) + :12(4)

:23
= 3:52

Ex[~xj~y = 30] =
:2(1) + :18(2) + :07(3) + :18(4)

:63
= 2:36

Ey[Ex[~xjy] = (:14)(2:0) + (:23)(3:52) + (:63)(2:36) = 2:58

Finally, using the marginal density from part (c) yields

Ex[~x] = (:24)(1) + (:25)(2) + (:20)(3) + (:31)(4) = 2:58.

It works.

2. (a)
f(x; y) ~y = 3 ~y = 8 ~y = 10
~x = 1 0.03 0.05 0.25
~x = 2 0.05 0.19 0.44
~x = 3 0.10 0.25 0.71
~x = 4 0.17 0.43 1.00

(b) F~x(1) = 0:25, F~x(2) = 0:44, F~x(3) = 0:71, F~x(4) = 1:00 and
F~y(3) = 0:17, F~y(8) = 0:43, F~y(10) = 1:00.

(c) f~x(1) = 0:25, f~x(2) = 0:19, f~x(3) = 0:27, f~x(4) = 0:29 and f~y(3) =
0:17, f~y(8) = 0:26, f~y(10) = 0:57.

(d) f(~y = 3j~x = 1) = 0:12, f(~y = 8j~x = 1) = 0:08, and f(~y = 10j~x =
1) = 0:80.

(e) �x = 2:6 and �y = 8:29.
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(f) E[~xj~y = 3] = [(0:03)(1) + (0:02)(2) + (0:05)(3) + (0:07)(4)]=0:17 =
2: 94:

(g) No. The following table shows the entries for f~x(x)f~y(y):

f~x(x)f~y(y) ~y = 3 ~y = 8 ~y = 10
~x = 1 0.043 0.065 0.143
~x = 2 0.032 0.049 0.108
~x = 3 0.046 0.070 0.154
~x = 4 0.049 0.075 0.165

None of the entries are the same as those in the f(x; y) table.

(h) �2x = 1:32 and �
2
y = 6:45:

(i) Cov(~x; ~y) = �0:514
(j) �xy = �:176:
(k) We have

Ex[~xj~y = 3] =
(:03)(1) + (:02)(2) + (:05)(3) + (:07)(4)

:17
= 2: 94

Ex[~xj~y = 8] =
(:02)(1) + (:12)(2) + (:01)(3) + (:11)(4)

:26
= 2: 81

Ex[~xj~y = 10] =
(:2)(1) + (:05)(2) + (:21)(3) + (:11)(4)

:57
= 2:40

Ey[Ex[~xjy]] = (:17)(2:94) + (:26)(2:81) + (:57)(2:40) = 2:6
which is the same as the mean of ~x found above.

3. The uniform distribution over [a; b] is

F (x) =
x� a
b� a

when x 2 [a; b], it is 1 for x > b, and 0 for x < a. The conditional
distribution is

F (xjx � c) = F (x)

F (c)
=

x�a
b�a
c�a
b�a

=
x� a
c� a

for x 2 [a; c], it is 1 for x > c, and 0 for x < a. But this is just the
uniform distribution over [a; c].
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4. ~x and ~y are independent if f(x; y) = f~x(x)f~y(y) or, equivalently, if
f(xjy) = f(x). This answer uses the latter formulation. We can see
that f(~x = �1j~y = 10) = 1=4, and for ~x and ~y to be independent it
must also be the case that f(~x = �1j~y = 20) = 1=4. But

f(~x = �1j~y = 20) = a

a+ b
:

We also know that a + b must equal 0.6 so that the probabilities sum
to one. Thus,

a

a+ b
=

a

0:6
=
1

4

a =
:6

4
= 0:15

b = 0:6� a = 0:45:

18.1 Solutions for Chapter 15

1. �x = 4 and s2 = 24.

Solutions for Chapter 17

1. (a) Compute the t-statistic

t =
�x� �
s=
p
n
=
60:02� 0
44:37=

p
30
= 7:41

which has 29 degrees of freedom. Use the Excel formula

=TDIST(7.41, 29, 2)

to get the p-value of 0.0000000365. The data reject the hypothesis.

(b) The t-statistic is 3.706, the p-value is 0.000882, and the hypothesis
is rejected.

(c) The t-statistic is -0.614, the p-value for the one-tailed test is 0.27,
and the hypothesis is supported.
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(d) The sample mean is 60.02 which is smaller than 100, so the hy-
pothesis is supported.

2. (a) The best estimate of � is the sample mean �x and the best estimate
of �2 is the sample variance s2.

�x = 44:2

s2 = 653:8

(b) Compute the t-statistic

t =
�x� �
s=
p
n
=
44:2� 40
25:6=

p
20
= 0:73

and the t-statistic has 19 degrees of freedom. From here compute
the p-value of 2(1 � TDist(0:73; 19)) = 0:47 > 0:05 and the data
support the hypothesis.

(c) Compute the t-statistic

t =
�x� �
s=
p
n
=
44:2� 60
25:6=

p
20
= �2: 76

and again the t-statistic has 19 degrees of freedom. From here
compute the p-value of 2(1�TDist(2:76; 19)) = :01 25 < 0:05 and
the data reject the hypothesis.
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implicit di¤erentiation approach,
30

total di¤erential approach, 32
complementary slackness, 57
component of a vector, 22
concave function, 120

de�nition, 121
conditional density, 177

continuous case, 177
discrete case, 177
general formula, 177

conditional expectation, 181
conditional probability, 136, 177
con�dence level, 203
constant function, 10
continuous random variable, 143
convergence of random variables, 192

almost sure, 192
in distribution, 193
in probability, 192

convex combination, 120
convex function, 122

de�nition, 122
convex set, 124
coordinate vector, 25, 81
correlation coe¢ cient, 179, 180
covariance, 179
Cramer�s rule, 79, 81, 97
critical region, 202
cumulative density function, 145

degrees of freedom, 191
density function, 144
derivative, 9

chain rule, 13
division rule, 14
partial, 24
product rule, 12

determinant, 78
di¤erentiation, implicit, 29
discrete random variable, 143
distribution function, 144
dot product, 23
dynamic system, 102, 104

in matrix form, 104

e, 17
econometrics, 98, 99
eigenvalue, 105
eigenvector, 106
Euclidean space, 23
event, 132, 143
Excel commands

binomial distribution, 147
t distribution, 207

expectation, 164, 165
conditional, 181

expectation operator, 165
expected value, 164

conditional, 181
experiment, 131
exponential distribution, 149
exponential function, 17

derivative, 18

F distribution, 199
relation to t distribution, 199

�rst-order condition
for multidimensional optimization,

28
�rst-order condition (FOC), 15

for equality-constrained optimiza-
tion, 40

for inequality-constrained optimiza-
tion, 57, 65

Kuhn-Tucker conditions, 67
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�rst-order stochastic dominance, 159

gradient, 117

Hessian, 117
hypothesis

alternative, 202
null, 202

hypothesis testing, 202
con�dence level, 203
critical region, 202
errors, 203
one-tailed, 205
p-value, 206
signi�cance level, 203
two-tailed, 205

identity matrix, 75
IID (independent, identically distrib-

uted), 187
implicit di¤erentiation, 29, 31, 37, 97
independence, statistical, 140
independent random variables, 178
independent, identically distributed,

187
inequality constraint

binding, 54
nonbinding, 55
slack, 55

inner product, 23
integration by parts, 157, 158
inverse matrix, 76

2 � 2, 82
existence, 81
formula, 82

IS-LM analysis, 95

joint distribution function, 175

Kuhn-Tucker conditions, 67

Kuhn-Tucker Lagrangian, 66

Lagrange multiplier, 39
interpretation, 43, 48, 55

Lagrangian, 39
Kuhn-Tucker, 66

lame examples, 53, 59, 99, 103
Law of Iterated Expectations, 184
Law of Large Numbers, 192

Strong Law, 192
Weak Law, 192

least squares, 98, 100
projection matrix, 101

Leibniz�s rule, 160, 162
likelihood, 138
linear approximation, 114
linear combination, 89
linear operator, 155
linear programming, 62
linearly dependent vectors, 91
linearly independent vectors, 91, 92
logarithm, 17

derivative, 17
logistic distribution, 151
lognormal distribution, 151
lower animals, separation from, 156

Maple commands, 207
marginal density function, 177
martrix

diagonal elements, 73
matrix, 72

addition, 73
augmented, 87, 92
determinant, 78
dimensions, 72
Hessian, 117
idempotent, 102
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identity matrix, 75
inverse, 76
left-multiplication, 75
multiplication, 73
negative semide�nite, 118, 119
nonsingular, 81
positive semide�nite, 119
rank, 88
right-multiplication, 75
scalar multiplication, 73
singular, 81
square, 73
transpose, 75

mean, 165
sample mean, 188
standardized, 193

Monty Hall problem, 139
multivariate distribution, 175

expectation, 178
mutually exclusive events, 132

negative semide�nite matrix, 118, 119
nonbinding constraint, 55
nonconvex set, 124
norm, 24
normal distribution, 148

mean, 165
sampling from, 197
standard normal, 148
variance, 168

null hypothesis, 202

objective function, 30
one-tailed test, 205
order statistics, 169

�rst order statistic, 169, 170
for uniform distribution, 170, 172
second order statistic, 171, 172

orthogonal, 101
outcome (of an experiment), 131

p-value, 206
partial derivative, 24

cross partial, 25
second partial, 25

pdf, 145
population, 187
positive semide�nite matrix, 119
posterior probability, 138
prior probability, 138
probability density function, 145
probability distributions

binomial, 145
chi-square, 194
F, 199
logistic, 151
lognormal, 151
normal, 148
t, 198
uniform, 147

probability measure, 132, 143
properties, 132

quasiconcave, 126
quasiconvex, 127

random sample, 187
random variable, 143, 164

continuous, 143
discrete, 143
IID, 187

rank (of a matrix), 88, 92
realization of a random variable, 143
rigor, 3
row-echelon decomposition, 87, 88, 92
row-echelon form, 87
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sample, 187
sample frequency, 200
sample mean, 188

standardized, 193
variance of, 188

sample space, 131
sample variance, 189, 190

mean of, 191
scalar, 11, 23
scalar multiplication, 23
search, 181
second-order condition (SOC), 16, 116

for a function of m variables, 118,
119

second-price auction, 161, 163
signi�cance level, 203
span, 89, 92
stability conditions, 103

using eigenvalues, 109
stable process, 103
standard deviation, 167
standardized mean, 193
statistic, 187
statistical independence, 140, 178

and correlation coe¢ cient, 179
and covariance, 179

statistical test, 202
submatrix, 78
support, 145
system of equations, 76, 86

Cramer�s rule, 79, 81, 97
existence and number of solutions,

91
graphing in (x; y) space, 89
graphing in column space, 89
in matrix form, 76, 97
inverse approach, 87

row-echelon decomposition approach,
88

t distribution, 198
relation to F distribution, 199

t-statistic, 199
Taylor approximation, 115

for a function of m variables, 117
test statistic, 202
told you so, 48
total di¤erential, 31
transpose, 75, 98
trial, 131
two-tailed test, 205
type I error, 203
type II error, 203

unbiased, 191
uniform distribution, 147

�rst order statistic, 170
mean, 165
second order statistic, 172
variance, 167

univariate distribution function, 175

variance, 166
vector, 22

coordinate, 25
dimension, 23
in matrix notation, 73
inequalities for ordering, 24

worse-than set, 127

Young�s Theorem, 25




