

Celebrating 20 Years of Excellence in Environmental Science & Engineering

www.kieser-associates.com

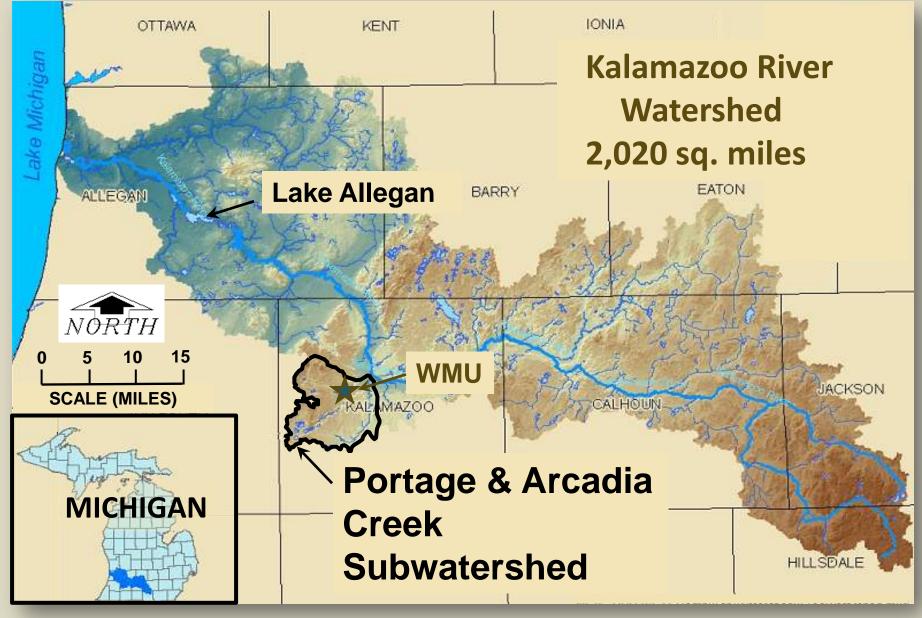
Urban Stormwater Management – Achieving Compliance Goals

MWEA Annual Conference June 25, 2013

K. Brian Boyer, P.E. *Environmental Engineering Manager*

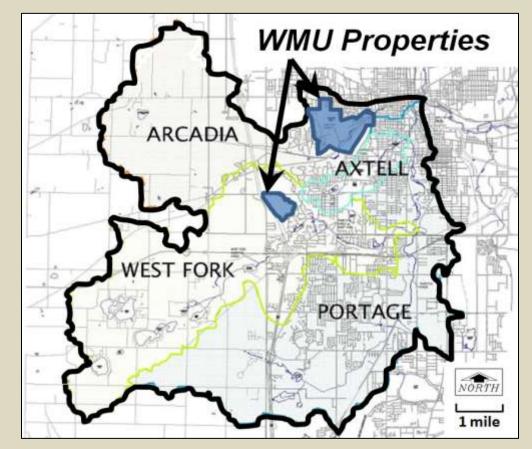
and

Mark S. Kieser Senior Scientist


Kieser & Associates, LLC bboyer@kieser-associates.com

Overview

- Western Michigan University (WMU) Setting
- WMU Stormwater Concerns
- MS4 permit history and policy shift
- Compliance planning & sustainability
- SW controls and progress towards goals
- Implications of strategic planning
- The future of urban stormwater management



Kalamazoo River Watershed

Setting

- Highly urbanized campus/watershed
 - 807-acre campus
 - 25,000 students
 - 75% impervious cover
 - Classified as "high density residential"
 - MS4 (Phase II)
 - Control of land/infrastructure
- WMP for 64,000-acre "Portage & Arcadia Creeks"

WMU Stormwater Concerns

Bernhard Student Center

Direct SW discharges

- 64 outfalls to Arcadia Creek
- Preservation of facilities
- Protect infrastructure
- Reduce flood potential
- Regulatory compliance

Waldo Football Stadium

Steam lines from Power Plant

WMU Stormwater Policy

- WMU voluntary stormwater permit (2000)
- Formal MS4 permit 2003

Internal 2008 Guidelines for SW Controls

- No new outfalls or discharges will be created
- Projects over 1-acre will have <u>ZERO</u> discharge
- Modeling required to evaluate stormwater systems
- Contractor requirements
- Routine maintenance
- Testing throughout construction

TMDL Compliance Planning Project

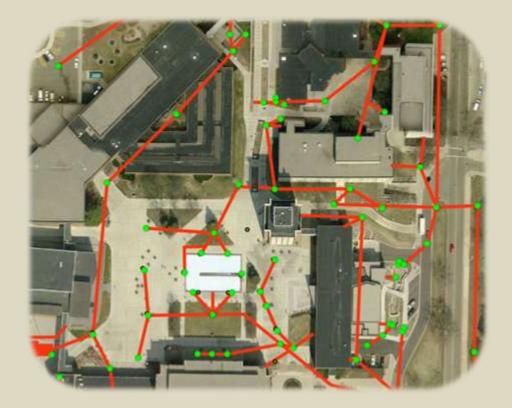
- Identify "stormwater footprint" (1998 & present)
- Establish performance metrics for stormwater controls
 - Phosphorus (lbs/yr) TMDL
 - Total Suspended Solids (tons/yr) Downstream City Flood Control Structure
 - Runoff volume (ft³/yr; gal/yr; acre-ft/yr) Campus flooding/infrastructure protection
- Determine WMU TMDL compliance status
- Identify future BMP options
- Integrate SW planning for campus projects
- Future BMP monitoring plan
- Pursue Stormwater Neutral[™] goal

Net-zero phosphorus load

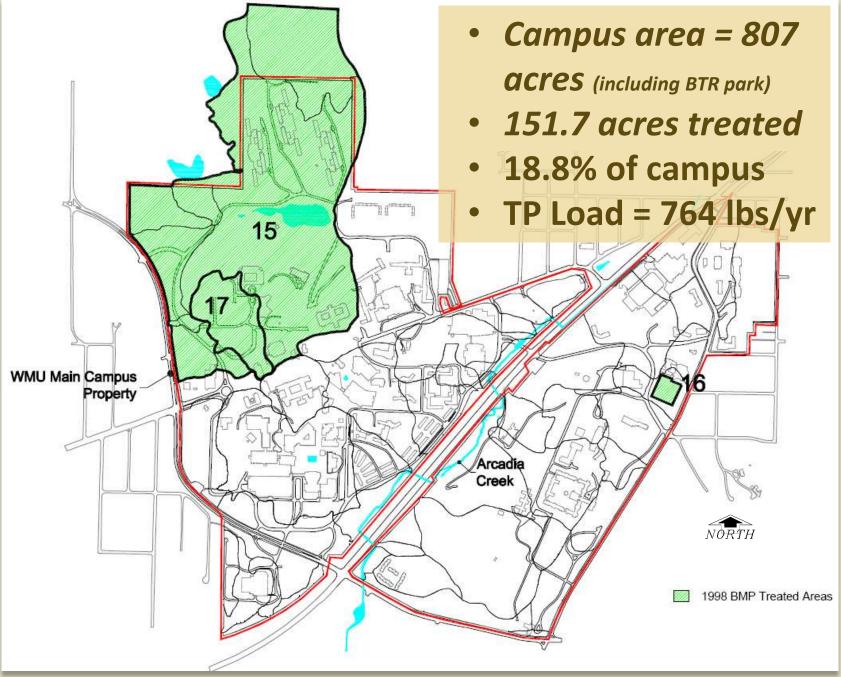
GIS & Design Data

Utility Infrastructure Data

- 1,426 storm structures
- 64 outfalls
- >28 miles of storm sewer piping


Aerial Imagery Catalog

Base Mapping


- Impervious vs. pervious surfaces
- LiDAR elevation data (2008)

Engineering Designs

- Basis-of-design calculations
- As-built documents

1998 Campus SW Control Areas

Methods/Tools

• DEQ Water Quality Trading Rule calculations

- Rainfall data to generate runoff
- Land use and impervious surface areas
- Event mean concentrations by land use (locally confirmed with monitoring)

- Kzoo River Urban Stormwater BMP Screening Tool
 - Selectively calculates runoff volume, TP and TSS loading
 - Calculates general stormwater treatment and costs
 - Used in Kalamazoo River WMP

NPS Loading Calculations MI Trading Rules

(Eq. 1) ML = EMC, x R, x K

Where:

- *M*_i = Loading factor from <u>land use</u> L (pounds/acre/year)
- EMC_{L} = Event mean concentration of runoff from land use L (mg/L)
- = Total average surface runoff from land use L computed from Eq. 2 (in R_{I} acres-in/year)
- = Unit conversion factor of 0.2266 Κ

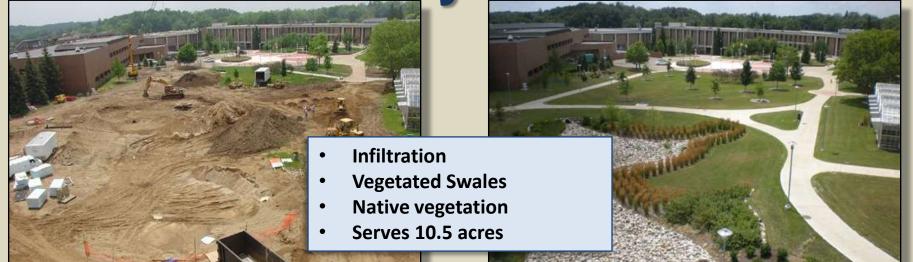
Runoff Equation:

$R_{I} = [C_{P} + (C_{I} - C_{P}) \times IMP_{I}] \times A_{I} \times I$ (Eq. 2)

Where:

- $R_L \\ C_P \\ C_I$ = Total average annual surface runoff from land use L (acre-inches/year)
 - = <u>Pervious area</u> runoff coefficient (0.20)
 - = Impervious area runoff coefficient (0.95)
- $IMP_{I} = Fractional imperviousness of land use L$
- = Area of drainage unit (acres) A_L
 - = Long term average annual precipitation (inches/year)

Parking Lot 23



Project	Control Type	Annual TP Reduction		Annual TSS Reduction		Annual Volume Reduction	
Parking Lot 23	Detention/ Infiltration	28 lbs	50%	4 tons	50%	30 ac-ft	50%

Chemistry Building

Project	Control Type	Annual Reduct	Annual TSS Reduction		Annual Redu		
Chemistry Building	Infiltration	15 lbs	100%	2 tons	100%	18.5 ac-ft	100%

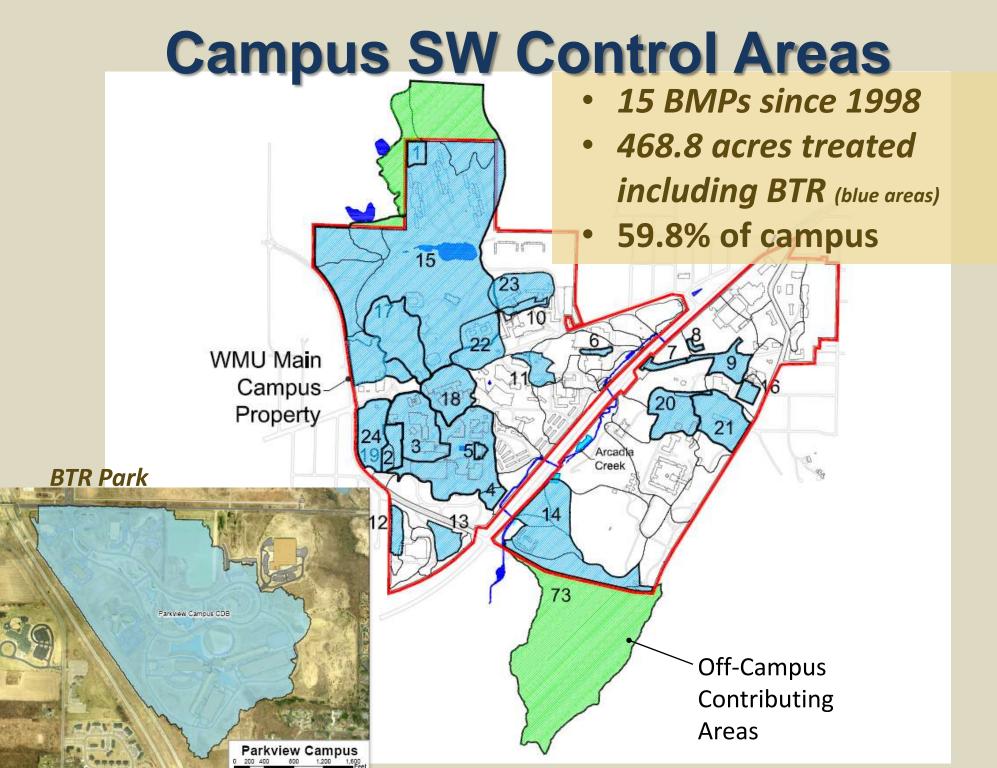
Richmond Center / Kohrman Hall

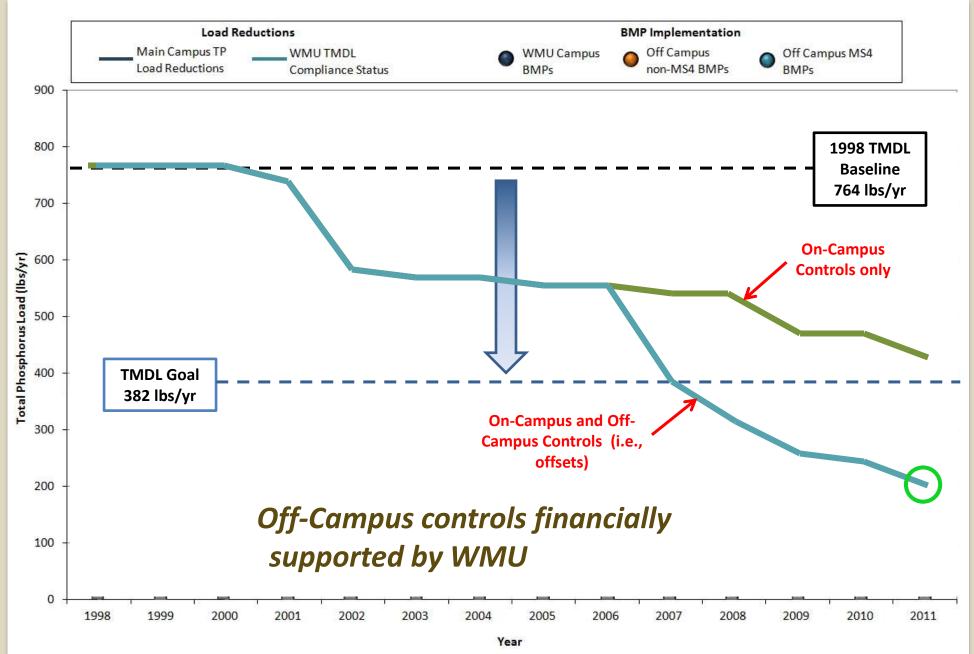
	Project	Control Type	Annual TP Reduction Annual TSS Reduction Reduct		Annual TSS Reduction			
ſ	RCVA/ Kohrman	Infiltration	23 lbs	100%	3 tons	100%	27 ac-ft	100%

Howard / Stadium CMI

- Floodplain Enhancement
- Native Vegetation
- Streambank Restoration
- Serves 102 acres

Project	Control Type	Annual Reduct		Annual TSS Red	al TSS Reduction		Annual Volume Reduction	
Howard/ Stadium CMI	Detention/ Infiltration	86 lbs	50%	27 tons	50%	120 ac-ft	50%	




WMU Parkview Campus

		Infiltra • Nativo	te Retent ation e Vegeta s 197 acr	tion				
Project	Control Type		Annual TP Reduction Annual TSS Red		duction		Volume ction	
BTR/Parkview Campus	Retention/ Infiltration	123 lbs	100%	24 tons	100%	150 ac-ft	100%	
					St. Name	AL WAR DAMAGE	and the second	-

2011 WMU TMDL Compliance

Progress Towards Goals Current 2013 Status							
TMDL Compliance	Stormwater Neutral TM (Net zero T discharge)						
100 90 80 70 60 $50 \leftarrow TMDL$ $REDUCTION$ $GOAL$ 30 20 10 0	100 90 80 70 60 50 40 30 20 10	100 90 80 70 60 50 50 40 30 20 10					

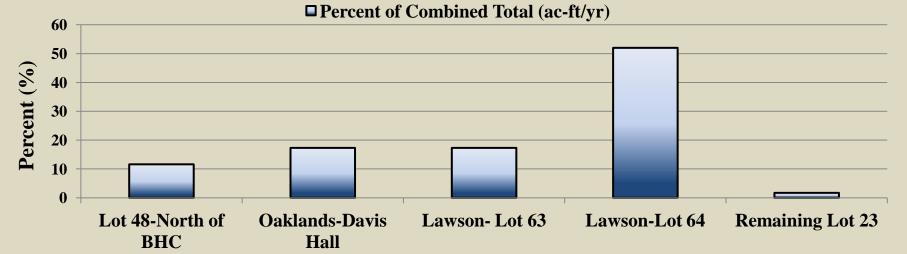
Arcadia Creek Loading to K-zoo

Total Phosphorus (TP)	2,091	lbs/yr
Total Suspended Solids (TSS)	539	tons/yr
Volume	769	Mgal/yr

Table 3-1 of Portage-Arcadia Creek WMP.See : http://www.kalamazooriver.net/pa319new/wmp update.htm

WMU Stormwater Reductions

	TP	TSS	Volume (Macol/um)
WMU BMPs	(lbs/yr) 535	(tons/yr) 127	(Mgal/yr) 224
Arcadia Creek Total	2 001	539	769
WMU Reduction to Creek (%)	25.6	23.6	29.1


Next Steps and New Opportunities Future On-campus SW Control Options

- 315 acres of main campus remain untreated
- Prioritization of future efforts

Priorities!


Stormwater Control Location	Lot 48-North of BHC	Oaklands-Davis Hall	Lawson- Lot 63	Lawson- Lot 64	Remaining Lot 23
Cost (\$)	\$37,490	\$51,280	\$39,477	\$88,036	\$19,500
Vol (\$/ac-ft)	\$18,256	\$13,826	\$10,783	\$8,574	\$70,020
TSS (\$/ton)	\$4,109	\$4,888	\$4,916	\$6,136	\$6,060
TP (\$/lb)	\$693	\$698	\$930	\$1,207	\$1,069

Stormwater Runoff Volume: Relative Comparison

Existing/Proposed BMPs

TP Load Reduction Analysis (\$/lb) (20-yr life cycle costs)

Cost Implications (2013 \$s)

- Total Phosphorus
- Total Suspended Sediment
- Runoff Volume
- Area Served
- \$4.18M initial investment
- 702 lbs/yr TP reduction
 = ~\$5,950/lb
- Compliance <u>Planning</u> Costs:
 - ~\$1,200/outfall (64 outfalls)
 - ~1.5% of overall SW control initial investments

- \$150 \$5,500/lb \$400 - \$30,000/ton \$180 - \$13,000/ac-ft
- \$200 10,500/acre

(\$5.3M valuation in 2013 \$s) (~14,040 lbs TP over 20 yrs) (= ~\$377/lb TP in 2013 \$s)

Project Benefits and Outcomes

- Confirmed TMDL LA achieved (52% reduction)
- First MS4 to reach local TMDL reduction goal
- 59% of campus now treated by 15 BMPs
- New SW prioritization scheme with established metrics
- Approaching Stormwater
 Neutral[™] goal
- Template for other MS4s

The Future for MS4s... **Pending EPA Stormwater Rule**

			U.S. ENVIRONMENTAL PROT	ECTION AGENC		
 Manufactor factor of PC 2011, 2011, and a second data as that 	ischarge Elimination	System (NPDES)				
ecent Additions Contact Us Search NPDE PA Home > OW Home > OWM Home > NPDE	S. S Home > Stormwater > Stormwater Rulemaking					
NPDES Topics	Alphabetical Index	Glossary	About NPDES	and the Charge		
roposed National I	Rulemaking to Streng	then the Stormwa	ter Program	NPDES		
	g to establish a program to reduce stormy ngthen its stormwater program. This web			Stormwater		
ulemaking Considerations				Recent Additions		
ne proposed national rulemaking is c	onsidering the following key rulemaking a	tions:		FAQs		
 Develop <u>performance standards</u> from newly developed and redeveloped sites to better address stormwater management as projects are built; Explore options for expanding the protections of the municipal separate storm sewer systems (MS4) program; Evaluate options for establishing and implementing a municipal program to reduce discharges from existing development; 						
Evaluate options for establishing a single set of minimum measures requirements for regulated MS4s. However, industrial requirements may only apply to regulated MS4s serving populations of 100,000 or more; Explore options for establishing specific requirements for transportation facilities; and						
	cific to the Chesapeake Bay watershed.			Contacts		
dditional Rulemaking Activities				1		

Questions?

Brian Boyer, P.E. Environmental Engineering Manager Kieser & Associates, LLC bboyer@kieser-associates.com

Peter J. Strazdas Associate Vice President, Facilities Management Western Michigan University peter.strazdas@wmich.edu

Celebrating 20 Years of Excellence in Environmental Science & Engineering

www.kieser-associates.com

