

MySQL Lab Guide

A supplement to: Database Systems: Design, Implementation and Management
(International Edition)

Rob, Coronel & Crockett (ISBN: 9781844807321)

MySQL Lab Guide

Table of Contents

Lab Title Page

1 Introduction to MySQL 4

2 Building a database: Table by Table 15

3 Data Manipulation Commands 36

4 Basic SELECT statements 47

5 Advanced SELECT statements 63

6 Joining Tables 75

7 SQL functions 90

8 Subqueries 111

9 Views 123

Keeley Crockett 2

MySQL Lab Guide

Introduction to the MySQL Lab Guide

This lab guide is designed to provide examples and exercises in the fundamentals of SQL

within the MySQL environment. The objective is not to develop full blown applications

but to illustrate the concepts of SQL using simple examples. The lab guide has been

divided up into 9 sessions. Each one comprises of examples, tasks and exercises about a

particular concept in SQL and how it is implemented in MySQL.

On completion of this 9 week lab guide you will be able to:

• Create a simple relational database in MySQL.

• Insert, update and delete data the tables.

• Create queries using basic and advanced SELECT statements

• Perform join operations on relational tables

• Use aggregate functions in SQL

• Write subqueries

• Create views of the database

This lab guide assumes that you know how to perform basic operations in the Microsoft

Windows environment. Therefore, you should know what a folder is, how to maximize or

minimize a folder, how to create a folder, how to select a file, how you maximize and

minimize windows, what clicking and double-clicking indicate, how you drag, how to

use drag and drop, how you save a file, and so on.

MySQL, is one of the most popular Open Source SQL database management systems.

The lab guide has been designed on MySQL version 5.0.45 running on Windows XP

Keeley Crockett 3

MySQL Lab Guide

Professional. The MySQL Web site (http://www.mysql.com/) provides the latest

information about MySQL database management system.

It is important to note that MySQL is an open source database and is continually under

development. Each version and sub-version may implement SQL syntax differently and

changes are being made constantly. There are also problems with upward compatibility

between different versions. For example some SQL operations that work in versions 3.0

and 4.0 do not work in version 5.0. Furthermore, different variants of a version are

released in response to bugs that have been found by database developers who are using

the latest versions in their work. If an SQL command does not work as expected or

shown in this guide, please consult the MySQL web site for more information.

Keeley Crockett 4

http://www.mysql.com/

MySQL Lab Guide

Lab 1: Starting MySQL

The learning objectives of this lab are to

• Learn how to start MySQL

• Learn how to use the MySQL command line client window

• Obtain help in MySQL

1.1 Starting MySQL

Before starting this guide, you must obtain a user ID and a password created by your

database administrator in order to log on to the MySQL RDBMS. How you connect to

the MySQL database depends on how the MySQL software was installed on your server

and on the access paths and methods defined and managed by the database administrator.

You may therefore need to follow specific instructions provided by your instructor,

College or University. This section will describe how to start MySQL from a Windows

XP installation of MySQL 5.0.45.

To start MySQL you would:

1. Select the Start button

2. Select All Programs and then MySQL

3. Select MySQL Server 5.0

4. Click on the MySQL Command line client

Keeley Crockett 5

MySQL Lab Guide

The MySQL command line client window should then open as shown in Figure 1.

Figure 1: MySQL command line client window

Enter your password to log on to MySQL as shown in Figure 2.

Keeley Crockett 6

MySQL Lab Guide

Figure 2: Logging on to MySQL

Once you have successfully logged on you will see the opening screen as shown in

Figure 2. To work in MySQL requires you to type in commands. For example typing in

the following will show you a list of help commands shown in Figure 3:

mysql> \h

Keeley Crockett 7

MySQL Lab Guide

Figure 3: Help commands in MySQL

Figure 3 shows some additional sources of help available from three different websites. It

also displays a list of commands and the shortcuts for running these commands. If you

want help about a specific command you can type the word help followed by the name of

the command. For example to display information about how to create a database you

would type:

mysql> help create database

Keeley Crockett 8

MySQL Lab Guide

Figure 4 shows the results of executing this command.

Figure 4: Example Help command

A full list of help topics available through the command line can be found by first typing:

mysql> help contents

However to get more detailed help you would use the MySQL reference manual. If you

are using MySQL from a Windows XP installation, then you can access the manual via

the programs menu as shown in Figure 5.

Keeley Crockett 9

MySQL Lab Guide

Figure 5: Accessing the MySQL Reference Manual

Figure 6 shows the table of contents for the reference manual.

Keeley Crockett 10

MySQL Lab Guide

Figure 6: Contents of the MySQL Reference Manual

1.2 Creating Databases from script files

In this section you will learn how to create a small database called SaleCo from a script

file. The SQL script file SaleCo.sql for creating the tables and loading the data in the

database are located in the Student CD-ROM companion. The database design for the

SaleCo database is shown in Figure 7 in the form of an Entity Relationship Diagram

(ERD).

Keeley Crockett 11

MySQL Lab Guide

Figure 7 The SaleCo Database ERD

Before creating any tables, MySQL requires you to create a database by executing the

CREATE DATABASE command. To create a database called SaleCo you would type

the following:

mysql> CREATE DATABASE SALECO;

Notice that you need a semi-colon to end the command. Figure 8 shows the successful

creation of this database.

Figure 8 Creating the SaleCo Database

Task 1.1 Create the SALECO database as shown in Figure 8.

Keeley Crockett 12

MySQL Lab Guide

To check to see if your database has been created you need to use the SHOW

DATABASES command which lists the databases on the MySQL server host. You will

only be able to see those databases for which you have some kind of privilege.

Task 1.2 Execute the following MySQL command to show the databases that you

currently have access to (Figure 9 is a guide only to what you should see). Check

that you can see the SALECO database that you have just created.

mysql> SHOW DATABASES;

Figure 9 Executing the SHOW DATABASES command

To work with any specific database you first have to select it. When you first login to

MySQL, the default database is always selected, so you need to execute the USE

command followed by the name of the database that you want to use.

Task 1.3 Execute the following MySQL command to begin using the SALECO

database.

mysql> USE SALECO;

Keeley Crockett 13

MySQL Lab Guide

MySQL will then inform you that the database has changed.

Task 1.4 To create the SaleCo database from a MySQL script file you would enter

the following command:

mysql> SOURCE C:\MYSQL\SALECO2.SQL

Note that in order for this command to work correctly you should have copied the script

files accompanying this Lab guide into the directory C:\MYSQL\. If your files are located

in a different directory then change the path accordingly.

The command SOURCE will load and execute the script to create the SaleCo database.

Notice that prompts will indicate that tables are being created and data added as shown in

Figure 10. When the script has completed executing, use the SHOW TABLES command

as shown in Figure 10, to check if all five tables have been created.

Figure 10. Creating the SaleCo database

Keeley Crockett 14

MySQL Lab Guide

Note

When you run the script for the first time, you will see some error messages on the

screen. These error messages are caused by the script attempting to DROP the

database tables before they have been created. Including SQL DROP commands in a

script that is being used for development is a good idea to ensure that if changes are

made to the database structure, all tables are then recreated to reflect this change. If

you run the script again you will see that the error messages no longer appear.

Note

Chapter 8 Introduction to Structured Query Language and Chapter 9, Advanced SQL

should be studied alongside this lab guide.

Keeley Crockett 15

MySQL Lab Guide

Lab 2: Building a database: Table by Table

The learning objectives of this lab are to

• Create table structures using MySQL data types

• Apply SQL constraints to MySQL tables

• Create a simple index

2.1 Introduction

In this section you will learn how to create a small database called Theme Park from the

ERD shown in Figure 11. This will involve you creating the table structures in MySQL

using the CREATE TABLE command. In order to do this, appropriate data types will

need to be selected from the data dictionary for each table structure along with any

constraints that have been imposed (e.g. primary and foreign key). Converting any ER

model to a set of tables in a database requires following specific rules that govern the

conversion. The application of those rules requires an understanding of the effects of

updates and deletions on the tables in the database. You can read more about these rules

in Chapter 8, Introduction to Structured Query Language, and Appendix D, Converting

an ER Model into a Database Structure.

2.2 The Theme Park Database

Figure 11 shows the ERD for the Theme Park database which will be used throughout

this lab guide.

Keeley Crockett 16

MySQL Lab Guide

Figure 11 The Theme park Database ERD

Table 2.1 Shows the Data Dictionary for the Theme Park database which will be used to

create each table structure.

Keeley Crockett 17

MySQL Lab Guide

Table 2.1 Data Dictionary for the Theme Park Database

 Table

 Name

 Attribute

 Name

 Contents

Data Type

 Format

 Range

Require

d

PK

or

FK

FK

Referenced

Table

THEMEPARK PARK_CODE Park code VARCHAR(10) XXXXXXXX NA Y PK

 PARK_NAME Park Name VARCHAR(

35)

XXXXXXXX NA Y

 PARK_CITY City VARCHAR(

50)

 NA Y

 PARK_COUNTR

Y

Country CHAR(2) XX NA Y

EMPLOYEE EMP_NUM Employee

number

NUMERIC(4) ## 0000 – 9999 Y PK

 EMP_TITLE Employee

title

VARCHAR(4) XXXX NA N

 EMP_LNAME Last name VARCHAR(15) XXXXXXXX NA Y

 EMP_FNAME First Name VARCHAR(15) XXXXXXXX NA Y

 EMP_DOB Date of

Birth

DATE DD-MON-YY NA Y

 EMP_HIRE_DAT

E

Hire date DATE DD-MON-YY NA Y

 EMP_AREACOD

E

Area code VARCHAR(4) XXXX NA Y

 EMP_PHONE Phone VARCHAR (12) XXXXXXXX NA Y

 PARK_CODE Park code VARCHAR(10) XXXXXXXX NA Y FK THEMEPA

RK

Keeley Crockett 18

MySQL Lab Guide

TICKET TICKET_NO Ticket

number

NUMERIC(10) ########## NA Y

 TICKET_PRICE Price NUMERIC(4,2) ####.## 0.00 –

0000.00

 TICKET_TYPE Type of

ticket

VARCHAR(10) XXXXXXXX

XX

Adult,

Child,Senio

r,Other

 PARK_CODE Park code VARCHAR(10) XXXXXXXX NA Y FK THEMEPA

RK

ATTRACTION ATTRACT_NO Attraction

number

NUMERIC(10) ########## N/A Y PK

 PARK_CODE Park code VARCHAR(10) XXXXXXXX NA Y FK THEMEPA

RK

 ATTRACT_NAM

E

Name VARCHAR(35) XXXXXXX N/A N

 ATTRACT_AGE Age NUMERIC(3) ### Default 0 Y

 ATTRACT_CAP

ACITY

Capacity NUMERIC(3) ### N/A Y

HOURS EMP_NUM Employee

number

NUMERIC(4) ## 0000 – 9999 Y PK /

FK

EMPLOYEE

 ATTRACT_NO Attraction

number

NUMERIC(10) ########## N/A Y PK /

FK

ATTRACTI

ON

 HOURS_PER_AT

TRACT

Number of

hours

NUMERIC(2) ## N/A Y

 HOUR_RATE Hourly Rate NUMERIC(4,2) ####.## N/A Y

 DATE_WORKED Date

worked

DATE DD-MON-YY N/A Y

Keeley Crockett 19

MySQL Lab Guide

SALES TRANSACTION_

NO

Transaction

No

NUMERIC ########### N/A Y PK

 PARK_CODE Park code VARCHAR(10) XXXXXXXX NA Y FK THEMEPA

RK

 SALE_DATE Date of Sale DATE DD-MON-YY SYSDATE Y

SALESLINE TRANSACTION_

NO

Transaction

No

NUMERIC ########### N/A Y PK /

FK

SALES

 LINE_NO Line

number

NUMERIC(2) ## N/A Y

 TICKET_NO Ticket

number

NUMERIC(10) ########## NA Y FK TICKET

 LINE_QTY Quantity NUMERIC(4) #### N/A Y

 LINE_PRICE Price of line NUMERIC(9,2) #########.## N/A Y

2.3 Data Types in MySQL

In order to build tables in MySQL you will need to specify the data type for each column.

Table 2.2 shows some of the most common data types. If you have previously used an

ORACLE DBMS, you will notice that the syntax is different.

Table 2.2 Common MySQL data types1

Data Type Example Description

CHAR(size) fieldName
CHAR(10)

Stores up to 255 characters. If the content is smaller than the
field size, the content will have trailing spaces appended.

VARCHAR(size) fieldName
VARCHAR(100)

Stores up to 255 characters, and a minimum of 4 characters. No
trailing spaces are appended to the end of this datatype.

1 This table was adapted from the web site http://www.developerfusion.co.uk/. A comprehensive and
complete list of types can be taken from the MySQL Reference Manual.

Keeley Crockett 20

http://www.developerfusion.co.uk/

MySQL Lab Guide

MySQL keeps track of a delimiter to keep track of the end of
the field.

TINYTEXT fieldName
TINYTEXT Stores up to 255 characters. Equivalent to VARCHAR(255).

TEXT fieldName TEXT Stores up to 65,535 characters. An Index can be created on the
first 255 characters of a field with this data type.

MEDIUMTEXT fieldName
MEDIUMTEXT

Stores up to 16,777,215 characters. An Index can be created on
the first 255 characters of a field with this data type.

LONGTEXT fieldName
LONGTEXT

Stores up to 4,294,967,295 characters. An Index can be created
on the first 255 characters of a field with this data type.

Note: The maximum size of a string in MySQL is currently 16
million bytes, so this data types is not useful at the moment.

ENUM fieldName
ENUM('Yes', 'No')

Stores up to 65,535 enumerated types. The DEFAULT modifier
may be used to specify the default value for this field.

INT fieldName INT

Stores a signed or unsigned integer number. Unsigned integers
have a range of 0 to 4,294,967,295, and signed integers have a
range of -2,147,438,648 to 2,147,438,647. By default, the INT
data type is signed. To create an unsigned integer, use the
UNSIGNED attribute.

fieldName INT UNSIGNED

The ZEROFILL attribute may be used to left-pad any of the
integer with zero's.

fieldName INT ZEROFILL

The AUTO_INCREMENT attribute may be used with any of
the Integer data types. The following example could be used to
create a primary key using the AUTO_INCREMEMNT
attribute.

fieldName INT UNSIGNED AUTO_INCREMENT PRIMARY
KEY

TINYINT fieldName
TINYINT

Stores a signed or unsigned byte. Unsigned bytes have a range
of 0 to 255, and signed bytes have a range of -128 to 127. By
default, the TINYINT data type is signed.

MEDIUMINT fieldName
MEDIUMINT

Stores a signed or unsigned medium sized integer. Unsigned
fields of this type have a range of 0 to 1,677,215, and signed
fields of this type have a range of -8,388,608 to 8,388,607. By
default, the MEDIUMINT data type is signed.

BIGINT fieldName BIGINT

Stores a signed or unsigned big integer. Unsigned fields of this
type have a range of 0 to 18,446,744,073,709,551,615, and
signed fields of this type have a range of -
9,223,372,036,854,775,808 to 9,223,327,036,854,775,807. By
default, the BIGINT data type is signed.

Keeley Crockett 21

MySQL Lab Guide

FLOAT fieldName FLOAT Used for single precision floating point numbers.

DOUBLE fieldName
DOUBLE Used for double precision floating point numbers.

DATE fieldName DATE Stores dates in the format YYYY-MM-DD.

TIMESTAMP(size) fieldName
DATETIME

Stores dates and times in the format YYYY-MM-DD
HH:MM:SS.

DATETIME fieldName
TIMESTAMP(14)

Automatically keeps track of the time the record was last
ammended. The following table shows the formats depending
on the size of TIMESTAMP

Size Format

2 YY

4 YYMM

6 YYMMDD

8 YYYYMMDD

10 YYYYMMDDHH

12 YYYYMMDDHHMM

14 YYYYMMDDHHMMSS

TIME fieldName TIME Stores times in the format HH:MM:SS.

YEAR(size) fieldName YEAR(4) Stores the year as either a 2 digit number, or a 4 digit number,
depending on the size provided.

2.4 Creating the Table Structures

Use the following SQL commands to create the table structures for the Theme Park

database. Enter each one separately to ensure that you have no errors. Successful table

creation will prompt MySQL to say “Query OK”. It is useful to store each correct table

structure in a script file, in case the entire database needs to be recreated again at a later

date. You can use a simple text editor such as notepad in order to do this. Save the file as

themepark.sql. Note that the table-creating SQL commands used in this example are

based on the data dictionary shown in Table 2.1 and the MySQL data types in Table 2.2.

Keeley Crockett 22

MySQL Lab Guide

As you examine each of the SQL table-creating command sequences in the following

tasks, note the following features:

• The NOT NULL specifications for the attributes ensure that a data entry will be

made. When it is crucial to have the data available, the NOT NULL specification

will not allow the end user to leave the attribute empty (with no data entry at all)..

• The UNIQUE specification creates a unique index in the respective attribute. Use

it to avoid duplicated values in a column.

• The primary key attributes contain both a NOT NULL and a UNIQUE

specification. Those specifications enforce the entity integrity requirements. If the

NOT NULL and UNIQUE specifications are not supported, use PRIMARY KEY

without the specifications.

• The entire table definition is enclosed in parentheses. A comma is used to separate

each table element (attributes, primary key, and foreign key) definition.

• The DEFAULT constraint is used to assign a value to an attribute when a new row

is added to a table. The end user may, of course, enter a value other than the

default value. In MYSQL the default value must be a constant; it cannot be a

function or an expression. This means, for example, that you cannot set the

default for a date column to be the value of a function such as the system date like

you can do in an ORACLE DBMS.

Keeley Crockett 23

MySQL Lab Guide

Note

You will have learnt in Chapter 8 that referential integrity is usually implemented

through the use of foreign keys. For a long time, the open-source MySQL RDBMS did

not support the use of foreign keys. However, given the importance of maintaining

referential integrity within the database this feature was introduced in later versions

through the InnoDB table engine. The InnoDB engine provides MySQL with an ACID

(Atomicity, Consistency, Isolation, Durability) compliant storage engine that has

facilities such as commit and rollback. Full information about the InnoDB engine can

be found in the MySQL Reference manual 5.0.

• The FOREIGN KEY CONSTRAINT is used to enforce referential integrity. In

order to set up a foreign key relationship between two MySQL tables, three

conditions must be met:

1. Both tables must be of the InnoDB table type - see the note box.

2. The fields used in the foreign key relationship must be indexed.

3. The fields used in the foreign key relationship must be similar in data type.

Keeley Crockett 24

MySQL Lab Guide

Note

MySQL 5.0 does not support the use of CHECK constraints which is used to

validate data when an attribute value is entered.

2.4.1 Creating the THEMEPARK Database.

Task 2.1 At the MySQL prompt; create a database called Theme Park as shown in Lab 1.

Then select the database for use as shown in Figure 12.

Figure 12 Creating and using the Theme Park Database.

2.4.2 Creating the THEMEPARK TABLE

Task 2.2 Enter the following SQL command to create the THEMEPARK table.

CREATE TABLE THEMEPARK (

Keeley Crockett 25

MySQL Lab Guide

PARK_CODE VARCHAR(10) PRIMARY KEY,

PARK_NAME VARCHAR(35) NOT NULL,

PARK_CITY VARCHAR(50) NOT NULL,

PARK_COUNTRY CHAR(2) NOT NULL);

Notice that when you create the THEMEPARK table structure you set the stage for the

enforcement of entity integrity rules by using:

PARK_CODE VARCHAR(10) PRIMARY KEY,

As you create this structure, also notice that the NOT NULL constraint is used to ensure

that the columns PARK_NAME, PARK_CITY and PARK_COUNTRY does not accept

nulls.

Remember to store this CREATE TABLE structure in your themepark.sq script.

2.4.3 Creating the EMPLOYEE TABLE

Task 2.3 Enter the following SQL command to create the EMPLOYEE table.

CREATE TABLE EMPLOYEE (

EMP_NUM NUMERIC(4) PRIMARY KEY,

EMP_TITLE VARCHAR(4),

EMP_LNAME VARCHAR(15) NOT NULL,

EMP_FNAME VARCHAR(15) NOT NULL,

EMP_DOB DATE NOT NULL,

EMP_HIRE_DATE DATE,

Keeley Crockett 26

MySQL Lab Guide

EMP_AREA_CODE VARCHAR(4) NOT NULL,

EMP_PHONE VARCHAR(12) NOT NULL,

PARK_CODE VARCHAR(10),

INDEX (PARK_CODE),

CONSTRAINT FK_EMP_PARK FOREIGN KEY(PARK_CODE) REFERENCES

THEMEPARK(PARK_CODE));

As you look at the CREATE TABLE sequence, note that referential integrity has been

enforced by specifying a constraint called FKP_EMP_PARK. In order to use foreign key

constraints in MySQL, notice that the PARK_CODE column is first indexed. This

foreign key constraint definition ensures that you cannot delete a Theme Park from the

THEMEPARK table if at least one employee row references that Theme Park and that

you cannot have an invalid entry in the foreign key column.

Remember to store this CREATE TABLE structure in your themepark.sql script.

2.4.4 Creating the TICKET TABLE

Task 2.4 Enter the following SQL command to create the TICKET table.

CREATE TABLE TICKET (

TICKET_NO NUMERIC(10) PRIMARY KEY,

Keeley Crockett 27

MySQL Lab Guide

TICKET_PRICE NUMERIC(4,2) DEFAULT 00.00 NOT NULL,

TICKET_TYPE VARCHAR(10),

PARK_CODE VARCHAR(10),

INDEX (PARK_CODE),

CONSTRAINT FK_TICKET_PARK FOREIGN KEY(PARK_CODE)

REFERENCES THEMEPARK(PARK_CODE));

As you create the TICKET table, notice that both PRIMARY and FOREIGN KEY

constraints have been applied. Remember to store this CREATE TABLE structure in

your themepark.sq script.

2.4.5 Creating the ATTRACTION TABLE

Task 2.5 Enter the following SQL command to create the ATTRACTION table.

CREATE TABLE ATTRACTION (

ATTRACT_NO NUMERIC(10) PRIMARY KEY,

ATTRACT_NAME VARCHAR(35),

ATTRACT_AGE NUMERIC(3) DEFAULT 0 NOT NULL,

ATTRACT_CAPACITY NUMERIC(3) NOT NULL,

PARK_CODE VARCHAR(10),

INDEX (PARK_CODE),

Keeley Crockett 28

MySQL Lab Guide

CONSTRAINT FK_ATTRACT_PARK FOREIGN KEY(PARK_CODE)

REFERENCES THEMEPARK(PARK_CODE));

Remember to store this CREATE TABLE structure in your themepark.sq script.

2.4.6 Creating the HOURS TABLE

Task 2.6 Enter the following SQL command to create the HOURS table.

CREATE TABLE HOURS (

EMP_NUM NUMERIC(4),

ATTRACT_NO NUMERIC(10),

HOURS_PER_ATTRACT NUMERIC(2) NOT NULL,

HOUR_RATE NUMERIC(4,2) NOT NULL,

DATE_WORKED DATE NOT NULL,

INDEX (EMP_NUM),

INDEX (ATTRACT_NO),

CONSTRAINT PK_HOURS PRIMARY KEY(EMP_NUM, ATTRACT_NO,

DATE_WORKED),

CONSTRAINT FK_HOURS_EMP FOREIGN KEY (EMP_NUM)

REFERENCES EMPLOYEE(EMP_NUM),

Keeley Crockett 29

MySQL Lab Guide

CONSTRAINT FK_HOURS_ATTRACT FOREIGN KEY (ATTRACT_NO)

REFERENCES ATTRACTION(ATTRACT_NO));

As you create the HOURS table, notice that the HOURS table contains FOREIGN KEYS

to both the ATTRACTION and the EMPLOYEE table.

Remember to store this CREATE TABLE structure in your themepark.sq script.

2.4.7 Creating the SALES TABLE

Task 2.7 Enter the following SQL command to create the SALES table.

CREATE TABLE SALES (

TRANSACTION_NO NUMERIC PRIMARY KEY,

PARK_CODE VARCHAR(10),

SALE_DATE DATE NOT NULL,

INDEX (PARK_CODE),

CONSTRAINT FK_SALES_PARK FOREIGN KEY(PARK_CODE)

REFERENCES THEMEPARK(PARK_CODE));

Remember to store this CREATE TABLE structure in your themepark.sq script.

2.4.8 Creating the SALESLINE TABLE

Task 2.8 Enter the following SQL command to create the SALES_LINE table.

Keeley Crockett 30

MySQL Lab Guide

CREATE TABLE SALES_LINE (

TRANSACTION_NO NUMERIC,

LINE_NO NUMERIC(2,0) NOT NULL,

TICKET_NO NUMERIC(10) NOT NULL,

LINE_QTY NUMERIC(4) DEFAULT 0 NOT NULL,

LINE_PRICE NUMERIC(9,2) DEFAULT 0.00 NOT NULL,

INDEX (TRANSACTION_NO),

INDEX (TICKET_NO),

CONSTRAINT PK_SALES_LINE PRIMARY KEY

(TRANSACTION_NO,LINE_NO),

CONSTRAINT FK_SALES_LINE_SALES FOREIGN KEY

(TRANSACTION_NO) REFERENCES SALES(TRANSACTION_NO) ON DELETE

CASCADE,

CONSTRAINT FK_SALES_LINE_TICKET FOREIGN KEY (TICKET_NO)

REFERENCES TICKET(TICKET_NO));

As you create the SALES_LINE table, examine the constraint called

FK_SALES_LINE_SALES. What is the purpose of ON DELETE CASCADE?

Remember to store this CREATE TABLE structure in your themepark.sq script.

2.5. Creating Indexes

Keeley Crockett 31

MySQL Lab Guide

You learned in Chapter 3, “The Relational Database Model,” that indexes can be used to

improve the efficiency of searches and to avoid duplicate column values. Using the

CREATE INDEX command, SQL indexes can be created on the basis of any selected

attribute. For example, based on the attribute EMP_LNAME stored in the EMPLOYEE

table, the following command creates an index named EMP_LNAME_INDEX:

CREATE INDEX EMP_LNAME_INDEX ON EMPLOYEE(EMP_LNAME(8));

In MySQL, indexes can only be created using only the leading part of column values. So

in the example an index is created using the first 8 characters of the EMP_LNAM

column.

Task 2.9 Create the EMP_LNAME_INDEX shown above. Add the CREATE INDEX

SQL command to your script file themepark.sql.

The DROP TABLE command permanently deletes a table (and thus its data) from the

database schema. When you write a script file to create a database schema, it is useful to

add DROP TABLE commands at the start of the file. If you need to amend the table

structures in any way, just one script can then be run to re-create all the database

structures. Primary and foreign key constraints control the order in which you drop the

tables – generally you drop in the reverse order of creation. The DROP commands for the

Theme Park database are:

DROP TABLE SALES_LINE;

DROP TABLE SALES;

Keeley Crockett 32

MySQL Lab Guide

DROP TABLE HOURS;

DROP TABLE ATTRACTION;

DROP TABLE TICKET;

DROP TABLE EMPLOYEE;

DROP TABLE THEMEPARK;

Task 2.10. Add the DROP commands to the start of your script file and then run the

themepark.sql script.

2.6 Display a table’s structure

The command DESCRIBE is used to display the structure of an individual table. To see

the structure of the EMPLOYEE table you would enter the command:

DESCRIBE EMPLOYEE as shown in Figure 13.

Figure 13 Describing the structure of the THEMEPARK Table

Keeley Crockett 33

MySQL Lab Guide

Task 2.10 Use the DESCRIBE command to view the structure of the other database

tables that you have created in this lab.

2.7 Listing all tables

Task 2.11 Use the SHOW TABLES command as shown in Figure 14, to list all tables

that have been created within the THEMEPARK database.

Figure 14 Displaying all tables

2.8 Altering the table structure

All changes in the table structure are made by using the ALTER TABLE command,

followed by a keyword that produces the specific change you want to make. Three

options are available: ADD, MODIFY, and DROP. ADD enables you to add a column,

and MODIFY enables you to change column characteristics. Most RDBMSs do not allow

you to delete a column (unless the column does not contain any values) because such an

action may delete crucial data that are used by other tables.

Keeley Crockett 34

MySQL Lab Guide

Supposing you wanted to modify the column ATTRACT_CAPACITY in the

ATTRACTION table by changing the date characteristics from NUMERIC(3) to

NUMERIC(4). You would execute the following command:

ALTER TABLE ATTRACTION

MODIFY ATTRACT_CAPACITY NUMERIC(4);

Note

Some DBMSs impose limitations on when it’s possible to change attribute

characteristics. The reason for this restriction is that an attribute modification will

affect the integrity of the data in the database. In fact, some attribute changes can be

done only when there are no data in any rows for the affected attribute.

You can learn more about altering a table’s structure in Chapter 8, “Introduction to

Structured Query Language”.

You have now reached the end of the first MySQL lab. The tables that you have created

will be used in the rest of this lab guide to explore the use of SQL in MySQL in more

detail.

Keeley Crockett 35

MySQL Lab Guide

Lab 3: Data Manipulation Commands

The learning objectives for this lab are

• To know how to insert, update and delete data from within a table

• To learn how to retrieve data from a table using the SELECT statement

3.1 Adding Table Rows

SQL requires the use of the INSERT command to enter data into a table. The INSERT

command’s basic syntax looks like this:

INSERT INTO tablename VALUES (value1, value2, ... , valuen).

Note

In MySQL there are a number of versions of the INSERT statement. As well as the

basic INSERT which inserts rows into a table, the INSERT ... VALUES and INSERT

... SET forms of the statement insert rows based on explicitly specified values. For

example, the INSERT ... SELECT form inserts rows selected from another table or

tables. You can read more about this in the MySQL Reference manual 5.0.

The order in which you insert data is important. For example, because the TICKET uses

its PARK_CODE to reference the THEMEPARK table’s PARK_CODE, an integrity

violation will occur if those THEMEPARK table PARK_CODE values don’t yet exist.

Keeley Crockett 36

MySQL Lab Guide

Therefore, you need to enter the THEMEPARK rows before the TICKET rows.

Complete the following tasks to insert data into the THEMEPARK and TICKET tables:

Task 3.1 Enter the first two rows of data into the THEMEPARK table using the

following SQL insert commands;

INSERT INTO THEMEPARK VALUES ('FR1001','FairyLand','PARIS','FR');

INSERT INTO THEMEPARK VALUES ('UK3452','PleasureLand','STOKE','UK');

Task 3.2 Enter the following corresponding rows of data into the TICKET table using the

following SQL insert commands.

INSERT INTO TICKET VALUES (13001,18.99,'Child','FR1001');

INSERT INTO TICKET VALUES (13002,34.99,'Adult','FR1001');

INSERT INTO TICKET VALUES (13003,20.99,'Senior','FR1001');

INSERT INTO TICKET VALUES (88567,22.50,'Child','UK3452');

INSERT INTO TICKET VALUES (88568,42.10,'Adult','UK3452');

INSERT INTO TICKET VALUES (89720,10.99,'Senior','UK3452');

Any changes made to the table contents are not physically saved on disk until you close

the database, close the program you are using, or use the COMMIT command. The

COMMIT command will permanently save any changes—such as rows added, attributes

modified, and rows deleted—made to any table in the database. Therefore, if you intend

Keeley Crockett 37

MySQL Lab Guide

to make your changes to the THEMEPARK and TICKET tables permanent, it is a good

idea to save those changes by using COMMIT;

Task 3.3 COMMIT the changes to the THEMEPARK and TICKET tables to the

database.

Task 3.4 Run the script file themeparkdata.sql to insert the rest of the data into the

Theme Park database. This script file is available on the CD-ROM companion. Ensure

you COMMIT the changes to the database.

3.2 Retrieving data from a table using the SELECT Statement

In Chapter 8, Introduction to Structured Query Language, you studied the SELECT

command. The SELECT command has many optional clauses but in its simplest can be

written as

SELECT columnlist

FROM tablelist

[WHERE conditionlist];

Notice that the command must finish with a semi-colon, and will be executed when the

Enter key is pressed at the end of the command.

The simplest query involves viewing all columns in one table. To display the details of

all Theme Parks in the Theme Park database type the following:

SELECT *

Keeley Crockett 38

MySQL Lab Guide

FROM THEMEPARK;

You should see the output displayed in Figure 15.

Figure 15: Displaying all columns from the THEMEPARK Table

The SELECT command and the FROM clause are necessary for any SQL query, and

must always be included so that the DBMS knows which columns we want to display and

which table they come from.

Task 3.5. Type in the following examples of the SELECT statement and check your

results with those provided in Figures 16 and 17. In these two examples you are selecting

specific columns from a single table.

Example 1

SELECT ATTRACT_NO, ATTRACT_NAME, ATTRACT_CAPACITY

FROM ATTRACTION;

Example 2

SELECT EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_HIRE_DATE

FROM EMPLOYEE;

Keeley Crockett 39

MySQL Lab Guide

Figure 16: Output for Example 1

Figure 17: Output for Example 2

3.3 Updating table rows

The UPDATE command is used to modify data in a table. The syntax for this command

is:

UPDATE tablename

SET columnname = expression [, columnname = expression]

[WHERE conditionlist];

Keeley Crockett 40

MySQL Lab Guide

For example, if you want to change the attraction capacity of the attraction number 10034

from 34, to 38. The primary key, ATTRACT_NO would be used to locate the correct

(second) row, you would type:

UPDATE ATTRACTION

SET ATTRACT_CAPACITY = 34

WHERE ATTRACT_NO= 10034;

The output is shown in Figure 18.

Figure 18: Updating the attraction capacity

Note

If more than one attribute is to be updated in the row, separate each attribute with

commas.

Remember, the UPDATE command is a set-oriented operator. Therefore, if you don’t

specify a WHERE condition, the UPDATE command will apply the changes to all rows

in the specified table.

Keeley Crockett 41

MySQL Lab Guide

Task 3.6 Enter the following SQL UPDATE command to update the age a person can go

on a specific ride in a Theme Park.

UPDATE ATTRACTION

SET ATTRACT_AGE = 14;

Confirm the update by using this command to check the ATTRACTION table’s listing:

SELECT * FROM ATTRACTION;

Notice that all the values of ATTRACT_AGE have the same value.

3.4 Restoring table contents

Supposing you decided you have made a mistake in updating the attraction age to be the

same for all attractions within the Theme Park. Assuming you have not yet used the

COMMIT command to store the changes permanently in the database, you can restore the

database to its previous condition with the ROLLBACK command. ROLLBACK

undoes any changes and brings the data back to the values that existed before the changes

were made. In order to use the ROLLBACK (and COMMIT) commands in MySQL, you

first need to change the value for the AUTOCOMMIT to 0 by typing the following

command:

mysql> SET AUTOCOMMIT = 0;

This command needs only to be executed once in a session.

Keeley Crockett 42

MySQL Lab Guide

Task 3.7 To restore the data to their “pre-change” condition set the value, type the

following commands;

mysql> SET AUTOCOMMIT = 0;

mysql> ROLLBACK;

Use the SELECT statement again to see that the ROLLBACK did, in fact, restore the

data to their original values.

Note

For more information about ROLLBACK, See section 8.3.5, Restoring Table Contents

in Chapter 8, “Introduction to Structured Query Language”

3.5 Deleting table rows

It is easy to delete a table row using the DELETE statement; the syntax is:

DELETE FROM tablename

[WHERE conditionlist];

For example, if you want to delete a specific theme park from the THEMEPARK table

you could use the PARK_CODE as shown in the following SQL command:

DELETE FROM THEMEPARK

WHERE PARK_CODE = ‘SW2323’;

In that example, the primary key value lets SQL find the exact record to be deleted.

However, deletions are not limited to a primary key match; any attribute may be used.

Keeley Crockett 43

MySQL Lab Guide

If you do not specify a WHERE condition, all rows from the specified table will be

deleted!

Note

If you make a mistake while working through this lab, use the themepark.sql script to

re-create the database schema and insert the sample data.

3.6 Inserting Table rows with a subquery

Subqueries are often used to add multiple rows to a table, using another table as the

source of the data. The syntax for the INSERT statement is:

INSERT INTO tablename SELECT columnlist FROM tablename;

In that case, the INSERT statement uses a SELECT subquery. A subquery, also known

as a nested query or an inner query, is a query that is embedded (or nested) inside another

query. The inner query is always executed first by the RDBMS. Given the previous SQL

statement, the INSERT portion represents the outer query and the SELECT portion

represents the inner query, or subquery.

Task 3.8 Use the following steps to populate your EMPLOYEE table.

• Run the script emp_copy.sql which is available on the accompanying CD-

ROM. This script creates a table called EMP_COPY which we will populate

using data from the EMPLOYEE table in the THEMEPARK database.

Keeley Crockett 44

MySQL Lab Guide

• Add the rows to EMP_COPY table by copying all rows from EMPLOYEE.

 INSERT INTO EMP_COPY SELECT * FROM EMPLOYEE;

• Permanently save the changes: COMMIT;

If you followed those steps correctly, you now have the EMP_COPY table populated

with the data that will be used in the remaining sections of this lab guide.

3.7 Exercises

E3.1 Load and run the script park_copy.sql which creates the PARK_COPY table.

E3.2 Describe the PARK_COPY and THEMEPARK tables and notice that they are

different.

E3.3 Write a subquery to populate the fields PARK_CODE, PARK_NAME and

PARK_COUNTRY in the PARK_COPY using data from the THEMEPARK table.

Display the contents of the PARK_COPY table;

E3.4 Update the AREA_CODE and PARK_PHONEs fields in the PARK_COPY table

with the following values.

PARK_CODE PARK_AREA_CODE PARK_PHONE
FR1001 5678 223-556
UK3452 0181 678-789
ZA1342 8789 797-121

E3.5 Add the following new theme parks to the PARK_COPY TABLE.

PARK_CODE PARK_NAME PARK_COUNTRY PARK_AREA_CO PARK_PHONE

Keeley Crockett 45

MySQL Lab Guide

DE
AU1001 SkiWorld AU 1212 440-232

GR5001 RoboLand GR 4565 123-123

E3.6 Delete the Theme Park called RoboLand.

Keeley Crockett 46

MySQL Lab Guide

Lab 4: Basic SELECT statements

The learning objectives of this lab are to

• Use arithmetic operators in SQL statements

• Select rows from a table with conditional restrictions

• Apply logical operators to have multiple conditions

4.1 Using arithmetic operators in SQL statements

SQL commands are often used in conjunction with arithmetic operators. As you perform

mathematical operations on attributes, remember the rules of precedence. As the name

suggests, the rules of precedence are the rules that establish the order in which

computations are completed. For example, note the order of the following computational

sequence:

1. Perform operations within parentheses

2. Perform power operations

3. Perform multiplications and divisions

4. Perform additions and subtractions

Task 4.1 Suppose the owners of all the theme parks wanted to compare the current ticket

prices, with an increase in the price of each ticket by 10%. To generate this query type:

SELECT PARK_CODE, TICKET_NO, TICKET_TYPE, TICKET_PRICE,

TICKET_PRICE + ROUND((TICKET_PRICE *0.1),2)

Keeley Crockett 47

MySQL Lab Guide

FROM TICKET;

The output for this query is shown in Figure 19. The ROUND function is used to ensure

the result is displayed to two decimal places.

Figure 19: Output showing 10% increase in ticket prices

You will see in Figure 19 that the last column is named after the arithmetic expression in

the query. To rename the column heading, a column alias needs to be used. Modify the

query as follows and note that the name of the heading has changed to

PRICE_INCREASE when you execute the following query.

SELECT PARK_CODE, TICKET_NO, TICKET_TYPE, TICKET_PRICE,

TICKET_PRICE + ROUND((TICKET_PRICE *0.1),2) PRICE_INCREASE

FROM TICKET;

Keeley Crockett 48

MySQL Lab Guide

4.2 Selecting rows with conditional restrictions

Numerous conditional restrictions can be placed on the selected table contents in the

WHERE clause of the SELECT statement. For example, the comparison operators shown

in Table 1 can be used to restrict output.

Table 1 Comparison Operators

SYMBOL MEANING

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> or != Not equal to

BETWEEN Used to check if an attribute is within a range.

IN Used to check if an attribute value matches any value within a list.

Note

When dealing with column names that require spaces, the optional keyword AS can be

used. For example:

SELECT PARK_CODE, TICKET_NO, TICKET_TYPE, TICKET_PRICE,

TICKET_PRICE + ROUND((TICKET_PRICE *0.1),2) AS

“PRICE INCREASE”

FROM TICKET;

Keeley Crockett 49

MySQL Lab Guide

LIKE Used to check if an attribute value matches a given string pattern.

IS NULL / IS NOT NULL Used to check if an attribute is NULL / is not NULL.

We will now explore some of these conditional operators using examples.

Greater than

The following example uses the “greater than” operator to display the theme park code,

ticket price and ticket type of all tickets where the ticket price is greater than €20.00.

SELECT PARK_CODE, TICKET_TYPE, TICKET_PRICE

FROM TICKET

WHERE TICKET_PRICE > 20;

The output is shown in Figure 20.

Figure 20: Tickets costing greater than €20.00

Task 4.2 Type in and execute the query and test out the greater than operator. Do you get

the same results has shown in Figure 20?

Keeley Crockett 50

MySQL Lab Guide

Task 4.3 Modify the query you have just executed to display tickets that are less than

€30.00.

Character comparisons

Comparison operators may even be used to place restrictions on character-based

attributes.

Task 4.4 Execute the following query which produces a list of all rows in which the

PARK_CODE is alphabetically less than UK2262. (Because the ASCII code value for

the letter B is greater than the value of the letter A, it follows that A is less than B.)

Therefore, the output will be generated as shown in Figure 21.

SELECT PARK_CODE, PARK_NAME, PARK_COUNTRY

FROM THEMEPARK

WHERE PARK_CODE < ‘UK2262’;

Figure 21: Example of character comparison

BETWEEN

Keeley Crockett 51

MySQL Lab Guide

The operator BETWEEN may be used to check whether an attribute value is within a

range of values. For example, if you want to see a listing for all tickets whose prices are

between €30 and €50, use the following command sequence:

SELECT *

FROM TICKET

WHERE TICKET_PRICE BETWEEN 30.00 AND 50.00;

Figure 22 shows the output you should see for this query.

Figure 22: Displaying ticket prices BETWEEN two values.

Task 4.5 Write a query which displays the employee number, attraction no, the hours

worked per attraction and the date worked where the hours worked per attraction is

between 5 and 10. Hint you will need to select data from the HOURS table. The output

for the query is shown in Figure 23.

Keeley Crockett 52

MySQL Lab Guide

Figure 23: Output for Task 4.5

IN

The IN operator is used to test for values which are in a list. The following query finds

only the rows in the SALES_LINE table that match up to a specific sales transaction. i.e.

TRANSACTION_NO is either 12781 or 67593.

SELECT *

FROM SALES_LINE

WHERE TRANSACTION_NO IN (12781, 67593);

The result of this query is shown in Figure 24.

Keeley Crockett 53

MySQL Lab Guide

Figure 24 Selecting rows using the IN command

Task 4.6 Write a query to display all tickets that are of type Senior or Child. Hint: Use

the TICKET table. The output you should see is shown in Figure 25.

Figure 25. Output for Task 4.6

LIKE

The LIKE operator is used to find patterns within string attributes. Standard SQL allows

you to use the percent sign (%) and underscore (_) wildcard characters to make matches

Keeley Crockett 54

MySQL Lab Guide

when the entire string is not known. % means any and all following characters are eligible

while _ means any one character may be substituted for the underscore.

Task 4.7 Enter the following query which finds all EMPLOYEE rows whose first names

begin with the letter A.

SELECT EMP_LNAME, EMP_FNAME, EMP_NUM

FROM EMPLOYEE

WHERE EMP_FNAME LIKE ‘A%’;

Figure 26 shows the output you should see for this query.

Figure 26 Query using the LIKE command

Task 4.8 Write a query which finds all Theme Parks that have a name ending in ‘Land’.

The output you should see is shown in Figure 27.

Keeley Crockett 55

MySQL Lab Guide

Figure 27 Solution to Task 4.8

NULL and IS NULL

IS NULL is used to check for a null attribute value. In the following example, the query

lists all attractions that do not have an attraction name assigned (ATTRACT_NAME is

null). The query could be written as:

SELECT *

FROM ATTRACTION

WHERE ATTRACT_NAME IS NULL;

The output for this query is shown in Figure 28.

Keeley Crockett 56

MySQL Lab Guide

Figure 28 Listing all Attractions with no name

Logical Operators

SQL allows you to have multiple conditions in a query through the use of logical

operators: AND, OR and NOT. NOT has the highest precedence, followed by AND, and

then followed by OR. However, you are strongly recommended to use parentheses to

clarify the intended meaning of the query.

AND

This logical AND connective is used to set up a query where there are two conditions

which must be met for the query to return the required row(s). The following query

displays the employee number (EMP_NUM) and the attraction number

(ATTRACT_NUM) for which the numbers of hours worked (HOURS_PER_ATTRACT)

by the employee is greater than 3 and the date worked (DATE_WORKED) is after 18th

May 2007.

SELECT EMP_NUM, ATTRACT_NO

FROM HOURS

WHERE HOURS_PER_ATTRACT > 3

AND DATE_WORKED > '18-MAY-07';

This query will produce the output shown in Figure 29.

Keeley Crockett 57

MySQL Lab Guide

Figure 29 Query results using the AND operator

Task 4.9 Enter the query above and check you results with those shown in Figure 29.

Task 4.10 Write a query which displays the details of all attractions which are suitable

for children aged 10 or under and have a capacity of less than 100. You should not

display any information for attractions which currently have no name. Your output

should correspond to that shown in Figure 30.

Figure 30: Query results for Task 4.10

Keeley Crockett 58

MySQL Lab Guide

 OR

If you wanted to list the names and countries of all Theme parks where of invoice

numbers where PARK_COUNTRY = 'FR' OR PARK_COUNTRY = 'UK' you would

write the following query.

SELECT PARK_NAME, PARK_COUNTRY

FROM THEMEPARK

WHERE PARK_COUNTRY = 'FR'

OR PARK_COUNTRY = 'UK';

The output is shown in Figure 31.

Figure 31: Query results using the OR operator;

When using AND and OR in the same query it is advisable to use parentheses to make

explicit the precedence.

Task 4.11 Test the following query and check your output with that shown in Figure 32.

Can you work out what this query is doing?

Keeley Crockett 59

MySQL Lab Guide

SELECT *

FROM ATTRACTION

WHERE (PARK_CODE LIKE ‘FR%’

AND ATTRACT_CAPACITY <50) OR (ATTRACT_CAPACITY > 100);

Figure 32: AND and OR example

NOT

The logical operator NOT is used to negate the result of a conditional expression. If you

want to see a listing of all rows for which EMP_NUM is not 106, the query would look

like:

SELECT *

FROM EMPLOYEE

WHERE NOT (EMP_NUM = 106);

The results of this query are shown in Figure 33. Note that the condition is enclosed in

parentheses; that practice is optional, but it is highly recommended for clarity.

Keeley Crockett 60

MySQL Lab Guide

Figure 33: Listing all employees except EMP_NUM=106

 Exercises

E4.1 Write a query to display all Theme Parks except those in the UK.

E4.2 Write a query to display all the sales that occurred on the 18th May 2007.

E4.3 Write a query to display the ticket prices between €20 AND €30.

E4.4 Display all attractions that have a capacity of more than 60 at the Theme Park

FR1001.

E4.5 Write a query to display the hourly rate for each attraction where an employee

had worked, along with the hourly rate increased by 20%. Your query should only

Keeley Crockett 61

MySQL Lab Guide

display the ATTRACT_NO, HOUR_RATE and the HOUR_RATE with the 20%

increase.

Keeley Crockett 62

MySQL Lab Guide

Lab 5: Advanced SELECT Statements

The learning objectives of this lab are to

• Sort the data in the resulting query

• Apply SQL aggregate functions

5.1 Sorting Data

The ORDER BY clause is especially useful when the listing order of the query is

important. Although you have the option of declaring the order type—ascending (ASC)

or descending (DESC) —the default order is ascending. For example, if you want to

display all employees listed by EMP_HIRE_DATE in descending order you would write

the following query. The output is shown in Figure 34.

SELECT *

FROM EMPLOYEE

ORDER BY EMP_HIRE_DATE DESC;

Keeley Crockett 63

MySQL Lab Guide

Figure 34: Displaying all employees in descending order of EMP_HIRE_DATE.

The ORDER BY command can also be used to produce a cascading order sequence. This

is where the query results are ordered against a sequence of attributes.

Task 5.1 Enter the following query which contains an example of a cascading order

sequence, by ordering the rows in the employee table by the employee’s last then first

names.

SELECT *

FROM EMPLOYEE

ORDER BY EMP_LNAME, EMP_FNAME;

Keeley Crockett 64

MySQL Lab Guide

It is worth noting that if the ordering column has nulls, they are listed either first or last

(depending on the RDBMS). The ORDER BY clause can be used in conjunction with

other SQL commands and is listed last in the SELECT command sequence.

Task 5.2 Enter the following query and check your output against the results shown in

Figure 35. Describe in your own words what this query is actually doing.

SELECT TICKET_TYPE, PARK_CODE

FROM TICKET

WHERE (TICKET_PRICE > 15 AND TICKET_TYPE LIKE 'Child')

ORDER BY TICKET_NO DESC;

Figure 35: Query results for Task 5.2.

5.2 Listing Unique Values

Keeley Crockett 65

MySQL Lab Guide

The SQL command DISTINCT is used to produce a list of only those values that are

different from one another. For example to list only the different Theme parks from

within the ATTRACTION table, you would enter the following query.

SELECT DISTINCT(PARK_CODE)

FROM ATTRACTION;

Figure 36 shows that the query only displays the rows that are different.

Figure 36: Displaying DISTINCT rows.

5.3 Aggregate Functions

SQL can perform mathematical summaries through the use of aggregate (or group)

functions. Aggregate functions return results based on groups of rows. By default, the

entire result is treated as one group. Table 3 shows some of the basic aggregate functions.

Table 3 Basic SQL Aggregate Functions

FUNCTION OUTPUT

Keeley Crockett 66

MySQL Lab Guide

COUNT The number of rows containing non-null values

MIN The minimum attribute value encountered in a given column

MAX The maximum attribute value encountered in a given column

SUM The sum of all values for a given column

AVG The arithmetic mean (average) for a specified column

COUNT

The COUNT function is used to tally the number of non-null values of an attribute.

COUNT can be used in conjunction with the DISTINCT clause. If you wanted to find out

how many different theme parks contained attractions from the ATTRACTION table you

would write the following query:

SELECT COUNT(PARK_CODE)

FROM ATTRACTION;

The query would return 11 rows as shown in Figure 37.

Figure 37: Counting the number of Theme parks in ATTRACTION.

Keeley Crockett 67

MySQL Lab Guide

However, if you wanted to know how many different Theme parks were in the

ATTRACTION table, you would modify the query as follows (For the output see Figure

38):

SELECT COUNT(DISTINCT(PARK_CODE))

FROM ATTRACTION;

Figure 38: Counting the number of DISTINCT Theme parks in ATTRACTION.

Task 5.3 Write a query that displays the number of distinct employees in the HOURS

table. You should label the column “Number of Employees”. Your output should match

that shown in Figure 39.

Keeley Crockett 68

MySQL Lab Guide

Figure 39: Query output for Task 5.3

COUNT always returns the number of non-null values in the given column. Another use

for the COUNT function is to display the number of rows returned by a query, including

the rows that contain rows using the syntax COUNT(*).

Task 5.4 Enter the following two queries and examine their output shown in Figure 40.

Can you explain why the number of rows returned is different?

SELECT COUNT(*)

FROM ATTRACTION;

SELECT COUNT(ATTRACT_NAME)

FROM ATTRACTION;

Figure 40: Examples of using the COUNT function

Keeley Crockett 69

MySQL Lab Guide

MAX and MIN

The MAX and MIN functions are used to find answers to problems such as

What is the highest and lowest ticket price sold in all Theme parks.

Task 5.5 Enter the following query which illustrates the use of the MIN and Max

functions. Check the query results with those shown in Figure 41.

SELECT MIN(TICKET_PRICE),max(TICKET_PRICE)

FROM TICKET;

Figure 41: Examples of using the MIN and MAX functions

SUM and AVG

The SUM function computes the total sum for any specified attribute, using whatever

condition(s) you have imposed. The AVG function calculates the arithmetic mean

(average) for a specified attribute. The following query displays the average amount

spent on Theme park tickets per customer (LINE_PRICE) and the total number of tickets

purchase (LINE_QTY). Figure 42 shows the output for this query.

Keeley Crockett 70

MySQL Lab Guide

SELECT AVG(LINE_PRICE), SUM(LINE_QTY)

FROM SALES_LINE;

Figure 42: Example showing the AVG and SUM functions

Task 5.6 Write a query that displays the average hourly rate that has been paid to all

employees. Hint use the HOURS table. Your query should return €7.03.

Task 5.7 Write a query that displays the average attraction age for all attractions where

the PARK_CODE = ‘UK3452’. Your query should return 7.25 years.

GROUP BY

The GROUP BY clause is generally used when you have attribute columns combined

with aggregate functions in the SELECT statement. It is valid only when used in

conjunction with one of the SQL aggregate functions, such as COUNT, MIN, MAX,

AVG and SUM. The GROUP BY clause appears after the WHERE statement. When

using GROUP BY you should include all the attributes that are in the SELECT statement

that do not use an aggregate function. The following query displays the minimum and

Keeley Crockett 71

MySQL Lab Guide

maximum ticket price of all parks. The output is shown in Figure 43. Notice that the

query groups only by the PARK_CODE as no aggregate function is applied to this

attribute in the SELECT statement.

SELECT PARK_CODE, MIN(TICKET_PRICE),MAX(TICKET_PRICE)

FROM TICKET

GROUP BY PARK_CODE;

Figure 43: Displaying minimum and maximum ticket prices for each PARK_CODE

Task 5.7 Enter the query above and check the results against the output shown in Figure

43. What happens if you miss out the GROUP BY clause?

HAVING

The HAVING clause is an extension to the GROUP BY clause and is applied to the

output of a GROUP BY operation. Supposing you wanted to list the average ticket price

at each Theme Park but wanted to limit the listing to Theme Parks whose average ticket

Keeley Crockett 72

MySQL Lab Guide

price was greater or equal to €24.99. This can be achieved by the following query whose

output is shown in Figure 44.

SELECT PARK_CODE, AVG(TICKET_PRICE)

FROM TICKET

GROUP BY PARK_CODE

HAVING AVG(TICKET_PRICE) >= 24.99;

Figure 44: Example of the HAVING clause

Task 5.8 Using the HOURS table, write a query to display the employee number

(EMP_NUM), the attraction number (ATTRACT-NO) and the average hours worked per

attraction (HOURS_PER_ATTRACT) limiting the result to where the average hours

worked per attraction is greater or equal to 5. Check your results against those shown in

Figure 45.

Keeley Crockett 73

MySQL Lab Guide

Figure 45: Query output for Task 5.8

5.4 Exercises

E5.1 Write a query to display all unique employees that exist in the HOURS table;

E5.2 Display the employee numbers of all employees and the total number of hours they

have worked.

E5.3. Show the attraction number and the minimum and maximum hourly rate for each

attraction.

E5.4 Write a query to show the transaction numbers and line prices (in the SALES_LINE

table) that are greater than €50.

E5.5 Display all information from the SALES table in descending order of the sale date.

Keeley Crockett 74

MySQL Lab Guide

Lab 6: JOINING DATABASE TABLES

The learning objectives of this lab are to

• Learn how to perform the following types of database joins

o Cross Join

o Natural Join

o Outer Joins

Note

In MySQL, the CROSS JOIN command is a syntactically equivalent to INNER JOIN

(they can replace each other). In standard SQL, they are not equivalent. INNER JOIN

is used with an ON clause, CROSS JOIN is used otherwise. For more information, see

the MySQL Reference Manual 5.0

6.1 Introduction to Joins

The relational join operation merges rows from two or more tables and returns the rows

with one of the following conditions:

• Have common values in common columns (natural join)

• Meet a given join condition (equality or inequality)

• Have common values in common columns or have no matching values (outer

join)

Keeley Crockett 75

MySQL Lab Guide

There are a number of different joins that can be performed. The most common is the

natural join. To join tables, you simply enumerate the tables in the FROM clause of the

SELECT statement. The DBMS will create the Cartesian product of every table in the

FROM clause. However, to get the correct result—that is, a natural join—you must select

only the rows in which the common attribute values match. That is done with the

WHERE clause. Use the WHERE clause to indicate the common attributes that are used

to link the tables (sometimes referred to as the join condition). For example, suppose you

want to join the two tables THEMEPARK and TICKET. Because PARK_CODE is the

foreign key in the TICKET table and the primary key in the THEMEPARK table, the link

is established on PARK_CODE. It is important to note that when the same attribute name

appears in more than one of the joined tables, the source table of the attributes listed in

the SELECT command sequence must be defined. To join the THEMEPARK and

TICKET tables, you would use the following, which produces the output shown in Figure

46.

SELECT THEMEPARK.PARK_CODE, PARK_NAME, TICKET_NO,

TICKET_TYPE, TICKET_PRICE

FROM THEMEPARK, TICKET

WHERE THEMEPARK.PARK_CODE = TICKET.PARK_CODE;

Keeley Crockett 76

MySQL Lab Guide

Figure 46: Natural Join between THEMEPARK and TICKET tables

As you examine the preceding query, note the following points:

• The FROM clause indicates which tables are to be joined. If three or more tables are

included, the join operation takes place two tables at a time, starting from left to right.

For example, if you are joining tables T1, T2, and T3, first table T1 is joined to T2;

the results of that join are then joined to table T3.

• The join condition in the WHERE clause tells the SELECT statement which rows will

be returned. In this case, the SELECT statement returns all rows for which the

PARK_CODE values in the PRODUCT and VENDOR tables are equal.

• The number of join conditions is always equal to the number of tables being joined

minus one. For example, if you join three tables (T1, T2, and T3), you will have two

join conditions (j1 and j2). All join conditions are connected through an AND logical

Keeley Crockett 77

MySQL Lab Guide

operator. The first join condition (j1) defines the join criteria for T1 and T2. The

second join condition (j2) defines the join criteria for the output of the first join and

table T3.

• Generally, the join condition will be an equality comparison of the primary key in one

table and the related foreign key in the second table.

Task 6.1 Execute the following query and check your results with those shown in Figure

47. Then modify the SELECT statement and change THEMEPARK.PARK_CODE to

just PARK_CODE. What happens?

SELECT THEMEPARK.PARK_CODE, PARK_NAME, ATTRACT_NAME,

ATTRACT_CAPACITY

FROM THEMEPARK, ATTRACTION

WHERE THEMEPARK.PARK_CODE = ATTRACTION.PARK_CODE;

Figure 47: Query output for task 6.1

Keeley Crockett 78

MySQL Lab Guide

6.2 Joining tables with an alias

An alias may be used to identify the source table from which the data are taken. For

example, the aliases P and T can be used to label the THEMEPARK and TICKET tables

as shown in the query below (which produces the same output as shown in Figure 46).

Any legal table name may be used as an alias.

SELECT P.PARK_CODE, PARK_NAME, TICKET_NO, TICKET_TYPE,

TICKET_PRICE

FROM THEMEPARK P, TICKET T

WHERE P.PARK_CODE =T.PARK_CODE;

6.3 Cross Join

A cross join performs a relational product (also known as the Cartesian product) of two

tables. The cross join syntax is:

SELECT column-list FROM table1 CROSS JOIN table2

For example,

SELECT * FROM SALES CROSS JOIN SALES_LINE;

performs a cross join of the SALES and SALES_LINE tables. That CROSS JOIN query

generates 589 rows. (There were 19 sales rows and 31 SALES_LINE rows, thus giving

19 × 31 = 589 rows.)

Task 6.2 Write a CROSS JOIN query which selects all rows from the EMPLOYEE and

HOURS tables. How many rows were returned?

Keeley Crockett 79

MySQL Lab Guide

6.4 Natural Join

The natural join returns all rows with matching values in the matching columns and

eliminates duplicate columns. That style of query is used when the tables share one or

more common attributes with common names. The natural join syntax is:

SELECT column-list FROM table1 NATURAL JOIN table2

The natural join will perform the following tasks:

• Determine the common attribute(s) by looking for attributes with identical

names and compatible data types

• Select only the rows with common values in the common attribute(s)

• If there are no common attributes, return the relational product of the two

tables

The following example performs a natural join of the SALES and SALES_LINE tables

and returns only selected attributes:

SELECT TRANSACTION_NO, SALE_DATE, LINE_NO, LINE_QTY,

LINE_PRICE

FROM SALES NATURAL JOIN SALES_LINE;

The results of this query can be seen in Figure 48.

Keeley Crockett 80

MySQL Lab Guide

Figure 48: Results of SALES NATURAL JOIN SALES_LINE;

One important difference between the natural join and the “old-style” join syntax as

illustrated in Figure 46, Section 6.1, is that the NATURAL JOIN command does not

require the use of a table qualifier for the common attributes.

Task 6.3 Write a query that displays the employees first and last name (EMP_FNAME

and EMP_LNAME), the attraction number (ATTRACT_NO) and the date worked. Hint:

Keeley Crockett 81

MySQL Lab Guide

You will have to join the HOURS and the EMPLOYEE tables. Check your results with

those shown in Figure 49.

Figure 49: Query results for Task 6.3

6.5 Join USING

A second way to express a join is through the USING keyword. That query returns only

the rows with matching values in the column indicated in the USING clause—and that

column must exist in both tables. The syntax is:

SELECT column-list FROM table1 JOIN table2 USING (common-column)

To see the JOIN USING query in action, let’s perform a join of the SALES and

SALEs_LINE tables by writing:

SELECT TRANSACTION_NO, SALE_DATE, LINE_NO, LINE_QTY,

LINE_PRICE

FROM SALES JOIN SALES_LINE USING (TRANSACTION_NO);

The SQL statement produces the results shown in Figure 50.

Keeley Crockett 82

MySQL Lab Guide

Figure 50: Query results for SALES JOIN SALES_LINE USING

TRANSACTION_NO

As was the case with the NATURAL JOIN command, the JOIN USING operand does

not require table qualifiers.

Task 6.4 Rewrite the query you wrote in Task 6.3 so that the attraction name

(ATTRACT_NAME located in the ATTRACTION table) is also displayed. Express the

joins through the USING keyword. Hint: You will need to join three tables. Your output

should match that shown in Figure 51.

Keeley Crockett 83

MySQL Lab Guide

Figure 51: Query results for Task 6.4

6.6 Join ON

The previous two join styles used common attribute names in the joining tables. Another

way to express a join when the tables have no common attribute names is to use the JOIN

ON operand. That query will return only the rows that meet the indicated join condition.

The join condition will typically include an equality comparison expression of two

columns. (The columns may or may not share the same name but, obviously, must have

comparable data types.) The syntax is:

SELECT column-list FROM table1 JOIN table2 ON join-condition

The following example performs a join of the SALES and SALES_LINE tables, using

the ON clause. The result is shown in Figure 52.

SELECT SALES.TRANSACTION_NO, SALE_DATE, LINE_NO, LINE_QTY,

LINE_PRICE

Keeley Crockett 84

MySQL Lab Guide

FROM SALES JOIN SALES_LINE ON SALES.TRANSACTION_NO =

SALES_LINE.TRANSACTION_NO;

Figure 52: Query results for SALES JOIN SALES_LINE ON

Note that unlike the NATURAL JOIN and the JOIN USING operands, the JOIN ON

clause requires a table qualifier for the common attributes. If you do not specify the table

qualifier, you will get a “column ambiguously defined” error message.

6.7 The Outer Join

Keeley Crockett 85

MySQL Lab Guide

An outer join returns not only the rows matching the join condition (that is, rows with

matching values in the common columns), but also the rows with unmatched values. The

ANSI standard defines three types of outer joins: left, right, and full. The left and right

designations reflect the order in which the tables are processed by the DBMS. Remember

that join operations take place two tables at a time. The first table named in the FROM

clause will be the left side, and the second table named will be the right side. If three or

more tables are being joined, the result of joining the first two tables becomes the left

side; the third table becomes the right side.

LEFT OUTER JOIN

The left outer join returns not only the rows matching the join condition (that is, rows

with matching values in the common column), but also the rows in the left side table with

unmatched values in the right side table. The syntax is:

SELECT column-list

FROM table1 LEFT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the park code, park name, and attraction name for

all attractions and includes those Theme parks with no currently listed attractions:

SELECT THEMEPARK.PARK_CODE, PARK_NAME, ATTRACT_NAME

FROM THEMEPARK LEFT JOIN ATTRACTION ON

THEMEPARK.PARK_CODE = ATTRACTION.PARK_CODE;

The results of this query are shown in Figure 53.

Keeley Crockett 86

MySQL Lab Guide

Figure 53: LEFT OUTER JOIN example

Task 6.5 Enter the query above and check your results with those shown in Figure 53.

RIGHT OUTER JOIN

The right outer join returns not only the rows matching the join condition (that is, rows

with matching values in the common column), but also the rows in the right side table

with unmatched values in the left side table. The syntax is:

SELECT column-list

FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition

For example, the following query lists the park code, park name, and attraction name for

all attractions and also includes those attractions that do not have a matching park code:

SELECT THEMEPARK.PARK_CODE, PARK_NAME, ATTRACT_NAME

FROM THEMEPARK RIGHT JOIN ATTRACTION ON

THEMEPARK.PARK_CODE = ATTRACTION.PARK_CODE;

Keeley Crockett 87

MySQL Lab Guide

The results of this query are shown in Figure 54.

Figure 54: RIGHT OUTER JOIN example

Task 6.6 Enter the query above and check your results with those shown in Figure 54.

6.9 Exercises

E6.1 Use the cross join to display all rows in the EMPLOYEE and HOURS tables. How

many rows were returned?

E6.2 Write a query to display the attraction number, employee first and last names and

the date they worked on the attraction. Order the results by the date worked.

E6.3 Display the park names and total sales for Theme Parks who are located in the

country ‘UK’ or ‘FR’.

Keeley Crockett 88

MySQL Lab Guide

E6.4 Write a query to display the names of attractions that currently have not had any

employees working on them.

E6.5 List the sale date, line quantity and line price of all transactions on the 18th May

2007. (Hint: Remember the format of MySQL dates is ‘2007-05-18’).

Keeley Crockett 89

MySQL Lab Guide

Lab 7: SQL Functions

The learning objectives of this lab are to

• Learn about selected MySQL date and time functions

• Be able to perform string manipulations

• Utilise single row numeric functions

• Perform conversions between data types

There are many types of SQL functions, such as arithmetic, trigonometric, string, date,

and time functions. Lab 7 will cover a selection of these SQL functions that are

implemented in MySQL in detail. Functions always use a numerical, date, or string

value. The value may be part of the command itself (a constant or literal) or it may be an

attribute located in a table. Therefore, a function may appear anywhere in a SQL

statement where a value or an attribute can be used.

7.1 Date and Time Functions

In MySQL there are a number of useful date and time functions. However, first it is

important to briefly look at the main date and time types are available to MySQL. These

are shown in the table below:

Table 7.1 MySQL Date and Time data types

DATETIME YYYY-MM-DD HH:MM:SS
DATE YYYY-MM-DD
TIMESTAMP YYYYMMDDHHSSMM
TIME HH:MM:SS

Keeley Crockett 90

MySQL Lab Guide

YEAR YYYY

As you can see from Table 7.1, the DATE type is stored in a special internal format that

includes just the year, month and day whilst the DATETIME data type also stores the

hours, minutes, and seconds. If you try to enter a date in a format other than the Year-

Month-Day format then it might work, but it won't be storing them as you expect!

Task 7.1 Enter the following query and examine how the date is displayed.

SELECT DISTINCT(SALE_DATE)

FROM SALES;

It is possible to change the format of the date using the DATE_FORMAT() function. The

syntax of this function is

DATE_FORMAT(date,format)

The function formats the date value according to the format string.

For example, the following query formats the date as 18th May 2007 using ‘ date

specifiers’ as shown in Figure 55.

SELECT DISTINCT(DATE_FORMAT(SALE_DATE, ‘%D %b %Y’))

FROM SALES;

Keeley Crockett 91

MySQL Lab Guide

Figure 55 Formatting Dates in MySQL

Table 7.2 taken directly from the MySQL Manual 5.0 shows a complete list of specifiers

that can be used in the format string.

Specifier Description
%a Abbreviated weekday name (Sun..Sat)
%b Abbreviated month name (Jan..Dec)
%c Month, numeric (0..12)
%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)
%d Day of the month, numeric (00..31)
%e Day of the month, numeric (0..31)
%f Microseconds (000000..999999)
%H Hour (00..23)
%h Hour (01..12)
%I Hour (01..12)
%i Minutes, numeric (00..59)
%j Day of year (001..366)
%k Hour (0..23)
%l Hour (1..12)
%M Month name (January..December)
%m Month, numeric (00..12)
%p AM or PM
%r Time, 12-hour (hh:mm:ss followed by AM or PM)
%S Seconds (00..59)
%s Seconds (00..59)
%T Time, 24-hour (hh:mm:ss)
%U Week (00..53), where Sunday is the first day of the week
%u Week (00..53), where Monday is the first day of the week
%V Week (01..53), where Sunday is the first day of the week; used with %X

Keeley Crockett 92

MySQL Lab Guide

%v Week (01..53), where Monday is the first day of the week; used with %x
%W Weekday name (Sunday..Saturday)
%w Day of the week (0=Sunday..6=Saturday)
%X Year for the week where Sunday is the first day of the week, numeric, four

digits; used with %V
%x Year for the week, where Monday is the first day of the week, numeric, four

digits; used with %v
%Y Year, numeric, four digits
%y Year, numeric (two digits)
%% A literal ‘%’ character
%x x, for any ‘x’ not listed above

Task 7.2 Using the date specifiers in Table 7.2, modify the query shown in Figure 55 to

display the date in the format ’Fri – 18 – 5 – 07’.

You will now explore some of the main MySQL date / time functions.

CURRENT DATE and CURRENT TIME

The CURRENT_DATE function returns today’s date while the CURRENT_TIME

function returns the current time.

Task 7.3 Enter the following query to display today’s date and time. Notice that in

MySQL the functions are called using the SELECT statement but no FROM clause is

needed.

mysql> SELECT CURRENT_DATE(), CURRENT_TIME();

Keeley Crockett 93

MySQL Lab Guide

Note

CURRENT_TIME and CURRENT_DATE are synonyms for CURTIME() and

CURDATE respectively.

The output for this query is shown in Figure 56.

Figure 56 Displaying the current date and time.

MONTH, DAYOFMONTH and YEAR

MySQL provides functions for extracting the month, day or year from any given date.

The syntax of each function is as follows:

DAYOFMONTH(date) returns the day of the month for date, in the range 0 to 31.

MONTH(date) returns the month for date, in the range 0 to 12.

YEAR(date) returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

The following query shows how these three functions can be used to display different

parts of an employee’s date of birth. The output of this query is shown in Figure 57.

Keeley Crockett 94

MySQL Lab Guide

SELECT DAYOFMONTH(EMP_DOB) AS “Day”, MONTH(EMP_DOB) AS “Month”,

YEAR(EMP_DOB) AS “Year”

FROM EMPLOYEE;

Figure 57 Using the MONTH, DAYOFMONTH and YEAR functions.

Task 7.3 Write a query that displays all employees who were born in November. Your

output should match that shown in Figure 58.

Figure 58 Output for Task 7.3.

DATEDIFF

Keeley Crockett 95

MySQL Lab Guide

The DATEDIFF function subtracts two dates and returns a value in days from one date to

the other. The following example calculates the number of days between the 1st January

2008 and the 25th December 2008.

SELECT DATEDIFF(‘2008-12-25’,‘2008-01-01’);

Task 7.4 Enter the query above and see how many days it is until the 25th December.

Then modify the query to see how many days it is from today’s date until 25th December

2009.

DATE_ADD and DATE_SUB

The DATE_ADD and DATE_SUB functions both perform date arithmetic and allow you

to either add or subtract two dates from one another. The syntax of these functions is:

DATE_ADD(date,INTERVAL expr unit)

DATE_SUB(date,INTERVAL expr unit)

Where expr is an expression specifying the interval value to be added or subtracted from

the starting date and unit is a keyword indicating the units in which the expression should

be interpreted.

For example, the following query adds 11 months to the date 1st January 2008 to display

a new date of 1st December 2008. The output for this query is shown in Figure 59.

Keeley Crockett 96

MySQL Lab Guide

SELECT ADDDATE(‘2008-01-01’, INTERVAL 11 MONTH);

Figure 59 Adding months to a date

A full list of the different interval types can be found in the MySQL Reference Manual

5.0.

Task 7.6 Enter the following query which lists the hire dates of all employees along with

the date of their first work appraisal (one year from the hiredate). Check that the output is

correct.

SELECT EMP_LNAME, EMP_FNAME, EMP_HIRE_DATE,

ADDDATE(EMP_HIRE_DATE, INTERVAL 12 MONTH)AS “FIRST APPRAISAL”

FROM EMPLOYEE;

LAST_DAY

The function LAST_DAY returns the date of the last day of the month given in a date.

The syntax is

LAST_DAY(date_value).

Keeley Crockett 97

MySQL Lab Guide

Task 7.7 Enter the following query which lists all sales transactions that were made in

the last 20 days of a month:

SELECT *

FROM SALES

WHERE SALE_DATE >= LAST_DAY(SALE_DATE)-20;

7.2 Numeric Functions

In this section, you will learn about MySQL single row numeric functions. Numeric

functions take one numeric parameter and return one value. A description of the functions

you will explore in this lab can be found in Table 4.

Table 4 Selected Numeric Functions

Function Description
ABS

Returns the absolute value of a number
Syntax: ABS(numeric_value)

ROUND

Rounds a value to a specified precision (number of digits)

Note

Do not confuse the SQL aggregate functions you saw in the previous chapter with the

numeric functions in this section. The first group operates over a set of values

(multiple rows—hence, the name aggregate functions), while the numeric functions

covered here operate over a single row.

Keeley Crockett 98

MySQL Lab Guide

Syntax: ROUND(numeric_value, p) where p = precision
TRUNCATE

Truncates a value to a specified precision (number of
digits)
Syntax: TRUNC(numeric_value, p) where p = precision

MOD Returns the remainder of division.

Syntax MOD(m.n) where m is divided by n.

The following example displays the individual LINE_PRICE from the sales line table,

rounded to one and zero places and truncated where the quantity of tickets purchased on

that line is greater than 2.

SELECT LINE_PRICE, ROUND(LINE_PRICE,1) AS “LINE_PRICE1”,

 ROUND(LINE_PRICE,0) AS “LINE_PRICE1”,

TRUNCATE(LINE_PRICE,0) AS “TRUNCATED VALUE”

FROM SALES_LINE

WHERE LINE_QTY > 2;

The output for this query can be seen in Figure 60.

Figure 60 Example of ROUND and TRUNC

Keeley Crockett 99

MySQL Lab Guide

Task 7.8 Enter the following query and execute it. Can you explain the results of this

query?

SELECT TRANSACTION_NO, LINE_PRICE, MOD(LINE_PRICE, 10)

FROM SALES_LINE

WHERE LINE_QTY > 2;

7.3 String Functions

String manipulation functions are amongst the most-used functions in programming.

Table 5 shows a subset of the most useful string manipulation functions in MySQL.

Table 5 Selected MySQL string functions.

Function Description
CONCAT

Concatenates data from two different character columns and returns a single
column.
Syntax: CONCAT(strg_value, strg_value)

UPPER/LOWER

Returns a string in all capital or all lowercase letters
Syntax: UPPER(strg_value) , LOWER(strg_value)

SUBSTR

Returns a substring or part of a given string parameter
Syntax:
SUBSTR(strg_value, p, l) where p = start position and l = length of
characters

LENGTH

Returns the number of characters in a string value
Syntax: LENGTH(strg_value)

We will now look at examples of some of these string functions.

CONCAT

Keeley Crockett 100

MySQL Lab Guide

The following query illustrates the CONCAT function. It lists all employee first and last

names concatenated together. The output for this query can be seen in Figure 61.

SELECT CONCAT(EMP_LNAME ,EMP_FNAME) AS NAME

FROM EMPLOYEE;

Figure 61 Concatenation of employee’s first and last names

UPPER/LOWER

The following query lists all employee last names in all capital letters and all first names

in all lowercase letters. The output for the query is shown in Figure 62.

SELECT CONCAT(UPPER(EMP_LNAME),LOWER(EMP_FNAME)) AS NAME

FROM EMPLOYEE;

Keeley Crockett 101

MySQL Lab Guide

Figure 62 Displaying upper and lower case employee names.

SUBSTR

The following example lists the first three characters of all the employees’ first name.

The output of this query is shown in Figure 63.

SELECT EMP_PHONE, SUBSTR(EMP_FNAME,1,3)

FROM EMPLOYEE;

Figure 63 Displaying the first 3 characters of the employees first name

Task 7.10 Write a query which generates a list of employee user IDs, using the first day

of the month they were born and the first six characters of last name in UPPER case.

Your query should return the results shown in Figure 64.

Figure 64 Results for Task 7.10.

Keeley Crockett 102

MySQL Lab Guide

LENGTH

The following example lists all attraction names and the length of their names; ordered

descended by attraction name length. The output of this query is shown in Figure 65.

SELECT ATTRACT_NAME, LENGTH(ATTRACT_NAME) AS NAMESIZE

FROM ATTRACTION

ORDER BY NAMESIZE DESC;

Figure 65 Displaying the length of attraction names.

7.4 Conversion Functions

Conversion functions allow you to take a value of a given data type and convert it to the

equivalent value in another data type. In MySQL, some conversions occur implicitly. For

example, MySQL automatically converts numbers to strings when needed, and vice

versa.

So if you enter the following query:

Keeley Crockett 103

MySQL Lab Guide

SELECT 10 + ‘10’

MySQL would give you an answer of 20 as it would automatically convert the string

containing ‘10’ into the number 10 (see figure 66).

If you want to explicitly convert a number to a string then you can use either the CAST

or CONCAT function. However MySQL 5.0 recommends only the CAST function is

used. Let’s look at an example. The following query produces the output shown in

Figure 66.

SELECT 10, CAST(10 AS CHAR);

Figure 66 Example of type conversions

Keeley Crockett 104

MySQL Lab Guide

Note

The MySQL Reference Manual 5.0 provides a set of rules that allow us to determine

how the coversion will occur when using the CONVERT function on different data

types.

IFNULL

The IFNULL function lets you substitute a value when a null value is encountered in the

results of a query. The syntax is:

IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. It is

equivalent to Oracle’s NVL function. It is useful for avoiding errors caused by incorrect

calculation when one of the arguments is null.

Task 7.11 Load and run the script sales_copy.sql which accompanies this lab guide.

DESCRIBE the structure of the SALES_COPY table and examine the lack of constraints

on this table. Write a query to view all the rows and notice that in some rows no values

have been entered for LINE_QTY or LINE_PRICE. (In these instances these rows have

NULL values.) Next, enter the following query which displays to the screen the Total of

the LINE_QTY * LINE_PRICE. Notice that this query does not use the IFNULL

function and in two rows the calculation can not be made.

Keeley Crockett 105

MySQL Lab Guide

SELECT TRANSACTION_NO, LINE_NO, LINE_QTY, ITEM_PRICE,

LINE_QTY*ITEM_PRICE AS "TOTAL SALES PER LINE"

FROM SALES_COPY;

Next run the following version of the query which uses the IFNULL function and notice

that the calculation has been achieved for all rows.

SELECT TRANSACTION_NO, LINE_NO,

IFNULL(LINE_QTY,0),ITEM_PRICE,(IFNULL(LINE_QTY,0))*ITEM_PRICE AS

"TOTAL SALES PER LINE"

FROM SALES_COPY;

The results of running both these queries can be seen in Figure 67.

Keeley Crockett 106

MySQL Lab Guide

Figure 67 Illustration of the IFNULL function.

CASE

The CASE function compares an attribute or expression with a series of values and

returns an associated value or a default value if no match is found. There are two versions

of the CASE function. The syntax of each is shown below.

CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN

result ...] [ELSE result] END

Keeley Crockett 107

MySQL Lab Guide

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE

result] END

The first version returns the result where value=compare_value. The second version

returns the result for the first condition that is true. If there was no matching result value,

the result after ELSE is returned, or NULL if there is no ELSE part.

Let’s now look at the following example, which compares the country code in the

PARK_COUNTRY field and decodes it into the name of the country. If there is no

match, it returns the value ‘Unknown’. The output is shown in Figure 68.

SELECT PARK_CODE, PARK_COUNTRY, (CASE PARK_COUNTRY WHEN 'UK'

THEN 'United Kingdom' WHEN 'FR' THEN 'France' WHEN 'NL' THEN 'The

Netherlands' WHEN 'SP' THEN 'Spain' WHEN 'ZA' THEN 'South Africa' WHEN 'SW'

THEN 'Switzerland' ELSE' Unknown' END) AS COUNTRY

FROM THEMEPARK;

Figure 68 Displaying the names of countries using the DECODE function.

Keeley Crockett 108

MySQL Lab Guide

It is worth noting that the above decode statement is equivalent to the following IF-

THEN-ELSE statement:

IF PARK_COUNTRY = ‘UK’ THEN
 result := 'United Kingdom';
ELSIF PARK_COUNTRY = ‘FR’ THEN
 result := 'FRANCE';
ELSIF PARK_COUNTRY = ‘NL’ THEN
 result := 'The Netherlands';
ELSIF PARK_COUNTRY = ‘SP’ THEN
 result := 'Spain';
ELSIF PARK_COUNTRY = ‘ZA’ THEN
 result := 'South Africa';
ELSIF PARK_COUNTRY = ‘SW’ THEN
 result := 'Switzerland';
ELSE
 result := 'Unknown;
END IF;

7.5 Exercises

E7.1 Write a query which lists the names and dates of births of all employees born on the

14th day of the month.

E7.2 Write a query which lists the approximate age of the employees on the company’s

tenth anniversary date (11/25/2008).

E7.3 Write a query which generates a list of employee user passwords, using the first

three digits of their phone number, and the first two characters of first name in lower

case. Label the column USER_PASSWORD;

Keeley Crockett 109

MySQL Lab Guide

E7.4 Write a query which displays the last date a ticket was purchased in all Theme

Parks. You should also display the Theme Park name. Print the date in the format 12th

January 2007.

Keeley Crockett 110

MySQL Lab Guide

 Lab 8: Subqueries

The learning objectives of this lab are to

• Learn how to use subqueries to extract rows from processed data

• Select the most suitable subquery format

• Use correlated subqueries

First let’s outline the basic characteristics of a subquery, which were introduced in

Chapter 8, Introduction to Structured Query Language.

• A subquery is a query (SELECT statement) inside a query

• A subquery is normally expressed inside parentheses

• The first query in the SQL statement is known as the outer query

• The query inside the SQL statement is known as the inner query

• The inner query is executed first

• The output of an inner query is used as the input for the outer query

• The entire SQL statement is sometimes referred to as a nested query

A subquery can return one value or multiple values. To be precise, the subquery can

return:

• One single value (one column and one row). This subquery is used anywhere a

single value is expected, as in the right side of a comparison expression.

Obviously, when you assign a value to an attribute, that value is a single

value, not a list of values. Therefore, the subquery must return only one value

Keeley Crockett 111

MySQL Lab Guide

(one column, one row). If the query returns multiple values, the DBMS will

generate an error.

• A list of values (one column and multiple rows). This type of subquery is used

anywhere a list of values is expected, such as when using the IN clause. This

type of subquery is used frequently in combination with the IN operator in a

WHERE conditional expression.

• A virtual table (multicolumn, multirow set of values). This type of subquery

can be used anywhere a table is expected, such as when using the FROM

clause.

It’s important to note that a subquery can return no values at all; it is a NULL. In such

cases, the output of the outer query may result in an error or a null empty set depending

where the subquery is used (in a comparison, an expression, or a table set).

In the following sections, you will learn how to write subqueries within the SELECT

statement to retrieve data from the database.

 Note

You can also read more about subqueries in Chapter 9 Advanced SQL.

8.1 SELECT Subqueries

The most common type of subquery uses an inner SELECT subquery on the right side of

a WHERE comparison expression. For example, to find the prices of all tickets with a

price less than or equal to the average ticket price, you write the following query:

Keeley Crockett 112

MySQL Lab Guide

SELECT TICKET_NO, TICKET_TYPE, TICKET_PRICE

FROM TICKET

WHERE TICKET_PRICE >= (SELECT AVG(TICKET_PRICE) FROM TICKET);

The output of the query is shown in Figure 69.

Figure 69 Example of SELECT Subquery

Note that this type of query, when used in a >, <, =, >=, or <= conditional expression,

requires a subquery that returns only one single value (one column, one row). The value

generated by the subquery must be of a “comparable” data type; if the attribute to the left

of the comparison symbol is a character type, the subquery must return a character string.

Also, if the query returns more than a single value, the DBMS will generate an error.

Task 8.1 Write a query that displays the first name, last name of all employees who earn

more than the average hourly rate. Do not display duplicate rows. Your output should

match that shown in Figure 70.

Keeley Crockett 113

MySQL Lab Guide

Figure 70 Output for task 8.1

8.2 IN Subqueries

The following query displays all employees who work in a Theme Park that has the word

‘Fairy’ in its name. As there are a number of different Theme Parks that match this

criteria you need to compare the PARK_CODE not to one park code (single value), but to

a list of park codes. When you want to compare a single attribute to a list of values, you

use the IN operator. When the PARK_CODE values are not known beforehand but they

can be derived using a query, you must use an IN subquery. The following example lists

all employees who have worked in such a Theme Park.

SELECT DISTINCT EMP_NUM, EMP_LNAME, EMP_FNAME, PARK_NAME

FROM EMPLOYEE NATURAL JOIN HOURS NATURAL JOIN

ATTRACTION NATURAL JOIN THEMEPARK

WHERE PARK_CODE IN (SELECT THEMEPARK.PARK_CODE FROM

THEMEPARK WHERE PARK_NAME LIKE ‘%Fairy%’);

Keeley Crockett 114

MySQL Lab Guide

The result of that query is shown in Figure 71.

Figure 71 Employees who work in a Theme Park LIKE ‘Fairy’.

Task 8.2 Enter and execute the above query and compare your output with that shown in

Figure 71.

8.3 HAVING Subqueries

A subquery can also be used with a HAVING clause. Remember that the HAVING

clause is used to restrict the output of a GROUP BY query by applying a conditional

criteria to the grouped rows. For example, to list all PARK_CODEs where the total

quantity of tickets sold is greater than the average quantity sold, you would write the

following query:

SELECT PARK_CODE, SUM(LINE_QTY)

FROM SALES_LINE NATURAL JOIN TICKET

GROUP BY PARK_CODE

HAVING SUM(LINE_QTY) > (SELECT AVG(LINE_QTY) FROM SALES_LINE);

Keeley Crockett 115

MySQL Lab Guide

The result of that query is shown in Figure 72.

Figure 72 PARK_CODES where tickets are selling above average.

Task 8.3 Using the query above as a guide, write a new query to display the first and last

names of all employees who have worked in total less that the average number of hours

in total during May 2007. Your output should match that shown in Figure 73.

Figure 73 Output for task 8.3

Keeley Crockett 116

MySQL Lab Guide

8.4 Multirow Subquery operator ALL.

So far, you have learned that you must use an IN subquery when you need to compare a

value to a list of values. But the IN subquery uses an equality operator; that is, it selects

only those rows that match (are equal to) at least one of the values in the list. What

happens if you need to do an inequality comparison (> or <) of one value to a list of

values? For example, to find the ticket_numbers and corresponding park_codes of the

tickets that are priced higher than the highest-priced ‘Child’ ticket you could write the

following query.

SELECT TICKET_NO, PARK_CODE

FROM TICKET

WHERE TICKET_PRICE > ALL (SELECT TICKET_PRICE FROM TICKET

 WHERE TICKET_TYPE = 'CHILD');

The output of that query is shown in Figure 74.

Figure 74 Example of ALL.

Keeley Crockett 117

MySQL Lab Guide

This query is a typical example of a nested query. The use of the ALL operator allows

you to compare a single value (TICKET_PRICE) with a list of values returned by the

nested query, using a comparison operator other than equals. For a row to appear in the

result set, it has to meet the criterion TICKET_PRICE > ALL of the individual values

returned by the nested query.

8.5 Attribute list Subqueries

The SELECT statement uses the attribute list to indicate what columns to project in the

resulting set. Those columns can be attributes of base tables or computed attributes or the

result of an aggregate function. The attribute list can also include a subquery expression,

also known as an inline subquery. A subquery in the attribute list must return one single

value; otherwise, an error code is raised. For example, a simple inline query can be used

to list the difference between each tickets’ price and the average ticket price:

SELECT TICKET_NO, TICKET_PRICE,

(SELECT AVG(TICKET_PRICE) FROM TICKET) AS AVGPRICE,

TICKET_PRICE - (SELECT AVG(TICKET_PRICE) FROM TICKET) AS DIFF

FROM TICKET;

The output for this query is shown in Figure 75.

Keeley Crockett 118

MySQL Lab Guide

Figure 75 Displaying the difference in ticket prices.

This inline query output returns one single value (the average ticket’s price) and that the

value is the same in every row. Note also that the query used the full expression instead

of the column aliases when computing the difference. In fact, if you try to use the alias in

the difference expression, you will get an error message. The column alias cannot be used

in computations in the attribute list when the alias is defined in the same attribute list.

Task 8.4 Write a query to display an employee’s first name, last name and date worked

which lists the difference between the number of hours an employee has worked on an

attraction and the average hours worked on that attraction. Label this column

‘DIFFERENCE’ and the average hours column ‘AVERAGE’.

8.6 Correlated Subqueries

Keeley Crockett 119

MySQL Lab Guide

A correlated subquery is a subquery that executes once for each row in the outer query.

The relational DBMS uses the same sequence to produce correlated subquery results:

1. It initiates the outer query.

2. For each row of the outer query result set, it executes the inner query by passing the

outer row to the inner query.

That process is the opposite of the subqueries you have seen so far. The query is called a

correlated subquery because the inner query is related to the outer query because the

inner query references a column of the outer subquery. For example, suppose you want to

know all the ticket sales in which the quantity sold value is greater than the average

quantity sold value for that ticket (as opposed to the average for all tickets). The

following correlated query completes the preceding two-step process:

SELECT TRANSACTION_NO, LINE_NO, LINE_QTY, LINE_PRICE

FROM SALES_LINE SL

WHERE SL.LINE_QTY > (SELECT AVG(LINE_QTY)

FROM SALES_LINE SA

WHERE SA. TRANSACTION_NO = SL. TRANSACTION_NO);

Keeley Crockett 120

MySQL Lab Guide

Figure 76 Example of a correlated subquery

As you examine the output shown in figure 76, note that the SALES_LINE table is used

more than once; so you must use table aliases.

Correlated subqueries can also be used with the EXISTS special operator. For example,

suppose you want to know all the names of all Theme Parks where tickets have been

recently sold. In that case, you could use a correlated subquery as follows:

SELECT PARK_CODE, PARK_NAME, PARK_COUNTRY

FROM THEMEPARK

WHERE EXISTS (SELECT PARK_CODE FROM SALES

WHERE SALES.PARK_CODE = THEMEPARK.PARK_CODE);

The output for this query is shown in figure 77.

Keeley Crockett 121

MySQL Lab Guide

Figure 77 Example of correlated subqueries

Task 8.5 Type in and execute the two correlated subqueries in this section and check

your output against that shown in figures 76 and 77.

Task 8.6 Modify the second query you entered in task 8.5 to display all the theme parks

where there have been no recorded tickets sales recently.

Keeley Crockett 122

MySQL Lab Guide

Lab 9: Views

The learning objectives of this lab are to

• Create a simple view

• Manage database constraints in views using the WITH CHECK OPTION

9.1 Views

A view is a virtual table based on a SELECT query. The query can contain columns,

computed columns, aliases, and aggregate functions from one or more tables. The tables

on which the view is based are called base tables. You can create a view by using the

CREATE VIEW command:

CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a data definition command that stores the subquery

specification—the SELECT statement used to generate the virtual table—in the data

dictionary. For example, to create a view of only those Theme Parks were tickets have

been sold you would do so as follows:

CREATE VIEW TPARKSSOLD AS

SELECT *

FROM THEMEPARK

WHERE EXISTS (SELECT PARK_CODE FROM SALES

WHERE SALES.PARK_CODE = THEMEPARK.PARK_CODE);

Keeley Crockett 123

MySQL Lab Guide

To display the contents of this view you would type

SELECT * FROM TPARKSSOLD;

The created view can be seen in figure 78.

Figure 78 Creating the TPARKSSOLD view.

Task 9.1 Create the TPARKSSOLD view.

As you will have learned in Chapter 8, “Introduction to Structured Query Language”,

relational view has several special characteristics. These are worth repeating here:

• You can use the name of a view anywhere a table name is expected in a SQL

statement

Keeley Crockett 124

MySQL Lab Guide

• Views are dynamically updated. That is, the view is re-created on demand

each time it is invoked. Therefore, if more tickets are sold in other Theme

Parks, then those new ticket sales will automatically appear (or disappear) in

the TPARKSSOLD view the next time it is invoked

• Views provide a level of security in the database because the view can restrict

users to only specified columns and specified rows in a table

To remove the view TPARKSSOLD you could issue the following command

DROP VIEW TPARKSSOLD;

Task 9.2 Create a view called TICKET_SALES which contains details of the min, max

and average sales at each Theme Park. The name of the theme park should also be

displayed. Hint 1: you will need to join three tables. Hint 2: You will need to give the

columns in the query that use the functions an alias. Once you have created your view,

write a query to display the contents.

Task 9.3 Add your view TICKET_SALES and the associated DROP command to your

themepark.sql scrip you created in lab 2.

9.2 Views – using the WITH CHECK OPTION

Keeley Crockett 125

MySQL Lab Guide

It is possible to perform referential integrity constraints through the use of a view so that

database constraints can be enforced. The following view DISPLAYS employees who

work in Theme Park FR1001 using the WITH CHECK OPTION clause. This clause

ensures that INSERTs and UPDATEs cannot be performed on any rows that the view has

not selected. The results of creating this view can be seen in Figure 79.

CREATE VIEW EMPFR AS

SELECT *

FROM EMPLOYEE

WHERE PARK_CODE = ‘FR1001’

WITH CHECK OPTION;

Figure 79 Creating the EMPFR view

So for example if employee ‘Emma Caulderdale’ was to leave the park and move to park

‘UK3452’, we would want to update her information with the following query:

Keeley Crockett 126

MySQL Lab Guide

UPDATE EMPFR

SET PARK_CODE = 'UK3452'

WHERE EMP_NUM = 100;

However running this update gives the errors shown in Figure 80. This is because if the

update was to occur, the view would no longer be able to see this employee.

Figure 80 Creating the EMPFR view

Task 9.4 Create the view EMPFR and tray and update the Theme Park that employee

number 101 works in.

Task 9.5. Employee Emma Cauderdale (EMP_NUM =100) has now changed her phone

number to 324-9652. Update her information in the EMPFR view. Write a query to show

her new phone number has been updated.

Task 9.6 Remove the EMPFR view.

9.4 Exercises

Keeley Crockett 127

MySQL Lab Guide

E9.1 The Theme Park managers want to create a view called EMP_DETAILS which

contains the following information. EMP_NO, PARK_CODE, PARK_NAME,

EMP_LNAME_EMP_FNAME, EMP_HIRE_DATE and EMP_DOB. The view should

only be read only.

E9.2 Check that the view works, by displaying its contents.

E9.3 Using your view EMP_DETAILS, write a query that displays all employee first and

last names and the park names.

E9.4 Remove the view EMPDETAILS.

Keeley Crockett 128

MySQL Lab Guide

CONCLUSION

You have now reached the end of this MySQL lab guide. Only a few examples are shown

in this tutorial. The objective is not to develop full-blown applications, but to show you

some examples of the fundamental features of SQL which you can build on with further

reading and practice.

FURTHER READING

Dyer, R. MySQL in a Nutshell 2e, OReilly; Rev Ed edition, (2008)

Reese, G. MySQL Pocket Reference 2e, O'Reilly, (2007)

WEB SITES

MySQL http://www.mysql.com/

MySQL 5.0 Reference Manual http://dev.mysql.com/doc/refman/5.0/en/index.html

MySQL Development Zone http://dev.mysql.com/

BUGS

To report a bug in MySQL visit the site http://bugs.mysql.com/

Keeley Crockett 129

http://dev.mysql.com/doc/refman/5.0/en/index.html

	MySQL cover sheet.pdf
	MySQL Lab Guide.pdf

