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cService de Physique Théorique, CEA–Saclay, F-91191 Gif-sur-Yvette cedex,
France

Abstract

We review how (dimensionally regulated) scattering amplitudes in N = 4 super-
Yang-Mills theory provide a useful testing ground for perturbative QCD calcula-
tions relevant to collider physics, as well as another avenue for investigating the
AdS/CFT correspondence. We describe the iterative relation for two-loop scatter-
ing amplitudes in N = 4 super-Yang-Mills theory found in C. Anastasiou et al.,
Phys. Rev. Lett. 91:251602 (2003), and discuss recent progress toward extending it
to three loops.

1 Introduction and Collider Physics Motivation

Maximally supersymmetric (N = 4) Yang-Mills theory (MSYM) is unique
in many ways. Its properties are uniquely specified by the gauge group, say
SU(Nc), and the value of the gauge coupling g. It is conformally invariant for
any value of g. Although gravity is not present in its usual formulation, MSYM
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is connected to gravity and string theory through the AdS/CFT correspon-
dence [1]. Because this correspondence is a weak-strong coupling duality, it is
difficult to verify quantitatively for general observables. On the other hand,
such checks are possible and have been remarkably successful for quantities
protected by supersymmetry such as BPS operators [2], or when an additional
expansion parameter is available, such as the number of fields in sequences of
composite, large R-charge operators [3,4,5,6,7,8].

It is interesting to study even more observables in perturbative MSYM, in
order to see how the simplicity of the strong coupling limit is reflected in the
structure of the weak coupling expansion. The strong coupling limit should be
even simpler when the large-Nc limit is taken simultaneously, as it corresponds
to a weakly-coupled supergravity theory in a background with a large radius
of curvature. There are different ways to study perturbative MSYM. One
approach is via computation of the anomalous dimensions of composite, gauge
invariant operators [1,3,4,5,6,7,8]. Another possibility [9], discussed here, is to
study the scattering amplitudes for (regulated) plane-wave elementary field
excitations such as gluons and gluinos.

One of the virtues of the latter approach is that perturbative MSYM scat-
tering amplitudes share many qualitative properties with QCD amplitudes in
the regime probed at high-energy colliders. Yet the results and the computa-
tions (when organized in the right way) are typically significantly simpler. In
this way, MSYM serves as a testing ground for many aspects of perturbative
QCD. MSYM loop amplitudes can be considered as components of QCD loop
amplitudes. Depending on one’s point of view, they can be considered either
“the simplest pieces” (in terms of the rank of the loop momentum tensors in
the numerator of the amplitude) [10,11], or “the most complicated pieces” in
terms of the degree of transcendentality (see section 6) of the special functions
entering the final results [12]. As discussed in section 6, the latter interpreta-
tion links recent three-loop anomalous dimension results in QCD [13] to those
in the spin-chain approach to MSYM [5].

The most direct experimental probes of short-distance physics are collider
experiments at the energy frontier. For the next decade, that frontier is at
hadron colliders — Run II of the Fermilab Tevatron now, followed by startup
of the CERN Large Hadron Collider in 2007. New physics at colliders always
contends with Standard Model backgrounds. At hadron colliders, all physics
processes — signals and backgrounds — are inherently QCD processes. Hence
it is important to be able to predict them theoretically as precisely as possi-
ble. The cross section for a “hard,” or short-distance-dominated processes, can
be factorized [14] into a partonic cross section, which can be computed order
by order in perturbative QCD, convoluted with nonperturbative but measur-
able parton distribution functions (pdfs). For example, the cross section for
producing a pair of jets (plus anything else) in a pp̄ collision is given by
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σpp̄→jjX(s) =
∑
a,b

1∫
0

dx1dx2 fa(x1;µF )f̄b(x2;µF )

×σ̂ab→jjX(sx1x2;µF , µR;αs(µR)), (1)

where s is the squared center-of-mass energy, x1,2 are the longitudinal (light-
cone) fractions of the p, p̄ momentum carried by partons a, b, which may be
quarks, anti-quarks or gluons. The experimental definition of a jet is an in-
volved one which need not concern us here. The pdf fa(x, µF ) gives the prob-
ability for finding parton a with momentum fraction x inside the proton;
similarly f̄b is the probability for finding parton b in the antiproton. The pdfs
depend logarithmically on the factorization scale µF , or transverse resolution
with which the proton is examined. The Mellin moments of fa(x, µF ) are for-
ward matrix elements of leading-twist operators in the proton, renormalized
at the scale µF . The quark distribution function q(x, µ), for example, obeys∫ 1
0 dx x

j q(x, µ) = 〈p|[q̄γ+∂j
+q](µ)|p〉.

2 Ingredients for a NNLO Calculation

Many hadron collider measurements can benefit from predictions that are
accurate to next-to-next-to-leading order (NNLO) in QCD. Three separate
ingredients enter such an NNLO computation; only the third depends on the
process:

(1) The experimental value of the QCD coupling αs(µR) must be determined
at one value of the renormalization scale µR (for example mZ), and its
evolution in µR computed using the 3-loop β-function, which has been
known since 1980 [15].

(2) The experimental values for the pdfs fa(x, µF ) must be determined, ide-
ally using predictions at the NNLO level, as are available for deep-inelastic
scattering [16] and more recently Drell-Yan production [17]. The evolu-
tion of pdfs in µF to NNLO accuracy has very recently been completed,
after a multi-year effort by Moch, Vermaseren and Vogt [13] (previously,
approximations to the NNLO kernel were available [18]).

(3) The NNLO terms in the expansion of the partonic cross sections must be
computed for the hadronic process in question. For example, the parton
cross sections for jet production has the expansion,

σ̂ab→jjX = α2
s(A+ αsB + α2

sC + . . .). (2)

The quantities A and B have been known for over a decade [19], but C
has not yet been computed.
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Figure 1. LHC Z production [22].

• real × real: ×

• virtual × real: ×

• virtual × virtual: ×

• doubly-virtual × real: ×

Figure 2. Purely gluonic contributions
to σ̂gg→jjX at NNLO.

Indeed, the NNLO terms are unknown for all but a handful of collider pro-
cesses. Computing a wide range of processes at NNLO is the goal of a large
amount of recent effort in perturbative QCD [20]. As an example of the im-
proved precision that could result from this program, consider the production
of a virtual photon, W or Z boson via the Drell-Yan process at the Tevatron
or LHC. The total cross section for this process was first computed at NNLO
in 1991 [21]. Last year, the rapidity distribution of the vector boson also be-
came available at this order [17,22], as shown in fig. 1. The rapidity is defined
in terms of the energy E and longitudinal momentum pz of the vector boson
in the center-of-mass frame, Y ≡ 1

2
log

(
E+pz

E−pz

)
. It determines where the vector

boson decays within the detector, or outside its acceptance. The rapidity is
sensitive to the x values of the incoming partons. At leading order in QCD,
x1 = eYmV /

√
s, x2 = e−YmV /

√
s, where mV is the vector boson mass.

The LHC will produce roughly 100 million W s and 10 million Zs per year
in detectable (leptonic) decay modes. LHC experiments will be able to map
out the curve in fig. 1 with exquisite precision, and use it to constrain the
parton distributions — in the same detectors that are being used to search for
new physics in other channels, often with similar qq̄ initial states. By taking
ratios of the other processes to the “calibration” processes of single W and Z
production, many experimental uncertainties, including those associated with
the initial state parton distributions, drop out. Thus fig. 1 plays a role as a
“partonic luminosity monitor” [23]. To get the full benefit of the remarkable
experimental precision, though, the theory uncertainty must approach the
1% level. As seen from the uncertainty bands in the figure, this precision is
only achievable at NNLO. The bands are estimated by varying the arbitrary
renormalization and factorization scales µR and µF (set to a common value
µ) from mV /2 to 2mV . A computation to all orders in αs would have no
dependence on µ. Hence the µ-dependence of a fixed order computation is
related to the size of the missing higher-order terms in the series. Although
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sub-1% uncertainties may be special to W and Z production at the LHC,
similar qualitative improvements in precision will be achieved for many other
processes, such as di-jet production, as the NNLO terms are completed.

Even within the NNLO terms in the partonic cross section, there are several
types of ingredients. This feature is illustrated in fig. 2 for the purely gluonic
contributions to di-jet production, σ̂gg→jjX. In the figure, individual Feynman
graphs stand for full amplitudes interfered (×) with other amplitudes, in order
to produce contributions to a cross section. There may be 2, 3, or 4 partons in
the final state. Just as in QED it is impossible to define an outgoing electron
with no accompanying cloud of soft photons, also in QCD sensible observables
require sums over final states with different numbers of partons. Jets, for
example, are defined by a certain amount of energy into a certain conical
region. At leading order, that energy typically comes from a single parton,
but at NLO there may be two partons, and at NNLO three partons, within
the jet cone.

Each line in fig. 2 results in a cross-section contribution containing severe
infrared divergences, which are traditionally regulated by dimensional regula-
tion with D = 4− 2ε. Note that this regulation breaks the classical conformal
invariance of QCD, and the classical and quantum conformal invariance of
N = 4 super-Yang-Mills theory. Each contribution contains poles in ε ranging
from 1/ε4 to 1/ε. The poles in the real contributions come from regions of
phase-space where the emitted gluons are soft and/or collinear. The poles in
the virtual contributions come from similar regions of virtual loop integra-
tion. The virtual × real contribution obviously has a mixture of the two. The
Kinoshita-Lee-Nauenberg theorem [24] guarantees that the poles all cancel
in the sum, for properly-defined, short-distance observables, after renormal-
izing the coupling constant and removing initial-state collinear singularities
associated with renormalization of the pdfs.

A critical ingredient in any NNLO prediction is the set of two-loop ampli-
tudes, which enter the doubly-virtual × real interference in fig. 2. Such ampli-
tudes require dimensionally-regulated all-massless two-loop integrals depend-
ing on at least one dimensionless ratio, which were only computed beginning in
1999 [25,26,27]. They also receive contributions from many Feynman diagrams,
with lots of gauge-dependent cancellations between them. It is of interest to
develop more efficient, manifestly gauge-invariant methods for combining di-
agrams, such as the unitarity or cut-based method successfully applied at one
loop [10] and in the initial two-loop computations [28].

5



∑
i, j

i

j
+

∑
i

i

Figure 3. Illustration of soft-collinear (left) and pure-collinear (right) one-loop di-
vergences.

3 N = 4 Super-Yang-Mills Theory as a Testing Ground for QCD

N = 4 super-Yang-Mills theory serves an excellent testing ground for pertur-
bative QCD methods. For n-gluon scattering at tree level, the two theories
in fact give identical predictions. (The extra fermions and scalars of MSYM
can only be produced in pairs; hence they only appear in an n-gluon ampli-
tude at loop level.) Therefore any consequence of N = 4 supersymmetry, such
as Ward identities among scattering amplitudes [29], automatically applies
to tree-level gluonic scattering in QCD [30]. Similarly, at tree level Witten’s
topological string [31] produces MSYM, but implies twistor-space localization
properties for QCD tree amplitudes. (Amplitudes with quarks can be related
to supersymmetric amplitudes with gluinos using simple color manipulations.)

3.1 Pole Structure at One and Two Loops

At the loop-level, MSYM becomes progressively more removed from QCD.
However, it can still illuminate general properties of scattering amplitudes, in
a calculationally simpler arena. Consider the infrared singularities of one-loop
massless gauge theory amplitudes. In dimensional regularization, the leading
singularity is 1/ε2, arising from virtual gluons which are both soft and collinear
with respect to a second gluon or another massless particle. It can be char-
acterized by attaching a gluon to any pair of external legs of the tree-level
amplitude, as in the left graph in fig. 3. Up to color factors, this leading diver-
gence is the same for MSYM and QCD. There are also purely collinear terms
associated with individual external lines, as shown in the right graph in fig. 3.
The pure-collinear terms have a simpler form than the soft terms, because
there is less tangling of color indices, but they do differ from theory to theory.

The full result for one-loop divergences can be expressed as an operator I(1)(ε)
which acts on the color indices of the tree amplitude [32]. Treating the L-loop
amplitude as a vector in color space, |A(L)

n 〉, the one-loop result is

|A(1)
n 〉 = I(1)(ε)|A(0)

n 〉 + |A(1),fin
n 〉 , (3)
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where |A(1),fin
n 〉 is finite as ε→ 0, and

I(1)(ε) =
1

2

eεγ

Γ(1 − ε)

n∑
i=1

n∑
j �=i

Ti · Tj

[
1

ε2
+

γi

T2
i

1

ε

](
µ2

R

−sij

)ε

, (4)

where γ is Euler’s constant and sij = (ki + kj)
2 is a Mandelstam invariant.

The color operator Ti · Tj = T a
i T

a
j and factor of (µ2

R/(−sij))
ε arise from soft

gluons exchanged between legs i and j, as in the left graph in fig. 3. The pure
1/ε poles terms proportional to γi have been written in a symmetric fashion,
which slightly obscures the fact that the color structure is actually simpler.
We can use the equation which represents color conservation in the color-space
notation,

∑n
j=1 Tj = 0, to simplify the result. At order 1/ε we may neglect the

(µ2
R/(−sij))

ε factor in the γi terms, and we have
∑n

j �=i Ti · Tj γi/T
2
i = −γi.

So the color structure of the pure 1/ε term is actually trivial. For an n-gluon
amplitude, the factor γi is set equal to its value for gluons, which turns out to
be γg = b0, the one-loop coefficient in the β-function. Hence the pure-collinear
contribution vanishes for MSYM, but not for QCD.

The divergences of two-loop amplitudes can be described in the same for-
malism [32]. The relation to soft-collinear factorization has been made more
transparent by Sterman and Tejeda-Yeomans, who also predicted the three-
loop behavior [33]. Decompose the two-loop amplitude |A(2)

n 〉 as

|A(2)
n 〉 = I(2)(ε)|A(0)

n 〉 + I(1)(ε)|A(1)
n 〉 + |A(2),fin

n 〉 , (5)

where |A(2),fin
n 〉 is finite as ε→ 0 and

I(2)(ε) =−1

2
I(1)(ε)

(
I(1)(ε) +

2b0
ε

)
+
e−εγΓ(1 − 2ε)

Γ(1 − ε)

(
b0
ε

+K

)
I(1)(2ε)

+
eεγ

4εΓ(1 − ε)

[
−

n∑
i=1

n∑
j �=i

Ti · Tj
H

(2)
i

T2
i

( µ2

−sij

)2ε
+ Ĥ(2)

]
. (6)

Here K and H
(2)
i depend on the theory, and H

(2)
i , like γi, also depends on

the external leg i. For QCD, K has long been known from soft-gluon resum-
mation [34], while H

(2)
i were found by explicit computation of four-parton

two-loop scattering amplitudes [35,36,37]. For MSYM, the quantities are nat-
urally simpler,

KN=4 =−ζ2CA , (7)

H
(2),N=4
i =

ζ3
2
C2

A , (8)
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where CA = Nc is the adjoint Casimir value. The quantity Ĥ(2) has non-
trivial, but purely subleading-in-Nc, color structure. It is associated with soft,
rather than collinear, momenta [37,33], so it is theory-independent, up to color
factors. An ansatz for it for general n has been presented recently [38].

3.2 Recycling Cuts in MSYM

An efficient way to compute loop amplitudes, particularly in theories with
a great deal of supersymmetry, is to use unitarity and reconstruct the am-
plitude from its cuts [10,38]. For the four-gluon amplitude in MSYM, the
two-loop structure, and much of the higher-loop structure, follows from a sim-
ple property of the one-loop two-particle cut in this theory. For simplicity, we
strip the color indices off of the four-point amplitude A(0)

4 , by decomposing

it into color-ordered amplitudes A
(0)
4 , whose coefficients are traces of SU(Nc)

generator matrices (Chan-Paton factors),

A(0)
4 (k1, a1; k2, a2; k3, a3; k4, a4) = g2

∑
ρ∈S4/Z4

Tr(T aρ(1)T aρ(2)T aρ(3)T aρ(4))

×A(0)
4 (kρ(1), kρ(2), kρ(3), kρ(4)) . (9)

The two-particle cut can be written as a product of two four-point color-
ordered amplitudes, summed over the pair of intermediate N = 4 states S, S′

crossing the cut, which evaluates to

∑
S,S′∈N=4

A
(0)
4 (k1, k2, �S,−�′S′) × A

(0)
4 (�′S′,−�S, k3, k4)

= is12s23A
(0)
4 (k1, k2, k3, k4) × 1

(�′ − k1)2

1

(�− k3)2
, (10)

where �′ = � − k1 − k2. This equation is also shown in fig. 4. The scalar
propagator factors in eq. (10) are depicted as solid vertical lines in the figure.
The dashed line indicates the cut. Thus the cut reduces to the cut of a scalar
box integral, defined by

ID=4−2ε
4 ≡

∫
d4−2ε�

(2π)4−2ε

1

�2(�− k1)2(�− k1 − k2)2(�+ k4)2
. (11)

One of the virtues of eq. (10) is that it is valid for arbitrary external states
in the N = 4 multiplet, although only external gluons are shown in fig. 4.
Therefore it can be re-used at higher loop order, for example by attaching yet
another tree to the left.
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∑
N=4

1

2 3

4

= i s12s23

1

2 3

4

Figure 4. The one-loop two-particle cuts for the four-point amplitude in MSYM
reduce to the tree amplitude multiplied by a cut scalar box integral (for any set of
four external states).

1

2 3

4

N=4

= i2 s12s23

1

2 3

4

s12

1

2 3

4

+s12

1

2 3

4

+ perms

Figure 5. The two-loop gg → gg amplitude in MSYM [11,39]. The blob on the
right represents the color-ordered tree amplitude A

(0)
4 . (The quantity s12s23A

(0)
4

transforms symmetrically under gluon interchange.) In the the brackets, black lines
are kinematic 1/p2 propagators, with scalar (φ3) vertices. Green lines are color δab

propagators, with structure constant (fabc) vertices. The permutation sum is over
the three cyclic permutations of legs 2,3,4, and makes the amplitude Bose symmetric.

At two loops, the simplicity of eq. (10) made it possible to compute the
two-loop gg → gg scattering amplitude in that theory (in terms of specific
loop integrals) in 1997 [11], four years before the analogous computations in
QCD [36,37]. All of the loop momenta in the numerators of the Feynman di-
agrams can be factored out, and only two independent loop integrals appear,
the planar and nonplanar scalar double box integrals. The result can be writ-
ten in an appealing diagrammatic form, fig. 5, where the color algebra has the
same form as the kinematics of the loop integrals [39].

At higher loops, eq. (10) leads to a “rung rule” [11] for generating a class
of (L+ 1)-loop contributions from L-loop contributions. The rule states that
one can insert into a L-loop contribution a rung, i.e. a scalar propagator,
transverse to two parallel lines carrying momentum �1+�2, along with a factor
of i(�1 + �2)

2 in the numerator, as shown in fig. 6. Using this rule, one can
construct recursively the external and loop-momentum-containing numerators
factors associated with every φ3-type diagram that can be reduced to trees by a
sequence of two-particle cuts, such as the diagram in fig. 7a. Such diagrams can
be termed “iterated 2-particle cut-constructible,” although a more compact
notation might be ‘Mondrian’ diagrams, given their resemblance to Mondrian’s
paintings. Not all diagrams can be computed in this way. The diagram in fig. 7b
is not in the ‘Mondrian’ class, so it cannot be determined from two-particle
cuts. Instead, evaluation of the three-particle cuts shows that it appears with
a non-vanishing coefficient in the subleading-color contributions to the three-
loop MSYM amplitude.
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�1

�2

−→ i(�1 + �2)
2

�1

�2

Figure 6. The rung rule for MSYM.

(a) (b)

Figure 7. (a) Example of a ‘Mondrian’
diagram which can be determined re-
cursively from the rung rule. (b) The
first non-vanishing, non-Mondrian dia-
grams appear at three loops in nonplanar,
subleading-color contributions.

4 Iterative Relation in N = 4 Super-Yang-Mills Theory

Although the two-loop gg → gg amplitude in MSYM was expressed in terms
of scalar integrals in 1997 [11], and the integrals themselves were computed
as a Laurent expansion about D = 4 in 1999 [25,26], the expansion of the
N = 4 amplitude was not inspected until last fall [9], considerably after similar
investigations for QCD and N = 1 super-Yang-Mills theory [36,37]. It was
found to have a quite interesting “iterative” relation, when expressed in terms
of the one-loop amplitude and its square.

At leading color, the L-loop gg → gg amplitude has the same single-trace color
decomposition as the tree amplitude, eq. (9). Let M

(L)
4 be the ratio of this

leading-color, color-ordered amplitude to the corresponding tree amplitude,
omitting also several conventional factors,

A
(L),N=4 planar
4 =

[
2e−εγg2Nc

(4π)2−ε

]L
A

(0)
4 ×M

(L)
4 . (12)

Then the iterative relation (see also fig. 8) is

M
(2)
4 (ε) =

1

2

(
M

(1)
4 (ε)

)2
+ f(ε)M

(1)
4 (2ε) − 1

2
(ζ2)

2 + O(ε) , (13)

where f(ε) ≡ (ψ(1 − ε) − ψ(1))/ε = −(ζ2 + ζ3ε+ ζ4ε
2 + · · ·).

The analogous relation for gluon-gluon scattering at two loops in QCD takes
a similar form at the level of the pole terms in ε, thanks to the general re-
sult (5). But the finite remainder −1

2
(ζ2)

2 is replaced by approximately six
pages of formulas (!), including a plethora of polylogarithms, logarithms and
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N=4 planar

= 1
2

2

+f(ε)

2ε

−1
2(ζ2)2 + O(ε)

f(ε) = −(ζ2 + εζ3 + ε2ζ4 + . . .)

Figure 8. Schematic depiction of the iterative relation (13) between two-loop and
one-loop MSYM amplitudes.

polynomials in ratios of invariants s/t, s/u and t/u [37]. The polylogarithm is
defined by

Lim(x) =
∞∑
i=1

xi

im
=

x∫
0

dt

t
Lim−1(t), Li1(x) = − ln(1 − x). (14)

It appears with degree m up to 4 at the finite, order ε0, level; and up to
degree 4 − i in the O(ε−i) terms. In the case of MSYM, identities relating
these polylogarithms are needed to establish eq. (13).

Although the O(ε0) term in eq. (13) is miraculously simple, as noted above
the behavior of the pole terms is not a miracle. It is dictated in general terms
by the cancellation of infrared divergences between virtual corrections and
real emission [24]. Roughly speaking, for this cancellation to take place, the
virtual terms must resemble lower-loop amplitudes, and the real terms must
resemble lower-point amplitudes, in the soft and collinear regions of loop or
phase-space integration.

At the level of the finite terms, the iterative relation (13) can be understood
in the Regge/BFKL limit where s � t, because it then corresponds to expo-
nentiation of large logarithms of s/t [40]. For general values of s/t, however,
there is no such argument.

The relation is special to D = 4, where the theory is conformally invariant.
That is, the O(ε1) remainder terms cannot be simplified significantly. For ex-

ample, the two-loop amplitude M
(2)
4 (ε) contains at O(ε1) all three independent

Li5 functions, Li5(−s/u), Li5(−t/u) and Li5(−s/t), yet [M
(1)
4 (ε)]2 has only the

first two of these [9].

The relation is also special to the planar, leading-color limit. The subleading
color-components of the finite remainder |A(2),fin

n 〉 defined by eq. (5) show no
significant simplification at all.
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For planar amplitudes in the D → 4 limit, however, there is evidence that
an identical relation also holds for an arbitrary number n of external legs,
at least for certain “maximally helicity-violating” (MHV) helicity amplitudes.
This evidence comes from studying the limits of two-loop amplitudes as two of
the n gluon momenta become collinear [9,38,41]. (Indeed, it was by analyzing
these limits that the relation for n = 4 was first uncovered.) The collinear
limits turn out to be consistent with the same eq. (13) with M4 replaced by
Mn everywhere [9], i.e.

M (2)
n (ε) =

1

2

(
M (1)

n (ε)
)2

+ f(ε)M (1)
n (2ε) − 1

2
(ζ2)

2 + O(ε) . (15)

The collinear consistency does not constitute a proof of eq. (15), but in light
of the remarkable properties of MSYM, it would be surprising if it were not
true in the MHV case. Because the direct computation of two-loop amplitudes
for n > 4 seems rather difficult, it would be quite interesting to try to examine
the twistor-space properties of eq. (15), along the lines of refs. [31,42]. (The
right-hand-side of eq. (15) is not completely specified at order 1/ε and ε0 for
n > 4. The reason is that the order ε and ε2 terms in M (1)

n (ε), which contribute
to the first term in eq. (15) at order 1/ε and ε0, contain the D = 6 − 2ε
pentagon integral [43], which is not known in closed form. On the other hand,
the differential equations this integral satisfies may suffice to test the twistor-
space behavior. Or one may examine just the finite remainder M (L),fin

n defined
via eq. (5).)

It may soon be possible to test whether an iterative relation for planar MSYM
amplitudes extends to three loops. An ansatz for the three-loop planar gg → gg
amplitude, shown in fig. 9, was provided at the same time as the two-loop re-
sult, in 1997 [11]. The ansatz is based on the “rung-rule” evaluation of the
iterated 2-particle cuts, plus the 3-particle cuts with intermediate states in
D = 4; the 4-particle cuts have not yet been verified. Two integrals, each be-
ginning at O(ε−6), are required to evaluate the ansatz in a Laurent expansion
about D = 4. (The other two integrals are related by s↔ t.) The triple ladder
integral on the top line of fig. 9 was evaluated last year by Smirnov, all the
way through O(ε0) [44]. Evaluation of the remaining integral, which contains
a factor of (�+k4)

2 in the numerator, is in progress [45]; all the terms through
O(ε−2) agree with predictions [33], up to a couple of minor corrections.

5 Significance of Iterative Behavior?

It is not yet entirely clear why the two-loop four-point amplitude, and prob-
ably also the n-point amplitudes, have the iterative structure (15). However,
one can speculate that it is from the need for the perturbative series to
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Figure 9. Graphical representation of the three-loop amplitude for MSYM in the
planar limit.

be summable into something which becomes “simple” in the planar strong-
coupling limit, since that corresponds, via AdS/CFT, to a weakly-coupled
supergravity theory. The fact that the relation is special to the conformal
limit D → 4, and to the planar limit, backs up this speculation. Obviously
it would be nice to have some more information at three loops. There have
been other hints of an iterative structure in the four-point correlation func-
tions of chiral primary (BPS) composite operators [46], but here also the exact
structure is not yet clear. Integrability has played a key role in recent higher-
loop computations of non-BPS spin-chain anomalous dimensions [4,5,6,8]. By
imposing regularity of the BMN ‘continuum’ limit [3], a piece of the anoma-
lous dimension matrix has even been summed to all orders in g2Nc in terms
of hypergeometric functions [7]. The quantities we considered here — gauge-
invariant, but dimensionally regularized, scattering amplitudes of color non-
singlet states — are quite different from the composite color-singlet operators
usually treated. Yet there should be some underlying connection between the
different perturbative series.

6 Aside: Anomalous Dimensions in QCD and MSYM

As mentioned previously, the set of anomalous dimensions for leading-twist
operators was recently computed at NNLO in QCD, as the culmination of a
multi-year effort [13] which is central to performing precise computations of
hadron collider cross sections. Shortly after the Moch, Vermaseren and Vogt
computation, the anomalous dimensions in MSYM were extracted from this
result by Kotikov, Lipatov, Onishchenko and Velizhanin [12]. (The MSYM
anomalous dimensions are universal; supersymmetry implies that there is only
one independent one for each Mellin moment j.) This extraction was non-
trivial, because MSYM contains scalars, interacting through both gauge and
Yukawa interactions, whereas QCD does not. However, Kotikov et al. noticed,
from comparing NLO computations in both leading-twist anomalous dimen-
sions and BFKL evolution, that the “most complicated terms” in the QCD

13



computation always coincide with the MSYM result, once the gauge group
representation of the fermions is shifted from the fundamental to the adjoint
representation. One can define the “most complicated terms” in the x-space
representation of the anomalous dimensions — i.e. the splitting kernels —
as follows: Assign a logarithm or factor of π a transcendentality of 1, and a
polylogarithm Lim or factor of ζm = Lim(1) a transcendentality of m. Then
the most complicated terms are those with leading transcendentality. For the
NNLO anomalous dimensions, this turns out to be transcendentality 4. (This
rule for extracting the MSYM terms from QCD has also been found to hold
directly at NNLO, for the doubly-virtual contributions [38].) Strikingly, the
NNLO MSYM anomalous dimension obtained for j = 4 by this procedure
agrees with a previous result derived by assuming an integrable structure for
the planar three-loop contribution to the dilatation operator [5].

7 Conclusions and Outlook

N = 4 super-Yang-Mills theory is an excellent testing ground for techniques
for computing, and understanding the structure of, QCD scattering amplitudes
which are needed for precise theoretical predictions at high-energy colliders.
One can even learn something about the structure of N = 4 super-Yang-Mills
theory in the process, although clearly there is much more to be understood.
Some open questions include: Is there any AdS/CFT “dictionary” for color
non-singlet states, like plane-wave gluons? Can one recover composite operator
correlation functions from any limits of multi-point scattering amplitudes? Is
there a better way to infrared regulate N = 4 supersymmetric scattering
amplitudes, that might be more convenient for approaching the AdS/CFT
correspondence, such as compactification on a three-sphere, use of twistor-
space, or use of coherent external states? Further investigations of this arena
will surely be fruitful.
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