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SUMMARY

In thispaper,multilayerfeedforwardnetworks are appliedto the robot inversekinematic problem.

The networks are trainedwith endeffectorpositionand jointangles.Aftertraining,performance ismeas-

ured by having the network generatejointanglesforarbitraryendeffectortrajectories.A 3-degrees-of-

freedom (DOF) spatialmanipulator isused forthe study. Itisfound that neuralnetworks provide a sim-

ple and effectiveway to both model the manipulator inversekinematicsand circumvent the problems

associatedwith algorithmicsolutionmethods.

INTRODUCTION

Historically, digital computers have utilized programmed instructions and data patterns to process

information and solve problems. Solving a problem by using this programmed approach requires the

development of software to implement the algorithms or sets of rules. Frequently, there are situations,
such as for nonlinear or complex multivariable systems, where the sets of rules or required algorithms are

unknown or too complex to be accurately modeled. Even if characterizing algorithms are obtained, they
often are too computationally intensive for practical real-time applications. To circumvent these prob-

lems, a relatively new approach toinformation processing, known as neurocomputing, has been developed.

This approach, which does not require algorithm or rule development, is advantageous because it may eli-

minate software development, decrease computational requirements, and allow for information processing

capabilities where algorithms or rules are not known or cannot be derived (refs. 1 to 4).

A neural network is the primary information processing structure of interest in neurocomputing.

In reference 1, it is defined as a parallel, distributed information processing structure composed of a num-

ber of simple, highly interconnected processing elements similar to neurons in the human nervous system

(see fig. 1). The processing elements interact locally through a set of unidirectional weighted connections.

The neural network learns (or trains itself) to generalize a mapping or functional relationship from exam-

ple sets of input vectors and corresponding output vectors. The neural network then stores the connec-

tion strengths (weights) between processing units. The weights represent the strength of interconnections
between neurons and are adjusted during the learning process. The knowledge of the network is inter-

nally represented by the values of the weights and the topology of the connections. From the network's

knowledge, the network is able to solve for unknown output when new input is presented. The neural

network contrasts with conventional methods where the specific relationships between input and output

must be supplied by user defined algorithms or data patterns. The characteristics of neural networks per-

mit self-organization, fault tolerance, generalization, optimization, association, etc. (refs. 1 to 5).

In robotics, the computational requirements for task and path planning, and path control, may be

very demanding (refs. 6 and 7). However, most robotic processes may be formulated in terms of optimi-

zation or pattern recognition problems so that neural networks can be adapted (refs. 8 to 11). This paper

explores the application of a neural network for approximating the nonlinear transformation relating the

manipulator's endeffector position to its joint coordinates. From a variety of neural networks_ two net-

works were chosen for the present study: a single-hidden-layer feedforward network, and a multiple-

hidden-layer feedforward network. The multilayer feedforward network was chosen because of its



enhancedcapability to modelnonlinearsystemcharacteristics(ref. 2). Thenetworksweretrainedby
usingthe endeffectorpositionof a 3-degrees-of-freedom(DOF) manipulatoras input and its correspond-

ing joint angles as output. After the network was trained, endeffector positions which were not part of

the original training data set were input to the network to assess the network's capabilities for generating
correct joint angles for arbitrary endeffector positions.

APPLICATION TO MOTION CONTROL OF MICROGRAVITY MANIPULATOR

The relationship between the desired endeffector path in Cartesian space (or work space) and the
joint motions (joint space) is defined by the manipulator's kinematics. The determination of the end-

effector position from the joint variables is known as forward kinematics. Conversely, inverse kinematics

is used to find a set of joint displacements for a given endeffector position. The kinematics and their

derivatives are used in path planning and control to provide real-time computing of inverse dynamics and
kinematics.

Kinematics of Microgravity Manipulator

Figure 2(a) shows a 4-DOF microgravity manipulator (ref. 12) composed of two intersecting points,

each having 2 DOF's. The manipulator has one kinematicaily redundant DOF if orientation is neglected

and only the x, y, z position of the endeffector is specified. Usually, manipulators with redundancy are
designed to help overcome kinematic and other limitations such as singularity and obstacle avoidance,

joint limits, servomotor torque minimization, and so forth. For the microgravity manipulator, the redun-

dancy is used to reduce the base reactions transmitted into the supporting structure. A cost function,
designed to minimize the base forces and moments, is used to resolve the motion of the redundant DOF

(ref. 13). In this paper, however, it is assumed that the third joint angle, 0_ is fixed so that the manipu-

lator is reduced to a 3-DOF, nonredundant configuration. Henceforth, the fourth joint 04 is referred to
the third joint angle, 8_ due to sequential order. Since the manipulator is composed of 3 DOF's, there

are four possible solution sets (see eqs. (5), (6), and (7)) to the inverse kinematics for a given endeffector

position. These correspond to left/right shoulder and up/down elbow configurations. To simplify the

problem, the network is trained with only one (right shoulder and up elbow) of the multiple solutions.

For the forward kinematics of the microgravity manipulator, the joint parameters (81, 82, 03) are
mapped to endeffector position (x, y, z). On the basis of figure 2, the Denavit-Hartenberg (D-H) link
parameters of the manipulator are obtained in terms of the link frames and are listed in table I. From

these values (the values of joint limit ranges differ from those in ref. 12), the D-H homogeneous trans-

formation matrices (refs. 7 and 14) that are the 4 x 4 transformation matrices relating rotation and dis-
placement between the two coordinate systems are defined as:
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where T/"I is a transformation matrix that relates coordinate system i to i-l.
of the endeffector in the base system can be expressed as:
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The Cartesiancoordinates

(4)

The inverse kinematic problem involves mapping the endeffector position (x, y, z) to the joint

parameters (81, 02, 83). Unlike the forward kinematic problem, the inverse kinematic problem usually
does not have a unique solution. Several joint positions may provide the identical endeffector position.

Moreover, if the system has a greater number of joints (DOF's) than the minimum number necessary for

the task, the system will be redundant (refs. 15 and 16), and will have an infinite number of solutions. A

variety of procedures, such as the matrix algebraic method, zero position method, geometric inspection

method, and so on (refs. 6, 14, 17, and 18), have been developed for solving the kinematic problem. For

complex systems, however, it is sometimes very difficult, or even impossible, to obtain a set of closed-
form solutions. Moreover, many kinematic solutions which are not closed-form require iterative proce-

dures such as the Newton Raphson or the gradient descent methods (ref. 16). These numerical methods

are very time consuming and have severe limitations for real-time operations.

The angle 01, shown in figure 2(b), can be obtained as

81 = ArAIV2 _y, px ) (5)



Applying the law of cosine to the geometry gives

Oj = ± cos-l Px +Py +P, -Ll - (6)

and

where

oz = (7)
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Equations (5), (6), and (7) represent the inverse kinematics problem of the 3-DOF microgravity manipu-

lator. A solution set of right shoulder and up position provides the joint angles used for training the net-

work. Once the network is trained, its capability for predicting subsequent joint angles is measured by

comparing the network's solutions to those provided by the closed-form solutions of equation (4).

Network Architecture

A unique characteristic of the neural network architecture is that it is configured by the user and

can be easily tailored to fit the application. A question arises concerning the best network architecture

for a particular application. Factors to consider are the number of hidden layers, the number of neurons

in each hidden layer, how those layers are connected to each other, the number of training data points,

how those points are selected, and so on. Typically, these decisions are based on the designer's experi-

ence. It is important to note that the computational requirements are independent of the number of

DOF's in the manipulator; instead, they are based on the network architecture. In this study, the PC

based ANZA processing board (ref. 19) and the CRAY based NETS 2.01 software (ref. 20) were used for

the single-hidden-layer and the multi-hidden-layer networks, respectively.

Let us consider first a single-hidden-layer network for a two-dimensional case. Figure 3 shows the

simplest network architecture used for the present study. The input layer distributes the endeffector y
and s coordinates to the connections which then weigh the coordinate values and distribute them to the

hidden layer. In the hidden layer, each neuron transforms the accumulated incoming data and passes the

result through a sigmoid transformation function. The transformed data then is transported to the out-
put layer through another arrangement of weighted connections. The neurons in the output layer corre-

spond to the 02 and 03 joint angles. The final result of weighting, transformation, and distribution of
data is that the input data is transformed (or mapped) into corresponding output data in the output

layer. For the three-dimensional manipulator, the 2-3-2 network of figure 3 is expanded to the 3-3-3 net-

work that includes three input neurons x, y, and s for the endeffector position; three neurons in the

hidden layer; and three output neurons, 0j, 0_, and 03 for the joint angles.



During the learning procedure, the errors between the actual network output and the training out-

put are minimized by updating the weights. The updating scheme is implemented so that changes recur-

sively propagate back through the network, changing weights that had a large effect on the output more
than those which did not. This process is repeated until the training and computed output are within a

predefined training error (see ref. 2 for details).

In this study, two measures are used to evaluate prospective networks. The first measure is termed

training error. This measure is defined as the root-mean-squared (RMS) difference between the network

output and the training point data. Normally, the training error is predefined by the user, and an itera-

tire process which updates the weights is repeated until the error requirements are met.

The second measure is termed performance error and is used to evaluate the network's ability to

generate accurate output after the training is completed. This measure is defined as the RMS difference
between the actual network output and the correct joint angles for data points which are not a part of

the original training points.

SIMULATION RESULTS AND DISCUSSION

Two-Dimensional Case

The 2-3-2 network architecture (fig. 3) was used for the first attempt to model the manipulator's

kinematics. As previously mentioned, the two neurons in the input layer correspond to the y-z coordi-

nates of the endeffector, there are three neurons in the hidden layer and two neurons in the output layer

corresponding to the joint angles 02 and 0x The input layer was completely connected to the hidden
layer, and the hidden layer was also completely connected to the output layer. There were no direct con-

nections from the input to output layers. For the two-dimensional case, 01 is fixed, and joint angles 02

and 03 are free to rotate in the ¥-z plane.

Figure 4 shows the microgravity manipulator workspace. The ¥-z coordinates were scaled to between

0.1 and 0.9 (ref. 20) to utilize the effective range of the sigmoid transfer function. Similarly, coordinates

02 and 03 also were scaled.

As a start, the network was trained with 100 randomly chosen training points comprised of 100

endeffector positions and the corresponding joint angles. For this system, a 15.4-percent training RMS

accuracy was obtained after 200 iterations. Additional iterations did not improve the training error
because of the limitations of the 2-3-2 network. It was not expected that the network could adequately

perform with this limited network architecture.

To improve the network's training error, four additional network architectures having 6, 12, 50,
and 100 neurons in the hidden layer were tested to determine the trade-off between the size of the hidden

layer and training error (fig. 5). Up to the 2-50-2 network, the networks with more neurons in the hidden

layer were able to produce smaller errors with fewer iterations. For a 2-100-2 network, however, the
training error could not be improved further, and more iterations were required to obtain the same

training error as for the 2-50-2 network. The larger networks, due to their number of neurons and
connections, did require more training time for each iteration. To provide a reasonable balance between

training error and computation effort, a 2-20-2 network architecture was selected for training.

Now, it is interesting to determine the minimum number of training points required to characterize
the inverse kinematics. At least three training points are necessary to define a two-dimensional plane.



Hence,it maybeareasonablestart to train a 2-20-2 network with three training points. However, a network

was trained with only a single training point to verify this assumption empirically. Fifty-three iterations were

required to attain a 1-percent RMS training error. After the training was completed, the network was
evaluated by having it attempt to produce the joint angles for a circular endeffector trajectory. The

circle was composed of 50 data points. None of the data points were a part of the original training set.

Figure 6(a) compares the correct joint angles with those generated by the network which was

trained with only one training point. The joint angles produced by the network were input into the for-

ward kinematics equations to compute the endeffector position. Figure 6(b) shows the correct and actual

endeffector positions. As expected, the network was incapable of producing accurate joint angles even

though it was able to reproduce the sole training point. Figure 7 shows results from a network trained

with two training points. For this network, joint angle 03 follows the actual trajectory more closely than

angle 8_. However, this network also is unable to produce accurate output for the circular trajectory.
Figure 8 shows results from the network trained with three training points. With three training points,

the network is much more able to generate the joint angles corresponding to the desired circular trajec-

tory (7-percent RMS accuracy). Even further improvement (5-percent RMS accuracy) is shown by train-

ing the network with four training points (fig. 9).

Figure 10 shows the required number of iterations for a 1-percent RMS training error as a function

of the number of training points. While increasing the number of training points improves the network's
performance, it also increases the number of iterations required for a specified training error. The number

of iterations is increased because the weights must satisfy the specified error for all of the training points

simultaneously. The general trend is for the number of iterations to increase exponentially with the num-

ber of training points. For five or more training points, the 2-20-2 network could not be trained within

the 1-percent RMS accuracy, regardless of the number of iterations.

Figure 11 shows the network's ability to produce five desired circular trajectories. The network
was trained with the four points shown in figure 9. The portions of the circular trajectories, which are in

the region of the training points, are reproduced very well. The trajectories further from the training

points are not reproduced as well.

In order to increase the network performance, a multilayered network with two hidden layers

(2-10-10-2) was investigated. For this network, 73 training points were used, so that the entire two-

dimensional manipulator workspace was represented (fig. 12). For a 1-percent RMS training accuracy,

the network was able to reproduce the training points with 150,000 iterations. Note that the 2-20-2 net-
work could not even reproduce five data points with this same accuracy.

Figure 13 shows the 2-10-10-2 network's capabilities for producing circular trajectories. The trajec-

tories were the same ones used for assessing the 2-20-2 performance (fig. 10). Clearly, the 2-10-10-2

network is able to accurately generate joint angles for endeffector positions anywhere within the work-
space. In fact, the joint angle accuracy is within 1 percent RMS for any of the trajectories. It is

interesting to note that the 2-20-2 network, which has the same number of neurons as the 2-10-10-2 but

has only one hidden layer, does not perform nearly as well.

Three-Dimensional Case

For the three-dimensional case, three neurons are required for both the input and output layers,

corresponding to the x, y, and z and 01, d_ and d 3 coordinates, respectively. To accommodate these
requirements and acquire the advantages of the multilayer network, a 3-10-10-3 system is used.



Figure14showsthedesiredjoint anglesfor a circulartrajectoryandthe anglesgeneratedby the
network which was trained with four training points. Also shown are the desired and generated endeffec-

tor positions. Obviously, the network does not adequately perform after being trained with only four

points. Figure 15 illustrates the network performance after being trained with five points. For this par-

ticular trajectory, it appears that five training points are sufficient for characterizing the inverse kinema-

tics. The results of figure 16 were created by training the network with 27 training points, then having it

generate four arbitrary trajectories. For each of the four trajectories, the network was able to map the

trajectory to within 2-percent RMS accuracy.

CONCLUDING REMARKS

In thispaper,severalneuralnetwork architectureswere evaluatedformodeling the inversekine-

maticsof a two- and three-dimensionalmanipulator. The followingconclusionsare drawn from thisstudy.

1.With adequate training,the neuralnetwork may providea practicaland efficientsolutionto the

inversekinematicproblem of robot manipulators.

2.The neuralnetwork isableto inferaccuratesolutionsto the inversekinematicsfrom limited

training data.

3. The network with two hidden layers out-performed the single-layer network even when both had

the same total number of neurons.

4. The location and quantity of training points is dependent on the manipulator workspace and the

desired trajectories.

5. Considering the success of the neural network for resolving the inverse kinematic problem, future

studies may address the application of neural networks for solving the redundant manipulator kinematic

problem where minimal base reactions are desired.
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Figure 2..--Schematic drawing of microgravity manipulator.

11



Input Hidden Output

Layer Layer Layer

Y 02

Z 03

Figure 3.--Model of 2 - 3 - 2 network (2 neurons In Input layer, 3 neurons in hkJden layer, and 2 neurons in

output layer).

Z

0.9

I I I I I I
I I I I
I I I I
i------1" "t--- 1
I I
I I
I I
P 1
I I
I I

I

0.1

I I
I I
L. _J
I I
I I
I I
I------- J,--- -I
I I I I
I I I I I I I I
I I 1 I I I I I

0.1 o.g

Figure 4.--Cross section of the mlcrogravity manipulator workspace in y-z plane.

12



0.020

0.01 8

0.01 5

0.01 4
15

_0.01 2

_0.010

"_10.008

2-3-2 Network

2-6-2 Net.work

2-I 2-2 Network
2-50-2 Network

2-100-2 Network

I_" 0.006

0.004

0.002

0.000
0 1000 2000 3000 4000 5000 600(3 7000 8000 go00 10000

ItersUons

Figure 5.mError convergence of neural network architectures using 100 randomly chosen training points.

13



0.8

¢, 0.7

,£

3
0.6

O

! I I 1

0 Desired e2
• e'2 by NN

Desired 05
• e'3 by NN

JL "&

-"-""'_-"'"- _-"-""_-"Z': --- :-"_-'-"-"-"-----_A'__....
A"

'At_ A.A R

DO. DO "0"O

O o
GeoO0_ O0'"GO

0,5 I I I I j
0 10 20 30 40 50

Evludon Points

(a) Joint angles.

0.05

0.83

0.81

0.79

0.77

N
0.73

0.71

O._l

O.e7

0.65
0.5,'

! ! ! ! ! i , , _ ,

0 Desired Position :

"• Neural Network "" _..........................

X Training Point :

..... :....................... :: ........... : ..............

• . i ,_.oo_o.oo_,i • "
............. :..o_..:..... ;..... :...%._..............

• _:_']'_ _ _ _ _.i%.•o--....<--_....'......_...." ..-
' " " G " "o

.............. _. " ............. - .... -.._ ...............
0 • 0

' •

............. _i ...................... i.<_................p
_P of>

:..... "..... i%_i ..... : ..... ,.,_-_":"i ..... ' ..... :.....
: : : ,_,o:o o.o. :

....:....._...........:.....:....._..........i.....!......
:

1
I I I I I I I I I

0,57 0.59 0,61 0.63 0.65 0.67 0.61 0,71 0.73 0.75
YAXhl

(b) Endeffector positions.

Figure 6.--Resuits from a neural network using one training point.

14



0.8 i I # i

o Desired 02
• e'2 by NN
& Desired e3

J • e'3 by NN = _&.&lHi._,_ _
_ _.

ooE j
"5

3

0
0.6

OO._T Qe._ ,,j.4r4_.a_4r_'0 0 0"°'0 °'e "*"
vO.@

O 0. O .O o e "O

0._ I I I I
0 10 20 30 4o 50

EviluliUon Potntl

(a) Joint angles.

0.88

0.83

0.81

0.711

0.77

N
0.73

0.71

! ! ! ! , i , ! i

0 Desired Position
• Neural Network ........ ..... : ..... :'...........
x Training Point

• : :,oO_oo-
.............. i.o_.-:s o..... i ..... :.'.%._..... ; ............

o

_° i : ix% '

'0..... "..... :'''0"? ..... ".......... "'Q _ ........

• " 9 ' " " O ' '
• ¢ • . ¢ •

•_.._ .......... " .e.-" ..........
O ' O
q • • o

.......... :....°.- ............. 2._ .............
Q: " . .p

: _ X : ©
1 .o : ; o.

. ....:.....,.....,.%_:;.....:.....;,_.:.....:.....:....
i i ! "_oo!ooO_: i i i

0.09 .... :..... _ ..... ; ..... :..... ; ..... :..... _ ..... ; ..........

0e7 .... ..... i ..... i...... !..... i ..... i...... i ..... :............

0._ I I I 1 I I I I I
0.55 0.57 0.50 0.81 0.83 o.e5 o.e7 0.811 0.71 0.73

YAxlm

(b) Endeffectorpositions.

Figure7.--Results from a neuralnetwork usingtwo trainingpoints.

0.75

15



O._ I i ! I

o Desired e2

• #'2 by NN

A Desired 03

0.7

3

_ 0.6

0.5

0 10 20 30 40 50

Evllmltlon Polm

(a) Joint angles.

o.8,1

0.83

0.81

0.79

0.77

0.75

N
0.73

0.71

0.69

0.87

0.85

! ! ! _ ! ! ! ! _ ilt

0 Desired Position i i i i i

• • Neural Network •" ..... :...... : ..... ."..... :." - -

X Training Point : ; : : :

. , . . . . .

i i __. o_ : :: i ii i, :.... :..... ,. ..... ., _0._ ..... ..... ......

........i.....i.....!.....::.....i_ i.........i.....i......i.....]
i i i i i i i i i

0.55 0.57 0.59 0.81 0.63 0.85 0.87 0.69 0.71 0.73 0.75

Y Axll

(b) Endeffector positions.

Figure 8.mResults from a neural network using three training points.
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Figure 16.--A 3-10-10-3 network using 27 training points.
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