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NOTES AND COMMENTS

FIXED-EFFECTS DYNAMIC PANEL MODELS,
A FACTOR ANALYTICAL METHOD

BY JUSHAN BAI1

We consider the estimation of dynamic panel data models in the presence of inci-
dental parameters in both dimensions: individual fixed-effects and time fixed-effects,
as well as incidental parameters in the variances. We adopt the factor analytical ap-
proach by estimating the sample variance of individual effects rather than the effects
themselves. In the presence of cross-sectional heteroskedasticity, the factor method
estimates the average of the cross-sectional variances instead of the individual vari-
ances. The method thereby eliminates the incidental-parameter problem in the means
and in the variances over the cross-sectional dimension. We further show that estimat-
ing the time effects and heteroskedasticities in the time dimension does not lead to the
incidental-parameter bias even when T and N are comparable. Moreover, efficient and
robust estimation is obtained by jointly estimating heteroskedasticities.

KEYWORDS: Incidental parameters in means, incidental parameters in variances,
fixed-T and large-T dynamic panels, heteroskedasticity, robust estimation, efficiency.

1. INTRODUCTION

FIXED-EFFECTS DYNAMIC PANEL MODELS are usually estimated by either
the within-group method or the generalized method of moments (GMM).
The within-group estimator is biased and inconsistent under fixed T (Nickell
(1981), Kiviet (1995)) and the Arellano–Bond GMM estimator has a bias of
order 1/N (Alvarez and Arellano (2003)). In this paper, we argue that the
fixed-effects dynamic panel data models can be estimated by the factor ana-
lytical method, which entails estimating the sample variance of the individual
fixed effects instead of the individual effects themselves, thereby eliminating
the incidental-parameter problem. The factor estimator is consistent under
fixed T and it does not have an asymptotic bias of order 1/N or order 1/T
even under large T . Broadly speaking, the factor estimator is consistent irre-
spective of the way in which N and T go to infinity.

In the presence of cross-sectional heteroskedasticities, the factor method
provides an estimate for the average variance (over the cross sections) in-
stead of individual variances, thus eliminating the incidental-parameter prob-
lem in the cross-sectional variance. We also consider incidental parameters in
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the time dimension. We show that estimating the time effects does not lead
to biases for the autoregressive coefficient estimator. We further study time
series heteroskedasticity motivated with two considerations. First, a chang-
ing variance appears to be an important empirical fact (e.g., Moffitt and
Gottschalk (2002)). Second, unlike standard regression analysis where het-
eroskedasticity is often a problem more of efficiency than of consistency, im-
posing homoskedasticity leads to inconsistency for dynamic panel models if
heteroskedasticity exists under fixed T . This has led to the robust considera-
tion of Alvarez and Arellano (2004) by allowing heteroskedasticity. However,
a concern arises as to whether estimating a large number of variance parame-
ters (under large T ) will lead to an incidental-parameters bias, similar to the
Arellano–Bond estimator analyzed by Alvarez and Arellano (2003). We show
that bias does not arise. Also, efficient and robust estimation is obtained by
allowing heteroskedasticity. We also provide a novel argument of consistency
in the presence of an increasing number of parameters.

2. THE MODEL, NOTATION, AND ASSUMPTION

We start with a simple dynamic model without regressors. This simplifies
notation and exposition. The case with regressors is examined in Section 5.
Consider

yit = ηi + δt + ρyit−1 + uit� i = 1�2� � � � �N; t = 1�2� � � � � T�

where ηi are individual effects, δt are time effects, and uit are unobservable
errors. This model has been widely studied, for example, by Anderson and
Hsiao (1981), Arellano and Bond (1991), Blundell and Smith (1991), Ahn and
Schmidt (1995), and Alvarez and Arellano (2003). We assume uit are indepen-
dent and identically distributed (i.i.d.) over i, zero mean, and variance σ2

t . The
model allows for time series heteroskedasticity for the purpose of robust es-
timation, motivated by the work of Alvarez and Arellano (2004). To see that
the model can be expressed as a special case of a factor model, we first assume
yi0 = 0 as in Moreira (2009). The case of yi0 �= 0 is considered in the Supple-
mental Material (Bai (2013)). Note that assumptions on initial conditions for
dynamic panels are important for fixed-T analysis; see, for example, Anderson
and Hsiao (1981), Bhargava and Sargan (1983), Blundell and Smith (1991),
and Hahn (1999). Rewrite the model as Byi = δ+ 1Tηi + ui, or

yi = Γ δ+ Γ 1Tηi + Γ ui�

where δ= (δ1� � � � � δT )
′ and 1T = (1�1� � � � �1)′, both are T × 1, and

B =

⎡⎢⎢⎣
1 0 · · · 0

−ρ 1 · · · 0
���

� � �
� � �

���
0 · · · −ρ 1

⎤⎥⎥⎦ � Γ = B−1 =

⎡⎢⎢⎣
1 0 · · · 0
ρ 1 · · · 0
���

� � �
� � �

���
ρT−1 · · · ρ 1

⎤⎥⎥⎦ �
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This is a factor model with a single factor, and with factor loading Γ 1T (T × 1)
and factor score ηi. A general factor structure is (Anderson and Rubin (1956),
Lawley and Maxwell (1971)) yi = μ+Λfi + εi (i = 1�2� � � � �N). For a dynamic
panel data model with fixed effects, we have μ = Γ δ (a vector of free param-
eters since δ is), Λ = Γ 1T , fi = ηi, and εi = Γ ui. This is an identifiable factor
structure (for T ≥ 3) since the first element of Γ 1T is equal to 1.

In factor analysis, the vector μ is estimated by the sample mean ȳ =
1
N

∑N

i=1 yi. Define

SN = 1
n

N∑
i=1

(yi − ȳ)(yi − ȳ)′(1)

a T ×T matrix, where n =N − 1. From yi − ȳ = Γ 1T (ηi − η̄)+Γ (ui − ū), with
η̄ = 1

N

∑N

i=1 ηi and ū= 1
N

∑N

i=1 ui, it is easy to verify that

E(SN)= Γ
(
1T1′

TπN +Φ
)
Γ ′�

where Φ = diag(σ2
1 � � � � �σ

2
T ) and πN = 1

n

∑N

i=1(ηi − η̄)2; the latter of which
is the sample variance of the individual fixed effects, a scalar quantity. Let
θN = (ρ�πN�σ

2
1 � � � � �σ

2
T ) denote the vector of parameters. We also write θ for

θN for succinctness. Let

Σ(θ)= Γ
(
1T1′

TπN +Φ
)
Γ ′�(2)

To estimate the parameters, consider the discrepancy function between SN and
Σ(θ),

QN(θ) = log |Σ| + tr
[
SNΣ

−1
]
�(3)

where Σ = Σ(θ). Multiplying by −n/2, this discrepancy has the same form as
the likelihood function for a central Wishart distribution. It also has the same
form as the random-effects likelihood function when ηi are i.i.d. normal. This
means that the results also hold for random-effects dynamic panels. Under
the fixed-effects assumption, the above function is not a likelihood function,
but the factor literature uses it as a distance measure between SN and Σ(θ);
see Amemiya, Fuller, and Pantula (1987). Other discrepancy functions may
be used. Recently, motivated by the maximum invariance principle under the
orthogonal transformation, Moreira (2009) used the noncentral Wishart distri-
bution as the discrepancy. The analysis of the noncentral Wishart likelihood in-
volves approximating the underlying Bessel function by a tractable form, which
is nontrivial. Moreira considered the case of Φ= σ2IT and no time effects. The
objective function (3) has a simple and familiar form, directly adopted from
the factor analysis, and can be justified by a decision theoretical argument of
Chamberlain and Moreira (2009) with a suitable choice of a loss function and
prior distributions. For further analysis, we make the following assumption:
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ASSUMPTION A: ui are i.i.d. over i; E(uit) = 0, var(uit) = σ2
t > 0, and uit are

independent over t and have bounded fourth moments; |ρ|< 1; ηi are fixed effects
with πN = 1

n

∑N

i=1(ηi − η̄)2 → π > 0.

Throughout, we shall assume that the true parameter θ0
N is an interior

point of a compact set Θ contained in (−1�1) × (0�∞)T+1 so that |ρ| < 1,
and πN and σ2

t (t = 1�2� � � � � T ) are strictly positive. Let θ̂ be the estima-
tor of θ0

N by minimizing the loss function over the parameter space Θ, that
is, θ̂ = argminθ QN(θ)� Invoking the result of factor analysis (e.g., Amemiya,
Fuller, and Pantula (1987), Anderson and Amemiya (1988)), we immediately
obtain consistency and asymptotic normality of

√
N(θ̂ − θ0

N) for large N and
fixed T . We thus focus on the large-T setting, in which time effects and het-
eroskedasticities become incidental parameters.

3. INCIDENTAL PARAMETERS: TIME SERIES HETEROSKEDASTICITY
UNDER LARGE T

In classical factor analysis, the consistency and asymptotic normality are for
fixed T only. The analysis is based on the premise that

√
N(SN − Σ(θ0

N)) is
asymptotically normal with a positive definite limiting covariance, where θ0

N is
of fixed dimension. This, together with the delta method (Taylor expansion), is
the main inference tool for classical factor analysis. As T increases, however,
the dimension of the matrix is also increasing, so this argument will not be
applicable. Furthermore, when T is larger than N , SN is in fact not of full rank
even though Σ(θ0

N) is of full rank. The limiting covariance cannot be positive
definite in this case. Thus, the large-T analysis requires new arguments, and is
considerably more difficult and more delicate since it involves two-dimensional
limits. The large-T analysis is important for several reasons. First, many panel
data sets have T not very small. As information cumulates over time, more
large-T data sets become available. Second, some estimators such as the crude
instrument-variables estimator discussed in Alvarez and Arellano (2003) are
consistent under fixed T , but become inconsistent for large T . Third, large
T analysis provides a guidance on the relative performance for even small-T
settings.

We consider the same model as in Section 2 but without the time effects
δt , confining the incidental-parameter problem within the variance only. Time
effects will be considered at the end of this section. From yi = Γ 1Tηi+Γ ui, and
SN = 1

N

∑N

i=1 yiy
′
i , we have E(SN) = Γ (1T1′

TπN + Φ)Γ ′, where πN = 1
N

∑N

i=1 η
2
i

and Φ = diag(σ2
1 � � � � �σ

2
T ). The parameter vector is θNT = (ρ�πN�σ

2
1 � � � � �σ

2
T ),

which is indexed by both N and T . The same discrepancy (objective) function
as in Section 2 is used. So the estimator also takes the same form. We also use
(ρ̂� π̂N� Φ̂) to denote the estimator. The dimension of θNT increases with T . We
can no longer appeal to the fixed-T factor analysis. Consistency of θ̂ requires a
new framework.
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For technical reasons, we assume there exist a > 0 and b > 0 such that a <
σ2

t < b < ∞ for all σ2
t and the maximization with respect to σ2

t is taken over
this set for t = 1�2� � � � � T . We also assume the existence of a limit for

ωT = 1
T

1′
TΦ

−11T = 1
T

T∑
t=1

1
σ2

t

−→ �> 0� say�(4)

The following results will be useful and the limits do not depend on matrix Φ.

LEMMA 1: Assuming the limit in (4) is positive, then, as T → ∞,

(a)
1′
TΦ

−1L1T

1′
TΦ

−11T

→ 1
(1 − ρ)

�

(b)
1′
TL

′Φ−1L1T

1′
TΦ

−11T

→ 1
(1 − ρ)2

�

where L is defined in (21) in the Appendix. Furthermore, the results hold when L
is replaced by Γ .

Let �NT (θ) = −N
2 QN(θ), which will be referred to as the likelihood function.

It can be written as

�NT (θ) = −N

2
log |Φ| − N

2
tr

(
BSNB

′Φ−1
) − N

2
log(1 + TπNωT)

+ N

2
πN

1 + TωTπN

(
1′
TΦ

−1BSNB
′Φ−11T

)
�

We concentrate out πN . Solving for πN from its first order condition gives

π̃N = 1′
TΦ

−1BSB′Φ−11T

(1′
TΦ

−11T )2
− 1

1′
TΦ

−11T

�

which is a function of ρ and Φ. The concentrated likelihood function is

�c(ρ�Φ) = −N

2
log |Φ| − N

2
tr

(
BSNB

′Φ−1
)

− N

2
log

(
1′
TΦ

−1BSNB
′Φ−11T

1′
TΦ

−11T

)
+ N

2

(
1′
TΦ

−1BSNB
′Φ−11T

1′
TΦ

−11T

− 1
)
�

Let Θ1 = Θρ × [a�b]T , where Θρ is a compact subset of (−1�1), and 0 < a <
b < ∞ are arbitrary; we assume the true parameter (ρ0�σ02

1 � � � � �σ02
T ) is an

interior point of Θ1. Then we have the following.
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LEMMA 2: Under Assumption A, as T�N → ∞,

1
NT

�c(ρ�Φ) = − 1
2T

T∑
t=1

[
log

(
σ2

t

) + σ02
t

σ2
t

]
(5)

− 1
2
(
ρ− ρ0

)2
[

1
T

tr
(
L0Φ0L0′Φ−1

) +Δ

]
+ op(1)�

where L0 is defined in (21) evaluated at ρ0, Δ≥ 0, and op(1) is uniform on Θ1.

The term T−1 tr(L0Φ0L0′Φ−1) is strictly positive (uniformly bounded away
from zero) on Θ1. Ignoring the op(1) term, the right hand side of the concen-
trated likelihood function is uniquely maximized at ρ= ρ0 and σ2

t = σ02
t for all

t (i.e., Φ = Φ0). From this lemma, we can deduce the consistency of ρ̂, but not
the consistency of σ̂2

t because T → ∞. Nevertheless, the lemma implies the
average consistency in the sense of

1
T

T∑
t=1

(
σ̂2

t − σ02
t

)2 = op(1)�(6)

Average consistency is equivalent to individual consistency under fixed T .
The equivalence breaks down if T → ∞, indicating the complexity of the
large-T analysis. Result (6) and the consistency of ρ̂ allow us to show that
π̂ = π0

N + op(1). These consistency results, in turn, allow us to deduce the
individual consistency of σ̂2

t for each t by exploring the relationships among ρ̂,
π̂, and Φ̂. This is the basic idea of our consistency analysis under large T .

Using the preceding lemma, the centered concentrated-likelihood can be
written as

1
NT

�c(ρ�Φ)− 1
NT

�c
(
ρ0�Φ0

)
= − 1

2T

T∑
t=1

[
log

(
σ2

t

) + σ02
t

σ2
t

− log
(
σ02

t

) − 1
]

− 1
2
(
ρ− ρ0

)2
[

1
T

tr
(
L0Φ0L0′Φ−1

) +Δ

]
+ op(1)�

Each of the first two expressions on the right hand side is nonpositive. Note
that the function f (x) = log(x) + σ02

t

x
− log(σ02

t ) − 1 is nonnegative for x > 0.
Evaluate the above equation at (ρ̂� Φ̂), and notice that �c(ρ̂� Φ̂) − �c(ρ0�Φ0)
must be nonnegative. This can only be true if each of the right hand side ex-
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pressions, evaluated at (ρ̂� Φ̂), is op(1), that is,

(
ρ̂− ρ0

)2
[

1
T

tr
(
L0Φ0L0′Φ̂−1

) +Δ

]
= op(1)�

1
T

T∑
t=1

[
log

(
σ̂2

t

) + σ02
t

σ̂2
t

− log
(
σ02

t

) − 1
]

= op(1)�

The first equality implies ρ̂ − ρ0 = op(1) and the second equality implies the
average consistency in (6). To see this, the function f (x) introduced earlier
satisfies f (x) ≥ c(x−σ02

t )2 on a compact set such that x and σ02
t ∈ [a�b], where

c > 0 only depends on a and b. Evaluating the function at x = σ̂2
t and using the

inequality, we obtain (6). Given these results, we prove in the Appendix that π̂
is consistent for π0

N and σ̂2
t is consistent for σ02

t for each t. We state this result
as a lemma.

LEMMA 3: Under Assumption A, as N�T → ∞, the factor-based MLE with
fixed effects and heteroskedasticity is such that ρ̂ = ρ0 + op(1), π̂ = π0

N + op(1),
and σ̂2

t = σ02
t + op(1) for each t.

Given consistency, we drop the superscript “0” from the true parameters.
Therefore, ρ�σ2

t �L� Φ, etc., represent the true parameters or matrices evalu-
ated at the true parameters. We next study the asymptotic representations and
the limiting distributions.

After a considerable amount of analysis, the asymptotic representation of ρ̂
is found to be

√
NT(ρ̂− ρ)=

[
1
T

tr
(
LΦL′Φ−1

)]−1 1√
NT

N∑
i=1

u′
iΦ

−1Lui + op(1)�(7)

where op(1) holds if N�T → ∞ with N/T 3 → 0. Again, L is given in (21). The
variance of the numerator 1√

NT

∑N

i=1 u
′
iΦ

−1Lui is equal to 1
T

tr(LΦL′Φ−1), the
same as the denominator. Notice that

1
T

tr
(
LΦL′Φ−1

)
(8)

= 1
T

T∑
t=2

1
σ2

t

(
σ2

t−1 + ρ2σ2
t−2 + · · · + ρ2(t−2)σ2

1

) −→ γ� say�

where we assume the preceding limit exists. Then the representation of ρ̂ im-
plies

√
NT(ρ̂− ρ)

d−→N(0�1/γ)�
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If σ2
t = σ2 does not vary with t, then γ = 1/(1 − ρ2). It follows that, un-

der homoskedasticity but without enforcing it, we obtain
√
NT(ρ̂ − ρ)

d−→
N(0�1−ρ2). Therefore, by permitting heteroskedasticity for robust estimation,
there is no loss of asymptotic efficiency under large T . Also, the incidental-
parameter problem in the variance does not cause asymptotic bias. The limit-
ing distribution is centered at zero, even scaled by the fast rate of

√
NT .

The estimator π̂ has the form

π̂ = 1′
T Φ̂

−1B̂SNB̂
′Φ̂−11T

(1′
T Φ̂

−11T )2
− 1

1′
T Φ̂

−11T

�(9)

The asymptotic representation of π̂ is found to be, assuming T/N2 → 0,

√
NT

(
π̂ −πN − 1

N
b

)
= −2πN

(
1′
TΦ

−1L1T

1′
TΦ

−11T

)√
NT(ρ̂− ρ)(10)

+ 2
(

1
T

1′
TΦ

−11T

)−1 1√
NT

N∑
i=1

u′
iΦ

−11Tηi

+ op(1)�

where b is the bias term given by

b= 2

(
1

TωT

T∑
t=1

νt

σ4
t

)(
1
N

N∑
i=1

ηi

)

with νt = E(u3
it). The joint limiting distribution of ρ̂ and π̂ can be found from

their representations.

THEOREM 1: Under Assumption A, as N�T → ∞ with T/N2 → 0 and
N/T 3 → 0, we have

√
NT

[
ρ̂− ρ

π̂ −πN − 1
N
b

]

d−→ N

⎛⎜⎝[
0
0

]
�

⎡⎢⎢⎣ 1/γ −2π
1

γ(1 − ρ)

−2π
1

γ(1 − ρ)

4π2

γ(1 − ρ)2
+ 4π

�

⎤⎥⎥⎦
⎞⎟⎠ �

where γ is defined in (8), � is given in (4), and π is the limit of πN .

The limiting distribution for ρ̂ is centered at zero, even when a large number
of incidental parameters are estimated and when T and N are comparable. In
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contrast, the within-group estimator has a bias of order 1/T and has a larger
asymptotic variance (less efficient). While GMM permits heteroskedasticity,
explicit limiting distribution for the large-T GMM with heteroskedasticity does
not appear to be stated in the literature (despite abundant results for fixed-T
GMM). In general, the GMM estimator has a bias of order 1/N , as shown
by Alvarez and Arellano (2003). The condition N/T 3 → 0 in Theorem 1 is
required for the limiting distribution to have this simple form. Under fixed T ,√
N(ρ̂−ρ) is still asymptotically normal, as argued in Section 2. The condition

T/N2 → 0 is used only for the distribution of π̂, not for ρ̂, and is only required
when E(u3

it) �= 0.

REMARK: If one of the following three conditions holds: (i) T/N → 0,
(ii) E(u3

it) = 0, (iii) random effects with E(ηi) = 0, then the term b is negli-
gible, so that we can omit b/N from the distribution of π̂. Furthermore, when
one of the three conditions holds, it is relatively easy to show that

√
NT(ρ̂−ρ)

does not have asymptotic bias. It requires additional argument to show that
there is still no asymptotic bias when none of the three conditions holds. It
turns out that two bias terms arising from the estimation of Φ are of equal
magnitude with opposite signs, so they offset each other. Details are provided
in the Appendix.

The estimated variance matrix Φ = diag(σ2
1 � � � � �σ

2
T ) is linked with ρ̂ and π̂

through

Φ̂ = diag
(
B̂SNB̂

′ − 1T1′
T π̂

− 2
[
B̂SNB̂

′ −Ω(θ̂)
]
Φ̂−11T1′

T π̂/(1 + Tω̂T π̂)
)
�

where Ω(θ̂) = 1T1′
T π̂ + Φ̂ and Tω̂T = 1′

T Φ̂
−11T . For a matrix A, diag(A) is de-

fined as a diagonal matrix by keeping the diagonal elements of A. The above
expression for Φ̂ is different from the standard factor analysis, which would
imply that Φ̂ is equal to diag(B̂SNB̂

′ − 1T1′
T π̂) (Lawley and Maxwell (1971,

p. 30, equation (4.19))). The dynamic panel model implies many restrictions
on the factor loadings, and the standard formula does not apply. However,
the expression here is shown to be asymptotically equivalent to that of clas-
sical factor analysis because the last term in our expression is negligible. The
asymptotic representation for σ̂2

t is found to be

σ̂2
t − σ2

t = 1
N

N∑
i=1

(
u2
it − σ2

t

) +Op

(
T−1

) + op

(
N−1/2

)
�(11)

Note that the term Op(T
−1) on the right hand side does not mean that σ̂2

t is
inconsistent under fixed T . The estimator σ̂2

t is still consistent with fixed T , as
guaranteed by the results of Section 2. However, for the representation to have
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this simple form, we require large T . It follows from the representation that if√
N/T → 0, as N�T → ∞, then for each t,

√
N

(
σ̂2

t − σ2
t

) d−→ N
(
0�2σ4

t

)
�(12)

under normality for uit . It is also very easy to obtain the limiting distribution
under nonnormality using the preceding asymptotic representation for σ̂2

t .

Joint Presence of Time Effects and Heteroskedasticity

In the Supplemental Material (Bai (2013)), we also derive the result when
time effects are present. All estimators have the same limiting distributions.
Additionally, the higher order bias 1

N
b for π̂ does not exist. This may appear

counterintuitive. However, the bias in Theorem 1 depends on the average η̄.
When time effects are estimated, the data depend on the individual effects
only through the deviations ηi −η, whose average is zero. Of course, with time
effects, we estimate the sample variance 1

n

∑N

i=1(ηi − η̄)2 instead of the sam-
ple moment 1

N

∑N

i=1 η
2
i . Hsiao and Tahmiscioglu (2008) also found that time

effects do not yield asymptotic bias (under homoskedasticity) for a feasible
generalized least squares (GLS) estimator. We state the results in the follow-
ing theorem but will omit the proof to avoid repetition.

THEOREM 2: When the time effects are estimated, Theorem 1 still holds with
b= 0. In addition, (12) also holds.

The issue of cross-sectional heteroskedasticity E(u2
it)= σ2

it is discussed in the
Supplemental Material (Bai (2013)).

4. EFFICIENCY

Efficiency Under Large T

This section considers the semiparametric efficiency bound under normality
of uit . Even with normality, the model still has two nonparametric components.
The first component is the individual fixed effects and the second is the het-
eroskedasticity. Under large N and large T , each component has an infinite
number of parameters in the limit. In this sense, the model is semiparametric.

Using arguments similar to those of Hahn and Kuersteiner (2002), we show
in the Supplemental Material (Bai (2013)) that the semiparametric efficiency
bound for regular estimators of ρ is given by 1/γ, where γ is defined in (8).
Regular estimators rule out superefficient ones such as those of Hodges and
Stein; see, for example, Bickel, Klaassen, Ritov, and Wellner (1993) and van
der Vaart and Wellner (1996). We state this result as a proposition.
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PROPOSITION 1: Under Assumption A and normality of uit , the asymptotic
semiparametric efficiency bound for regular estimators of ρ is 1/γ. Furthermore,
the factor estimator achieves the semiparametric efficiency bound.

This means that there exist no regular estimators that can have a smaller
asymptotic variance than 1/γ. It follows that the factor estimator is efficient
because it achieves the efficiency bound.

Efficiency Under Fixed T

It is more difficult to derive the semiparametric efficiency bound under
fixed T . However, we can prove a certain optimality result: the factor estima-
tor is asymptotically equivalent to the optimal GMM estimator based on the
moment conditions

E
[
s − g(θ)

] = 0�(13)

where s = vech(SN) and g(θ) = vech(Σ(θ)). Let GN = ∂g/∂θ′, evaluated at θ0
N ,

and let ΩN denote the variance of
√
n[s−g(θ0

N)]. Let θ̂GMM denote the optimal
GMM estimator based on (13) and let G′Ω−1G denote the probability limit of
G′

NΩ
−1
N GN . It is well known that

√
N

(
θ̂GMM − θ0

N

) d−→ N
(
0�

(
G′Ω−1G

)−1)
�

The factor estimator θ̂ has the same limiting distribution.

PROPOSITION 2: Under Assumption A and normality of uit , then under
fixed T ,

√
N

(
θ̂− θ0

N

) d−→ N
(
0�

(
G′Ω−1G

)−1)
�

Let vρ denote the (1�1)th entry of (G′ΩG′)−1. We conjecture that vρ is the
semiparametric efficiency bound of regular estimators of ρ that are functions
of SN under normality of uit .

Here is a proof of Proposition 2. Notice

s − g
(
θ0
N

) = vech
(
H +H ′ + Γ [Suu −Φ]Γ ′)�(14)

where H = Γ 1
n

∑N

i=1 1T (ui − ū)′(ηi − η̄)Γ ′, Suu = 1
n

∑N

i=1[(ui − ū)(ui − ū)′], and
n =N − 1. The variance of

√
n[s − g(θ0

N)] is

ΩN = 2D+(Γ ⊗ Γ )
(
2
(
1T1′

T ⊗Φ
)
πN +Φ⊗Φ

)(
Γ ′ ⊗ Γ ′)D+′�

where D+ is T(T + 1)/2 × T 2, the generalized inverse of the duplication ma-
trix D (e.g., Magnus and Neudecker (1999)) associated with a T dimensional
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square matrix. In fact, under normality, the variance of
√
n[vech(Γ [Suu −

Φ]Γ ′)] is D+(Γ ΦΓ ′ ⊗ Γ ΦΓ ′)D+. From vech(H + H ′) = 2D+ vec(H) =
2D+(Γ ⊗ Γ )[1T ⊗ 1

n

∑N

i=1(ui − ū)(ηi − η̄)], its variance is 4D+(Γ ⊗ Γ )(1T1′
T ⊗

ΦπN)(Γ
′ ⊗ Γ ′)/n. Summing up the two terms gives ΩN . Next, introduce

WN = 2D+[
Σ

(
θ0
N

) ⊗Σ
(
θ0
N

)]
D+′�

The factor estimator maximizes the Wishart likelihood and it is asymptotically
equivalent to the following GMM problem:

argmin
θ

n
[
s − g(θ)

]′
W −1

N

[
s − g(θ)

]
(see, e.g., Chamberlain (1984)). It follows that the factor estimator θ̂ satisfies√
n(θ̂ − θ0

N)
d−→ N(0� V ) with V = (G′W −1G)−1G′W −1ΩW −1G(G′W −1G)−1,

where W is the limit of WN . Proposition 2 is a consequence of the identity(
G′W −1G

)−1
G′W −1ΩW −1G

(
G′W −1G

)−1 = (
G′Ω−1G

)−1
�(15)

By Rao and Mitra (1971, Chap. 8), the above identity holds if W = Ω+GRG′

for some R, where R is a symmetric matrix subject to the condition that W is
positive definite. We next show that W is indeed of this form. To see this, from
the expressions of WN and Σ(θ0

N), we have

WN =ΩN + 2D+(Γ ⊗ Γ )
(
1T1′

T ⊗ 1T1′
T

)
π2

N

(
Γ ′ ⊗ Γ ′)D+′�

The second term on the right hand side is a quadratic form of the derivative
of ∂g(θ)/∂πN , which is equal to D+(Γ ⊗ Γ )(1T ⊗ 1T ). This implies that WN =
ΩN +GNRNG

′
N with RN = diag(0�2π2

N�0� � � � �0). Taking limits gives W =Ω+
GRG′. This proves Proposition 2.

Dahm and Fuller (1986) gave a similar efficiency result for unrestricted fac-
tor models. Proposition 2 does not need normality. Assumption A is sufficient,
but normality simplifies the proof. Furthermore, for ρ̂ alone (not the entire vec-

tor θ̂) to be as efficient as the optimal GMM so that
√
N(ρ̂− ρ)

d−→ N(0� vρ),
where vρ is the (1�1)th entry of (G′Ω−1G)−1, the existence of 2 + ε moment
(ε > 0) for uit is sufficient. A proof of this claim is given in the Supplemental
Material.

5. MODELS WITH ADDITIONAL REGRESSORS

Predetermined Regressors

First note that the conclusions obtained so far for panel AR(1) can be ex-
tended to panel AR(p) with fixed effects and heteroskedasticity

yit = ηi + δt + ρ1yi�t−1 + · · · + ρpyi�t−p + uit�
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The proof needs to modify the B matrix as well as the initial conditions, as in
Section A.3 of Alvarez and Arellano (2004). The rest of the proof is almost
identical to the case of AR(1). Similarly, the conclusions also hold when yit is a
vector process so we have a panel VAR. In this case, ρ1� � � � � ρp and σ2

t will be
matrices. The semiparametric efficiency bound can also be derived for panel
VAR models using the same argument as in the proof of Proposition 1. In fact,
the efficiency bound in Hahn and Kuersteiner (2002) is also for panel VAR
models. So, when yit is either an AR(p) or VAR(p) with heteroskedasticities,
our analysis does not require fundamental changes, but instead more complex
notations. This is the main reason for our presentation in terms of an AR(1).

With the above fact, we return to the panel AR(1) model in the presence of
additional predetermined regressors xit−1 (using a lag here simplifies the VAR
notation below):

yit = ηi + δt + ρyit−1 +β′xit−1 + uit�(16)

Part of the challenge for dynamic panel with predetermined regressors lies in
how to control the correlation between the regressors and the fixed effects.
For general predetermined regressors, modeling this correlation is a difficult
problem. The usual Mundlak and Chamberlain type of projections (period by
period, since, for the tth equation, αi can only be projected onto xi1� � � � � xit−1)
will yield O(T 2) number of nuisance parameters. However, for a class of pre-
determined regressors, where xit is VAR(1) or VAR(p), the problem of inci-
dental parameters is easy to handle. Consider

xit = τi + bt + ρxxit−1 +βxyit−1 + eit�(17)

where the τi are individual effects affecting xit and τi can depend on ηi, bt are
the time effects, and ρx and βx are parameters. Let zit = (yit� x

′
it)

′. Combining
the two equations gives

zit =Azi�t−1 + αi + dt + εit�

where

A=
[
ρ β′

βx ρx

]
� αi =

[
ηi

τi

]
� dt =

[
δt

bt

]
� εit =

[
uit

eit

]
�

So the model becomes a panel VAR(1) model. This panel VAR(1) allows in-
dividual effects, time effects, and heteroskedasticity. The factor approach does
not estimate the individual effects αi, but only πN = 1

n

∑N

i=1(αi − ᾱ)(αi − ᾱ)′.
Let Φt =E(εitε

′
it). The model parameters are (A�πN�Φ1� � � � �ΦT). Under the

assumption that the maximum eigenvalue of A is less than 1 in absolute value,
and a simple modification of Assumption A, the conclusion that there is no
asymptotic bias for estimating matrix A and that the factor estimator achieves
the semiparametric efficiency bound under large T also holds for this model.
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Strictly Exogenous Regressors

In equation (17), if we set βx = 0 and assume {uit} is independent of {eit},
then xit becomes strictly exogenous, so that xit = τi + bt + ρxxi�t−1 + eit . With
this strictly exogenous regressor, we can still use the panel VAR model to solve
for the incidental parameters because this model is a restricted version of the
panel VAR(1) described earlier. A further special case is non-dynamic regres-
sors such that ρx = 0. The likelihood method is suitable for imposing these
restrictions, and the model is easily estimated using the panel VAR method.
We conclude that whether T is fixed or large, there are no biases stemming
from estimating the time effects and heteroskedasticities.

However, dynamic regressors limit the way in which the regressors are cor-
related with the individual effects ηi. We consider next more general strictly
exogenous regressors with

E(uit|xi1�xi2� � � � � xiT �ηi)= 0�

but xit might be arbitrarily correlated with ηi. Consider the linear projection

ηi = c0 + c′
1xi1 + c′

2xi2 + · · · + c′
TxiT + τi�(18)

This is known as the Mundlak–Chamberlain projection; see Mundlak (1978),
Chamberlain (1984), and Chamberlain and Moreira (2009). We may regard τi
as regression residuals so that

∑N

i=1 xitτi = 0 for each t. If we take this view in-
stead of population projection, then the coefficients ct will depend on N and T .
But this dependence on N and T presents no difficulty, in view that πN and σ2

T

also depend on N and T . The focus is a consistent estimation of ρ and β and
the heteroskedasticities σ2

t . After absorbing c0 into δt , we rewrite the model
yit = δt + ρyit−1 +β′xit +ηi + uit as

yit = δt + ρyit−1 +β′xit + c′
1xi1 + c′

2xi2 + · · · + c′
TxiT + τi + uit �

In matrix notation,

Byi = δ+ xiβ+ 1Tw
′
ic + 1T τi + ui�

where xi = (xi1�xi2� � � � � xi�T )
′, wi = vec(x′

i), and c = (c′
1� c

′
2� � � � � c

′
T )

′. Again, for
simplicity, we assume yi0 = 0. Rewrite the model as

yi = Γ δ+ Γ xiβ+ Γ 1Tw
′
ic + Γ 1T τi + Γ ui�

Define

SN = 1
n

N∑
i=1

(
ẏi − Γ ẋiβ− Γ 1T ẇ

′
ic

)(
ẏi − Γ ẋiβ− Γ 1T ẇ

′
ic

)′
�(19)
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where ẏi = yi − ȳ and ẋi = xi − x̄, etc. Then, conditional on x = (x1� � � � � xN)
and η= (η1� � � � �ηN), the expected value of SN is

Σ(θ)= Γ
(
1T1′

TπN +Φ
)
Γ ′�

where πN = 1
n

∑N

i=1(τi − τ̄)2, and θ = (ρ�β� c�πN�σ
2
1 � � � � �σ

2
T ). We estimate the

model by maximizing

�(θ) = −n

2
log

∣∣Σ(θ)∣∣ − n

2
tr

[
SNΣ(θ)

−1
]
�(20)

Under fixed T , there are no incidental parameters because we only estimate
πN instead of individual τi. Moreover, the objective function is standard, so
root-N consistency and asymptotic normality of θ̂ follow from the usual argu-
ment. No further theoretical proof is needed.

Under large T , we have additional incidental parameters in the vector c.
We conjecture that under certain conditions such as the rank of regressors and
a relative rate between T and N , the asymptotic bias arising from estimating
these incidental parameters will be negligible. Proof of this conjecture appears
to be nontrivial and we leave this as a future research topic.

However, under large T , we can replace the projection in (18) by ηi =
c0 + x̄′

ic + τi, where x̄i = 1
T

∑T

t=1 xit . This is the standard Mundlak projection
by imposing c1 = c2 = · · · = cT . The dimension of c is equal to the number of
regressors, so there is no incidental-parameters problem. The Mundlak projec-
tion works even if the true ct are time varying, provided that uit is homoskedas-
tic (Φ = σ2

uIT ) and N/T 3 → 0 (see the Supplemental Material). With het-
eroskedasticities in uit , we need to modify the Mundlak projection by using
a weighted average

x̄i(Φ)= (
1′
TΦ

−11T

)−1
x′
iΦ

−11T =
(

T∑
t=1

σ−2
t

)−1 T∑
t=1

σ−2
t xit �

Absorbing (
∑T

t=1 σ
−2
t )−1 into the slope coefficient, we consider the projection

ηi = c0 + (
x′
iΦ

−11T

)′
c + τi�

Again, the incidental-parameters problem does not occur because Φ is already
part of the parameters being estimated. After absorbing c0 into the time effects
δ, the only additional parameter is c, whose dimension is fixed. As always,
we do not estimate the individual τi, but πN = 1

n

∑N

i=1(τi − τ̄)2. Define SN as
in (19) but with ẇi replaced by (ẋ′

iΦ
−11T ). The parameters are estimated by

maximizing the objective function (20). In the Supplemental Material, we show
that this extended Mundlak projection requires N/T → 0 for the bias to not
influence the limiting distribution. This implies a bias of order O(1/T). We
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discuss in the Supplemental Material a further generalization of the Mundlak
projection under which the condition N/T 3 → 0 becomes sufficient to remove
the bias.

6. CONCLUSION

The dynamic panel models considered in this paper have had a huge impact
on the empirical research in economics and continue to be the workhorses that
researchers rely on in contemporaneous empirical studies (e.g., Guiso, Pista-
ferri, and Schivadi (2005), Blundell, Pistaferri, and Preston (2008), Guvenen
(2009)). There has also been enormous advancement in the theoretical anal-
ysis over the past three decades. Much of the progress has been summarized
in three widely read monographs: Arellano (2003), Baltagi (2005), and Hsiao
(2003). A central aspect of the development concerns the problem of inciden-
tal parameters (Neyman and Scott (1948), Lancaster (2000, 2002)). Despite
the progress, the incidental-parameter problem remains an obstacle to effi-
cient estimation. In this paper, we use the factor analytical perspective to shed
light on the analysis of dynamic panel models with fixed effects. We consider
additional incidental parameters: time effects and heteroskedasticity, under
both fixed and large T .

We establish some desirable and excellent properties for the factor ap-
proach. Whether for large or small T , the method produces a consistent and
efficient estimator. No asymptotic bias exists for the dynamic parameter even
when T and N are comparable. Neither mean-stationarity nor covariance sta-
tionarity is required to establish these properties. Thus the factor approach
provides a useful paradigm to deal with the incidental-parameter problem oc-
curring in both dimensions.

APPENDIX A: PROOFS

Introduce two matrices to be used throughout:

JT =
⎡⎢⎣

0 0 · · · 0
1 0 · · · 0
���

� � �
� � �

���
0 · · · 1 0

⎤⎥⎦ � L =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
ρ 1

� � � 0 0
���

� � �
� � �

� � �
���

ρT−2 · · · ρ 1 0

⎤⎥⎥⎥⎥⎦ �(21)

where JT is the matrix derivative −dB/dρ and L= JTΓ .

PROOF OF LEMMA 1: The limits are the same when L is replaced by Γ .
Note that 1′

TΦ
−1Γ 1T = ∑T

t=1
1
σ2
t
(1 + ρ+ · · · + ρt−1). But (1 + ρ+ · · · + ρt−1)→

1/(1 − ρ) as t → ∞ and
∑T

t=1
1
σ2
t

= TωT → ∞. By the Toeplitz lemma (Hall
and Heyde (1980, p. 31)), 1′

TΦ
−1Γ ′1T /(TωT)→ 1/(1 − ρ), proving part (a).
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For part (b), denote its limit by C; we show C = 1/(1 − ρ)2. Notice Γ =
IT + ρL. Thus

1′
TΓ

′Φ−1Γ 1T = 1′
TΦ

−11T + 2ρ
(
1′
TΦ

−1L1T

) + ρ2
(
1′
TL

′Φ−1L1T

)
�

Divide by 1′
TΦ

−11T on each side and take the limit; we have C = 1 + 2ρ 1
1−ρ

+
ρ2C , implying C = 1/(1 − ρ)2. Note that the limits are the same when L is
replaced by Γ and vice versa. Q.E.D.

To prove consistency, we need to distinguish the true parameters (ρ0�π0
N�

Φ0) from the variables (ρ�πN�Φ) in the likelihood function. So Γ 0 denotes Γ
when ρ = ρ0.

LEMMA A.1: As N�T → ∞, uniformly for (ρ�σ2
1 � � � � �σ

2
T ) ∈Θ1,

(i) 1
T

tr[BΓ 0 1
N

∑N

i=1(uiu
′
i −Φ0)Γ 0′B′Φ−1] = op(1),

(ii) 1
T

tr[BΓ 01T
1
N

∑N

i=1 u
′
iΓ

0′B′Φ−1ηi] = op(1),
(iii) 1

T 2 1′
T (Φ

−1BΓ 0 1
N

∑N

i=1(uiu
′
i −Φ0)Γ 0′B′Φ−1)1T = op(1),

(iv) 1
T 2 1′

T (Φ
−1BΓ 01T

1
N

∑N

i=1 u
′
iΓ

0′B′Φ−1ηi)1T = op(1).

PROOF: Consider (i). Let W = 1
N

∑N

i=1(uiu
′
i −Φ0) and use BΓ 0 = IT + (ρ0 −

ρ)L0; we have

tr

[
BΓ 0 1

N

N∑
i=1

(
uiu

′
i −Φ0

)
Γ 0′B′Φ−1

]

= tr
(
WΦ−1

) + 2
(
ρ0 − ρ

)
tr

(
L0WΦ−1

) + (
ρ0 − ρ

)2
tr

(
L0WL0′Φ−1

)
�

Note that Φ−1 is a diagonal matrix:

1
T

∣∣tr(WΦ−1
)∣∣ = 1

TN

∣∣∣∣∣
N∑
i=1

T∑
t=1

(
u2
it − σ02

t

)
/σ2

t

∣∣∣∣∣
≤ N−1/2

(
1
T

T∑
t=1

1
σ4

t

)1/2

×
(

1
T

T∑
t=1

[
1√
N

N∑
i=1

(
u2
it − σ02

t

)]2)1/2

= N−1/2Op(1)

= op(1)
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uniformly for all σ2
t ∈ [a�b] since 1/σ4

t ≤ 1/a2 <∞. Next,

1
T

tr
(
L0WΦ−1

) =
T−2∑
k=0

(
ρ0

)k 1
NT

T∑
t=k+2

N∑
i=1

uit−k−1uit

σ2
t

�

Thus ∣∣∣∣ 1
T

tr
(
L0WΦ−1

)∣∣∣∣ ≤ N−1/2
T−2∑
k=0

∣∣ρ0
∣∣k( 1

T

T∑
t=k+2

1
σ4

t

)1/2

×
(

1
T

T∑
t=k+2

[
1√
N

N∑
i=1

uit−k−1uit

]2)1/2

�

Thus

sup
Φ

∣∣∣∣ 1
T

tr
(
L0WΦ−1

)∣∣∣∣ ≤N−1/2 1
a
ANT �

where ANT = ∑T−2
k=0 |ρ0|k( 1

T

∑T

t=k+2[ 1√
N

∑N

i=1 uit−k−1uit]2)1/2. Note that ANT =
Op(1) because its expected value is bounded by Assumption A. Thus
supΦ | 1

T
tr(L0WΦ−1)| = op(1).

Next, let Wi�hk denote the (h�k)th entry of the matrix uiu
′
i −Φ0. Then

tr
(
L0WL0′Φ−1

) =
T−1∑
t=1

1
σ2

t+1

t∑
h=1

(
ρ0

)t−h
t∑

k=1

(
ρ0

)t−k 1
N

N∑
i=1

Wi�hk�

It follows that

1
T

∣∣tr(L0WL0′Φ−1
)∣∣

≤N−1/2

(
1
T

T−1∑
t=1

1
σ4

t+1

)1/2

×
(

1
T

T−1∑
t=1

[
t∑

h=1

(
ρ0

)t−h
t∑

k=1

(
ρ0

)t−k 1√
N

N∑
i=1

Wi�hk

]2)1/2

�

Again, 1
T

∑T−1
t=1

1
σ4
t+1

≤ 1/a2 uniformly on Θ1. The above is Op(N
−1/2). Summa-

rizing results, we prove (i).
The proofs for (ii)–(iv) are similar, and the details are omitted. Q.E.D.
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PROOF OF LEMMA 2: Notice that

BSNB
′Φ−1 = BΣ

(
θ0
N

)
B′Φ−1 +BΓ 0 1

N

N∑
i=1

(
uiu

′
i −Φ0

)
Γ 0′B′Φ−1

+BΓ 01T

1
N

N∑
i=1

u′
iΓ

0′B′Φ−1ηi

+BΓ 0 1
N

N∑
i=1

ui1′
TΓ

0′B′Φ−1ηi�

where Σ(θ0
N) = Γ 0(1T1′

Tπ
0
N + Φ0)Γ 0′. Dividing by T and taking the trace, the

last three terms are op(1) by Lemma A.1(i) and (ii). Thus, uniformly on Θ1,

1
T

tr
(
BSNB

′Φ−1
) = 1

T
tr

[
BΣ

(
θ0
N

)
B′Φ−1

] + op(1)�(22)

Similarly, by Lemma A.1(iii) and (iv), we have, uniformly on Θ1,

1
T 2

(
1′
TΦ

−1BSNB
′Φ−11T

) = 1
T 2

[
1′
TΦ

−1BΣ
(
θ0
N

)
B′Φ−11T

] + op(1)�

The following also holds because 1′
TΦ

−11T is of order T uniformly on Θ1:

1
T

(1′
TΦ

−1BSNB
′Φ−11T )

1′
TΦ

−11T

= 1
T

[1′
TΦ

−1BΣ(θ0
N)B

′Φ−11T ]
1′
TΦ

−11T

+ op(1)�(23)

From BΓ 0 = IT + (ρ0 − ρ)L0, we obtain

tr
[
BΣ

(
θ0
N

)
B′Φ−1

]
= 1′

TΦ
−11Tπ

0
N + tr

(
Φ0Φ−1

) + 2
(
ρ0 − ρ

)(
1′
TΦ

−1L01T

)
π0

N

+ (
ρ0 − ρ

)2[(
1′
TL

0′Φ−1L01T

)
π0

N + tr
(
L0Φ0L0′Φ−1

)]
�

We have used tr(L0Φ0Φ−1) = 0 because L0 is lower triangular and Φ0 and Φ
are diagonal. Similarly,

1′
TΦ

−1BΣ
(
θ0
N

)
B′Φ−11T(24)

= (
1′
TΦ

−11T

)2
π0

N + 1′
TΦ

−1Φ0Φ−11T

+ 2
(
ρ0 − ρ

)[
1′
TΦ

−1L01T )
(
1′
TΦ

−11T

)
π0

N + (
1′
TΦ

−1L0Φ0Φ−11T

)]
+ (

ρ0 − ρ
)2[(

1′
TΦ

−1L01T

)2
π0

N + 1′
TΦ

−1L0Φ0L0′Φ−11T

]
�
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These equations imply, after canceling the common terms,

1
T

tr
[
BΣ

(
θ0
N

)
B′Φ−1

] − 1
T

(1′
TΦ

−1BSNB
′Φ−11T )

1′
TΦ

−11T

= 1
T

tr
(
Φ0Φ−1

) + (
ρ0 − ρ

)2
[

1
T

tr
(
L0Φ0L0′Φ−1

) +Δ

]
+O

(
1
T

)
�

where

Δ= 1
T

[(
1′
TL

0′Φ−1L01T

) − (1′
TΦ

−1L01T )
2

1′
TΦ

−11T

]
π0

N�

and Δ≥ 0 by the Cauchy–Schwarz inequality. The O(T−1) term represents

2
(
ρ0 − ρ

)(
1′
TΦ

−1L0Φ0Φ−11T

) + (
ρ0 − ρ

)2
1′
TΦ

−1L0Φ0L0′Φ−11T

divided by T(1′
TΦ

−11T ). The above is uniformly O(T) on Θ1. But T(1′
TΦ

−1 ×
1T ) ≥ T 2/b = O(T 2). Thus the ratio is O(T−1). Summarizing results, and in
view of (22) and (23), we have

1
T

tr
(
BSNB

′Φ−1
) − 1

T

(1′
TΦ

−1BSNB
′Φ−11T )

1′
TΦ

−11T

= 1
T

tr
(
Φ0Φ−1

) + (
ρ0 − ρ

)2
[

1
T

tr
(
L0Φ0L0′Φ−1

) +Δ

]
+ op(1)

uniformly on Θ1. Further, the preceding analysis shows that the left hand side
of (23) is Op(1) uniformly on Θ1. Multiplying by T , it is Op(T) uniformly on Θ1.
Thus

1
T

log
(

1′
TΦ

−1BSNB
′Φ−11T

1′
TΦ

−11T

)
= Op

(
log(T)

T

)
uniformly on Θ1. Finally, from log |Φ| = ∑T

t=1 log(σ2
t ), tr(Φ0Φ−1) = ∑T

t=1
σ02
t

σ2
t

,
and the definition of concentrated likelihood function, we obtain the asymp-
totic representation in Lemma 2. Q.E.D.

PROOF OF LEMMA 3: Given Lemma 2, we already argued the consistency of
ρ̂ and the average consistency of (6). It remains to show π̂ = π0

N + op(1) and
σ̂2

t = σ02
t + op(1) for each t. Consider π̂ in (9). Equation (23) holds with 1/T

replaced by 1/1′
TΦ

−11T because 1/(Tb) ≤ (1′
TΦ

−11T )
−1 ≤ 1/(Ta) uniformly

on Θ1. Thus

(1′
TΦ

−1BSNB
′Φ−11T )

(1′
TΦ

−11T )2
= [1′

TΦ
−1BΣ(θ0

N)B
′Φ−11T ]

(1′
TΦ

−11T )2
+ op(1)�(25)
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Because the above holds uniformly on Θ1, it holds at (ρ̂� Φ̂). Evaluate the pre-
ceding equation at (ρ̂� Φ̂), and subtract 1/(1′

T Φ̂
−11T ) = Op(1/T) = op(1) on

each side of the equation; we get

π̂ = [1′
T Φ̂

−1B̂Σ(θ0
N)B̂

′Φ̂−11T ]
(1′

T Φ̂
−11T )2

+ op(1)�

Evaluate (24) at (ρ̂� Φ̂) and divide it by (1′
T Φ̂

−11T )
2; we get

π̂ = π0
N + 2

(
ρ0 − ρ̂

)[1′
T Φ̂

−1L01T

1′
T Φ̂

−11T

]
π0

N

+ (
ρ0 − ρ̂

)2
[
(1′

T Φ̂
−1L01T )

2

(1′
T Φ̂

−11T )2

]
π0

N + op(1);

here op(1) absorbs some Op(1/T) terms. The terms inside the square brackets
are Op(1). From the consistency of ρ̂, the preceding equation implies π̂ = π0

N +
op(1).

We next show that σ̂2
t is consistent for σ02

t for every t. The first order condi-
tion for Φ implies that

Φ̂= diag
(
B̂SNB̂

′ − 2B̂SNB̂
′Φ̂−11T1′

T cT + 1T1′
T π̂

)
�(26)

where cT = π̂/(1 + Tω̂T π̂) with ω̂T = 1′
T Φ̂

−11T . It is easy to show that
2Ω(θ̂)Φ̂−11T1′

T cT = 21T1′
T π̂, where Ω(θ̂) = 1T1′

T π̂ + Φ̂. So we can rewrite Φ̂
as

Φ̂= diag
(
B̂SNB̂

′ − 1T1′
T π̂ − 2

[
B̂SNB̂

′ −Ω(θ̂)
]
Φ̂−11T1′

T cT
)
�

Given the consistency of ρ̂ and π̂, and with cT being Op(T
−1), we can show that

every diagonal element of [B̂SNB̂
′ − Ω(θ̂)]Φ̂−11T1′

T cT is op(1). So to establish
the consistency of σ̂2

t , it suffices to show that the diagonal elements of B̂SNB̂
′ −

1T1′
T π̂−Φ0 are op(1). Using a similar argument leading to (22), every diagonal

element of B̂SNB̂
′ − B̂Σ(θ0

N)B̂
′ is op(1) (here no trace, thus no need to divide

by T ), where Σ(θ0
N) = Γ 0Ω0Γ 0′ with Ω0 = (1T1′

Tπ
0
N + Φ0). Using B̂Γ 0 = IT +

(ρ0 − ρ̂)L0, we have

B̂Σ
(
θ0
N

)
B̂′ = Ω0 + (

ρ0 − ρ̂
)
Ω0L0′ + (

ρ0 − ρ̂
)
L0Ω0 + (

ρ0 − ρ̂
)2
L0Ω0L0′�

Owing to the consistency of ρ̂, every diagonal element of the last three matrices
is op(1). Thus, the diagonal elements of B̂SNB̂

′ −Ω0 = B̂SNB̂
′ − 1T1′

Tπ
0
N −Φ0

are op(1). By the consistency of π̂, the diagonal elements of B̂SNB̂
′ − 1T1′

T π̂ −
Φ0 are also op(1). This proves the consistency of σ̂2

t . Q.E.D.
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Asymptotic Representations of Φ̂, π̂, and ρ̂

PROOF OF (11): Consider (26). Again using B̂Γ 0 = IT + (ρ0 − ρ̂)L0, it can
be shown that

B̂SNB̂
′ = 1T1′

Tπ
0
N + 1

N

N∑
i=1

ui1′
Tηi + 1

N

N∑
i=1

1Tu
′
iηi + 1

N

N∑
i=1

uiu
′
i

+ (
ρ̂− ρ0

)
CNT �

where CNT is T × T , with each diagonal element being Op(1). It follows that

B̂SNB̂
′Φ̂−11T1′

T cT

= 1T1′
T

(
1′
T Φ̂

−11T

)
cTπ

0
N + 1

N

N∑
i=1

ui1′
Tηi

(
1′
T Φ̂

−11T

)
cT

+ 1T1′
T

(
1
N

N∑
i=1

(
u′
iΦ̂

−11T

)
ηi

)
cT + 1

N

N∑
i=1

ui1′
T

(
u′
iΦ̂

−11T

)
cT

+ (
ρ̂− ρ0

)
DNT ;

here DNT is T ×T , with diagonal elements being Op(1). Using (1′
T Φ̂

−11T )cT =
1 +Op(1/T),

B̂SNB̂
′ − 2B̂SNB̂

′Φ̂−11T1′
T cT

= 1
N

N∑
i=1

uiu
′
i − 1T1′

Tπ
0
N + (

ρ̂− ρ0
)
(CNT −DNT)+Op(1/T)

+ 1
N

N∑
i=1

(
1Tu

′
i − ui1′

T

)
ηi − 21T1′

T

(
1
N

N∑
i=1

(
u′
iΦ̂

−11T

)
ηi

)
cT

− 2
1
N

N∑
i=1

ui1′
T

(
u′
iΦ̂

−11T

)
cT �

The first term on the third line has zero diagonal elements. Using the average
consistency (6) and cT = Op(1/T), each of the last two expressions has diago-
nal elements being of op(N

−1/2). Thus, adding 1T1′
T π̂ on each side, and by (26)

together with diag(1T1′
T )= IT , we get

Φ̂ = diag

(
1
N

N∑
i=1

uiu
′
i

)
+ IT

(
π̂ −π0

N

)
(27)

+ (
ρ̂− ρ0

)
Op(1)+Op(1/T)+ op

(
N−1/2

)
�
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This representation of Φ̂, together with the consistency of π̂ and ρ̂, allows us
to show (below) π̂−π0

N = Op(1/
√
NT)+Op(1/N) and ρ̂−ρ0 = Op(1/

√
NT).

Inserting these rates into (27) and subtracting Φ0 on each side give (11).
Q.E.D.

PROOF OF (10): From (9), direct calculation shows

π̂N −π0
N = 2

(
ρ0 − ρ̂

)[1′
T Φ̂

−1L01T

1′
T Φ̂

−11T

]
π0

N + 2

1
N

N∑
i=1

u′
iΦ̂

−11Tηi

1′
T Φ̂

−11T

(28)

+
1′
T Φ̂

−1

[
1
N

N∑
i=1

(uiu
′
i −Φ0)

]
Φ̂−11T

(1′
T Φ̂

−11T )2

+ (
ρ̂− ρ0

)
op(1)+ op

(
1√
NT

)
;

here (ρ̂ − ρ0)op(1) combines many terms of the form (ρ̂ − ρ0)[Op(T
−1) +

Op(N
−1/2)] + (ρ̂ − ρ0)2Op(1)� which can be ignored because it is dominated

by the first term on the right hand side. The first two terms on the right hand
side determine the limiting distribution of π̂. The second term has a bias of
order (1/N) if E(u3

it) �= 0 due to the estimation of Φ0. To see this,

N∑
i=1

u′
iΦ̂

−11Tηi =
N∑
i=1

u′
iΦ

0−11Tηi +
N∑
i=1

u′
i

(
Φ̂−1 −Φ0−1

)
1Tηi�

Dividing by NT , we have 1
TN

∑N

i=1 u
′
i(Φ̂

−1 − Φ0−1)1Tηi = 1
NT

∑N

i=1

∑T

t=1
uit

σ̂2
t σ

02
t

×
(σ̂2

t − σ02
t ). Using the expression of Φ̂ in (27) (subtract Φ0 on each side), we

can show

1
TN

N∑
i=1

u′
i

(
Φ̂−1 −Φ0−1

)
1Tηi = 1

TN

N∑
i=1

T∑
t=1

uitηi

σ04
t

[
1
N

N∑
k=1

(
u2
kt − σ02

t

)]

+ op(1/
√
NT)�

where op(1/
√
NT) contains (π̂ −π0

N)Op(1/
√
NT)+ (ρ̂− ρ0)Op(1/

√
NT) as

one of the components. The first term on the right is dominated by its expected
value, which is O(1/N) and is given by

1
N

(
1
T

T∑
t=1

νt

(σ0
t )

4

)(
1
N

N∑
i=1

ηi

)
�
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where νt = E(u3
it) (assuming not depending on i).

The third term on the right hand side of π̂ − π0
N can be shown to be

op(1/
√
NT) + Op(1/N3/2). If E(u3

it) = 0, the term Op(1/N3/2) will be absent.
It is easy to show that

1′
T Φ̂

−1L01T

1′
T Φ̂

−11T

= 1′
TΦ

0−1L01T

1′
TΦ

0−11T

+ op(1)�
1′
TΦ

0−11T

1′
T Φ̂

−11T

= 1 + op(1)�

To summarize results,

π̂ −π0
N = 2

(
ρ0 − ρ̂

)[1′
TΦ

0−1L01T

1′
TΦ

0−11T

]
π0

N + 2

1
N

N∑
i=1

u′
iΦ

0−11Tηi

1′
TΦ

0−11T

(29)

+ b

N
+Op

(
1/N3/2

) + op(1/
√
NT)�

where the bias term b is defined in the main text. Thus if T/N2 → 0,

√
NT

(
π̂ −π0

N − 1
N
b

)
= 2

√
NT

(
ρ0 − ρ̂

)[1′
TΦ

0−1L01T

1′
TΦ

0−11T

]
π0

N(30)

+ 2

1√
NT

N∑
i=1

u′
iΦ

0−11Tηi

T−11′
TΦ

0−11T

+ op(1)�

which is the asymptotic representation of π̂ in (10). Q.E.D.

PROOF OF (7): The first order condition implies that ρ̂=A−1
NT ·BNT , where

ANT = tr
[
JTSNJ

′
T Φ̂

−1
] − cT

(
1′
T Φ̂

−1JTSNJ
′
T Φ̂

−11T

)
�

BNT = tr
[
JTSNΦ̂

−1
] − cT

(
1′
T Φ̂

−1JTSNΦ̂
−11T

)
�

and cT = π̂/(1 + Tω̂T π̂). Using IT = B0′ + ρ0J ′
T , we can write SN = SNB

0′ +
ρ0SNJ

′
T , so that BNT = ρ0ANT +B∗

NT , with

B∗
NT = tr

(
JTSNB

0′Φ̂−1
) − cT

(
1′
T Φ̂

−1JTSNB
0′Φ̂−11T

)
�

Thus ρ̂− ρ0 = A−1
NT ·B∗

NT , or equivalently,

√
NT

(
ρ̂− ρ0

) =
(

1
T
ANT

)−1

·
(
N

T

)1/2

B∗
NT �
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We shall show

1
T
ANT = 1

T
tr

(
L0Φ0L0′Φ0−1

) + op(1)�(31) (
N

T

)1/2

B∗
NT = 1√

NT

N∑
i=1

u′
iΦ

0−1L0ui + op(1)�(32)

Because ANT occurs in the denominator of ρ̂, the analysis of (31) is relatively
easy since it converges to a positive constant (all that is needed is a consistency
argument). In contrast, the analysis of the numerator (32), which determines
the limiting distribution, is much more delicate. Potential biases must be taken
care of. Note that the two equations together imply (7).

Consider (31). It can be shown that replacing Φ̂ by Φ0 does not affect the
limit. Using JTΓ

0 =L0,

1
T

tr
(
JTSNJ

′
T Φ̂

−1
) = 1

T

(
1′
TL

0′Φ0−1L01T

)
π0

N

+ 1
T

tr
(
L0Φ0L0′Φ0−1

) + op(1)�

1
T
cT

(
1′
T Φ̂

−1JTSNB
0′Φ̂−11T

) = 1
T
cT

(
1′
TΦ

0−1L01T

)2
π0

N

+ 1
T
cT

(
1′
TΦ

0−1L0Φ0L0′Φ0−11T

)
+ op(1)�

The difference between the leading terms in the preceding two equations is
op(1) because they have the same limit. This follows from Lemma 1 [applied
with T replacing (1′

TΦ
0−11T ) in the denominator; also note we replace cT by

1/(1′
TΦ

0−11T ) without affecting the limit]. The second term in the second equa-
tion is Op(1/T). We thus obtain (31).

Next consider (32). First rewrite cT as

cT = 1
1′
T Φ̂

−11T

− 1
1′
T Φ̂

−1B̂SNB̂′Φ̂−11T

= 1
Tω̂T

− 1
dT

�

where dT is implicitly defined and is Op(T
2). We rewrite B∗

NT as

B∗
NT = tr

(
JTSNB

0′Φ̂−1
) − 1

Tω̂T

1′
T Φ̂

−1JTSNB
0′Φ̂−11T(33)

+ 1
dT

1′
T Φ̂

−1JTSNB
0′Φ̂−11T �
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Using JTΓ
0 = L0 and Γ 0′B0′ = IT , the first two terms in the preceding equation

are

tr
(
JTSNB

0′Φ̂−1
) − 1

Tω̂T

1′
T Φ̂

−1JTSNB
0′Φ̂−11T

= 1
N

N∑
i=1

u′
iΦ̂

−1L0ui + 1
N

N∑
i=1

(
u′
iΦ̂

−1L01T

)
ηi

− 1
Tω̂T

1′
T Φ̂

−1L0 1
N

N∑
i=1

uiu
′
iΦ̂

−11T

− 1
Tω̂T

(
1′
T Φ̂

−1L01T

) 1
N

N∑
i=1

u′
iΦ̂

−11Tηi�

We make the following three claims. The difference between the second and
the fourth term, multiplied by (N/T)1/2, is negligible, that is,

(N/T)1/2

[
1
N

N∑
i=1

(
u′
iΦ̂

−1L01T

)
ηi(34)

− 1
Tω̂T

(
1′
T Φ̂

−1L01T

) 1
N

N∑
i=1

u′
iΦ̂

−11Tηi

]
= op(1)�

The third term, after centering (replacing uiu
′
i by uiu

′
i −Φ0), is negligible, that

is,

−(N/T)1/2

[
1

Tω̂T

1′
T Φ̂

−1L0 1
N

N∑
i=1

(
uiu

′
i −Φ0

)
Φ̂−11T

]
= op(1)�(35)

The centering amounts to adding the term 1
Tω̂T

1′
T Φ̂

−1L0Φ0Φ̂−11T . Now subtract
this term from the last term of (33) and assume N/T 3 → 0; then

(N/T)1/2

[
1
dT

1′
T Φ̂

−1JTSNB
0′Φ̂−11T(36)

− 1
Tω̂T

1′
T Φ̂

−1L0Φ0Φ̂−11T

]
= op(1)�

The preceding three equations are equivalent to

(N/T)1/2B∗
NT = 1√

NT

N∑
i=1

u′
iΦ̂

−1L0ui + op(1)�
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To prove (32), it suffices to show that (NT)−1/2
∑N

i=1 u
′
i(Φ̂

−1 − Φ0−1)L0ui =
op(1). The product u′

i(Φ̂
−1 − Φ0−1) involves terms of the form uitu

2
kt . How-

ever, L0ui involves terms of past values of uit . Because the expected value
E(uisuitu

2
kt) = 0 for s < t, asymptotic bias due to estimating Φ0 does not arise

in this expression. The leading term of (NT)−1/2
∑N

i=1 u
′
i(Φ̂

−1 − Φ0−1)L0ui is
Op(N

−1/2) = op(1). This argument can be made precisely as in the analysis of
the bias in π̂ − π0

N . We omit the details to avoid repetition. Thus, given (34)–
(36), we obtain (32).

It remains to establish (34)–(36). The first result is the most difficult to prove,
so we show (34) only. It is easy to show that (34) holds if u′

iΦ
0−1 is in place of

u′
iΦ̂

−1. So it is sufficient to show

1√
NT

N∑
i=1

[
u′
i

(
Φ̂−1 −Φ0−1

)
L01T

]
ηi(37)

− (1′
T Φ̂

−1L01T )

T ω̂T

1√
NT

N∑
i=1

[
u′
i

(
Φ̂−1 −Φ0−1

)
1T

]
ηi = op(1)�

We show that each of the two terms on the left has a bias of order (T/N)1/2

arising from the estimation of Φ0. However, the biases are of equal magnitude
with opposite signs, so they cancel each other. We first examine the second
term of (37). By the Toeplitz lemma (or by a direct argument),

1
Tω̂T

(
1′
T Φ̂

−1L01T

) = 1
1′
T Φ̂

−11T

(
1′
T Φ̂

−1L01T

) = 1
1 − ρ0

+Op

(
1
T

)
�(38)

Next,

1√
NT

N∑
i=1

u′
i

(
Φ̂−1 −Φ0−1

)
1Tηi(39)

= 1√
NT

N∑
i=1

T∑
t=1

uitηi

σ̂2
t σ

02
t

(
σ̂2

t − σ02
t

)
= 1√

NT

N∑
i=1

T∑
t=1

uitηi

σ04
t

[
1
N

N∑
k=1

(
u2
kt − σ02

t

)] + op(1)�

where the second equality uses the representation of Φ̂. The expected value of
the above is(

T

N

)1/2 1
NT

N∑
i=1

T∑
t=1

E(u3
it)ηi

σ04
t

=
(
T

N

)1/2
(

1
T

T∑
t=1

νt

σ04
t

)
η̄�
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where νt = E(u3
it), not depending on i. Subtracting its expected value, (39) is

negligible. The potential nonnegligible term (bias) is the product of the pre-
ceding expression and (38). That is,(

T

N

)1/2 1
1 − ρ0

(
1
T

T∑
t=1

νt

σ04
t

)
η̄+ op(1)�(40)

where op(1) is in fact Op(1/
√
NT). Next, consider the first term of (37),

1√
NT

N∑
i=1

[
u′
i

(
Φ̂−1 −Φ0−1

)
L01T

]
ηi

= 1√
NT

N∑
i=1

T∑
t=1

uitηi

σ04
t

[
1
N

N∑
k=1

(
u2
kt − σ02

t

)]
�t + op(1)�

where �t is the tth element of L01T , so that �1 = 0 and �t = 1+ρ0 +· · ·+ (ρ0)t−2

for t ≥ 2. We only need to consider its expected value (bias) since the deviation
from the expected value is op(1). The expected value of the above is(

T

N

)1/2
(

1
T

T∑
t=1

νt�t

σ04
t

)
η̄�

Because �t → 1/(1 − ρ0) as t grows, by the Toeplitz lemma (or by a direct
proof), we have

1
T

T∑
t=1

νt�t

σ04
t

= 1
1 − ρ0

(
1
T

T∑
t=1

νt

σ04
t

)
+O

(
1
T

)
�

Multiplying the preceding expression by (T/N)1/2η̄ leads to an identical bias
term as in (40). The two bias terms offset each other as they enter (37) with
opposite signs. This verifies (37). Q.E.D.

PROOF OF THEOREM 1: For the limiting distribution of π̂, notice that
var((NT)−1/2)

∑N

i=1 u
′
iΦ

−11Tηi) = 1
T
(1′

TΦ
−11T )πN −→ �π by (4) and the as-

sumption πN → π. So the limit of the second term on the right hand side of
(10) is N(0�4π/�), which is asymptotically independent of

√
NT(ρ̂− ρ). To-

gether with Lemma 1(a), we have
√
NT(π̂ −πN − 1

N
b)

d−→ N(0� 4π2

γ(1−ρ)2 + 4π
�
).

The joint asymptotic distribution of ρ̂ and π̂ follows from their representations
in (7) and (10) and their marginal limiting distributions. Q.E.D.

The proof of Proposition 1 is given in the Supplemental Material.
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